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ABSTRACT 
This paper proposes a novel framework for music content 
indexing and retrieval. The music structure information, i.e., 
timing, harmony and music region content, is represented by the 
layers of the music structure pyramid. We begin by extracting this 
layered structure information. We analyze the rhythm of the music 
and then segment the signal proportional to the inter-beat 
intervals. Thus, the timing information is incorporated in the 
segmentation process, which we call Beat Space Segmentation. To 
describe Harmony Events, we propose a two-layer hierarchical 
approach to model the music chords. We also model the 
progression of instrumental and vocal content as Acoustic Events. 
After information extraction, we propose a vector space modeling 
approach which uses these events as the indexing terms. In query-
by-example music retrieval, a query is represented by a vector of 
the statistics of the n-gram events. We then propose two effective 
retrieval models, a hard-indexing scheme and a soft-indexing 
scheme. Experiments show that the vector space modeling is 
effective in representing the layered music information, achieving 
82.5% top-5 retrieval accuracy using 15-sec music clips as the 
queries. The soft-indexing outperforms hard-indexing in general.  

Categories and Subject Descriptors 
H.3.1. [Information Storage and Retrieval]: Content Analysis 
and Indexing - Indexing methods, H.3.3 Information Search and 
Retrieval - Retrieval models 

General Terms 
Algorithms, Performance, Experimentation 

Keywords 
Music structure, beat space segmentation, harmony event, 
acoustic event, vector space modeling, n-gram, 

1. INTRODUCTION 
Over the past decades, increasingly powerful technology has 
made it easier to compress, distribute and store digital media 
content. There is an increasing demand in tools for automatic 
indexing and retrieval of music recordings. The task of music 
retrieval is to rank a collection of music clips according to each 
one’s relevance to a query. In this paper, we are particularly 

interested in music information retrieval (MIR) for popular songs 
that are recorded in the raw audio format. In general we aim at 
providing musicians and scholars tools that search and study 
different musical pieces of similar music structures (rhythmic 
structure, melody/harmony structure, music descriptions, etc); 
help entertainment service providers index and retrieve the songs 
of similar tones and semantics in response to the user queries in 
the form of music clips, which is also referred to as query-by-
example. 

The challenges of a MIR system include effective indexing of 
music information that supports run-time quick search, accurate 
query representation as the music descriptor, and robust retrieval 
modeling that ranks the music documents by relevance score. 
Many MIR systems have been reported in the survey articles 
[18][24]. MIR research community initially focused on 
developing text based systems where both database and the query 
are in the MIDI format and the information is retrieved by 
matching the melody of query with the 
database[5][6][10][12][17][19][25]. Since the melody information 
of both query and song database are text based (MIDI), the 
research has been devoted to database organization of the music 
information (monophonic or/and polyphonic nature) and to text-
based retrieval models. The retrieval models in those systems 
includes dynamic programming (DP)[15][22][25], n-gram-based 
matching [5][6][25] and vector space model[17].    

Recently, with the advances in information technologies, the 
community has started looking into developing MIR systems for 
music in raw audio format. Successful examples towards this 
research objective includes the query-by-humming systems 
[10][22], which allows a user to input the query by humming a 
melody line via the microphone. To do so, research efforts have 
been made to extract the pitch contours from the hummed audio, 
and to build a retrieval model that measures the relevance between 
the pitch contour of the query and the melody contours of the 
intended music signals. Autocorrelation [10], harmonic analysis 
[22] and statistical modeling via audio feature extraction [21] are 
some of the techniques that have been employed for extracting 
pitch contour from hummed queries. In [4][9][10], fixed length 
audio segmentation, spectral and pitch contour sensitive features 
are discussed to measure  similarity between music clips.  

However, the melody-based retrieval model is insufficient for 
MIR because it is highly possible that different songs share an 
identical melody contour. The challenge for MIR of music in raw 
audio format is to represent the music content including 
harmony/melody, vocal and song structure information 
holistically.  
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Figure 1: Music structure information extraction, vector space content indexing and retrieval  

In this paper, we propose novel indexing and retrieval framework 
which describes a music signal with a multi-layer representation 
and it is continuation of our earlier research [15]. We incorporate 
timing information of the song with the music segmentation 
process. Then we detect the progression of both music chord and 
the contents in the music regions to describe the harmony events 
and the acoustic events respectively. Inspired by the success of 
vector space modeling in text-based information retrieval, we 
index and retrieve the songs using vectors of n-gram statistics of 
those events. The proposed framework is illustrated in Figure 1.  

