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ABSTRACT
This paper addresses the problem of how to select the opti-
mal number of sensors and how to determine their placement
in a given monitored area for multimedia surveillance sys-
tems. We propose to solve this problem by obtaining a novel
performance metric in terms of a probability measure for ac-
complishing the task as a function of set of sensors and their
placement. This measure is then used to find the optimal
set. The same measure can be used to analyze the degrada-
tion in system’s performance with respect to the failure of
various sensors. We also build a surveillance system using
the optimal set of sensors obtained based on the proposed
design methodology. Experimental results show the effec-
tiveness of the proposed design methodology in selecting the
optimal set of sensors and their placement.

Categories and Subject Descriptors
H.5.1 [Multimedia Information Systems]; I.6.4 [Simulation
and Modeling]: Model Validation and Analysis

General Terms
Design, Security

Keywords
Sensor selection and placement, Performance metric, Fault
tolerance

1. INTRODUCTION
Most of the multimedia surveillance systems nowadays

utilize multiple types of sensors which have different capa-
bilities and which are of different costs. The design of such
systems plays an important role in achieving the required
performance. The proper selection and placement of sensors
is important because it provides the required performance
at minimal cost.
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In this paper, we consider the following problem. Given a
set of sensors to be employed in an environment (a convex
region) and also given a surveillance task, we propose a novel
design methodology which, in order to accomplish the task
with a specified performance, determines - 1) Optimal num-
ber of sensors, 2) Their optimal placement and 3) System
failure behavior. One can think of this design methodology
as a black box which takes inputs like geometry of the con-
vex surveyed area, types of sensors, surveillance task and the
desired performance; and outputs the optimal set of sensors
and their placement.
The core idea is to obtain a performance metric for accom-

plishing the given surveillance task as a function of set of
sensors and their placement in a given convex surveyed area
and then use this measure to find the optimal set of sensors
and their placement. Such a performance measure allows
the system designer to analyze the degradation in system’s
performance when some of the sensors fail. Deriving such
a performance metric is challenging and requires the mod-
eling of the effect of the interplay of the individual sensors
when placed in a particular configuration. While the per-
formance metric is highly task dependent, the methods that
we propose in this paper are general and thus useful for all
designers of surveillance systems. We consider a surveillance
task of capturing the frontal information of a symmetric ob-
ject in a convex surveyed region. This task is chosen as it is
a common task across many systems and the performance
metric that we derive for this task can be applied to other
tasks such as object detection and tracking etc. Also, exam-
ples of symmetric objects like human and animal faces, cars
etc. are frequently encountered in surveillance scenarios.
In this paper, we describe our design methodology by

considering two types of sensors which are PTZ (Pan-Tilt-
Zoom) infrared cameras and active motion sensors. We also
build a surveillance system consisting of these two types of
sensors for object tracking. Experimental results confirm
that optimal sensor placement based on design maximizes
the system performance.
Thus our main contribution in this paper is to propose

a design methodology for multimedia surveillance systems
that helps a system designer in optimally selecting and plac-
ing the sensors in order to accomplish a given task with a
specified performance. The proposed design methodology is
‘directionally aware’ (i.e. realizes that only images obtained
in a certain direction may be useful) and can easily scale
to multiple PTZ cameras as well as motion sensors. To the
best of our knowledge, this is the first time that a design
strategy has been proposed for building such heterogeneous



surveillance systems. Our interactions with the industry also
indicate that an ad hoc methodology is usually employed for
designing such systems.
The remainder of this paper is organized as follows. Sec-

tion 2 presents the related work. In section 3, we describe
the proposed design methodology for selecting the optimal
set of sensors and their placement. In section 4, we discuss
the system implementation and then present the experimen-
tation results in section 5. Finally, in section 6, we conclude
the paper with a discussion on future work.

2. RELATED WORK
In the past, optimal sensor selection problem has been

studied in the context of discrete-event systems and failure
diagnosis. Oshman [7] proposes to select sensors at each
epoch based on the information gain along the state space
direction. Debouk et al [2] proposed to identify instances
where it is possible to explicitly determine optimal strategies
for the markovian decision problem. [5] is based on optimal
selection for discrete event systems with partial observation.
These methods do not address the optimal sensor placement
problem which we address in this paper. Also, our method is
different from the above cited works as we propose a perfor-
mance metric for accomplishing the given surveillance task
in order to find the optimal number of sensors.
Atrey et al [1] discuss the problem of selecting the most

informative subset from the available set of media streams at
any particular time instant. They select an optimal subset
of streams by using dynamic programming approach for a
given task to eliminate the cost of processing redundant and
less informative data. The problem which we address is
different from [1] as we aim to find the optimal set of sensors
before building the system, whereas [1] eliminates some of
the processing cost after building the system assuming that
there is a lot of redundancy in the system. Also, [1] does
not consider the issue of placement of sensors.
In the context of wireless sensor networks, Pahalawatta

