
~ Computer Graphics, Volume 24, Number 4, August 1990

Parallel Object-Space Hidden Surface Removal

Wm. Randolph Franklin* and Mohan S. Kankanhalli
Electrical, Computer , and Systems Engineer ing Dept.

Rensselaer Polytechnic Insti tute
Troy, NY 12180

Abstract

A parallel object-space hidden surface removal algorithm for
polyhedral scenes is presented. The uniform grid technique
is used to achieve parallelism for the hidden line removal.
A conflict-detection and back-off strategy is then used to
obtain parallelism for the visible region reconstruction from
the visible segments. The algorithm has been implemented
on a Sequent Balance 21000 shared-memory parallel com-
puter. An average speedup of 10 has been obtained using
15 processors.

CR categories: 1.3.3, 1.3.5, 1.3.7.

1 INTRODUCTION

Hidden surface removal has been well-researched by the com-
puter graphics and computational geometry communities.
There is a wealth of literature on sequential hidden surface
removal algorithms. The classic paper on hidden surface re-
moval algorithms is by Sutherland, Sproull and Schumacker
[23]. They introduced the taxonomy of hidden surface algo-
rithms: image-space algorithms which iterate over the pixels
of the display screen and determine the intensity of each of
them, object-space algorithms which determine visibility of
the objects of the scene such as a face and list-priority al-
gorithms which work in object-space initially but the final
output is in image-space. Joy at. al. present an up-to-date
review of the field in their tutorial on image synthesis [15].
Some recent hidden surface removal algorithms are [17], [18].

There have been several studies on parallel image-space
hidden surface removal [4], [7], [10], [14], [16], [19], [24].
Hardware implementations of image-space algorithms have
been considered extensively [1], [2], [6], [11], [20], [25], but
there has not been much work in the area of parallel object-
space hidden surface removal. Hornung has developed an
object-space algorithm which reduces the computation time
for a network of polygons [13]. He then considers issues
of extending this approach for a parallel machine. He gives
general guidelines for parallelizing the algorithm but no spe-
cific details are given. Rankin describes a hidden line re-
moval algorithm which can be parallelized [21]. However,

*Email : wrf@ecse.rpi .edu, Phone: (518) 276-6077

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

it cannot be extended for the hidden surface problem. Reif
and Sen have presented an object space parallel hidden sur-
face algorithm which runs in time O(log4(n + k)) using

n+k O -k~-~- (log(~+k)) processors on a CREW PRAM model [22]. This
method is valid only for surfaces of the form z = f(x,y). The
algorithm is extremely complicated and the authors admit
that their algorithm is not practical.

Our aim has been to develop an efficient, parallel, ob-
ject space hidden surface removal algorithm which is simple
enough to be implemented on real parallel computers. This
algorithm is based on the Franklin algorithm [8].

2 PRELIMINARIES

The key behind the parallelism achieved is the Uniform Grid
technique. The uniform grid is a flat, non-hierarchical grid
which is superimposed on the data. The grid adapts to the
data since the number of grid cells, or resolution is a func-
tion of some statistic of the input data, such as the average
length of the edges. The grid is completely regular i.e. it is
not finer in the denser regions of the data. The use of the
uniform grid technique will become apparent from the algo-
rithm presented in the next section. One objection against
the uniform grid technique could be that it is not suitable
for irregular scenes and that hierarchical methods such as
quadtrees need to be used. But this has not been a prob-
lem in practice [3]. From the parallel processing viewpoint,
implementation becomes a lot easier with a flat data struc-
ture since the overhead on scheduling can be reduced by
using a static scheduling scheme. Readers are referred to
[3] for fiarther details on the uniform grid technique and its
applications to geometric computing.

It is assumed that a perspective transformation has been
applied on the scene so that the viewpoint is at infinity in
the Z direction and the orthographic projection can be used.
The scene consists of polyhedra with non-intersecting planar
faces. The polyhedra are specified by their vertices, edges
and faces. The vertices (edges) are ordered around the face.
It is also assumed that the scene is scaled and projected to
fit a 1 x 1 window. The output is a set of polygons where
each polygon is an ordered list of vertices (edges).