This paper is organized as follows. Conceptual music structure 
pyramid to visualize the information in the music structure is 
discussed in section 2. Section 3 details the extraction and 
statistical modeling of layered music information. In Section 4, 
we propose a vector space modeling framework for MIR with two 
retrieval models, the hard-indexing and the soft-indexing models. 
In Section 5, we describe the experiment results. Finally, we 
conclude in Section 6. 

2. MUSIC STRUCTURE 
As shown in Figure 2, we represent music information 
conceptually by a multi-layer pyramid structure.  

Timing information
{Bar, Meter, Tempo, notes}

Harmony /Melody - Duplet, Triplet, Motif, scale, key
{Harmony events}

Music regions -PI, PV, IMV, S
{Acoustic events}
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Figure 2: Layer wise information representation of music 

The 1st layer is the foundation of the pyramid which dictates the 
timing of a music signal. As time elapses mixing multiple notes 
together in the polyphonic music, a harmony line is created which 
is the 2nd layer of music information. Pure instrumental (PI), pure 

vocal (PV), instrumental mixed vocal (IMV) and silence (S) are 
the regions that can be seen in a song. PV regions are rare in 
popular music. Silence regions (S) are the regions which have 
imperceptible music including unnoticeable noise and very short 
clicks. The content of the music regions are represented in the 3rd 
layer.  The 4th layer and above depicts the semantics of the song 
structure, which describes the events or the messages to the 
audience. Out of all the layers, the most difficult task is to 
understand the information in the top layer, the semantics of a 
song from the song structure point of view. In the case of query-
by-example MIR, we often have a partial clip instead of a full-
length song as a query. Therefore, we believe that the lower layer 
music information is more informative than the top layer as far as 
MIR is concerned. As such, the top layer information is less 
critical. 

It is noted that popular songs are similar in many ways, for 
example, similar beat cycle – common beat patterns, similar 
harmony/melody - common chord patterns, similar vocal – similar 
lyrics and similar semantic content – music pieces or excerpts that 
creates similar auditory scenes or sensation. In this paper, we will 
study the retrieval model that evaluates the song similarities in the 
aspects of beat pattern, melody pattern and vocal pattern. 

3. MUSIC INFORMATION MODELING 
The fundamental step for audio content analysis is the signal 
segmentation where the signal within a frame can be considered 
as quasi-stationary. With quasi-stationary music frames, we can 
extract features to describe the content and model the features 
with statistical techniques. The quality of signal segmentation has 
an impact on system level performance of music information 
extraction, modeling and retrieval. Like in speech processing, 
earlier music content analysis [1][3][8] approaches have used 
fixed length signal segmentation.  

A music note can be considered as the smallest measuring unit of 
the music flow. Usually smaller notes (1/8, 1/16 or 1/32 notes) are 
played in the bars to align the melody with the rhythm of the 
lyrics and to fill in the gap between lyrics. Therefore the 
information within the duration of a music note can be considered 
quasi-stationary.  In this paper we segment the music into frames 
of the smallest note length instead of fixed length frames. Since 
the inter-beat interval of a song is equal to the integer multiples of 
the smallest note, this music framing strategy is called Beat Space 
Segmentation (BSS). We will discuss the music segmentation in 



Section 3.1 that captures timing information (1st layer in Figure 2) 
of the music structure. In Section 3.2 and 3.3 we will further 
discuss extraction of harmony and music region content 
descriptive features that model music information in the 2nd and 
the 3rd layer. 

3.1 Music Segmentation and Silence Detection 
We illustrate the proposed onset detection and smallest note 
length calculation in Figure 3. As highlighted in [15], the spectral 
characteristics of the music signals are enveloped proportional to 
octaves. So, we first decompose the music signal into 8 sub-bands 
whose frequency ranges are shown in Table 1. 
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Figure 3: Onset detection and smallest note length calculation 

Then the sub-band signals are segmented into 60ms frames with 
50% overlap. Both the frequency and energy transients are 
analyzed using a method similar to that in [7]. We measure the 
frequency transients in terms of progressive distances in sub-band 
01 to 04 because fundamental frequencies (F0s) and harmonics of 
music notes in popular music are strong in these sub-bands. The 
energy transients are computed from sub-band 05 to 08. 

Table 1: The frequency ranges of the octaves and the sub-bands  
Sub-band No 01 02 03 04 05 06 07 08
Octave scale ~B1 C2~B2 C3~B3 C4~B4 C5~B5 C6~B6 C7~B7 C8~B8 C9~B9

Freq-range(Hz) ~64 64~128 128~256 256~512 512~1024 1024~2048 2048~4096 4096~8192 8192~16384  
Eq.(1) describes the computation of final onset at time ‘t’, On(t) 
which is the weighted sum of sub-band onsets SOr(t).  