et al [8] propose to solve the problem of optimal sensor se-
lection by maximizing the information utility gained from a
set of sensors subject to a constraint on the average energy
consumption in the network. Their method is not applicable
to our problem as their main concern is energy consumption
and the information gain is designed accordingly. A sensor
placement algorithm for optimizing the coverage area have
been reported in [3]. [3] assumes that the probability of de-
tecting a target by using a sensor varies exponentially with
the distance between target and the sensor. This method
does not consider the notion of ‘directionality’. So, it can-
not be used to model the effect of PTZ cameras.
Erdem et al [4] have described an approach for placement

of multiple cameras in a polygonal space using ‘reasonable’
assumptions for real-life cameras. Mittal et al [6] have also
described a method for determining the optimal number of
cameras and their placement to monitor any given premises.
However, both these works do not consider direction of im-
age captured as part of their suitability metrics. This is
important as it is often necessary to obtain images in one
direction (e.g. frontal direction for face/object recognition
etc.) and not the other. Also, they consider only static
cameras while we consider PTZ cameras as well as motion-
sensors. On the other hand, Wren et al [9] utilize a swarm of
low cost motion sensors for automatically calibrating PTZ
cameras that are undertaking surveillance tasks. Their work

however does not deal with finding optimal number and po-
sition etc. for the sensors.
On the whole we realize that while optimal sensor place-

ment has generated reasonable research interest, the cur-
rently available methods fail to recognize the need for a di-
rectionality aware metric for optimally selecting and placing
the sensors in a multimedia surveillance system. To the best
of our knowledge, this paper is the first to address this issue.

3. PROPOSED DESIGN METHODOLGY
In this section, we describe our design methodology for

obtaining the optimal set of sensors and their placement for
a multimedia surveillance system. The following problem
has been considered for modeling: Given l types of sensors to
be employed in a convex surveyed region; the objective is to
find the optimal set of sensors and their placement in order
to accomplish a task with a specified performance σ. Non-
convex regions can be tackled by defining a suitable coverage
function (e.g. visibility for cameras) for each sensor, but in
this paper, we restrict our focus only to convex regions and
would like to extend it to non-convex regions in the future.
Our proposed design methodology for determining the op-

timal set of sensors and their placement is as follows -

Step 1 Obtain the performance metric (we denote it by
η) for accomplishing the given task as a function of
sensors and their placement.

Step 2 Determine the all combinations of sensors along with
their placement for which the performance metric ex-
ceeds or equal to the required performance σ.

Step 3 Determine the cost of each combination and output
the combination with least cost.

Let us assume that the given task can be divided into
q subtasks. To obtain the performance metric (in step 1)
as a function of sensors and their placement, the first step
is to obtain a performance matrix of dimension l × q such
that (i, j)th element of this matrix represents the accuracy
with which ith sensor can perform the jth subtask. We can
approximately determine this performance matrix based on
our prior knowledge about various types of sensors. The
next step is to decide an interaction strategy among sen-
sors using this performance matrix. The interaction strategy
should be such that the assignment of subtask(s) to partic-
ular sensor(s) results in a maximum overall performance.
If we consider, for example, jth column of the performance
matrix, it indicates the accuracy with which jth subtask can
be performed by various types of sensors. Once we prioritize
the subtasks, they can be assigned to the sensors depending
on their priority. The final step is to model the effect of
individual sensors (based on the subtask(s)) to obtain the
final performance metric. Once the performance metric is
obtained, we follow steps 2 and 3 to find the optimal set of
sensors and their placement, as will be described in section
3.3. Please note that we do not consider the computational
costs in our analysis as we assume sensor placement and
selection to be offline problems.
Though the proposed design methodology is generic, we

demonstrate its utility for a specific case. As mentioned ear-
lier, we consider a surveillance task of ‘capturing the frontal
part of a symmetric object’ in a convex surveyed region.
This is because the performance metric η that we derive for



this task can be applied to other tasks such as object detec-
tion and tracking etc. This task has two sub-tasks – object
localization and image capture. Two types of sensors (l = 2)
are considered which are (PTZ)infrared cameras and active
motion sensors. The localization sub-task can be performed
by both types of sensors while the image capture sub-task
can be performed by the camera alone. Since cameras are
required in this system, we first develop the performance
metric for cameras only. It is interesting to note that the
performance metric which includes the effect of only cam-
eras can be used to design an optimal camera surveillance
system.
As the first sub-task task is to capture the frontal part

of a symmetric object, the performance metric η could be
the average probability of capturing the frontal part of a
symmetric object at a particular time instant. Initially, we
describe our mathematical model for obtaining the perfor-
mance metric η when n number of (PTZ) infrared cameras
are placed in a fixed configuration in subsection 3.1. Then
we discuss optimal camera placement based on this metric
in subsection 3.2. In subsection 3.3, we extend this per-
formance metric to include the effect of the active motion
sensors. Finally, we discuss about the optimal selection and
placement of sensors based on this performance metric in
the same subsection.

