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Abstract 

A parallel object-space hidden surface removal algorithm for 
polyhedral scenes is presented. The uniform grid technique 
is used to achieve parallelism for the hidden line removal. 
A conflict-detection and back-off strategy is then used to 
obtain parallelism for the visible region reconstruction from 
the visible segments. The algorithm has been implemented 
on a Sequent Balance 21000 shared-memory parallel com- 
puter. An average speedup of 10 has been obtained using 
15 processors. 

CR categories: 1.3.3, 1.3.5, 1.3.7. 

1 INTRODUCTION 

Hidden surface removal has been well-researched by the com- 
puter graphics and computational geometry communities. 
There is a wealth of literature on sequential hidden surface 
removal algorithms. The classic paper on hidden surface re- 
moval algorithms is by Sutherland, Sproull and Schumacker 
[23]. They introduced the taxonomy of hidden surface algo- 
rithms: image-space algorithms which iterate over the pixels 
of the display screen and determine the intensity of each of 
them, object-space algorithms which determine visibility of 
the objects of the scene such as a face and list-priority al- 
gorithms which work in object-space initially but the final 
output is in image-space. Joy at. al. present an up-to-date 
review of the field in their tutorial on image synthesis [15]. 
Some recent hidden surface removal algorithms are [17], [18]. 

There have been several studies on parallel image-space 
hidden surface removal [4], [7], [10], [14], [16], [19], [24]. 
Hardware implementations of image-space algorithms have 
been considered extensively [1], [2], [6], [11], [20], [25], but 
there has not been much work in the area of parallel object- 
space hidden surface removal. Hornung has developed an 
object-space algorithm which reduces the computation time 
for a network of polygons [13]. He then considers issues 
of extending this approach for a parallel machine. He gives 
general guidelines for parallelizing the algorithm but no spe- 
cific details are given. Rankin describes a hidden line re- 
moval algorithm which can be parallelized [21]. However, 
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it cannot be extended for the hidden surface problem. Reif 
and Sen have presented an object space parallel hidden sur- 
face algorithm which runs in time O(log4(n + k)) using 

n+k  O -k~-~- (log(~+k)) processors on a CREW PRAM model [22]. This 
method is valid only for surfaces of the form z = f(x,y). The 
algorithm is extremely complicated and the authors admit 
that their algorithm is not practical. 

Our aim has been to develop an efficient, parallel, ob- 
ject space hidden surface removal algorithm which is simple 
enough to be implemented on real parallel computers. This 
algorithm is based on the Franklin algorithm [8]. 

2 PRELIMINARIES 

The key behind the parallelism achieved is the Uniform Grid 
technique. The uniform grid is a flat, non-hierarchical grid 
which is superimposed on the data. The grid adapts to the 
data since the number of grid cells, or resolution is a func- 
tion of some statistic of the input data, such as the average 
length of the edges. The grid is completely regular i.e. it is 
not finer in the denser regions of the data. The use of the 
uniform grid technique will become apparent from the algo- 
rithm presented in the next section. One objection against 
the uniform grid technique could be that it is not suitable 
for irregular scenes and that hierarchical methods such as 
quadtrees need to be used. But this has not been a prob- 
lem in practice [3]. From the parallel processing viewpoint, 
implementation becomes a lot easier with a flat data struc- 
ture since the overhead on scheduling can be reduced by 
using a static scheduling scheme. Readers are referred to 
[3] for fiarther details on the uniform grid technique and its 
applications to geometric computing. 

It is assumed that a perspective transformation has been 
applied on the scene so that the viewpoint is at infinity in 
the Z direction and the orthographic projection can be used. 
The scene consists of polyhedra with non-intersecting planar 
faces. The polyhedra are specified by their vertices, edges 
and faces. The vertices (edges) are ordered around the face. 
It is also assumed that the scene is scaled and projected to 
fit a 1 x 1 window. The output is a set of polygons where 
each polygon is an ordered list of vertices (edges). 

Def in i t ion :  A blocking face of a grid cell is the front- 
most face, from the viewpoint, whose projection covers the 
cell completely (Figure 1). If it exists for a cell, then all 
faces of the cell behind the blocking face are invisible from 
the viewpoint. The blocking face helps eliminate a lot of 
unnecessary computation. 

The algorithm for hidden surface removal without the 
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Figure h Face "f" is the blocking face for cell 5 

visible region reconstruction is now presented. The algo- 
rithm for visible region reconstruction in parallel, which uses 
a conflict-detection and back-off strategy, is presented sub- 
sequently. 