8

1
( ) ( ). ( )rr

On t w r SO t
=

= ∑  ( 1 ) 

The weight matrix w = {0.6, 0.9, 0.7, 0.9, 0.7, 0.5, 0.8, 0.6} has 
been empirically found to be the best set for calculating dominant 
onsets in music signals.  We run circular autocorrelation over the 
detected onsets to estimate the inter-beat proportional note length. 
By varying this estimated note length, we check for patterns of 
equally spaced intervals between dominant onsets On(.) using a 
dynamic programming approach. The most frequent smallest 
interval, which is also an integer fraction of other longer intervals, 
is taken as the smallest note length. Figure 4(a) illustrates the 
process for a 10-second song clip. The detected onsets are shown 
in Figure 4(b). The autocorrelation of the detected onsets is shown 
in Figure 4(c). Inter-beat proportional smallest note level 
(183.11ms) measure is shown in Figure 4(d). We assume that the 
tempo of the song is constant. Therefore the starting point of the 
song is used as the reference point for BSS. Similar steps are 
followed for computation of the smallest note length in the query 
song clip. However the first dominant onset is used as the 
reference point to segment the clip back and forth accordingly. 
The reference onset is marked in dashed line in Figure 4(b). The 
smallest note length and its multiples form the tempo/rhythm 

cluster (TRC). By comparing the TRC of query clip with TRC of 
the songs in the database, we can narrow down the search space.  
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Figure 4: 10 seconds clip of the song 

Silence is defined as a segment of imperceptible music, including 
unnoticeable noise and very short clicks. We use short-time 
energy function to detect the silent frames. 

3.2 Chord Modeling 
The progression of music chords describes the harmony event of 
music. A chord is constructed by playing set of notes (>2) 
simultaneously. Typically there are 4 chord types (Major, Minor, 
Diminished and Augmented) and 12 chords per chord type that can 
be found in the western music. For efficient chord detection, the 
tonal characteristics (F0s, harmonics and sub-harmonics) of the 
music notes which comprise a chord should be well characterized 
by the feature.  Goldstein (1973) [11] and Terhardt (1974) [23] 
proposed two psycho-acoustical approaches: harmonic 
representation and sub-harmonic representation, for complex 
tones respectively. It is noted that harmonics and sub-harmonics 
of a music note are closely related to the F0 of another note. For 
example, 3rd and 6th harmonics of note C4 are close to F0 of G5 
and G6. Similarly 5th and 7th sub-harmonics of note E7 are closed 
to F0 of C5 and F#4 respectively.  

In our chord detection system, we place 12 filters centered on F0s 
of 12 notes in each octave covering 8 octaves (C2B2 ~C8B8) to 
capture the strengths of F0s, sub-harmonics and harmonics. The 
filter positions are calculated using Eq.(2) which first maps the 
linear frequency scale (flinear) into octave scale (foctave) where Fs, 
N, Freq are sampling frequency, number of FFT points and 
reference mapping point respectively. We set frequency resolution 
(Fs/N) equal to 1Hz, Freq=64Hz (F0 of the note C2) and   C=12 
(12 pitches). The filter (rectangular filter in dashed line) position 
near note G in both octave and linear frequency axis is depicted in 
Figure 6. 

2
** log mod
*

linear
Octave

ref

Fs ff C C
N F

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟=

⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 ( 2 ) 

The reasons for using filters to extract tonal characteristics of 
notes are explained below.  

1. Due to physical configuration of the instruments, the F0s of 
the notes may vary from the standard values (A4=440Hz is 
used as the concert pitch).  

2. Though the physical octave ratio is 2:1, cognitive experiments 
have highlighted that this ratio is close at lower frequencies, 
but increases with the higher frequencies. It exceeds by 3% at 
about 2 kHz [26].  Therefore, we position the filters to detect 
the strengths of the harmonics of the shifted notes. 



In our experiments, it is found that the tonal characteristics in an 
individual octave can even effectively represent the music chord. 
To model these tonal characteristics in the octaves, we propose a 
2-layer hierarchical model for music chord (see Figure 5). The 
models in the 1st layer are trained using pitch class profile (PCP) 
feature vectors (12-dimensional) which are extracted from 
individual octaves. Due to poor chord detection accuracy in the 
C9B9 octave, only C2B2~C8B8 octaves are considered. The 
construction of PCP vector for nth signal frame and for each 
octave is explained in Eq.(3). F0 strengths of the αth note and 
related harmonic and sub-harmonic strengths of other notes are 
summed up to form the αth coefficient of the PCP vector.  In 
Eq.(3), S(.) is the frequency domain magnitude (in dB) signal 
spectrum. W(OC, α) is the filter  whose position and the pass-band 
frequency range varies with both octave index (OC) and αth note 
in the octave (OC).  If the octave index is 1, then the respective 
octave is C2B2. 