3.1 Obtaining the performance metric
We make the following assumptions while deriving the

performance metric for n cameras -

1. The surveyed region is convex.

2. The symmetric object can be captured if its centroid
lies within the conical FOV of cameras.

3. If half or more than half of the frontal part of the sym-
metric object is captured by any one of the cameras,
then due to the symmetry, the frontal part of an object
can be obtained.

Figure 1: A typical surveillance setup

Consider a plane which is parallel to the floor and at the
same vertical height as that of the cameras as shown in the
figure 1. A human face is shown in the figure 1, but it could
be any other symmetric object. The top view of this plane
is as shown in the figure 2. Though the actual centroid of an
object may not lie on the considered plane due to the vari-
ability in pose etc, most of the times the field of view (FOV)
of the cameras is enough to capture the object. In this case,

Figure 2: Top view and camera parameters

the cameras capture a slightly distorted object due to the
angle of projection of an object onto the camera plane. We
neglect this effect and assume that the centroid of an object
lies on the considered plane for analysis. Also, in practice
FOV gets affected by changes in the zoom parameter of the
camera, but we neglect it as of now for the ease of modeling.
Since the surveyed region is convex, the set of all object

centroid locations on this plane forms a convex region R
(shaded region in figure 2). We now derive an expression for
the probability of capturing a frontal part of the symmetric
object if its centroid is at a location say (x, y) ∈ R as in
figure 2. This analysis will not impose any restriction on
the orientation of the object. We represent the orientation
of a symmetric object using a random variable which is dis-
tributed uniformly in the range [0, 2π) . This is intuitively
satisfying because any orientation angle for object is equally
likely. The idea is to find a set of orientation angles of an
object having centroid at (x, y) ∈ R for which the frontal
part of an object can be captured by at least one of the n
cameras and then determine the probability of realizing this
set. By assumption 3, if we capture half or more than half of
the frontal part of an object it implies that due to symmetry
the total frontal part of an object can be obtained.
The parameters associated with the ith camera (1 ≤ i ≤

n) are as follows:

• Location : (xi, yi) (on the boundary only)

• Zoom : di

• Reference direction :θri = arg( ~θri), 0 ≤ θri < 2π.

• Maximum pan angle : θpi, (> 0)

The zoom parameter indicates the maximum distance that
the ith camera can focus, and the maximum pan angle indi-
cates the maximum pan allowed in either positive or nega-
tive direction about the reference direction as shown in the
figure 2. In this analysis, it is assumed that the parameter
maximum pan angle includes the effect of field of view of
the camera i.e. θpi = θpi,orig + (FOV )/2, where θpi,orig is
the actual maximum pan angle of the camera.



Figure 3: Directions of various vectors

We define the characteristic function Ii(x, y) for the i
th

camera for all points (x, y) ∈ R as:

Ii(x, y) =

{

1, if ith camera can focus on (x, y)
0, otherwise

and it can be written as Ii(x, y) = Ii1(x, y)×Ii2(x, y), where
Ii1(x, y) = U(d2

i − [(x − xi)
2 + (y − yi)

2]) and Ii2(x, y) =
U(θpi −∆θi(x, y)), U(.) is the unit step function. ∆θi(x, y)
is the angle difference between the reference direction vector

( ~θri) of the camera and the vector ~Vi(x, y) as shown in the
figure 3.
The characteristic function Ii(x, y) essentially describes

whether the object’s image can be captured by camera i
at point (x, y) or not. The function Ii1(x, y) indicates the
distance constraint imposed by the zoom of the camera and
Ii2(x, y) indicates the pan angle constraint. The vector from
ith camera to the object centroid at (x, y) is represented us-

ing ~Vi(x, y) and can be found using the ∆
le law of addition.

Consider ∆le
OAB in the figure 3,

(xi, yi) + ~Vi(x, y) = (x, y) ⇒ ~Vi(x, y) = (x− xi, y − yi).

Let us define θi(x, y) = arg(~Vi(x, y)), 0 ≤ θi(x, y) < 2π, as
indicated in figure 4 for some (x, y) (here symmetric object
is shown to be a face). As stated earlier, the orientation of
a symmetric object is represented using a random variable
θ which is distributed uniformly in the range [0, 2π). Ac-
cording to the assumption 3, the ith camera can capture the
frontal part an object having centroid at (x, y) whenever the
orientation angle of an object θ ∈ Si(x, y). Figure 4 shows
a specific case. Si(x, y) is expressed as -

Si(x, y) = {θi : θi(x, y) + π/2 ≤ θi < θi(x, y) + 3π/2} mod 2π

which represents the set of all orientation angles for an
object having centroid at (x, y) for which ith camera can
capture the frontal part of an object. If the object is such
that the frontal part of it can be obtained from any of its
captured images (independent of its orientation) then the
analysis becomes simple and one has to merely maximize
the coverage area. This is not true for objects like hu-
man and animal faces as shown in the figure 4. There-

Figure 4: Face orientation

fore, we need to do the following analysis. Let us define
Pi(x, y) = Prob{θ ∈ Si(x, y)}. Hence the probability of cap-
turing the frontal part of an object having centroid at (x, y)
using the ith camera is given by Pi(x, y)× Ii(x, y).
Let Pn(x, y) denote the probability of capturing an object
having centroid at (x, y) and with n number of cameras ar-
ranged in any fixed configuration.

