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ABSTRACT
Most surveillance and monitoring systems nowadays utilize
multiple types of sensors. However, due to the asynchrony
among and diversity of sensors, information assimilation -
how to combine the information obtained from asynchronous
and multifarious sources is an important and challenging re-
search problem. In this paper, we propose a hierarchical
probabilistic method for information assimilation in order
to detect events of interest in a surveillance and monitoring
environment. The proposed method adopts a bottom-up
approach and performs assimilation of information at three
different levels - media-stream level, atomic-event level and
compound-event level. To detect an event, our method uses
not only the current media streams but it also utilizes their
two important properties - first, accumulated past history
of whether they have been providing the concurring or con-
tradictory evidences, and - second, the system designer’s
confidence in them. A compound event, which comprises of
two or more atomic-events, is detected by first estimating
probabilistic decisions for the atomic-events based on indi-
vidual streams, and then by aligning these decisions along
a timeline and hierarchically assimilating them. The exper-
imental results show the utility of our method.

Categories and Subject Descriptors
H.5.1 [Multimedia Information Systems]

General Terms
Security

Keywords
Information assimilation, Multimedia surveillance, Agree-
ment coefficient, Confidence fusion, Event detection, Com-
pound and atomic events
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1. INTRODUCTION
As a result of increasing public security threats, majority

of developed cities around the world are now being equipped
with thousands of sensors including video camera and even
microphones [1] with a primary goal of monitoring and record-
ing events of interest as and when they occur in the envi-
ronment under surveillance and monitoring. In the current-
generation surveillance systems [18], where a number of asyn-
chronous and multifarious sensors are employed, assimila-
tion of the information obtained from them in order to infer
the events from the environment is an important and chal-
lenging research problem. Information assimilation refers to
the process of combining the sensory and non-sensory infor-
mation using the context and past experience. The issue of
information assimilation is important because the informa-
tion obtained from multiple sources when assimilated pro-
vides more accurate inferences about the environment than
the individual sources. The information assimilation is chal-
lenging because of the following reasons -

1. Asynchrony and diversity of sensors: The sensors pro-
vide data1 of different formats and at different rates.
For example, a video sensor provides frames at a rate
which could be different from the rate at which audio
samples are obtained, or even two video sensors can
provide frames at different rates. The non-sensory in-
formation (e.g. past-record of a criminal person) can
also be in a different format. Assimilation of infor-
mation from the asynchronous and diverse sources re-
quires its alignment along a “timeline”, which is chal-
lenging. Timeline refers to a measurable span of time
with information denoted at key points.

2. Agreement/disagreement among media streams: The
sensors capturing the same environment provide con-
curring or contradictory evidences about what is hap-
pening in the environment. This agreement/ disagree-
ment information among the media streams can be
used to strengthen the overall decision about the events
happening in the environment. For example, if two
sensors have been providing the concurring evidences
in the past, it makes sense to give more weight to
their current combined evidence compared to the case

1In context of multimedia, we call sensor data as “media
stream”



if they provided contradictory evidences in the past
[16]. Therefore, how to utilize the past history of
agreement/ disagreement information among the me-
dia streams is a challenging issue.

3. Confidence in media streams: The designer of a surveil-
lance and monitoring system can have different confi-
dence levels in different media streams while detecting
different events. The confidence in a media stream
is directly related to its accuracy. For example, if an
event is 70% times correctly detected based on a media
stream, one can have 70% confidence in it. Moreover,
it makes more sense to give a higher weight to the me-
dia stream which has a higher confidence level. Note
that the accuracy of a media stream includes the mea-
surement accuracy of sensor as well as the accuracy of
the algorithms used to process the media stream. The
accuracy can be learned through experiments. Other
issue which arises is the fusion of confidence levels.
We illustrate this with an example. Let we have two
media streams whose confidences levels are 70% and
80%. Now, at the current instant, if the two streams
are agreeing about an event, we must believe more
in the decision based on combined streams than what
we would believed in them individually. On the other
hand, if the streams disagree, the confidence in the
combined decision would decrease [16]. This is clearly
an issue of how to fuse individual confidences in two
different streams to obtain the overall confidence in a
group of these two streams. These issues are of ex-
treme importance and significant challenge.