Def in i t ion : A blocking face of a grid cell is the front-
most face, from the viewpoint, whose projection covers the
cell completely (Figure 1). If it exists for a cell, then all
faces of the cell behind the blocking face are invisible from
the viewpoint. The blocking face helps eliminate a lot of
unnecessary computation.

The algorithm for hidden surface removal without the

©1990 ACM-0-89791-344-2/90/008/0087 $00.75 87

O SIGGRAPH '90, Dallas, August 6-10, 1990

1 : 2 3

. i

i i i";

. J...9 ...

Figure h Face "f" is the blocking face for cell 5

visible region reconstruction is now presented. The algo-
rithm for visible region reconstruction in parallel, which uses
a conflict-detection and back-off strategy, is presented sub-
sequently.

3 THE ALGORITHM

In this algorithm, the scene is organized into buckets (cells)
using the uniform grid technique. The edges are then inter-
sected to obtain the visible segments. The visible regions
are obtained from the visible segments. Finally, a point in
the visible region is used to find the shading value of that
region.

1. Determine a grid size G using some statistic of the
input scene, such as G = cmin(~, vfn) , where / i s the
average length of the edges, c is a constant and n is
the number of edges.

2. Cast a G × Ggr id on the scene. For each of the pro-
jected faces in parallel, determine which cells it covers
- either fully or partially. Let f = current face being
considered and fb be the current blocking face. If f
covers the cell fully, compare it with the fb of that cell.
If f is in front of fs, then f is the new blocking face,
else it is to be discarded. If f does not cover the cell
fully and it is in front of fb, then add it to the list
of faces for that cell. This whole step can be done in
parallel.

3. For each cell in parallel, compare the partially cover-
ing faces with the cell's blocking face. If any face is
behind the blocking face then discard it from the list of
faces for that cell. This step is needed to remove some
partially covering faces that were in front of a previous
blocking face but are behind the final blocking face for
that cell.

4. For each projected edge in parallel, determine the grid
cells it belongs to. Check if the edge is behind the
blocking face for each cell. If it is not, then add it to
the list of edges for that cell.

5. For each cell in parallel, determine the intersection
points of the projected edges in that cell. Consider
the intersection only if it lies in that cell. Associate
the intersection point with both the edges.

6. For each edge in parallel, sort the intersection points
along it and partition the edge into segments. Each
segment is either completely visible or completely hid-
dell.

7. For each segment in parallel, check its visibility by
comparing with the blocking face and the list of par-
tially covering faces. If it is visible, add it to the list
of visible segments.

8. In parallel, determine the regions formed by the visi-
ble segments. This is the visible region reconstruction
problem. The parallel algorithm for this problem is
presented in section 4.

9. For each polygon of the visible regions in parallel, take
a point inside that polygon. In the cell containing
the point, find the closest face in which the point lies.
Since that polygon is a part of that face, assign the
shading value of the face to the polygon. If the point
does not lie in any face, assign the background shading
value to that polygon.

4 VISIBLE REGION RECONSTRUCTION IN PARALLEL

Visible region reconstruction is a planar graph traversal pro-
blein. More specifically, let E be a set of edges in the XY-
plane such that the members of E constitute a legal planar
subdivision. This means that every face (region) is bounded
except for the outer ones which are infinite in size. The
planar graph traversal finds the regions of the planar sub-
division given in terms of its edges. The regions are to be
specified by their vertices (or edges) in a positive order. For
hidden surface removal, the edges are the visible segments
and the regions found are the visible parts of the projected
faces of the input scene.

The algorithm we present for this problem is an extension
of the Franklin-Akman algorithm [9]. A conflict-detection
and back-off strategy is introduced to extend the algorithm
for parallel processing. The input is assumed to be a set
of visible edges which constitutes a legal connected planar
graph. This condition can be relaxed to allow for discon-
nected components which are not geometrically nested. If
this is not satisfied, then the depth ordering of the nested
components is not known. So a preprocessing stage of find-
ing the connected components would be necessary. We as-
sume, without loss of generality, that the input has no nested
components. Figure 2 shows an example of a legal input
graph and an illegal input gralJh.