3.1.1 Single camera case
Recall that I1(x, y) indicates whether camera 1 can focus

on (x, y) or not. Hence, in this case, P 1(x, y) = I1(x, y) ×
P1(x, y)

3.1.2 Dual camera case
We know that P (X

⋃

Y ) = P (X) + P (Y )− P (X
⋂

Y ),
where X and Y are any two events.
Case 1: When both the cameras are able to focus on

(x, y)

P 2(x, y) = Prob
{

θ ∈
[

S1(x, y)
⋃

S2(x, y)
]}

= Prob {θ ∈ S1(x, y)}+ Prob {θ ∈ S2(x, y)}

−Prob
{

θ ∈
[

S1(x, y)
⋂

S2(x, y)
]}

= P1(x, y) + P2(x, y)− P12(x, y) , where

P12(x, y) = Prob
{

θ ∈
[

S1(x, y)
⋂

S2(x, y)
]}

and denotes the probability of capturing the frontal part of
an object having centroid at (x, y) by both the cameras.
Case 2: When only one of the cameras is able to focus on
(x, y)

P 2(x, y) = Prob {θ ∈ Si(x, y)} = Pi(x, y)

where only camera i can focus on (x, y), i = 1 or 2
Case 3: Either of the cameras can’t focus on (x, y)
P 2(x, y) = 0



The above all cases can be compactly written as

P 2(x, y) = I1(x, y)× P1(x, y) + I2(x, y)× P2(x, y)

−I1(x, y)× I2(x, y)× P12(x, y)

Since the random variable θ is uniformly distributed in the
range [0, 2π), the above expression reduces to

P 2(x, y) = (1/2)× [I1(x, y) + I2(x, y)]

−I1(x, y)× I2(x, y)× P12(x, y) . . . . . . (1)

The point (x, y) can be anywhere on the plane and belongs
to the convex set R and the characteristic function of a
paricular camera describes whether that camera can focus
on this point or not. Average probability of capturing the
frontal part of an object at any particular time instant can
be found if we know the probability density function f(x, y)
for an object centroid position over the convex region R. Let
the average probability be η and represents the performance
metric as discussed earlier.

η =

∫ ∫

R

P 2(x, y) f(x, y) dx dy

Let the area of convex region R be AR and further assume
that the position (x, y) is a random variable with a uniform
density (in this case, f(x, y) = 1

AR
). Uniform density for

the position means object can be found with an equal prob-
ability in any region of fixed total area.

η =
1

AR

∫ ∫

R

P 2(x, y) dx dy

Substituting for P 2(x, y) from (1),

=
1

AR

∫ ∫

R

(1/2)× [I1(x, y) + I2(x, y)] dx dy

−
1

AR

∫ ∫

R

I1(x, y)× I2(x, y)× P12(x, y) dx dy

η =
0.5

AR

{V olume underI1(x, y) + V olume underI2(x, y)}

−
1

AR

∫ ∫

A

P12(x, y) dx dy . . . . . . . (2)

where, A : Area where both the cameras can focus.
( i.e., Set of all (x, y) under Case 1 )

3.1.3 More than two cameras
In this section we extend the performance metric to the

n camera case. As mentioned earlier, P n(x, y) denotes the
probability of capturing the frontal part of an object having
centroid at (x, y) and with n number of PTZ cameras in a
fixed layout. If (x, y) is such that all cameras are able to
focus on this point then expression for P n(x, y) is given by:

Pn(x, y) = Prob
{

θ ∈
[

S1(x, y)
⋃

S2(x, y) . . .
⋃

Sn(x, y)]
]}

Since we know how to deal with two cameras, initially we
start with two cameras. After determining the effect of first
two cameras, we add one more camera to find its effect.
Note that the order in which we add cameras to the ex-
isting configuration has no effect on the final performance

metric as the union operator is associative. This process
of adding a new camera to the existing system is repeated
till we include all the cameras. The algorithmic approach is
described below.
Algorithm 1: To determine Pn(x, y)

Inputs:
Sets: Si(x, y), i = 1, 2, ...n
Probabilities: Pi(x, y), i = 1, 2, ...n
Charcteristic functions: Ii(x, y), i = 1, 2, ...n