In this paper, we propose a hierarchical probabilistic method
for information assimilation in order to detect events in
surveillance and monitoring systems that utilize multiple
disparate sources. The proposed method assimilates the me-
dia streams using their agreement/disagreement and confi-
dence information. The agreement/disagreement informa-
tion (we call it as “agreement coefficient”) among media
streams is computed based on how they have been agreeing
or disagreeing in their decisions in the past. The confidence
in each stream is computed based on how accurate it has
been in the past. We also propose the methods for fus-
ing the agreement coefficients and for fusing the confidence
levels of media streams. Our method performs multimedia
information assimilation at three different hierarchical lev-
els - media-stream level, atomic-event level and compound-
event level. At media-stream level, we do early assimila-
tion of features that are extracted from the media stream;
and at atomic-event and compound-event levels, we employ
late integration strategy by assimilating the decisions about
atomic-events and compound-events, respectively.

To distinguish among the events, compound-events and
the atomic-events, we define them as follows -

Definition 1. Event is a physical reality that consists of
one or more living or non-living real world objects (who)
having one or more attributes (of type) being involved in
one or more activities (what) at a location (where) over a
period of time (when).

Definition 2. Atomic-event is an event in which exactly
one object having one or more attributes is involved in ex-
actly one activity at a location over a period of time.
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Figure 1: Timeline alignment of the decisions ob-
tained based on various media streams

Definition 3. Compound-event is union of two or more
atomic-events.

An event could be a compound-event or simply an atomic-
event. If an event is a compound-event, we first decom-
pose it into its constituent atomic-events. For instance, a
compound-event “a person is running and shouting in the
corridor” is decomposed into following two atomic-events -
“a person is running in the corridor” and “a person is shout-
ing in the corridor”. We do this decomposition because dif-
ferent atomic-events can be detected using different types of
media streams, and therefore it makes sense to identify the
data-level interpretation of the domain-level atomic-events.
The domain and data levels refer to the high-level seman-
tics and low-level features, respectively. The domain level
atomic-event “a person is running in the corridor” is inter-
preted at data level as “a blob of certain size is displaced in
the image plane at certain rate from one frame to another
frame”. Similarly, the atomic-event “a person is shouting in
the corridor” is interpreted as “rate of change of energy in
a sound signal is greater than a threshold”.

The proposed method adopts a bottom-up approach which
goes as follows. It first estimates along a timeline the prob-
ability of the occurrence of an atomic-event within the spec-
ified time-interval by employing the event detectors on in-
dividual media streams. The event detector assimilates the
features of that stream - early assimilation at media-stream
level. Early assimilation at the media-stream level makes
sense because it is good to use all the possible features of
a media stream in order to decide about the atomic-event.
Then at atomic-event level, we align along a timeline the
individual decisions about the atomic-event obtained based
on relevant media streams as shown in figure 1, and estimate
the overall probability of the occurrence of atomic-event by
assimilating the individual decisions (in the form of proba-
bilities) using a Bayesian approach [2] - late assimilation at
atomic-event level. Once the probabilistic decisions about
all the atomic-events are obtained, assimilation of these de-
cisions is finally performed at compound-event level to ob-
tain the overall probability of the occurrence of compound
event - late assimilation at compound-event level. The late
assimilation at atomic-event level and compound-event level
makes sense because the media streams, using which the in-
dependent decisions about (atomic) events are obtained, are
of different types. Hence it is more reasonable to assimilate
their decisions rather than the heterogenous media features.

Timeline synchronization of these decisions about an atomic-
event is important as well as challenging because of the fact
that the system provides decisions based on different media



streams at different times, and the assimilation of decisions
is performed only at the key points in the timeline. Identi-
fying these key points is clearly an issue.

We argue the advantage of our approach of assimilating
probabilistic decisions over the approach of integrating the
binary decisions as follows. The approaches, that integrate
binary decisions, always contain some errors due to thresh-
olding. For example, let an event detector finds the proba-
bilities of the occurrence of an event based on three media
streams M1, M2 and M3, to be 0.60, 0.62 and 0.70, re-
spectively. If the threshold is 0.65, then these probabilistic
decisions are converted into binary decisions 0, 0 and 1, re-
spectively; which imply that the event is found occurring
based on stream M3 but is found non-occurring based on
stream M1 and M2. Since two decisions are in favor of non-
occurrence of event compared to the one decision in favor of
occurrence of the event, by adopting a simple voting strat-
egy, the overall decision would be that the event did not
occur. It is important to note that early thresholding can
introduce errors in the overall decision. On contrary to the
early thresholding, we argue for late thresholding. We do not
obtain binary decisions at this level, but assimilate using our
proposed method these probabilistic decisions and obtain
the overall probability (which is usually more than the indi-
vidual probabilities e.g. 0.85 in this case). The thresholding
of this probabilistic decision at late stage is less erroneous.