4.1 PARALLELISM STRATEGY
Intuitively, the algorithm proceeds in this manner. For every
vertex, the edges incident to it are obtained. The edges are
then sorted around each vertex in some order (clockwise).
Two consecutive edges in this sorted list define a corner of
a face. These corners could be merged in parallel to obtain
the faces. Each corner is marked in order to be used only
once. The merging can be started in parallel, but there is a
problem. Ideally, each processor should work on a different
face but there is no a priori way of ensuring this. Hence con-
flicts may arise if two processors are determining the same
face. This conflict is resolved using a conflict-detection and
back-off strategy. Each processor is given a priority num-
ber (which is based on the processor identification number).

88

~ Computer Graphics, Volume 24, Number 4, August 1990

/ /

/

/ /

Figure 2: Illegal input on left & legal input on right

In this strategy, each of the corners are init ially marked as
'unused' . As soon as a processor works on a corner, if it
is marked as 'unused ~, it is marked with that processor 's
priority number. If it is not marked as unused, it means
it has been processed by some other processor whose pri-
ority is the value of the mark and there is a conflict. If
that priori ty is higher than the processor 's priority, then the
processors backs off and star ts working on a new corner. If
the priori ty is lower, then it overwrites the mark with its
priori ty and continues the work. The other processor will
u l t imately find that this face is being worked on by a higher
priority processor, so it will eventual ly back off. So, in this
strategy, the higher priori ty processor continues the merg-
ing and obtains the face. Once a face is obtained, then its
vertices are marked so that it is not found by some other
processor again. If there are severa | processors working on
the same face, then the processor with the highest prior-
ity among them will u l t imately traverse the face. This may
mean some loss of work and lower efficiency but asymptot -
ically, with a large number of corners, the penal ty will not
be too much. In practice, the speedup obtained was roughly
half of that of the other parts of the hidden surface removal
algori thm.

4.2 REGION RECONSTRUCTION ALGORITHM
The input to the algori thm consists of a set of n edges in
the XY-plane specified by the end-point coordinates:

E = {((~,1, y,l), (x ,2 ,y ,2)) ; i = 1,..., n}

No order is assumed in E. Now we want to find for each
vertex, the edges around it. Therefore, all edges have to be
considered twice - once by the first ver tex and once by the
second vertex. So, we construct in parallel:

E 1 = {((x~2, y,2), (~,,, u,,)); ((~ , u~), (~i2, u,~)) ~ E}

Then, hash each edge in E t2 E 1 using the X and Y coor-
dinates of the first end-point as the key. This can be done
for each edge in parallel. By this operat ion, we have all
edges having the same first end-point in the same bucket.
The elements which are in a bucket are the edges of the pla-
nar graph which have an end-point (ver tex) equal to their
key. We call the other end-points (vertices) of these edges
a row and the common key vertex a pivot. The pivot is not
included in the row. Thus the input planar graph can be
visualized as a table made of a family of rows, each having

a different pivot. Now, for each row in parallel, we sort the
elements of the row about the pivot in an angular order.
If the vertices are sorted in a clockwise order, then the fi-
nal faces (except the infinite face) ou tpu t by the algori thm
will be in a counter-clockwise order and vice-versa. We call -
this final table of sorted elements the Navigat ion Table. The
navigat ion is carried out on this table to obtain the regions
(faces). The algori thm for navigat ing in parallel is presented
in the next section. This procedure actually finds the faces.
An example of an input graph, the navigat ion table and the
faces is shown in figure 3.

