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Abstract

In this paper, we evaluate a vari-
ety of knowledge sources and super-
vised learning algorithms for word sense
disambiguation on SENSEVAL-2 and
SENSEVAL-1 data. Our knowledge
sources include the part-of-speech of
neighboring words, single words in the
surrounding context, local collocations,
and syntactic relations. The learning al-
gorithms evaluatedinclude Support Vec-
tor Machines (SVM), Naive Bayes,Ad-
aBoost,anddecision treealgorithms. We
present empirical resultsshowing therela-
tivecontribution of thecomponentknowl-
edge sources and the different learning
algorithms. In particular, using all of
theseknowledgesourcesand SVM (i.e.,
a single learning algorithm) achieves ac-
curacy higher thanthebestofficial scores
onboth SENSEVAL-2 andSENSEVAL-1
testdata.

1 Introduction

Natural languageis inherently ambiguous. A word
canhave multiple meanings (or senses). Given an
occurrenceof a word � in a natural languagetext,
the taskof word sensedisambiguation (WSD) is to
determine the correct senseof � in that context.
WSD is a fundamentalproblemof natural language
processing. For example,effective WSD is crucial
for high quality machinetranslation.

Onecould envisagebuilding a WSD system us-
ing handcrafted rules or knowledge obtained from
linguists. Suchanapproachwould behighly labor-
intensive,with questionablescalability. Anotherap-
proach involvestheuseof dictionaryor thesaurusto
perform WSD.

In this paper, we focuson a corpus-based, super-
visedlearning approach.In this approach,to disam-
biguatea word � , we first collect training texts in
which instancesof � occur. Eachoccurrence of �
is manually tagged with the correct sense.We then
train a WSD classifier based on thesesampletexts,
suchthat the trained classifier is able to assignthe
sense of � in a new context.

Two WSD evaluation exercises, SENSEVAL-1
(Kilgarriff and Palmer, 2000) and SENSEVAL-2
(Edmondsand Cotton, 2001), were conducted in
1998 and 2001, respectively. The lexical sample
task in these two SENSEVALs focuses on evalu-
ating WSD systemsin disambiguating a subset of
nouns, verbs, and adjectives, for which manually
sense-taggedtraining datahave beencollected.

In this paper, we conducta systematic evaluation
of the various knowledgesources and supervised
learning algorithms on the English lexical sample
datasetsof bothSENSEVALs.

2 Related Work

Thereis a largebody of prior researchonWSD.Due
to spaceconstraints,we will only highlight prior re-
search efforts thathave investigated (1) contribution
of various knowledgesources,or (2) relativeperfor-
manceof different learning algorithms.

Early research efforts on comparing different



learning algorithms (Mooney, 1996; Pedersen and
Bruce,1997) tendto basetheir comparisonon only
onewordor atmostadozenwords.Ng (1997) com-
paredtwo learning algorithms, k-nearestneighbor
andNaive Bayes,on the DSO corpus (191 words).
Escudero et al. (2000) evaluatedk-nearestneighbor,
Naive Bayes,Winnow-based, andLazyBoosting al-
gorithms on the DSO corpus. The recent work of
Pedersen (2001a)andZavrel et al. (2000) evaluated
avariety of learningalgorithmson theSENSEVAL-
1 dataset.However, all of theseresearcheffortscon-
centrateonly on evaluating different learning algo-
rithms, without systematically consideringtheir in-
teraction with knowledgesources.

Ng andLee(1996) reportedtherelative contribu-
tion of differentknowledgesources,but on only one
word “interest”. Stevenson andWilks (2001) inves-
tigated theinteractionof knowledgesources,suchas
part-of-speech,dictionary definition, subject codes,
etc. on WSD. However, they do not evaluate their
methodon acommonbenchmarkdataset,andthere
is no exploration on the interaction of knowledge
sourceswith different learning algorithms.