Multimedia information assimilation is different from mul-
timedia information fusion in that the former brings the no-
tion of integrating context and the past experience in the
fusion process. The context is an accessory information that
helps in correct interpretation of the observed data. We use
the geometry of the monitored space along with the loca-
tion, orientation and coverage area of the employed sensors
as the spatial contextual information. We integrate the past
experience by modelling the agreement/disagreement infor-
mation among the media streams based on the accumulated
past history of their agreement or disagreement.

Our contributions in this paper are as follows. We propose
a hierarchical probabilistic method for information assimi-
lation in order to detect events in a multimedia surveillance
and monitoring environment that utilizes multiple heteroge-
nous sensors. Moreover, we have introduced the notion of
agreement/disagreement among the media streams and es-
tablished its importance in the assimilation process. We
have formulated the computation and fusion of the agree-
ment coefficients among the streams. The proposed method
for information assimilation also integrates the confidence
information of media streams. We have proposed a method
for confidence fusion. We have shown how the probabilistic
method for information assimilation provide along a timeline
more accurate decisions about the events in the surveillance
and monitoring environment.

Rest of this paper is organized as follows. In section 2,
we discuss the related work. We present our method in
section 3. The experimental results are reported in section
4. Finally, we conclude the paper with a discussion on future
work in section 5.

2. RELATED WORK
Multimedia researchers have used early fusion strategy by

combining video and audio at feature-level for various prob-
lems including speech processing [9] and recognition [13],
tracking [7], and monologue detection [14] by using the mu-

tual information among the video and audio features under
the assumption that audio and video signals are individually
and jointly Gaussian random variables.

An increasing amount of work is also reported in sensor
fusion literature where a global decision is made by fusing
the local decisions obtained from each sensor. [15] presented
a sensor fusion algorithm for identification of tracked targets
in a decentralized environment. [6] established an optimal
fusion rule with the assumption that each local sensor made
a predetermined decision and each observation was indepen-
dent. [11] generalizes their solution for fusing the correlated
local decisions.

Similar to [19], we employ early (feature level) assimilation
as well as late (decision level) assimilation strategy. Since
each media stream provides various features (such as blob’s
location and area in case of a video stream), their assimila-
tion is performed locally for each media stream to obtain a
local decision. Once all the local decisions are available, a
global decision is derived by assimilating the local decisions
incorporating their agreement and confidence information.
The late assimilation strategy has an advantage over early
assimilation in that the former offers scalability (i.e. upgra-
dation or graceful degradation) in terms of media streams
used in the assimilation process [3]. Note that, in late assim-
ilation, we consider the media streams to be “decision-wise
correlated”.

The works cited above do not explicitly compute and uti-
lize the correlation information among the sensors. In con-
trast, our method computes the correlation information (we
call it to be “agreement coefficient”) based on how concur-
ring or contradictory are the evidences from media streams.
Intuitively, higher the agreement among the streams, more
would be the confidence in global decision, and vice versa
[16]. In the past, various forms of correlation coefficients
have been studied and used for diverse applications. But,
most of them are based on content-wise dependency between
the sources, hence are not suitable in our case. Pearson’s
correlation coefficient, Lin’s concordance correlation coeffi-
cient [12] and Kappa coefficient [5] can’t be used in our case
since they are evaluated to zero when the covariance among
the observations is zero. Therefore, we model the agreement
coefficient and its evolution based on the accumulated past
history of how agreeing or disagreeing the media streams
have been in their decisions.

Also, the past work in decision fusion literature does not
consider the notion of having confidences in the decisions.
In our method, we incorporate the stream’s confidence in-
formation. [16] has also recently pointed out the importance
of considering the confidence in sensor fusion. The authors
have used the Dempster-Shafer (D-S) ‘theory of evidence’ to
fuse the confidences. In contrast, we model the confidence
fusion by using a Bayesian formulation because it is both
simple and computationally efficient [15].

3. PROPOSED METHOD
In order to detect an event in a surveillance and monitor-

ing environment, the proposed method adopts a bottom-up
approach and performs information assimilation at three hi-
erarchical levels - media-stream level, atomic-event level and
the compound-event level. The work flow of the method is
depicted in figure 2. Let a surveillance and monitoring sys-
tem consists of n heterogeneous media sensors capturing the
data from environment. We employ n Media Stream Pro-