4.3 NAVIGATION PROCEDURE
Assume that each processor has a unique id and all the ele-
ments of the rows have been marked as unused (mark = -1).
The processor priori ty number is its id and larger priori ty
number implies higher priority. The navigat ion procedure is
executed by each processor in parallel with each processor
handling a different pivot (and its row).

for each row of navigation table in parallel {

current_pivot = first element of the row;
for each element of the row {

current_row = current_pivot;
current_vertex = this element;
face = {current_pivot}; /* Ist vertex of the
face is the pivot */
do ~orever {

lock(current_vertex mark); /* Lock mark to
ensure it is updated by
only one processor */

if my_id < mark(current_vertex) {

break; /* this face is being traversed by
a higher id processor so back off.

Move to next element of the row. */

} /* end if */
else mark current_vertex as used with

my id;

unlock(current_vertex mark);
append current vertex to face;

89

O
v2

vl

SIGGRAPH '90, Dallas, August 6-10, 1990

v4

v3

v6

v5

v8

1 Navigation Table:

v l : v5, v2
v2: v3, v l
v3: v7, v4, v2
v4: v8, v3
v5: v l , v6
v6: v8, v7, v5
v7: v3, v6
v8: v6, v4

2 The Faces Obtained:

f l : (v l , v5, v6, v8, v4, v3, v2)
f2:(v2, v3, v7, v6, v5, v l)
fa:(v3, v4, v8, v6, v7)

Figure 3: Example of a Navigat ion Table

if current_vertex = current_pivot {

output face and mark all vertices of
the face with infinity; / * we have

found the face */
goto next element of the row;

} / * end i f * /

previous_row = current_row;
current_row = current_vertex;
current_vertex = the element of
current_row following the previous_row

with wrap around;

} / * end do f o r e v e r * /

} / * end for each element * /

} /* end for each row in parallel */

5 ANALYSIS OF THE ALGORITHM

5.1 CORRECTNESS

Tile correctness of the a lgor i thm given in section 3 is easy
to see because it is a ref inement of the following naive al-
gori thm: Intersect all pairs of edges by pairwise comparison
and divide the edges into segments. Each segment is fully
visible or fully hidden. Compare each segment with all the
faces to determine its visibility. Const ruct the visible regions
from the visible segments and compare each region against
all faces to see which face it corresponds to and shade it
accordingly.

The correctness of the region reconstruct ion a lgor i thm is
also easy to see. The navigat ion a lgor i thm is correct because
we cover all pivots and each element of a row is considered
exactly once by only one of the processors. All e lements of

the rows are considered because the processor assigned to a
pivot begins the navigat ion for each eleinent of the row. So
all e lements are t raversed which gives all the faces.

5.2 COMPLEXITY

For tile analysis, we assume a Concur ren t -Read Exclusive-
Wri te (C R E W) P R A M model of computa t ion . Let p be
the number of processors. For the sake of the analysis, the
input scene is assumed to consist of isothetic squares inde-
pendent ly and identical ly dis t r ibuted (i.i.d.) Each edge is of
length l.

For comput ing the grid size, we use:

G = cmin(~-, x/7~)

Assume that :
C

e = -
1

Since the cell size is a constant of the face size as n increases,
the probabil i ty p tha t a given face completely covers a face
is:

c _ l 2
v = (~ - 7 ~) , c > l

As the number of faces in the cell increases to infinity, the
expected number of the first blocking face q is:

co
q = E i p (1 _p)i-1 = _1 = (c + 1) 2

p c - 1
i = 1

Therefore, the expected number of faces in a cell after
the faces behind the blocking face is deleted (step 3 of the
algori thm) is bounded by q. Let r be the expected number
of ceils in which a face falls. We have:

= (c + i) ~.

90,

~ Computer Graphics, Volume 24, Number 4, August 1990

Let
number of faces

S =
n

So, the number of faces per cell before step 3 is ~ of which
q faces per cell are not deleted. So the fraction of faces left
after step 3 is:

qC ~ (c_~)2 1
r s n - - s g 2 n

This is also the fraction of the edges that are in a cell af-
ter the cell grid is cast because the edges are also similarly
distributed.