2
( ) (.) 1....7, 1.....12.( , )

nPCP S W OCOCOC α αα⎡ ⎤= = =⎣ ⎦  ( 3 ) 

The 2nd layer model is trained with the outputs of the 1st layer 
models which are organized into a feature vector. In our 
implementation we use 4 Gaussian mixtures for each model in 
layer 1 and 2.  Therefore input vectors to the layer 2 model are 
probabilistic vectors. This 2-layer modeling can be visualized as 
first transforming feature space represented tonal characteristics 
of the music chord into probabilistic space at the layer 1 and then 
modeling them at layer 2. We use this 2 layer representation to 
model 48 music chords in our chord detection system. 
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Figure 5: Two layers hierarchical representation of a music chord 

3.3 Music Region Content Modeling 
As discussed in Section 2, PV, PI, IMV and S are the regions 
types in a song (3rd layer). However PV regions are comparatively 
rare in popular music. Therefore both PV and IMV regions are 
considered as vocal (V) region. In this way, we can just focus on 
contents of 3 regions (PI, V and S). Silence detection has been 
discussed in Section 3.1. 

Sung vocal line carries more descriptive information about the 
song than other regions. In the PI regions, the extracted feature 
must be able to capture the information generated by lead 
instruments (typically the tunes/melody).  To this end, we 
examine Octave scale cepstral coefficient (OSCC) feature and 
Mel-frequency cepstral coefficient (MFCC) feature for their 
capabilities to characterize music region content information. 
MFCC have been highly effective characterizing subjective pitch 
and the frequency spectrum of speech signals [4]. OSCCs are 
computed by using a filter bank in frequency domain. Filter 
positions in the linear frequency scale (flinear) are computed by 
transforming linearly positioned filters in the octave scale (foctave) 
to flinear using Eq.(2). We set C=12, Fref=64 Hz in the Eq.(2) so 
that 12 overlapping rectangular filters are positioned in each 

octave from C2B2 to C9B9 octave (64 ~ 16384) Hz. The 
Hamming shape of filter/window has sharp attenuation and it 
suppresses valuable information in the higher frequencies nearly 
by 3 fold as compared to the rectangular shape filter [4]. 
Therefore, a rectangular filter is better than Hamming filter for 
music signal analysis because they are wide band signals 
compared to speech signals. Figure 6 depicts octave to linear filter 
position transformation.  The output Y(b) of the bth filter is 
computed according to Eq.(4) where S(.) is the frequency 
spectrum in decibel (dB), Hb(.) is the bth filter, and mb and nb are 
boundaries of bth filter. 

( ) ( ) ( )
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Eq.(5) describes the computation of βth cepstral coefficient where 
kb, Nf and Fn are center frequency of the bth filter, number of 
frequency sampling points and number of filters respectively 
(Fn=12 in our case).  
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Figure 6:  Transformation of octave scale filter positions to linear 
frequency scale 

Singular values (SVs) indicate the variance of the corresponding 
structure.  Comparatively high singular values describe the 
number of dimension in which the structure can be represented 
orthogonally.  Smaller singular values indicate the correlated 
information in the structure and considered to be noise. We 
perform singular value decomposition (SVD) over feature 
matrices extracted from PI and V regions.  

Figure 7 shows the normalized singular value variation of 20 
OSCCs and 20 MFCCs extracted from both PI and V regions of a 
Sri Lankan Song “Ma Bala Kale ( )”. We use 96 
filters for calculating MFCCs and OSCCs. It can be seen that 
singular values of OSCCs are higher than of MFCCs for both PV 
and PI frame.  The average of 20 singular values per OSCCs for 
PV and PI frames are 0.1294 and 0.1325. However, for MFCC, 
they are as lower as 0.1181 and 0.1093 respectively. As shown in 
Figure 7, the singular values are in descending order with respect 
to the ascending coefficient numbers. The average of the last 10 
singular values of OSCCs is nearly 10% higher than those of 
MFCCs, which means the last 10 OSCCs are less correlated than 
the last 10 coefficients of MFCCs.  Thus we can conclude that the 
OSCCs are less correlated than MFCCs in representing content of 
music regions. 
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Figure 7: Singular values from OSCCs and MFCCs for PV and 
PI frames. The frame size is a quarter note length (662ms) 

4. MUSIC INDEXING AND RETRIEVAL  
Unlike text document that uses words or phrases as indexing 
terms, a music signal is a continuous digital signal without 
obvious anchors for indexing. The challenges of indexing music 
signal are two fold. First, what would be good indexing anchors; 
second, what would be good representation of music contents for 
indexing and retrieval. In Section 3, we have discussed the 
statistical modeling of music information in a multi-layer 
paradigm as illustrated in Figure 2. Layer-wise information 
representation allows us to describe a music signal quantitatively 
in a descriptive data structure. Next, we will propose two indexing 
terms i.e. harmony event and acoustic event to describe the 
information in the 2nd and 3rd layers of the music structure 
pyramid.  