cessors (MSP1 to MSPn), where each MSPi, 1 ≤ i ≤ n, is
a set of media processing tools that extracts features from
the media stream Mi; for example, a blob detector extracts
blob from a video stream. The features extracted from each
media stream are stored in their respective databases. A
compound-event E, which comprises of two or more atomic-
events ej , (1 < j ≤ r, r being the maximum possible of
atomic-events in a compound event), is detected hierarchi-
cally. First, atomic-events are detected using the relevant
media streams, and then these decisions are assimilated hi-
erarchically to obtain an overall decision for the compound
event E, as described in the subsequent subsections. To fur-
ther illustrate, we provide the following example.
Example 1: Let us consider the compound-event E is
“A person is walking and shouting in the corridor”. This
compound-event is composed of two atomic-events: e1 =
“A person is walking in the corridor” and e2 = “A person
is shouting in the corridor”. The atomic-event e1 can be
detected using two types of media sensors available in the
corridor: video and audio (assuming that there are two video
sensors and one audio sensor are available in the surveillance
system). The data processing tool for video stream could be
a blob detector, and for audio sensor it could be a detector
to observe the change in energy of sound signal. The atomic-
event e2 can be easily detected using audio stream compared
to using video stream.

3.1 Media-stream level assimilation
Each atomic-event ej is independently detected by em-

ploying Event Detectors (EDji, 1 ≤ j ≤ r and 1 ≤ i ≤ n)
on the respective features obtained from media streams Mi,
1 ≤ i ≤ n. The event detector at this level combines all
the features extracted from a media stream - media-stream
level assimilation. The spatial contextual information about
the environment (i.e. geometry of the monitored space, lo-
cation, orientation and coverage space etc of media sensors)
is also used whenever required by the event detectors. The
event detectors provide their decisions in probabilities pji,
1 < j ≤ r and 1 ≤ i ≤ n. The pji implies probability of the
occurrence of atomic-event ej based on media stream Mi.

3.2 Atomic-event level assimilation
Once the decisions about an atomic-event ej based on all

the relevant media streams are obtained, these probabilistic
decisions (pji, 1 < j ≤ r and 1 ≤ i ≤ n) are assimilated us-
ing a Bayesian approach incorporating their agreement/ dis-
agreement and confidence information - atomic-event level
assimilation. For each atomic-event ej , 1 < j ≤ r, we follow
the steps -

1. Using a voting strategy, we divide the decisions ob-
tained from n event detectors into two subsets S1 and
S2 based on whether, at the current instant, their in-
dividual decisions are in support or in oppose of the
atomic-event ej .

2. For the two subsets S1 and S2, we use Bayesian ap-
proach to compute overall probabilities P (ej |S1) and
P (ēj |S2) of occurrence and non-occurrence of the atomic-
event ej , respectively. The preliminary description of
the above Bayesian assimilation approach has been
provided in [2]. In section 3.2.1, the method is fur-
ther elaborated to incorporate the confidence in media

streams.

3. If P (ej |S1) ≥ P (ēj |S2), we conclude the occurrence of
atomic-event ej with probability Pej

= P (ej |S1), else
the atomic-event ej is not occurring with the proba-
bility Pej

= P (ēj |S2).

We assume the media streams to be “content-wise” inde-
pendent. This assumption is reasonable since media streams
may be of different types, and may have different data for-
mats and representations. However, since the decision about
the same atomic-event is based on all the media streams, we
can assume them to be “decision-wise” correlated.

We describe in following subsections how the assimilation
of decision-wise correlated media streams takes place, and
also how the agreement coefficient and confidence informa-
tion about the media sensors are modelled.

3.2.1 Assimilation of correlated media streams
Let a surveillance and monitoring system utilizes a set

Mn = {M1, M2, . . . , Mn} of n media streams. The system,
based on them, outputs local decisions P (ej |Mi), 1 ≤ i ≤
n, 1 < j ≤ r, about an atomic-event ej . We first align
these probabilistic decisions along a timeline; and then, at
a key point t in the timeline, we iteratively integrate all the
media streams using a Bayesian approach. The proposed
approach allows for incremental and iterative addition of
new information. Let P (ejt |M

i−1
t ) denote probability of

the occurrence of atomic-event ej at time t based on from
media streams M1, M2, . . . , Mi−1. The updated probability
P (ejt |M

i
t) (i.e. the overall probability after assimilating the

new media stream Mi) can be recursively computed as -

P (ejt |M
i
t) =

P (Mi,t|ejt)P (ejt |M
i−1
t )

P (Mi,t|M
i−1
t )

P (ejt |M
i
t) = αiP (ejt |M

i−1
t )P (ejt |Mi,t) (1)

where, αi is a normalizing constant.
The equation (1) shows the assimilation using the Bayesian

approach under the assumption that all the media streams
have equal confidence levels and zero agreement coefficient.
We relax this assumption and integrate the agreement /dis-
agreement and confidence information of media streams in
their assimilation.