Initialize:
A← S1(x, y) and B ← S2(x, y)
p1 ← P1(x, y) and p2 ← P2(x, y)
i1 ← I1(x, y) and i2 ← I2(x, y)
for j = 3 to n

Compute:
p = i1 × p1 + i2 × p2 − i1 × i2 × p12

where p12 = Prob {θ ∈ A
⋃

B}
Update sets:
if i1 = 1 and i2 = 1
then A← A

⋃

B
if i1 = 0 and i2 = 1
then A← B
if i1 = 0 and i2 = 0
then A← φ

Update probabilities:
p1 ← p and p2 ← Pj(x, y)

Update characteristic functions:
i1 ← max (i1, i2) and i2 ← Ij(x, y)

end for
Pn(x, y) = i1 × p1 + i2 × p2 − i1 × i2 × p12

Output Pn(x, y)
Once we know {Pn(x, y), ∀(x, y) ∈ R}, the average prob-

ability η can be found by integrating and averaging over the
entire convex region as discussed in subsection 3.1.2. This
average probability represents the performance metric for
the n camera case. Optimal camera placement is obtained
by maximizing η with respect to the camera placement.

3.2 Optimal camera placement
The performance metric η derived in section 3.1 is used

to determine the optimal camera placement. The optimal
camera placement refers to the placement of cameras which
gives the maximum performance metric. We determine the
η by displacing the cameras along the perimeter and then
find the placement which gives the maximum η. The refer-
ence direction for any camera is chosen such that maximum
volume is included under the corresponding characteristic
function. Simulation results for the two camera case are
presented in the results section.

Algorithm 2: (optimal camera placement, n cameras)
Inputs: Number of cameras, specifications
Step 1: Choose the optimal reference direction when a cam-
era is placed at a particular point on the perimeter.
Step 2: Determine η for this particular camera placement.
Step 3: Repeat the above steps by displacing the individual
cameras along the perimeter.
Step 4: Pick the placement of cameras which gives the
maximum η and output it.

3.3 Modeling of the effect of motion sensors
We derived a performance metric as a function of cameras

and their placement in section 3.1. In this section, we ex-



tend this performance metric to include the effect of motion
sensors (described in section 4.1).
The motion sensor grid (section 4.1) in our proposed frame-

work is used for localizing an object (section 4.2). Object
could be anywhere not cutting the adjacent motion sensors
beam after cutting the intersection/grid point. In this case,
the field of view of the camera (refer to figure 5) plays a vi-
tal role in determining the average probability of capturing
an object. This is because when camera is focusing on the
grid point, if an object centroid lies outside the FOV of the
camera then it is not possible to capture that object. Object

Figure 5: Importance of FOV of the camera

can be captured only if its centroid lies within the FOV of
the camera. In other words, the FOV of the camera allows
system to have some uncertainty in localizing an object and
further facilitates the capture of the object. The allowed
uncertainty increases as with the FOV. The region of uncer-
tainty (rectangle) associated with a grid point (refer section
4.2) can be reduced by increasing the number of motion sen-
sors in a system. Hence there is a tradeoff between the FOV
of the camera and the number of motion sensors used for
localization. If the number of motion sensors is such that
the uncertainty in localizing an object using the sensor grid
is just equal to the allowed uncertainty due to the field of
view of the camera then that number indicates the optimal
number of motion sensors. Increasing the number of motion
sensors beyond the optimal number does not improve the
performance metric of the system.
For any particular grid point, the performance of the sys-

tem is specified in terms of probability of capturing the
frontal part of an object when all cameras focus on this
point. We assume uniform probability density function for
an object position in the region of uncertainty associated
with any particular grid point and determine the perfor-
mance of the system corresponding to this grid point. By
assuming equal probability for the cameras to focus on any
particular grid point, the final performance metric η can be
obtained by taking the average of all performances corre-
sponding to grid points. The following is the algorithm for
determining the performance metric η for our heterogeneous
sensor system.

Algorithm 3
Input: Sensors (both cameras and motion sensors) and
their placement
Step 1: Consider a grid point and obtain the corresponding
region of uncertainty for the object centroid position.
Step 2: Determine the average probability of capturing the
frontal part of an object for this grid point.
Step 3: Repeat the above steps for all grid points and then
output the average of all the probabilities (of step2).
Output: Performance metric η.
The performance metric η is a function of number of sen-

sors and their placement. Tradeoff between the FOV of the
camera and number of motion sensors allows us to select an
optimal number of motion sensors for a given FOV. By fixing
the number of cameras and varying the FOV, we can select
an optimal combination of FOV and the associated optimal
number of motion sensors. This is because as the FOV of
the camera increases, the cost of the camera increases and
the associated optimal number of motion sensors decreases.
Hence, there exists an optimal combination of FOV for the
cameras and the number of motion sensors for which the
over all cost is minimum. Finally, the overall optimized het-
erogeneous sensor system can be obtained by minimizing the
overall system cost with respect to number of cameras and
the corresponding optimal combination.