Let u be the average number cells in which an edge falls.
We have:

u = c + l .

The average number of edges per cell is ~ . So, the average
number of edges per cell left after deletions is:

qG 2 un qu c + 1

r s n " a 2 rs (c - 1)2s

which is a constant. Therefore, intersecting the edges in a
cell takes a constant time. It also implies that an edge is
partitioned into a bounded number of segments.

Since the number of faces in a cell, the edges in a cell
and the number of intersections in a cell are bounded by
constants as shown above, we can deduce the following time
complexities. Steps 1 and 2 of the algorithm take a time of

O(~). Steps 2 and 3 take a time of O(-~) = O(~). Step 4
will again take a time of O(~). Steps 5, 6 and 7 will take a

time of O(-~) = O(~). Therefore, the parallel hidden line
removal algorithm takes a time of O(~) for n faces using p
processors.

For the visible region reconstruction, assume that we
have k visible segments. Obtaining the navigation table with
the elements of a row unsorted will take a time of 0 (~) since
hashing is used. Sorting the rows of the navigation table can
at worst be O(k log k) since the maximum degree of the star
vertex of a star graph (which is one of the worst-case in-
puts to the algorithm) can be O(k) . But, if such a case is
detected and parallel sorting is used, this can be reduced
to O(log k) using O(k) processors. But, we assume a worse
complexity of O(klog k) for this step. For the navigation
algorithm, consider the (hypothetical) worst-case in which
the conflicts are not detected and all the processors find all
the faces around its assigned vertices. The complexity of
the navigation step for a row is then O(d~fav), where fay
is the average size of a face. The worst-case for this step is
a graph which is either a simple cycle or a star graph and
for both cases the time complexity is O(k) . But in actual
practice, we will do better than that because conflicts are
detected in the algorithm and the average input is not likely
to be the worst-case input. Then, step 9 of the algorithm
takes O(-~-) = O(~).

So for the parallel hidden surface removal algorithm, the
O " time complexity is of (7 + klog k) where n is the number

of input edges, k is the number of visible segments and p is
the number of processors assuming a CREW PRAM model
of computation. Note that though the klogk term in the
complexity suggests that the algorithm may not perform
well, our implementation suggests otherwise. The reason for
this is that the average data is not worst-case and secondly,
the region reconstruction takes a small fraction (less than

10%) of the total time when p is equal to one. So, the
algorithm is basically linear in the number of faces and the
speedup is linear with the number of processors. The results
are presented in the following section.

6 IMPLEMENTATION AND RESULTS

Practical implementation of parallel algorithms is extremely
important since the theoretical performance does not take
into account the limitations of resource contention and com-
munication costs of real parallel machines. These factors
can severely limit the speedups obtained. So, we imple-
mented the algorithm on a Sequent Balance 21000 computer,
which contains 16 National Semiconductor 32000 processors
and compared the elapsed time when up to 15 processors
were used to the time for only one processor. Since the Se-
quent Balance 21000 is a shared memory parallel computer,
shared data structures are the communication mechanism
for the processors. The synchronization of the processors is
achieved by using atomic locks. The programming was done
in C using the Sequent's parallel processing library routines
for multitasking and synchronization.

For testing the implementation, we used the tetrahedral
p y r a m i d (figure 4) and the meshed gears (figure 5) databases
from the "Standard Procedural Database" proposed by Eric
Haines [12]. The results from processing the tetrahedral
pyramid having 4096 faces (each of which is a triangle) is
shown in figure 6. It is seen that an almost linear speedup
is obtained by adding more processors. For 15 processors
(which is the maximum that can be used), a speedup of 11
is obtained. The results for the meshed gears database which
had 16 faces with 144 vertices and 1152 faces with 4 vertices
is shown in figure 7. Here also, an almost linear speedup has
been obtained and a speedup of 10 has been obtained for 15
processors. Note that though the speedup is linear, it is not
the ideal speedup because of the overhead for forking the
processes and locking of the data structures. The speedup
is linear for the hidden line removal part but for the visi-
ble region reconstruction part, the speedup increases much
slower. For 15 processors, the speedup obtained is about 6.
But the time for region reconstruction is a small fraction,
typically 3% to 10%, of the total time for the hidden surface
removal. So, the overall speedup obtained is almost linear.
This means that we should achieve an even bigger speedup
on a machine with more processors. We are currently inves-
tigating the viability of the techniques used in this algorithm
on SIMD (Connection Machine) and message-passing (Hy-
percube) architectures.