The confidence in each media stream is computed by ex-
perimentally determining its accuracy. To integrate the con-
fidence into assimilation process, we use the consensus the-
ory. Consensus theory provides a notion of combining the
single probability distributions based on their weights [4].
In our case, we essentially do the same by assigning weights
to different media streams based on their confidence infor-
mation. If we have more confidence we have in a media
stream, a higher weight is given to it. Several consensus rules
have been proposed, however the most commonly used con-
sensus rules are - linear opinion pool(LOP) and logarithmic
opinion pool (LOGP). In linear opinion pool, non-negative
weights are associated with the sources to express quantita-
tively the goodness of each source. The rule is formulated
as: T (p1, p2, . . . , pn) =

∑n

i=1 wipi where, pi, 1 ≤ i ≤ n, are
the individual probabilistic decisions; and wi, 1 ≤ i ≤ n
are their corresponding weights whose sum is equal to 1 i.e.∑n

i=1 wi = 1. We use the logarithmic opinion pool since it
satisfies the assumption of conditional (content-wise) inde-
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Figure 2: A hierarchical probabilistic method for information assimilation to detect an event

pendence among media streams which is essential to assim-
ilation. The rule is described as [8] -

log[T (p1, p2, . . . , pn)] =

n∑

i=1

wilog(pi) (2)

or

T (p1, p2, . . . , pn) =

n∏

i=1

pi
wi (3)

where, pi, 1 ≤ i ≤ n, are the individual probabilistic de-
cisions and

∑n

i=1 wi = 1. We normalize it over the two
aspects of an event - the occurrence and non-occurrence of
event. The formulation is shown as -

T (p1, p2, . . . , pn) =

∏n

i=1 pi
wi

∑
E(

∏n

i=1 pi
wi)

(4)

We use this formulation to develop the assimilation model
which will be described shortly.

The agreement coefficient between two media streams is
used as scaling factor to the overall probability of an event/
atomic-event occurring. The idea is that higher the agree-
ment coefficient between the two media streams, the higher
would be overall probability. We use this notion in the pro-
posed assimilation model.

The assimilation model that combines the probabilistic
decisions based on two sources Mi−1 (i.e. a group of i − 1
streams) and Mi (i.e. an individual ith stream) is given as
follows-

Pi =
(Pi−1)

Fi−1 .(pi)
fi .eγi

(Pi−1)Fi−1 .(pi)fi .eγi + (1 − Pi−1)
Fi−1 (1 − pi)fi .e−γi

(5)

where, Pi = P (ejt |M
i
t) and Pi−1 = P (ejt |M

i−1
t ) are the

probabilities of atomic-event ej being occurring using Mi

and Mi−1, respectively, at time instant t. pi = P (ejt |Mi,t)
is probability of the occurrence of atomic-event ej based
on only ith stream at time instant t. Similarly, Fi−1 and fi

(such that Fi−1+fi = 1) are the confidence in Mi−1 and Mi,
respectively. The computation of confidence for a group of
media streams is described in section 3.2.3. The γi ∈ [−1, 1]

is the agreement coefficient between two sources Mi−1 and
Mi. The limits -1 and 1 represent full disagreement and
full agreement, respectively, between the two sources. The
modelling of γi is described in section 3.2.2.

3.2.2 Modelling of the agreement coefficient
Let the measure of agreement among the media streams

at time t be represented by a set Γ(t) which is expressed as:

Γ(t) = {γik(t)} (6)

where, the term −1 ≤ γik(t) ≤ 1 is the agreement coefficient
between the media streams Mi and Mk at time instant t.

We compute the agreement coefficient γik(t) between the
media streams Mi and Mk at time instant t by iteratively
averaging the past agreement coefficients with the current
observation. The γik(t) is precisely computed as:

γik(t) =
1

2
[(1 − 2 × abs(pi(t) − pk(t))) + γik(t − 1)] (7)

where, pi(t) = P (ejt |Mi) and pk(t) = P (ejt |Mk) are the in-
dividual probabilities of occurrence of atomic-event ej based
on media streams Mi and Mk, respectively, at time t > 1;
and γij(0) = 1 − 2 × abs(pi(0) − pk(0)). These probabil-
ities represent decisions about the atomic-events. Exactly
same probabilities would imply full agreement (γik = 1)
whereas totally dissimilar probabilities would mean that the
two streams fully contradict each other (γik = −1).