3.4 Fault tolerance
Once the multimedia surveillance system is built, it is im-

portant to know how the system performance deteriorates
when few components (sensors) of the system fail. We can
determine the performance of the system in this case using
the algorithm 3 by removing the faulty components from
the inputs list. Using this algorithm, system designer can
estimate the performance of the system when few compo-
nents of it fail before building the actual system. Thus, this
methodology also serves as a powerful failure analysis tool
and can help design a system with a graceful performance
degradation under sensor failure.

4. SYSTEM IMPLEMENTATION
After selecting the optimal subset of the sensors and their

placement as described in section 3.3, the next step is to
build a surveillance system using these sensors to accom-
plish the given task. We discuss the implementation details
of a multimedia surveillance system in subsection 4.1. Sub-
section 4.2 discusses the uncertainty in localizing an object
when motion sensor grid is employed for localization. Fi-
nally in subsection 4.3, we describe the use of coopetitive
interaction strategy in our system.

4.1 System implementation details
For a surveillance task of capturing the frontal part of

a symmetric object in a rectangular region of 6m × 2.5m,
we considered two types of sensors - PTZ infrared cameras
(Canon VC C50i) and motion sensors. We followed the de-
sign methodology and determined the number of infrared
cameras and motion sensors as two and eight, respectively;
and also their placement is determined as shown in figure 6.
The system consists of two PTZ cameras placed at diago-
nally opposite corners and the eight motion sensors arranged
in the form of a (2-D) 5× 3 grid (figure 6).
Motion sensor consists of a transmitter and a receiver pair.

The transmitter emits the IR light (source) and the corre-



Figure 6: Motion-sensor grid and camera positions

sponding receiver detects it when placed opposite to the
transmitter. Receiver cannot detect any IR light if any ob-
stacle (or intruder) obstructs the beam (IR light). This fact
is exploited when the motion sensor grid is deployed for lo-
calizing an object in a dark region. If we consider any par-
ticular motion sensor (along row or column), there are two
states associated with it namely ‘beam is continuous’ and
‘beam is discontinuous’ and hence single bit is sufficient to
represent these two states. Hence for eight motion sensors
we require eight bits or one byte. The computer can access
the current state of the motion sensor grid via its serial port
operating at 115200 baud. Let us call the motion sensors
along the row as ‘row motion sensors’ and along the column
as ‘column motion sensors’ as shown in the figure 6. The
grid points correspond to the locations where beams from
the row motion sensors and column motion sensors meet.
Therefore, any individual grid point can be specified by its
row and column motion sensor number i.e., (r, c), where
1 ≤ r ≤ 5 and 1 ≤ c ≤ 3 for our system.
The cameras used in our system can be controlled by set-

ting different pan, tilt and zoom parameters. They are op-
erated in infrared mode to capture images of an object when
there is no illumination. As shown in the figure 6, the two
cameras are placed at the diagonally opposite corners and
are in fact at the same vertical height.

4.2 Localization by motion sensor grid
The active motion sensor used in our system provides in-

formation such as ‘something is obstructing the beam’ or
‘nothing is obstructing the beam’. The uncertainty in local-
izing an object when it obstructs the beam from any sin-
gle motion sensor is that it could be obstructing the beam
anywhere on the line joining the transmitter and the corre-
sponding receiver. When the beam is continuous the uncer-
tainty is that an object could be anywhere but not on the
line joining the transmitter and the corresponding receiver.
In localizing an object using the sensor grid, we assume that
the object cannot cross the beam of any motion sensor in
less than ∆t seconds, where ∆t is the polling time for the
sensor grid. In other words, it is the time difference be-

tween the two consecutive sensor grid data reads. Using the
past localization information and the current sensor grid sta-
tus, the new localization information can be obtained i.e.,
R(t) = f1(R(t − 1), S(t)) and C(t) = f2(C(t − 1), S(t)),
where, R(t) and C(t) represent the row and column motion
senor numbers to focus at time instant t respectively. S(t)
denotes the sensor data at time instant t. f1() and f2() show
the functional dependence of R(t) and C(t) respectively.
It is always required to force the cameras to focus on the

grid/intersection point to reduce the uncertainty in captur-
ing an object. The following explains the different cases.
Case 1: At time instant t, the row motion sensor with

number r and the column motion sensor with number c are
discontinuous.
In this case there is no uncertainty in localizing an object
and it is exactly there on the grid/intersection point (r, c).