7 CONCLUSIONS

We have presented a new parallel object-space hidden sur-
face removal algorithm. This algorithm is practical and has
been successfully implemented on a commercial parallel ma-
chine. The uniform grid technique has been used to exploit
parallelism in the geometric aspects of hidden surface re-
moval. The uniform grid technique could be successfully
used for parallelizing other geometric problems [3], [5]. A
conflict-detection and back-off strategy has been introduced
to achieve parallelism in the visible region reconstruction
which is related to the topological aspects of the problem.
This technique could be useful in parallelizing the topolog-
ical aspects of other problems like polyhedron intersection
and map overlay in cartography. These techniques lead to

91

O SIGGRAPH '90, Dallas, August 6-10, 1990

Figure 4: TetrahedrM Pyramid

Figure 5: Meshed Gears

95

~ Computer Graphics, Volume 24, Number 4, August 1990

practical parallel algorithms which has been demonstrated
by the implementation of the object-space hidden surface
removal algorithm.

8 ACKNOWLEDGEMENTS

This work was supported by NSF Presidential Young Inves-
tigator grant CCR-8351942. Partial support for this work
was provided by the Directorate for Computer and Infor-
mation Science and Engineering, NSF Grant No. CDA-
8805910. We also used equipment at the Computer Sci-
ence Department and Rensselaer Design Research Center at
RPI. Part of this work was conducted using the computa-
tional resources of the Northeast Parallel Architectures Cen-
ter (NPAC) at Syracuse University, which is funded by and
operates under contract to DARPA and the Air Force Sys-
tems Command, Rome Air Development Center (RADC),
Griffiss Air Force Base, NY, under contract No. F306002-
88-C-0031. Part of the research reported here was made
possible through the support of the New Jersey Commis-
sion on Science and Technology and the Rutgers University
CAIP Center's Industrial Members.

9 REFERENCES

1. Ajjanagadde V.G. and Patnaik L.M., "Design and Per-
formance Evaluation of a Systolic Architecture for Hid-
den Surface Removal", Computers ~ Graphics, 12, 1
(1988), 71-74.

2. Akeley K. and Jermoluk T., "High-Performance Poly-
gon Rendering", Computer Graphics, 22, 4 (August
1988), 239-246.

3. Akman V., Franklin W.R., Kankanhalli M. and Nara-
yanaswami C., "Geometric Computing and Uniform
Grid Technique", Computer-Aided Design, 21, 7 (Sept-
ember 1989), 410-420.

4. Catmull E., "An Analytic Visible Surface Algorithm
for Independent Pixel Processing", Computer Graph-
ics, 18, 3 (July 1984), 109-115.

5. Chandrasekhar N. and Franklin W.R., "An Efficient
Parallel Algorithm for Determining Boolean Combi-
nations of Complex Polyhedra" (in preparation).

6. Dippe M. and Swensen J., "An Adaptive Subdivision
Algorithm and Parallel Architecture for Realistic Im-
age Synthesis", Computer Graphics, 18, 3 (July 1984),
149-158.

7. Fiume E., Fournier A. and Rudolph L., "A Paral-
lel Scan Conversion Algorithm with Anti-Aliasing for
a General-Purpose Ultracomputer", Computer Graph-
ics, 17, 3 (July 1983), 141-150.

8. Franklin W.R., "A Linear Time Exact Hidden Surface
Algorithm", Computer Graphics, 14, 3 (1980), 117-
123.

9. Franklin W.R. and Akman V., "Reconstructing Visible
Regions from Visible Segments", BIT, 26, 1986, 430-
441.

10. Fuchs H., "Distributing a Visible Surface Algorithm
over Multiple Processors", Proceedings of the A CM
Annual Conference (1977), pp. 449-451.