The agreement coefficient between two sources Mi−1 and
Mi is modelled as:

γi =
1

i − 1

i−1∑

s=1

γsi (8)

where, γsi for 1 ≤ s ≤ i − 1, 1 < i ≤ n is the agreement
coefficients between the sth and ith media streams. The
agreement fusion model given in equation (8) is based on
average-link clustering. In average-link clustering, we con-
sider the distance between one cluster and another cluster
to be equal to the average distance from any member of one
cluster to any member of the other cluster. In our case, a



group Mi−1 of i−1 media streams is one cluster and we find
the average distance of new ith media stream with this clus-
ter. The fused agreement coefficient γi is used for combining
Mi with Mi−1 as described before in equation (5).

3.2.3 Confidence fusion
In the context of streams, we relate confidence in a media

stream to its accuracy. We compute the accuracy of a media
stream by determining how many times an event is correctly
detected based on it out of the total number of tries.

The confidence fusion refers to the process of finding the
overall confidence in a group of media streams where the in-
dividual media streams have their own confidence level. For
example, consider the case when a video stream has 70%
confidence level and an audio stream has 60% confidence
level. What would our confidence be in a group which con-
tains both video and audio stream? The intuitive answer to
this question would be that our overall confidence should in-
crease as the number of streams increases. Considering the
confidence values as the probabilities, we propose a Bayesian
method to fuse the confidence levels in individual streams.
The overall confidence fik in a group of two media streams
Mi and Mk is computed as follows:

fik =
fi × fk

fi × fk + (1 − fi) × (1 − fk)
(9)

where fi and fk are the individual confidence levels of media
streams Mi and Mk, respectively. In the above formulation,
although the media streams are correlated in their decisions,
we assume that they are mutually independent in terms of
their confidence levels. The fik is clearly the joint probabil-
ity that the system designer is interested in. For n number
of media streams, the overall confidence is iteratively com-
puted. Let Fi−1 be the overall confidence in a group of i−1
streams. By fusing the confidence fi of ith stream with Fi−1,
the overall confidence Fi in a group of i streams is computed
as:

Fi =
Fi−1 × fi

Fi−1 × fi + (1 − Fi−1) × (1 − fi)
(10)

3.3 Compound-event level assimilation
At the compound-event level, we compute the overall prob-

ability pE of the occurrence of compound-event E by assim-
ilating the probabilistic decisions pej

, 1 < j ≤ r about the
r atomic-events by using the following assimilation model -

pE =

∏r

j=1 pej∏r

j=1 pej
+

∏r

j=1(1 − pej
)

(11)

If pE is found greater than the threshold Th, the system
decides in favor of the occurrence of compound event E,
else it decides against it.

Since the atomic-events are independent, the agreement
coefficients among them are considered as zero, and hence
is not integrated into equation (11). For example, atomic-
events e1 = “A person is walking in the corridor” and e2

= “A person is shouting in the corridor” are essentially in-
dependent since a person’s walking is completely indepen-
dent of the person’s shouting. The confidence information
is also not integrated into this assimilation model because
the confidence is usually related to media streams not to the
atomic-events.
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: A microphone − placed in the corridor.

: Camera 2 − faces towards side ‘A’ and captures the whole corridor.

: Camera 1 − faces towards side ‘B’ and captures the whole corridor.
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Figure 3: The layout of the corridor under surveil-
lance and monitoring providing the spatial contex-
tual information about environment
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Figure 4: The process of finding from a video frame
the location of a person on the corridor ground in
3-D world

4. EXPERIMENTAL RESULTS
To demonstrate the utility of our information assimila-

tion method, we present experimental results in a surveil-
lance and monitoring scenario of the corridor in our school
building. We installed two video sensors (cameras) and one
audio sensor (microphone) in the corridor as shown in the
layout given in figure 3. In figure 3, we show their location
and orientation. The objective is to monitor human activi-
ties such as human motion (viz “walking”, “running”, and
“standing”), and the unusual sounds such as “shouting” or
“noisy footsteps” etc. The video sensors M1 and M2 cover
the whole corridor from opposite sides. The audio sensor M3

is placed in the corridor to capture the ambient sound. To
detect the events of human’s running, walking and standing,
we use data from two video cameras and one microphone;
while unusual sounds are detected based on only audio sen-
sor data.

We consider the compound event E - “A person is walking
and shouting in the corridor” which comprises of two atomic-
events e1 and e2 as illustrated in Example 1.