Participating systems at SENSEVAL-1 and
SENSEVAL-2 tend to report accuracy using a par-
ticular set of knowledge sourcesand somepartic-
ular learning algorithm, without investigating the
effect of varying knowledge sources and learning
algorithms. In SENSEVAL-2, the various Duluth
systems (Pedersen, 2001b) attempted to investigate
whether featuresor learning algorithmsaremoreim-
portant. However, relative contribution of knowl-
edgesourceswas not reported and only two main
types of algorithms(Naive Bayesanddecision tree)
weretested.

In contrast, in this paper, we systematically vary
both knowledgesources and learning algorithms,
and investigate the interaction betweenthem. We
alsobase our evaluation on bothSENSEVAL-2 and
SENSEVAL-1 official test datasets,and compare
with theofficial scoresof participating systems.

3 Knowledge Sources

To disambiguatea word occurrence � , we consider
four knowledgesourceslisted below. Eachtraining
(or test)context of � generatesonetraining (or test)
feature vector.

3.1 Part-of-Speech (POS) of Neighboring
Words

We use7 featuresto encode this knowledgesource:�����	�
�����	�
������
���	�
����
���	�
���
, where

�����
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) is the
POSof the � th tokento the left (right) of � , and

� �
is the POSof � . A token canbe a word or a punc-
tuation symbol, and eachof these neighboring to-
kensmustbe in the samesentenceas � . We usea
sentencesegmentationprogram(ReynarandRatna-
parkhi, 1997) andaPOStagger (Ratnaparkhi, 1996)
to segment the tokens surrounding � into sentences
andassign POStags to these tokens.

For example, to disambiguate the word
bars in the POS-tagged sentence “Reid/NNP
saw/VBD me/PRP looking/VBG at/IN the/DT
iron/NN bars/NNS ./.” , the POS feature vector is����� �
��� � �!� � �!�#" �%$&�('%�('*) where

'
denotes

thePOStagof a null token.

3.2 Single Words in the Surrounding Context

For this knowledgesource, we consider all single
words (unigrams)in the surrounding context of � ,
andthesewordscanbe in a differentsentencefrom� . For eachtraining or test example,the SENSE-
VAL datasetsprovide up to a few sentencesasthe
surrounding context. In the results reported in this
paper, weconsiderall wordsin theprovidedcontext.

Specifically, all tokensin thesurrounding context
of � are converted to lower caseand replaced by
their morphological root forms. Tokenspresent in
a list of stop words or tokens that do not contain
at least analphabetcharacter (suchasnumbers and
punctuation symbols) are removed. All remaining
tokensfrom all training contexts providedfor � are
gathered. Eachremaining token + contributes one
feature. In a training (or test)example,the feature
corresponding to + is setto 1 iff thecontext of � in
thattraining (or test) examplecontains + .

We attempted a simple feature selection method
to investigateif a learning algorithm performsbetter
with or without featureselection. Thefeature selec-
tion method employed hasoneparameter: , � . A
feature + is selected if + occurs in somesense of �, � or moretimesin the training data. This param-
eter is also usedby (Ng andLee, 1996). We have
tried , � -/. and , � -10 (i.e.,no featureselection)
in theresults reportedin this paper.



For example, if � is the word bars and the set
of selected unigrams is 2 chocolate, iron, beer3 , the
featurevector for thesentence“Reid sawmelooking
at theiron bars .” is � 0, 1, 0

)
.

3.3 Local Collocations

A local collocation 4 �65 7 refers to the ordered se-
quence of tokens in the local, narrowcontext of � .
Offsets � and 8 denote thestarting andending posi-
tion (relative to � ) of the sequence, wherea neg-
ative (positive) offset refers to a token to its left
(right). For example, let � be the word bars in
the sentence “Reid sawmelooking at the iron bars
.” Then 4 ���95:�� is the iron and 4 ��;5 � is iron .

'
,

where
'

denotesa null token. Like POS,a colloca-
tion doesnot cross sentenceboundary. To represent
this knowledgesource of local collocations,we ex-
tracted 11 features corresponding to the following
collocations: 4 ��;5:�� , 4 ;5: , 4 ���95:��� , 4 �95 � , 4 ���95:�� ,4 ��;5: , 4 ;5 � , 4 ���95:�� , 4 ���95: , 4 ��;5 � , and 4 ;5 � . This
setof 11 featuresis theunion of thecollocation fea-
turesused in Ng andLee(1996) andNg (1997).