4.1 Harmony Event and Acoustic Event 
Progression of music chords describes the Harmony Event. In 
Section 3.2, we explained sub-band PCP feature extraction and a 
2-layer hierarchical chord modeling. Note that it is relatively easy 
to detect beat spacing in a music signal. A beat space is a natural 
choice as a music frame, and thus the indexing resolution of a 
music signal. Suppose that we have trained 48 frame-based chord 
models, as shown in Figure 5 (4 chord types Major, Minor, 
Diminish and Augmented in combination with 12 chords each 
type). Each chord model describes a frame-based harmony event 
which can serve as the indexing term. One can think of music as a 
chord sequence, with each chord spanning over multiple frames. 
A chord model space Λ= {Ci} can be trained on a collection of 
chord-labeled data. We use the HTK 3.3 toolbox for training such 
a 2-layer chord model space. At run-time, a music frame On is 
recognized and converted to a harmony event Îh, and a music 
signal is therefore tokenized into a chord sequence.  

ˆ arg max ( | ) 1,..., 48h n i
c

I p o c i= =  ( 6 ) 

Pure instrumental (PI) and the vocal (V) regions contain the 
descriptive information about the music content of a song. A song 
can be thought of as a sequence of interwoven PI and V events, 
that we call Acoustic Events. We extract 20 OSCC features from 
each music frame. We train two Gaussian Mixture models 
(GMMs) of 64 mixtures. Each GMM is trained on a collection of 
features from one of the two events. We define the frame-based 
acoustic events as another type of indexing term in parallel with 
harmony events. Suppose we denote r1 for PI and r2 for V event. 
They are trained from a labeled database. At run-time, a music 
frame On is recognized and converted to a V or PI event Îr. Eq.(6) 
and (7) can be seen as the chord and acoustic event decoders. 

^

1,2
arg max ( | )n i

i
I r p o r

=
=  ( 7 ) 

We index the contents in silence regions (S) with zero 
observation. Inspired by the idea in text categorization where we 
use lexical words as indexing terms to form a document vector for 
a text document, we attempt to use the events as indexing terms to 
design a vector for a music segment. Next let us formulate the 
indexing and retrieval problem cast in the vector space model 
framework. We will study two retrieval models, hard-indexing 
and soft-indexing n-gram MIR models. 

4.2 n-gram Vector 
The harmony and acoustic decoders serve as the tokenizers for 
music signal. The tokenization process results in two 
synchronized streams of events, a chord and an acoustic sequence, 
for each music signal. An event is represented by a tokenization 
symbol. They are represented in a text-like format. It is noted that 
n-gram statistics has been used in many natural language 
processing tasks to capture short-term substring constraints such 
as letter n-gram in language identification [2] and spoken 
language identification [14]. If we think of the chord and acoustic 
tokens, as the letters of music, then a music signal is a document 
of chord/acoustic transcripts. Similar to the letter n-gram in text, 
we can use the token n-gram of music as the indexing term, which 
aims at capturing the short-term syntax of musical signal. The 
statistics of token themselves represent the token unigram. 

Vector space modeling (VSM) has become a standard tool in text-
based IR systems since its introduction several decades ago [20]. 
It uses a vector to represent a text document. One of the 
advantages of the method is that it makes partial matching 
possible. We can derive the distance between documents easily as 
long as the vector attributes are well defined characteristics of the 
documents. Each coordinate in the vector reflects the presence of 
the corresponding attribute, which is typically a term. A 
chord/acoustic token in a music signal is just like a term in a 
document. Inspired by the idea of VSM in text-based IR, we 
propose using a vector to represent a music segment. If a music 
segment is thought of as an article of chord/acoustic tokens, then 
the statistics of the presence of the tokens or token n-grams 
describe the content of the music.   

Suppose that we have a token sequence, t1t2t3t4. We derive the 
unigram statistics from the token sequence itself. We derive the 
bigram statistics from t1(t2) t2(t3) t3(t4) t4(#) where the acoustic 
vocabulary is expanded over the token’s right context. Similarly, 
we derive the trigram statistics from the t1(#,t2) t2(t1,t3) t3(t2,t4) 
t4(t3,#) to account for left and right contexts. The # sign is a place 
holder for free context. In the interest of manageability, we only 
use up to bigrams. In this way, for an acoustic vocabulary of 
|c|=48 token entries in the chord stream, we have 48 unigram 
frequency items fn

i in the chord vector 1 48{ ,..., ,..., }i
n n n nf f f f=
uur  as in 

Figure 8. fn
i is equal to 1, if tn=ci  otherwise it is 0. 