4.1 Atomic-event detection in video streams
To detect the human motion in the corridor, we have used

an adaptive Gaussian method [17, 10] to model each pixel as
a mixture of Gaussian. Once the background is modelled, we
segment the foreground (blobs) from it using simple ‘match-
ing’ on the three RGB channels in video frames. The match-
ing is defined as a pixel value being within 2.5 standard de-
viation of the distribution. In the extracted foreground, we
perform morphological operations (erode and dilation) to
obtain connected components (i.e. blobs). We assume that
the blob of an area greater than a threshold corresponds to a
human. This assumption is reasonable since the focus of this
paper is not the object or human recognition, but it is the
information assimilation. As shown in figure 4, we extracted
from each video frame the bounding rectangle (x, y, w, h) for
each blob where (x, y) denotes the top-left coordinate, w is



the width and h is the height of bounding rectangle of the
blob. We then map the point (x+w/2, h) (i.e. approximat-
ing with human’s foots) in the image to a point (Ex, Ey)
in 3-D world (i.e. on the corridor’s ground). To achieve
this mapping, we calibrate the cameras and obtain a trans-
formation matrix that maps image points to the points on
corridor’s ground. This provides the exact ground location
of human in the corridor at a particular time instant.

Based on the presence of potential blobs in a sequence of
video frames, we identify the atomic-events. For example,
if a person moves towards the camera, the start of atomic-
event is marked when the blob’s area becomes greater than
a threshold and the atomic-event ends when the blob inter-
sects the image plane. However, if the person walks away
from the camera, the start and end of the atomic-event is
inverted. Once an atomic-event is detected, we divide the
time duration for which the event occurred into the time-
windows of tw. The tw is the minimum time period in which
an atomic-event can be detected. We do this timeline divi-
sion to determine key points for the assimilation purpose.
In our experiment, we set tw = 2 seconds. Using the actual
location (Ex, Ey) of the person on the corridor’s ground
at the end of each time-window tw, we compute the average
distance travelled by a person on the ground in the corridor.
Based on this average distance value for the time-window, a
Bayes classifier is used to classify an atomic-event to be one
of the classes - standing, walking and running.

4.2 Atomic-event detection in audio streams
Our method of detecting the unusual sounds (such as

shouting or noisy footsteps) in the environment works as
follows. The audio (of 44.1 MHz frequency) is divided into
the “audio frames” of 200 ms each. Similar to the video
event detection, we model the audio background using an
adaptive Gaussian method [17] and segment the foreground
for each audio frame using a matching within 2.5 standard
deviation of the distribution. We compute the sound energy
for each audio frame by summing up the amplitudes of sound
samples in it. Note that the unusual sounds such as shouting
have a higher sound energy. We use a Bayesian classifier to
classify the atomic audio events - person’s shouting, walk-
ing, running and standing in each audio frame based on its
sound energy. The classifier provides the probabilistic deci-
sions about these atomic-events.

4.3 Assimilation of video and audio streams
The overall decision for an atomic-event is derived by as-

similating the probabilistic decisions that are obtained based
on all the relevant media streams. For example, the decision
for atomic-event e1 - “A person is walking in the corridor” is
obtained by assimilating the probabilistic decisions that are
obtained based on two video streams and one audio stream,
and for atomic-event e2 - “A person is shouting in the cor-
ridor”, the decision is obtained based on only audio stream.
The overall decision for compound-event E is obtained by
assimilating the decisions for atomic-events e1 and e2, as
shown in figure 5 to figure 9.

Note that in figure 5 to figure 9, the legends denote as
follows: ‘◦’ - “standing”, ‘2’ - “walking”, ‘?’ - “shouting”
activities, ‘∗’ - agreement coefficient among the streams and
‘�’ - confidence level of streams.

Figures 5a and 5c show the video streams M1 and M2, and
figures 5b and 5d show the probabilistic decisions p(e1|M1)

and p(e1|M2) for the atomic-event e1 based on the two video
streams M1 and M2, respectively. The audio stream M3

(figure 6a) along with its probabilistic decisions p(e1|M3)
(figure 6b) and p(e2|M3) (figure 6c) for the atomic-events e1

and e2, respectively, is shown in figure 6. The probabilistic
decisions obtained from the two video sensors and one audio
sensor are aligned along a timeline. In order to derive an
overall decision about an event, it is necessary to key out the
periodic time instances when they provide their decisions. In
our experiments, we have observed that tw = 2 seconds is the
minimum time period in which the atomic-event e1 can be
detected using a video stream, therefore we have chosen this
time period to be tw = 2 seconds. Note that this minimum
time period can be different for different atomic-events.