3 THE ALGORITHM 

In this algorithm, the scene is organized into buckets (cells) 
using the uniform grid technique. The edges are then inter- 
sected to obtain the visible segments. The visible regions 
are obtained from the visible segments. Finally, a point in 
the visible region is used to find the shading value of that 
region. 

1. Determine a grid size G using some statistic of the 
input scene, such as G = cmin(~,  vfn) , where / i s  the 
average length of the edges, c is a constant and n is 
the number of edges. 

2. Cast a G × Ggr id  on the scene. For each of the pro- 
jected faces in parallel, determine which cells it covers 
- either fully or partially. Let f = current face being 
considered and fb be the current blocking face. If f 
covers the cell fully, compare it with the fb of that cell. 
If f is in front of fs, then f is the new blocking face, 
else it is to be discarded. If f does not cover the cell 
fully and it is in front of fb, then add it to the list 
of faces for that cell. This whole step can be done in 
parallel. 

3. For each cell in parallel, compare the partially cover- 
ing faces with the cell's blocking face. If any face is 
behind the blocking face then discard it from the list of 
faces for that cell. This step is needed to remove some 
partially covering faces that were in front of a previous 
blocking face but are behind the final blocking face for 
that cell. 

4. For each projected edge in parallel, determine the grid 
cells it belongs to. Check if the edge is behind the 
blocking face for each cell. If it is not, then add it to 
the list of edges for that cell. 

5. For each cell in parallel, determine the intersection 
points of the projected edges in that cell. Consider 
the intersection only if it lies in that cell. Associate 
the intersection point with both the edges. 

6. For each edge in parallel, sort the intersection points 
along it and partition the edge into segments. Each 
segment is either completely visible or completely hid- 
dell. 

7. For each segment in parallel, check its visibility by 
comparing with the blocking face and the list of par- 
tially covering faces. If it is visible, add it to the list 
of visible segments. 

8. In parallel, determine the regions formed by the visi- 
ble segments. This is the visible region reconstruction 
problem. The parallel algorithm for this problem is 
presented in section 4. 

9. For each polygon of the visible regions in parallel, take 
a point inside that polygon. In the cell containing 
the point, find the closest face in which the point lies. 
Since that polygon is a part of that face, assign the 
shading value of the face to the polygon. If the point 
does not lie in any face, assign the background shading 
value to that polygon. 

4 VISIBLE REGION RECONSTRUCTION IN PARALLEL 

Visible region reconstruction is a planar graph traversal pro- 
blein. More specifically, let E be a set of edges in the XY- 
plane such that the members of E constitute a legal planar 
subdivision. This means that every face (region) is bounded 
except for the outer ones which are infinite in size. The 
planar graph traversal finds the regions of the planar sub- 
division given in terms of its edges. The regions are to be 
specified by their vertices (or edges) in a positive order. For 
hidden surface removal, the edges are the visible segments 
and the regions found are the visible parts of the projected 
faces of the input scene. 

The algorithm we present for this problem is an extension 
of the Franklin-Akman algorithm [9]. A conflict-detection 
and back-off strategy is introduced to extend the algorithm 
for parallel processing. The input is assumed to be a set 
of visible edges which constitutes a legal connected planar 
graph. This condition can be relaxed to allow for discon- 
nected components which are not geometrically nested. If 
this is not satisfied, then the depth ordering of the nested 
components is not known. So a preprocessing stage of find- 
ing the connected components would be necessary. We as- 
sume, without loss of generality, that the input has no nested 
components. Figure 2 shows an example of a legal input 
graph and an illegal input gralJh. 

4.1 PARALLELISM STRATEGY 
Intuitively, the algorithm proceeds in this manner. For every 
vertex, the edges incident to it are obtained. The edges are 
then sorted around each vertex in some order (clockwise). 
Two consecutive edges in this sorted list define a corner of 
a face. These corners could be merged in parallel to obtain 
the faces. Each corner is marked in order to be used only 
once. The merging can be started in parallel, but there is a 
problem. Ideally, each processor should work on a different 
face but there is no a priori way of ensuring this. Hence con- 
flicts may arise if two processors are determining the same 
face. This conflict is resolved using a conflict-detection and 
back-off strategy. Each processor is given a priority num- 
ber (which is based on the processor identification number). 