0 1 0 0 0 0 0 0 00  
Figure 8:  A count vector representation of a music frame 

Similarly we have 2 unigram frequency items in the acoustic 
vector for the acoustic stream. For simplicity, we only formulate 

nf
uur

next. To capture the short-term dynamics, we can easily derive 
the bigram representation for two consecutive frames. As such, 
we build a chord bigram vector of [48x48=2304] dimensions, 



1,1 , 48,48{ ,..., ,..., }i j
n n n nf f f f′ =
uur

where if both fn
i=1 and f.jn+1=1, then 

fn
i,j =1; otherwise fn

i,j =0. Similarly an acoustic bigram vector of 
[2x2=4] dimensions can be formed. For a music segment of N 
frames, we construct a chord unigram vector 

1 48{ ,..., ,..., }i
N N N Nf f f f=
uur

by aggregating the frame vectors with 
the ith element as  

1

Ni i
N nn

f f
=

= ∑  ( 8 ) 

We can construct its chord bigram vector of [48x48=2304] 
dimensions 1,1 , 48,48{ ,..., ,..., }i j

n N N Nf f f f′ =
uur

 in a similar way with the 
(i,j)th element as 

, ,
1

Ni j i j
N nn

f f
=

= ∑  ( 9 ) 
The acoustic vector can be formulated in a similar way with a 2-
dimensional vector for unigram and [2x2=4] dimensional vector 
for bigram. Figure 9 shows schematically how an n-gram vector is 
constructed using N frames of unigram vector and how the 
relevance score is evaluated between a query and a music 
segment.   

Relevance
ranking

 A query
(song clip)

v1
vi+1 vi+NA song in the

database

V1 VN

        n-gram vector

 
Figure 9: The music database is indexed by n-gram vector. Each 
harmony/acoustic event is associated with an indexing vector. The 
similarity between a query and a music segment in the database is 
measured for relevance ranking. 

Although we use 2-dimensional coordinate for the bigram count, 
the vector can be treated as a 1-dimensional array.  The process of 
deriving unigram and bigram vectors for a music segment 
involves minimum computation. In practice, we can compute 
those vectors at run-time directly from the chord/acoustic 
transcripts resulting from the tokenization. Note that the 
tokenization process compares a music frame against all the 
chord/acoustic events at a higher computational cost. It can be 
done off-line. 

Following the text-based IR process, the MIR process computes 
the similarity between a query music segment and all the 
candidate music segments. For simplicity, let ( )i

Nf q
uur

 denote the 
chord unigram vector (48 dimensions) and , ( )i j

Nf q
uuur

 denote the 
chord bigram vector (2304 dimensions) for a query of N frames. 
Similarly, a chord unigram vector ( )i

Nf d
r

and a chord bigram 
vector , ( )i j

Nf d
uuur

can be obtained from any segment of N frames in the 
music database. The similarity between two n-gram vectors can be 
defined as 

( ) ( )( ( ), ( ))
| ( ) | | ( ) |

i i
i i N N

N N i i
N N

f q f ds f q f d
f q f d

⋅
=

×

r r
r r

r r  ( 10 ) 

, ,
, ,

, ,

( ) ( )( ( ), ( ))
| ( ) | | ( ) |

i j i j
i j i j N N

N N i j i j
N N

f q f ds f q f d
f q f d

⋅
=

×

r r
r r

r r  ( 11 ) 

With Eq.(10) and Eq.(11), we can rank the music segments by 
their relevance. The relevance is can be defined by the fusion of 
unigram and bigram similarity scores. 

4.3 Expected Frequency of n-gram 
Although it would be convenient to derive the term count from 
token sequences derived from a music query, we find that the 
tokenization is affected by many factors. For example, the 
tokenization does not always produce identical token sequence for 
two similar music segments. The difference could be due to the 
variation in beat detection, variation of music productions 
between the query and the intended music. The inconsistency 
between the tokenization of the query and the intended music 
produce an undesired mismatch as far as MIR is concerned. 
Assuming that the numbers of beats in query and music are 
detected correctly, the inconsistency is characterized by 
substitutions of tokens between the desired label and the 
tokenization results. If a token is substituted, then it presents a 
mismatch between the query and the intended music segment. To 
address this problem, we propose using the tokenizers as 
probabilistic machines that generate a posteriori probability for 
each of the chord and acoustic events. If we think of the n-gram 
counting as integer counting, then the posteriori probability can 
be seen as soft-hits of the events. For brevity, we only formulate 
the soft-hits for chord vector. According to Bayes’ rule, we have 