Figure 7: Uncertainty in localization

Case 2: At time instant t, only one of the motion sensors
is discontinuous (row or column).
Let the current discontinuous motion sensor be a column
motion sensor with number c (refer figure 7, left). Let the
previous latest discontinuous row motion sensor number be
r. As per the assumption in section 4.2, object cannot cross
either row r− 1 or r+1 and yet obstructing column motion
sensor c. Because of the assumption, the uncertainty in
localizing an object in this case is reduced from the line
segment AB to the line segment CD (thick) excluding the
intersection/grid point as shown in the figure 7. So it is
necessary to focus the cameras on the grid/intersection point
(r, c) to reduce the uncertainty of capturing an object.
Case 3: At time t, no motion sensor is discontinuous.

Let the latest previous discontinuous row and column mo-
tion sensors be r and c respectively. In this case an object
cannot cross the row motion sensors r−1 and r+1 and sim-
ilarly the column motion sensors c− 1 and c+1. Hence the
uncertainty region in this case is the dark region as shown
in the figure 7(right)(note that the row motion sensor r and
column motion sensor c are continuous). So, by focusing the
cameras on the grid point (r, c), we can reduce the uncer-
tainty of capturing an object.

4.3 Interaction strategy
In this section, we describe the interaction strategy used

by our heterogeneous sensor system. The design of the in-
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Figure 8: Performance vs. camera placement

teraction strategy for multimedia system must fuse the prior
knowledge about the various capabilities of sensors into the
controlling algorithm to maximize the throughput. The con-
sidered task of capturing a frontal part of an object can
be divided into two subtasks namely localizing an object
and capturing the images at the specified localized loca-
tion. Motion sensor grid can perform only the first subtask
whereas infrared cameras can perform both the subtasks.
Motion sensor grid performs better than cameras for the
first subtask. Based on the above prior information, maxi-
mum throughput is achieved by assigning the first subtask
to motion sensor grid and second subtask to infrared cam-
eras as it is the only available sensor which can undertake
this subtask. The algorithmic steps are as follows.

Algorithm 4
Step 1: Obtain the motion sensor grid data and determine
the intersection point to focus.
Step 2: Steer the cameras to focus on this point.
Step 3: Capture images using both the cameras and search
for the frontal part of an object.
Step 4: Repeat the above steps 1, 2 and 3 till the system
captures some specified number of frontal object images.

5. RESULTS
We present in this section simulation results describing the

optimal selection of heterogeneous sensors and their place-
ment. We also show the experimental results for tracking
and capturing the face of an intruder.

5.1 Optimal camera placement

5.1.1 Square region
Even though the proposed algorithm is generalized for n

cameras and any arbitrary convex area, some insights can be
obtained by considering a dual camera placement problem
for a square area of 20m × 20m. Total 40 equally spaced
points are considered along the perimeter of a square. The
corner points on the perimeter of a square are numbered as
1, 11, 21, and 31 respectively. Maximum pan angle (θpi) is
chosen to be 45 degrees and 20 for the zoom.
Figure 8 shows the performance metric(average probabil-

ity of capturing the frontal part of an object) of the system
as a function of cameras position along the perimeter. We
can easily see the two way symmetry of this function when
it is represented as an image (the intensity of any pixel is

Cam1 positionC
a
m

2
 p

o
si

tio
n

1

1

40
40

Peaks

Figure 9: Image of the probability distribution

proportional to the average probability) as shown in figure
9. This is because camera positions can be swapped with-
out changing the performance of the system and the other
reason is that the considered region is a square. When both
the cameras are placed at the same point then the perfor-
mance of the system is same as that of the single camera
placed at this point. The dark line along the diagonal in
the figure 9 represents this effect. Maximum performance
occurs for total 2 combinations, locations 1 and 21, 11 and
31. Since cameras can be swapped for each combination,
there are total 4 peaks in the function.
The pan angle and the zoom are chosen such that max-

imum volume under the characteristic function is obtained
for most of the camera positions along the perimeter when
cameras choose the optimal reference directions. Accord-
ing to the equation (2) of section 3.1.2, average probabil-
ity can be maximized by maximizing the volume under the
characteristic functions and simultaneously minimizing the
intersection region of the characteristic functions. In this
example, the performance can be maximized by minimiz-
ing the intersection region of the characteristic functions.
This is because parameters are chosen such that most of
the combinations have the same volume (maximum) under
the characteristic functions. Intersection region can be min-
imized by placing the cameras far apart. The two farthest
points on the perimeter of a square are the end points of
a diagonal. Hence equation (2) of section 3.1.2 says that
place the cameras on the end points of a diagonal to maxi-
mize the performance. We got the same results through our
simulations as discussed above.