88 



~ Computer Graphics, Volume 24, Number 4, August 1990 

/ / 

/ 

/ / 

Figure 2: Illegal input  on left & legal input  on right 

In this strategy, each of the corners are init ially marked as 
'unused' .  As soon as a processor works on a corner, if it 
is marked as 'unused ~, it is marked with that  processor 's  
priority number.  If it is not  marked as unused, it means 
it has been processed by some other  processor whose pri- 
ority is the value of the mark  and there is a conflict. If 
that  priori ty is higher than the processor 's priority, then the 
processors backs off and star ts  working on a new corner. If 
the priori ty is lower, then it overwrites the mark  with its 
priori ty and continues the work. The  other  processor will 
u l t imately  find that  this face is being worked on by a higher 
priority processor, so it will eventual ly back off. So, in this 
strategy, the higher priori ty processor continues the merg- 
ing and obtains the face. Once a face is obtained,  then its 
vertices are marked so that  it is not  found by some other  
processor again. If there are severa |  processors working on 
the same face, then the processor with the highest prior- 
ity among them will u l t imately  traverse the face. This  may 
mean some loss of work and lower efficiency but  asymptot -  
ically, with a large number  of corners, the penal ty  will not  
be too much. In practice, the speedup obtained was roughly 
half of that  of the other  parts of the hidden surface removal 
algori thm. 

4.2 REGION RECONSTRUCTION ALGORITHM 
The  input  to the algori thm consists of a set of n edges in 
the XY-plane specified by the end-point  coordinates:  

E = {((~,1, y,l),  (x ,2 ,y ,2)) ; i  = 1,..., n} 

No order is assumed in E.  Now we want to find for each 
vertex, the edges around it. Therefore,  all edges have to be 
considered twice - once by the first ver tex and once by the 
second vertex. So, we construct  in parallel: 

E 1 = {((x~2, y,2), (~,,, u,,)); ( ( ~ ,  u~), (~i2, u,~)) ~ E} 

Then,  hash each edge in E t2 E 1 using the X and Y coor- 
dinates of the first end-point  as the key. This  can be done 
for each edge in parallel. By this operat ion,  we have all 
edges having the same first end-point  in the same bucket. 
The elements which are in a bucket are the edges of the pla- 
nar graph which have an end-point (ver tex)  equal to their  
key. We call the other  end-points  (vertices) of these edges 
a row and the common key vertex a pivot.  The pivot  is not  
included in the row. Thus the input  planar  graph can be 
visualized as a table made of a family of rows, each having 

a different pivot.  Now, for each row in parallel, we sort the 
elements  of the row about  the pivot in an angular order. 
If the vertices are sorted in a clockwise order, then the fi- 
nal faces (except the infinite face) ou tpu t  by the algori thm 
will be in a counter-clockwise order and vice-versa. We call - 
this final table of sorted elements  the Navigat ion  Table. The 
navigat ion is carried out on this table to obtain the regions 
(faces). The  algori thm for navigat ing in parallel is presented 
in the next  section. This  procedure actually finds the faces. 
An example  of an input  graph, the navigat ion table and the 
faces is shown in figure 3. 

4.3 NAVIGATION PROCEDURE 
Assume that  each processor has a unique id and all the ele- 
ments  of the rows have been marked as unused (mark = -1). 
The  processor priori ty number  is its id and larger priori ty 
number  implies higher priority. The  navigat ion procedure is 
executed by each processor in parallel with each processor 
handling a different pivot  (and its row). 

for each row of navigation table in parallel { 

current_pivot = first element of the row; 
for each element of the row { 

current_row = current_pivot; 
current_vertex = this element; 
face = {current_pivot}; /* Ist vertex of the 
face is the pivot */ 
do ~orever { 

lock( current_vertex mark); /* Lock mark to 
ensure it is updated by 
only one processor */ 

if my_id < mark(current_vertex) { 

break; /* this face is being traversed by 
a higher id processor so back off. 