( | ) ( )
( | )

( | ) ( )
n i i

i n
n i ii

f o c p c
p c o

f o c p c
=
∑

 ( 12 ) 

where p(ci) be the prior probability of the event ic . Assuming no 
prior knowledge about the events, p(ci) can be dropped from 
Eq.(12), which is then simplified as 

( | )( | )
( | )
n i

i n
n ii

f o cp c o
f o c

=
∑

 ( 13 ) 

Let P(ci|on) be denoted as pn
i. It can be interpreted as the expected 

frequency of event ci at nth frame, with the following properties, 
(a) 0≤ pn

i ≤1, (b) 48
1 1i

i np=∑ = . A frame is represented by a vector of 
continuous values as illustrated in Figure 8, which can be thought 
of a soft-indexing approach as opposed to the hard-indexing 
approach for music frame using n-gram counting. The soft-
indexing reflects how a frame is represented by the whole model 
space while the hard-indexing estimates the n-gram count based 
on the top-best tokenization results. We have good reason to 
expect soft-indexing to provide higher resolution vector 
representation for a music frame. 

0.07 0.01 0.02 0.01 0.03 0.06 0.000.04 0.75 0.01  
Figure 10: An expected frequency vector for a music frame 

Assuming the music frames are independent of each other, the 
joint posteriori probability of two events i and j between two 
frames, nth and (n+1)th can be estimated as 

,
1

i j i j
n n np p p += ×  ( 14 ) 

where ,i j
np has properties similar to that of i

np , (a) ,0 1i j
np≤ ≤ , 

(b) 48 48 ,
1 1 1i j

ni j p= = =∑ ∑ . For a query of N frames, the expected 
frequency of unigram and bigram can be estimated as  

1
{ } Ni i

N nn
E f p

=
= ∑  ( 15 ) 

, ,
1

{ } Ni j i j
N nn

E f p
=

= ∑  ( 16 ) 
Thus the soft-indexing vector for query and matching music 
segment are { ( )}i

NE f q
r

and { ( )}i
NE f d
r

respectively. Replacing 



( )i
Nf q
uur

 with { ( )}i
NE f q
uur

, ( )i
Nf d
uur

with { ( )}i
NE f d
uur

 in Eq.(12) and 
Eq.(13), the similar relevance scores can be used for soft-indexing 
ranking. 

5. EXPERIMENTS 
We first study the chord and acoustic modeling performance. 
Then we carry out MIR experiments.  We established a 300 song 
database DB1 (44.1 kHz sampling rate, 16 bits per sample, mono 
channel) extracted from music CDs for MIR experiments. Songs 
in DB1 are sung by 20 artists as listed in Table 2, each on average 
contributing 15 songs. The tempos of the songs are in the rage of 
60~180 beats per minute 

Table 2: The artists in the song database 

01. Agnetha Faitskog
02. Celine Dion
03. Cranberries
04. Dido
05. Faith Hill

06. Kathryn Williams
07. Madonna
08. Mandy Moore
09. Mariah Carey
10. Shania Twain

Female Artists Male Artists
11. Ben Jelen
12. Bryan adams
13. Cliff Richard
14. Elton John
15. Justin Timberlake

16. Michael Bolton
17. Michael Jackson
18. MLTR
19. Richard Marx
20. West life  

5.1 Harmony Event Modeling 
Harmony events are described by the progression of music chords. 
Each of the 48 chord models is a 2-layer representation of 
Gaussian mixtures (see Figure 5) and is trained with annotated 
samples in a chord database (CDB). The CDB includes recorded 
chord samples from original instruments (string type, bow type, 
blowing type, etc) as well as synthetic instruments (software 
generated). In addition, the CDB also includes chord samples 
extracted from 40 English songs (a subset of DB1), with the aid of 
music sheets and listening tests. Therefore we have around 10 
minutes of each chord sample spanning from C2 to B8. 70% of 
the samples of each chord are used for training and the rest 30% 
for testing in cross validation setup. Experimental results are 
shown in Figure 11.  
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Figure 11:  Average correct chord detection accuracy 

The results of the proposed 2-layer model (TLM) are compared 
with single layer model (SLM). Single layer chord model is 
constructed using 128 Gaussian mixtures. General PCP features 
vectors (GPCP) are used for training and testing the SLMs. 
Eq.(17) explains the computation of thα coefficient of the GPCP 
feature vectors.  