5.1.2 Irregular pentagon
To study the generalizability, we investigated a more com-

plex geometry and thus considered the case of a convex sur-
veyed area as shown in the figure 10 and analyzed the dual
camera placement problem.
Maximum pan angle (θpi) and zoom are chosen to be

55 degree and 24, respectively for both the cameras. The
perimeter of the area is divided into 60 equal parts (one
part is 2m). By displacing the cameras along the perimeter
we obtained the performance of the system as shown in the
figure 11. The combination 48 and 11 gave the maximum
performance of 0.6. Figure 10 shows the performance metric
as a function of spacial location (i.e., P 2(x, y), ∀(x, y) ∈ R)
when cameras are placed optimally. Note that intensity
of the any pixel (x, y) is proportional to the probability
P 2(x, y).
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5.2 Optimal selection of sensors
We consider the same square area of 20m× 20m and the

two cameras are placed optimally as per the above section
5.1.1. Figure 12 shows the trade off plots for different max-
imum pan angles. Number along the Y − axis represents
the (number of motion sensors− 4)/2 and the FOV along
the X − axis is (field of view in degrees)/10. We can
see from the figure 12 that there is no increase in the aver-
age probability beyond a particular value of approximately
0.63 (top surface) and in fact it is saturating. The opti-
mal combination for achieving the performance of 0.63 is 12
motion sensors(6 × 6) and FOV of 40 degrees for both the
cameras when the total pan angle of an individual camera
is 60 degrees (θpi = 30 degrees). This is optimal because
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Figure 13: Test bed for our experiments

Table 1: Effect of camera placement
Camera placement Face capturing ratio (%)
Cam1-Middle1, Cam2-Middle2 42
Cam1-Middle1, Cam2-Corner3 51
Cam1-Corner1, Cam2-Corner3 69
Cam1-Corner1, Cam2-Corner4 38
Cam1-Corner1, Cam2-Corner1 27
Cam1-Middle1, Cam2-Middle1 17

this combination has got both minimum number of motion
sensors and minimum FOV out of all feasible combinations
(which give performance greater than or equal to 0.63).

5.3 Tracking results
In this section, we present face tracking results of the sys-

tem described in section 4.1. To track and further capture
the frontal face of an intruder, cameras parameters like pan,
tilt and zoom need to be adjusted based on the localization
information obtained from motion sensors. Such an interac-
tion strategy between sensors allows the system to react and
track an intruder efficiently. For example consider figure 14
where few images captured by both the cameras of a surveil-
lance system for a particular camera placement are shown.
Since localization is done by the motion sensor grid, cameras
are able to react and track an intruder even if no face is be-
ing detected in the captured frames. This can be observed
from images (g), (g’), (h) and (h’) of figure 14. Surveillance
systems consisting of only cameras cannot track in this case.
Table 1 summarizes the effect of camera placements on

the ‘successful face capturing’ ratio. We define ‘successful
face capturing’ ratio of the mumber of frames captured with
frontal facial data to the total number of frames captured
for each camera. In our experiments, we considered a fixed
motion trajectory that passes through all the grid points
and obtained 100 frame images per camera for each cam-
era placement. Total 6 points were chosen (i.e.,Corner1-4
and Middle1-2) along the perimeter for the camera position
as shown in the left image of figure 7. The experimental
results show that maximum accuracy of 69 percent is ob-
tained when cameras are placed in diagonally opposite cor-
ners. Note that, equation (2) in section 3.1 also suggests the
same placement for obtaining the maximum performance.
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Figure 14: Tracking results: (a)-(h) Camera 1 images, (a’)-(h’) Camera 2 images

Table 2: Performance metric as a function of sensors
Sensor grid performance performance

metric metric
(2 cameras) (1 camera)

3× 2 0.4278 0.2210
4× 2 0.5049 0.2634
4× 3 0.5266 0.2784
5× 3 0.5495 0.2913

5.4 Fault tolerance
For a rectangular region of 20m × 10m, Table 2 lists the

performance metric discussed in section 3.3 for various com-
binations of sensors. Using this table, we can estimate the
degradation in system’s performance when few sensors fail
without building the actual system. In table 2, m1×m2 un-
der the sensor grid represents the number of sensors along
the length (20m) and width(10m) respectively. The indi-
vidual camera parameters are chosen as follows:
pan angle = π/3, zoom = 14 , FOV=π/6. Cameras are
assumed to be placed along the length as shown in the
figure6. Thus, the system designer can estimate the per-
formance even before the system is built. If the estimated
performance under failure is unacceptable, the designer can
choose to add more sensors (albeit at a higher cost) to ensure
a minimum performance level for sensitive applications.

6. CONCLUSIONS
In this paper, we have proposed a new performance metric

for accomplishing the given surveillance task using heteroge-
nous sensors. We have presented a novel design methodology
based on this metric that can help obtain the optimal com-
bination of sensors and further their placement in a given
surveyed area. Simulation results have shown the power
of these algorithms in obtaining the optimal combination.
Future work includes the modeling the effect of temporal
component for a dynamically changing task and inclusion
of other sensors like microphones etc into the mathematical
analysis. We also intend to conduct rigorous experimenta-
tion with more than two cameras and handle multiple in-
truders as well as occlusion effects. Finally, we would like
to extend this work to non-convex regions.
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