Move to next element of the row. */ 

} /* end if */ 
else mark current_vertex as used with 

my id; 

unlock( current_vertex mark); 
append current vertex to face; 
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1 Navigation Table: 

v l :  v5, v2 
v2: v3, v l  
v3: v7, v4, v2 
v4: v8, v3 
v5: v l ,  v6 
v6: v8, v7, v5 
v7: v3, v6 
v8: v6, v4 

2 The Faces Obtained: 

f l : ( v l ,  v5, v6, v8, v4, v3, v2) 
f2:(v2, v3, v7, v6, v5, v l )  
fa:(v3, v4, v8, v6, v7) 

Figure 3: Example  of a Navigat ion Table 

if current_vertex = current_pivot { 

output face and mark all vertices of 
the face with infinity; / *  we have 

found the face */ 
goto next element of the row; 

} / *  end i f  * /  

previous_row = current_row; 
current_row = current_vertex; 
current_vertex = the element of 
current_row following the previous_row 

with wrap around; 

} / *  end do f o r e v e r  * /  

} / *  end for each  element * /  

} /* end for each row in parallel */ 

5 ANALYSIS OF THE ALGORITHM 

5.1 CORRECTNESS 

Tile correctness of the a lgor i thm given in section 3 is easy 
to see because it is a ref inement of the following naive al- 
gori thm: Intersect  all pairs of edges by pairwise comparison 
and divide the edges into segments.  Each segment  is fully 
visible or fully hidden. Compare  each segment  with all the 
faces to determine  its visibility. Const ruct  the visible regions 
from the visible segments  and compare  each region against 
all faces to see which face it corresponds to and shade it 
accordingly. 

The  correctness of the region reconstruct ion a lgor i thm is 
also easy to see. The  navigat ion a lgor i thm is correct because 
we cover all pivots and each element  of a row is considered 
exactly once by only one of the processors. All e lements  of 

the rows are considered because the processor assigned to a 
pivot  begins the navigat ion for each eleinent of the row. So 
all e lements  are t raversed which gives all the  faces. 

5.2 COMPLEXITY 

For tile analysis, we assume a Concur ren t -Read  Exclusive- 
Wri te  ( C R E W )  P R A M  model  of computa t ion .  Let p be 
the number  of processors. For the sake of the analysis, the 
input  scene is assumed to consist of isothetic squares inde- 
pendent ly  and identical ly dis t r ibuted (i.i.d.) Each edge is of 
length l. 

For comput ing  the grid size, we use: 

G = cmin(~-,  x/7~) 

Assume that :  
C 

e = -  
1 

Since the cell size is a constant  of the face size as n increases, 
the probabil i ty  p tha t  a given face completely  covers a face 
is: 

c _ l  2 
v = ( ~ - 7 ~ ) , c > l  

As the number  of faces in the cell increases to infinity, the 
expected number  of the first blocking face q is: 

co 
q = E i p (  1 _p)i-1 = _1 = ( c +  1) 2 

p c - 1  
i = 1  

Therefore,  the expected number  of faces in a cell after 
the faces behind the blocking face is deleted (step 3 of the 
algori thm) is bounded by q. Let r be the expected number  
of ceils in which a face falls. We have: 

= (c + i)  ~. 
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Let 
number of faces 

S =  
n 

So, the number of faces per cell before step 3 is ~ of which 
q faces per cell are not deleted. So the fraction of faces left 
after step 3 is: 

qC ~ (c_~)2 1 
r s n  - -  s g  2 n 

This is also the fraction of the edges that are in a cell af- 
ter the cell grid is cast because the edges are also similarly 
distributed. 

Let u be the average number cells in which an edge falls. 
We have: 

u = c + l .  

The average number of edges per cell is ~ .  So, the average 
number of edges per cell left after deletions is: 

qG 2 un  qu c + 1 

r s n  " a 2 rs  ( c -  1)2s 

which is a constant. Therefore, intersecting the edges in a 
cell takes a constant time. It also implies that an edge is 
partitioned into a bounded number of segments. 

Since the number of faces in a cell, the edges in a cell 
and the number of intersections in a cell are bounded by 
constants as shown above, we can deduce the following time 
complexities. Steps 1 and 2 of the algorithm take a time of 

O(~).  Steps 2 and 3 take a time of O( -~ )  = O(~).  Step 4 
will again take a time of O(~).  Steps 5, 6 and 7 will take a 

time of O( -~ )  = O(~).  Therefore, the parallel hidden line 
removal algorithm takes a time of O(~) for n faces using p 
processors. 