( )
7

1
( )n n

OC
OC

GPCP PCPα α
=

= ∑  ( 17 ) 

It is noted that the proposed TLM with feature extracted from 
BSS outperforms the SLM approach by 5% in absolute accuracy. 

5.2 Acoustic Event Modeling 
We compare performance of OSCCs and MFCCs for modeling 
regions PI and V.  SVD analysis depicted in Figure 7 highlights 
that OSCCs characterize music content more uncorrelatedly than 
MFCCs. In this experiment, we selected 100 English songs (10 
songs per artist and 5 artists per gender) from DB1. We annotate 

the V and PI regions. Each V and PI class information is then 
modeled with 64 GMs. 100 songs are used by cross validation 
where 60/40 songs are used as training/testing in each turn.  Table 
3 shows correct region detection accuracies for optimized number 
of both the filters and coefficients of MFCC and OSCC features. 
We report the correct detection accuracy for PI-region and V-
region, when the frame size is equal to both beat space and fixed 
length (30ms). Both OSCC and MFCC perform better when the 
frame size is beat space. As OSCC outperforms MFCC in general, 
we use it for modeling acoustic events.  

Table 3: Correct Average classification of PI and V regions 
FeatureNo. of filters No. of coefficients PI(%) -BSS V(%)-BSS Avg(PI+V) %-FIX
OSCC 96 20 83.78 81.32 74.65
MFCC 36 24 77.91 76.54 71.11  

5.3 Music Information Retrieval  
In DB1, we select 4 clips of 30-second music as queries from each 
artist in the database, totaling 80 clips.  Out of 4 clips, two clips 
belong to V region and other two mainly belongs to PI region. For 
a given query, the relevance score between a song and the query is 
defined as the sum of the similarity score between the top K most 
similar indexing vectors and the query vector. Typically, we set K 
to be 30. 

After computing the smallest note length in the query, we check 
the tempo/rhythm clusters of the songs in the data base. For song 
relevance ranking, we only consider the songs whose smallest 
note lengths are in the same range (with ±30ms tolerance) as the 
smallest note length of the query or integer multiples of them. 
Then the surviving songs in the DB1 are ranked according to their 
respective relevance scores. Figure 12 shows the average accuracy 
of the correct song retrieval when the query length is varied from 
2-sec to 30-sec. Both chord events and acoustic events are 
considered for constructing n-gram vectors.  
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Figure 12: Average retrieval accuracy of songs 

The average accuracy of correct song retrieval in top choice is 
around 60% for the query length varies fro 15 ~30-sec. For the 
similar query lengths, the retrieval accuracy for top-5 candidates 
is improved by 20%. In Table 4 we study the chord event effect 
and the combined effect of chord and acoustic events on the 
retrieval accuracy.  

Table 4: Effects of chord and acoustic event information in MIR  

Harmony event - Ih Ih + acoustic event

Soft indexing 61.25 82.5

Hard indexing 48.75 73.75

T5

Harmony event - Ih

38.75

32.5

T1

Ih+ acoustic event

63.75

55.0

Avg accuracy in %
(15sec Query length)

 
It can be found that soft-indexing outperforms hard-indexing (see 
Eq.(8), Eq.(9)). In general, combining acoustic events and chord 
events yields a better performance. This can be understood by the 
fact that similar chord patterns are likely to occur in different 
songs. The acoustic content helps differentiate one from the other. 



6. DISCUSSION AND CONCLUSION  
We have proposed a novel framework for MIR. We visualize 
music information (timing, harmony and music region contents) 
in the form of a music structure pyramid. We incorporate timing 
information in the beat space segmentation of music signal. A 
two-layer hierarchical chord model has been proposed to describe 
the harmony events.  Content progression of instrumental and 
vocal regions has also been modeled to describe acoustic events. 
After modeling layered music information in the vector space, we 
explored two retrieval models, hard-indexing and soft-indexing. 

Our experiments show that octave scale music information 
modeling followed by the inter-beat interval proportion 
segmentation is more efficient than with the fixed length music 
segmentation. We found the soft-indexing retrieval model is more 
effective than the hard-indexing one. The fusion of chord model 
and acoustic model statistics improves retrieval accuracy 
effectively. The overall experimental results convince our focus 
on layer-wise music processing and vector space retrieval model 
are promising research directions. We find that music information 
in different layers complements each other to achieve an 
improved MIR performance. The robustness in this retrieval 
modeling framework depends on how well the information is 
extracted. We will continue to focus on the extraction of 
uncorrelated music information.  

Even though music retrieval is the targeted application in this 
paper, the proposed vector space music modeling framework is 
useful for developing many other applications such as music 
summarization, streaming, music structure analysis, and creating 
multimedia documentary using music semantics.  In the future, we 
will work on extending it to other relevant applications. 
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