11. Fuchs H., Poulton J., Eyles J., Greer T., Goldfeather
J., Ellsworth D., Molnar S., Turk G., Tebbs B. and
Israel L., " Pixel-Planes 5: A Heterogeneous Multi-
processor Graphics System Using Processor-Enhanced
Memories", Computer Graphics, 23, 3 (July 1989), 79-
88.

12. Haines E., "A Proposal for Standard Graphics Envi-
ronments", IEEE Computer Graphics ~ Applications,
7, 11 (November 1987), 3-5.

13. Hornung C., "A Method for Solving the Visibility Pro-
blem", IEEE Computer Graphics ~ Applications, 4, 7
(July 1984), 26-33.

14. Hu M. and Foley J.D., "Parallel Processing Approaches
to Hidden Surface Removal in Image Space", Comput-
ers ~ Graphics, 9, 3 (1985), 303-317.

15. Joy K.I., Grant C.W., Max N.L. and Hatfield L., Tu-
torial: Computer Graphics: Image Synthesis, IEEE
Computer Society Press, Washington D.C., 1988.

16. Kaplan M. and Greenberg D.P., "Parallel Processing
Techniques for Hidden Surface Removal", Computer
Graphics, 13, 1979, 300-309.

17. Mulmuley K., "On Obstructions In Relation To A Fix-
ed Viewpoint", Proc. 30th Annual Symposium on Fo-
undations of Computer Science (Oct. 30 - Nov. l,
1989), pp. 592-597.

18. Overmars M. and Sharir M., "Output-Sensitive Hid-
den Surface Removal", Proc. 30th Annual Symposium
on Foundations of Computer Science (Oct. 30 - Nov.
1, 1989), pp. 598-603.

19. Parke F., "Simulation and Expected Performance Ana-
lysis of Multiple Processor Z-Buffer Systems", Com-
puter Graphics, 14, 3 (July 1980), 48-56.

20. Potmesil M. and Hoffert E.M., "The Pixel Machine: A
Parallel Image Computer", Computer Graphics, 23, 3
(July 1989), 69-78.

21. Rankin J.R., "A Geometric Hidden Line Processing
Algorithm", Computers fJ Graphics, 11, 1 (1987), 11-
19.

22. Reif J.H. and Sen S., "An Efficient Output-Sensitive
Hidden Surface Removal Algorithm and its Paralleliza-
tion", Proc. fourth Annual Symposium on Computa-
tional Geometry (June 1988), pp. 193-200.

23. Sutherland I.E., Sproull R.F. and Schumacker R.A.,
"A Characterization of Ten Hidden Surface Algorith-
ms", ACM Computing Surveys, 6, 1 (March 1974), 1-
55.

24. Theoharis T., Algorithms for Parallel Polygon Ren-
dering, Lecture Notes in Computer Science, Vol. 373,
Springer-Verlag, Berlin, 1989.

25. Weinberg R., "Parallel Processing Image Synthesis and
Anti-Aliasing", Computer Graphics, 15, 3 (Aug. 1981),
55-62.

93

SIGGRAPH '90, Dallas, August 6-10, 1990

500

400

300

200

100

I I I I I
00 3 6 9 12 15

Total
Time
(secs.)

Number Of Processors
(a)

S p e e d
Up

1 5 -

10

I I I I I
00 3 6 9 12 15

Number Of Processors
(b)

Figure 6: Timing for Tetrahedral Pyramid with grid size = 40.

Total
Time
(secs.)

700

600

500

400

300

200

100

I I I I I
00 3 6 9 12 15

Number Of Processors
(a)

S p e e d
Up

15

10

5

0 I I I I I
0 3 6 9 12 15

Number Of Processors
(b)

Figure 7: Timing for Meshed Gears with grid size = 32.

94