Figure 7 shows the assimilation of media streams without
using their agreement/ disagreement and confidence infor-
mation in order to detect compound event E. First, two
video streams (figure 7a) and then all three streams (fig-
ure 7b) are assimilated (at atomic-event level) to detect the
atomic-event e1. Finally, as shown in figure 7c, the deci-
sions for both the atomic-events e1 and e2 are assimilated
(at compound-event level) in order to make an overall deci-
sion for the compound event E. As can be seen in figure 7a
(with two streams), from time 7.9275 ms onwards, probabil-
ity of the occurrence of atomic-event e1 is more compared
to that in figure 5b (camera 1) and in figure 5d (camera 2).
Also, in figure 7b (with three streams), from time 7.9275 ms
onwards, the probability of the occurrence of e1 is higher
than that in figure 7a (with two streams). This shows that
a higher number of concurring streams strengthen the over-
all decision about an event. Note that the assimilation is
performed only at those key points in timeline where the
decisions based on more than one media stream are avail-
able.

We show the integration of streams’ agreement/ disagree-
ment information in figure 8. Figure 8a shows how the agree-
ment coefficient (γ12) between the two video streams evolves
over time. The agreement coefficient γ12 further strength-
ens the decision based on two video streams M1 and M2

as can be seen from the time 7.9275 ms onwards in figure
8b compared to that in figure 7b. In figure 8c, we show
the fused agreement coefficient (γ(12),3) among three streams
(two video streams and one audio stream) (refer to equation
(8)) which also evolves over time. The γ(12),3 implies the
agreement coefficient between audio stream and the group
of two video streams. Figure 8d shows along a timeline
the overall probability of the occurrence of atomic-event e1

based on all three streams. Finally, the figure 8e shows the
overall decisions along a timeline for the compound event
E. As can be seen in figure 8d (for atomic-event e1) and in
figure 8e (for compound-event E), the overall probabilistic
decisions about the event is close to 1 which shows that the
use of agreement coefficient among streams minimizes the
errors in the derived decision. Note that in this case, we
assumed that all the streams bear equal confidence levels.

The effect of integrating the confidences in streams is
shown in figure 9. We have first computed the confidence
levels of the three media streams by running the experiments
for 15 events of walking, standing, running and shouting.
By comparing the results with the ground truth, we have
found the the accuracy of the three streams as follows -
video stream M1: 0.75, video stream M2: 0.70, and the au-
dio stream M3: 0.60. The confidence information becomes
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Figure 5: Timeline-alignment of the probabilistic decisions obtained based on (b) video stream M1 (shown in
(a)) and (d) video stream M2 (shown in (c)) for the atomic-event e1
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very important when the two streams provide contradictory
evidences with equal probabilities. In such case, we choose
the one with a higher confidence level. Figure 9a shows the
overall confidence f12 in a group of two video streams M1

and M2. This is computed using equation (9). Similarly, the
confidence in a group of two video streams is fused with the
confidence level of one audio stream (using equation (10)) as
shown in figure 9d. As expected, the confidence in a group
of streams increases with the number of streams in it. The
step-by-step hierarchical assimilation to make an overall de-
cision for the compound event E is shown in figure 9b, in
figure 9c and in figure 9e.

To sum up, the experimental results demonstrate that the
use of media streams’ agreement/disagreement and confi-
dence information provides more accurate decisions for the
atomic-events and the compound-event. The late assimila-
tion strategy performs well considering that fact it offers us
flexibility to add or drop a stream which is highly essential
in multi-sensor surveillance and monitoring systems.

5. CONCLUSIONS
In this paper, we have presented a novel method for assim-

ilation of information in the surveillance and monitoring sys-
tems that utilize multifarious sensors. The experimental re-
sults have shown that the use of agreement coefficient among
and the confidence information of media streams helps in
obtaining more accurate and credible decisions about the
events. However, these results are preliminary and future
work will be to perform more extensive experiments to evalu-
ate the performance of our information assimilation method
and compare it with the existing approaches of multimedia
fusion. In future work, there are many other issues which
need to explored such as - first, how the confidence infor-
mation about a stream (newly added in the system) can be
computed over time using its agreement/ disagreement with
the other streams whose confidence information are known;
second, how the confidence level of a media stream would
evolve over time with the changes in environment; and third,
the scalability analysis - how would adding or dropping a
stream affect the accuracy of overall decision for an event.
It would also be interesting to explore how high-level “con-
cepts” (e.g. stampede) can be modelled using atomic-events
and how it can be detected using our method.
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Figure 8: Timeline-based information assimilation for detecting a compound event E based two video streams
M1, M2 and one audio stream M3 using their agreement/disagreement but without using their confidence
information
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Figure 9: Timeline-based information assimilation for detecting a compound event E based two video streams
M1, M2 and one audio stream M3 using both their agreement/disagreement and the confidence information