For the visible region reconstruction, assume that we 
have k visible segments. Obtaining the navigation table with 
the elements of a row unsorted will take a time of 0 ( ~ )  since 
hashing is used. Sorting the rows of the navigation table can 
at worst be O(k log k) since the maximum degree of the star 
vertex of a star graph (which is one of the worst-case in- 
puts to the algorithm) can be O(k) .  But, if such a case is 
detected and parallel sorting is used, this can be reduced 
to O(log k) using O(k)  processors. But, we assume a worse 
complexity of O(klog k) for this step. For the navigation 
algorithm, consider the (hypothetical) worst-case in which 
the conflicts are not detected and all the processors find all 
the faces around its assigned vertices. The complexity of 
the navigation step for a row is then O(d~fav),  where fay 
is the average size of a face. The worst-case for this step is 
a graph which is either a simple cycle or a star graph and 
for both cases the time complexity is O(k) .  But in actual 
practice, we will do better than that because conflicts are 
detected in the algorithm and the average input is not likely 
to be the worst-case input. Then, step 9 of the algorithm 
takes O(-~-) = O(~). 

So for the parallel hidden surface removal algorithm, the 
O "  time complexity is of (7 + klog k) where n is the number 

of input edges, k is the number of visible segments and p is 
the number of processors assuming a CREW PRAM model 
of computation. Note that though the klogk term in the 
complexity suggests that the algorithm may not perform 
well, our implementation suggests otherwise. The reason for 
this is that the average data is not worst-case and secondly, 
the region reconstruction takes a small fraction (less than 

10%) of the total time when p is equal to one. So, the 
algorithm is basically linear in the number of faces and the 
speedup is linear with the number of processors. The results 
are presented in the following section. 

6 IMPLEMENTATION AND RESULTS 

Practical implementation of parallel algorithms is extremely 
important since the theoretical performance does not take 
into account the limitations of resource contention and com- 
munication costs of real parallel machines. These factors 
can severely limit the speedups obtained. So, we imple- 
mented the algorithm on a Sequent Balance 21000 computer, 
which contains 16 National Semiconductor 32000 processors 
and compared the elapsed time when up to 15 processors 
were used to the time for only one processor. Since the Se- 
quent Balance 21000 is a shared memory parallel computer, 
shared data structures are the communication mechanism 
for the processors. The synchronization of the processors is 
achieved by using atomic locks. The programming was done 
in C using the Sequent's parallel processing library routines 
for multitasking and synchronization. 

For testing the implementation, we used the tetrahedral 
p y r a m i d  (figure 4) and the meshed gears (figure 5) databases 
from the "Standard Procedural Database" proposed by Eric 
Haines [12]. The results from processing the tetrahedral 
pyramid having 4096 faces (each of which is a triangle) is 
shown in figure 6. It is seen that an almost linear speedup 
is obtained by adding more processors. For 15 processors 
(which is the maximum that can be used), a speedup of 11 
is obtained. The results for the meshed gears database which 
had 16 faces with 144 vertices and 1152 faces with 4 vertices 
is shown in figure 7. Here also, an almost linear speedup has 
been obtained and a speedup of 10 has been obtained for 15 
processors. Note that though the speedup is linear, it is not 
the ideal speedup because of the overhead for forking the 
processes and locking of the data structures. The speedup 
is linear for the hidden line removal part but for the visi- 
ble region reconstruction part, the speedup increases much 
slower. For 15 processors, the speedup obtained is about 6. 
But the time for region reconstruction is a small fraction, 
typically 3% to 10%, of the total time for the hidden surface 
removal. So, the overall speedup obtained is almost linear. 
This means that we should achieve an even bigger speedup 
on a machine with more processors. We are currently inves- 
tigating the viability of the techniques used in this algorithm 
on SIMD (Connection Machine) and message-passing (Hy- 
percube) architectures. 

7 CONCLUSIONS 

We have presented a new parallel object-space hidden sur- 
face removal algorithm. This algorithm is practical and has 
been successfully implemented on a commercial parallel ma- 
chine. The uniform grid technique has been used to exploit 
parallelism in the geometric aspects of hidden surface re- 
moval. The uniform grid technique could be successfully 
used for parallelizing other geometric problems [3], [5]. A 
conflict-detection and back-off strategy has been introduced 
to achieve parallelism in the visible region reconstruction 
which is related to the topological aspects of the problem. 
This technique could be useful in parallelizing the topolog- 
ical aspects of other problems like polyhedron intersection 
and map overlay in cartography. These techniques lead to 
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Figure 4: TetrahedrM Pyramid 

Figure 5: Meshed Gears 
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practical parallel algorithms which has been demonstrated 
by the implementation of the object-space hidden surface 
removal algorithm. 
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Figure 6: Timing for Tetrahedral  Pyramid with grid size = 40. 
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Figure 7: Timing for Meshed Gears with grid size = 32. 
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