To extract the feature values of the collocation
feature 4 �65 7 , we first collect all possible collocation
strings(convertedinto lower case)corresponding to4 �65 7 in all training contextsof � . Unlike thecasefor
surrounding words,we do not remove stop words,
numbers, or punctuation symbols. Eachcollocation
string is a possible feature value. Featurevalue se-
lection using , � , analogousto that usedto select
surrounding words,canbe optionally applied. If a
training (or test)context of � hascollocation < , and< is a selectedfeaturevalue, thenthe 4 �=5 7 featureof� hasvalue < . Otherwise,it hasthevalue > , denot-
ing thenull string.

Note that eachcollocation 4 �65 7 is representedby
onefeaturethatcanhave many possiblefeatureval-
ues(thelocal collocationstrings),whereaseachdis-
tinct surrounding word is representedby onefeature
that takes binary values (indicatingpresence or ab-
sence of that word). For example,if � is the word
bars andsupposethesetof selectedcollocationsfor4 ���95:�� is 2 a chocolate, the wine, the iron3 , then
the feature value for collocation 4 ���95:�� in the sen-
tence“Reid saw melooking at the iron bars .” is
the iron.

1(a)attention (noun)
1(b) He turned his attention to theworkbench.
1(c) � turned, VBD, active, left

)
2(a) turned (verb)
2(b) He turned his attention to theworkbench.
2(c) � he,attention, PRP, NN, VBD, active

)
3(a)green(adj)
3(b) Themoderntramis a green machine.
3(c) � machine, NN

)
Table1: Examplesof syntactic relations (assuming
no feature selection)

3.4 Syntactic Relations

We first parse thesentencecontaining � with a sta-
tistical parser(Charniak, 2000). Theconstituenttree
structuregeneratedby Charniak’sparser is thencon-
vertedinto a dependency treein which every word
points to a parent headword. For example, in the
sentence “Reid sawmelooking at the iron bars .” ,
the word Reid points to the parent headword saw.
Similarly, the word me also points to the parent
headword saw.

We usedifferent types of syntactic relations, de-
pending on the POSof � . If � is a noun, we use
four features: its parent headword ? , the POSof ? ,
thevoiceof ? (active, passive, or > if ? is notaverb),
andthe relative position of ? from � (whether ? is
to the left or right of � ). If � is a verb,we usesix
features:thenearestword @ to theleft of � such that� is theparent headword of @ , thenearest word A to
theright of � suchthat � is theparent headword ofA , the POSof @ , the POSof A , the POSof � , and
thevoice of � . If � is anadjective,we usetwo fea-
tures: its parent headword ? andthePOSof ? . We
also investigated the effect of feature selection on
syntactic-relation featuresthatarewords(i.e., POS,
voice,andrelativeposition areexcluded).

Someexamplesareshown in Table1. EachPOS
noun, verb, or adjective is illustratedby oneexam-
ple. For eachexample,(a) shows � andits POS;(b)
shows the sentencewhere � occurs; and(c) shows
the feature vector corresponding to syntactic rela-
tions.



4 Learning Algorithms

We evaluated four supervised learning algorithms:
Support Vector Machines (SVM), AdaBoostwith
decision stumps(AdB), Naive Bayes(NB), andde-
cision trees(DT). All the experimental results re-
ported in this paper are obtained using the imple-
mentationof thesealgorithmsin WEKA (Witten and
Frank, 2000). All learning parameters usethe de-
fault valuesin WEKA unless otherwise stated.

4.1 Support Vector Machines

The SVM (Vapnik, 1995) performs optimization to
find a hyperplanewith the largest margin that sep-
arates training examples into two classes. A test
exampleis classified depending on the side of the
hyperplaneit lies in. Input featurescanbe mapped
into high dimensional spacebefore performing the
optimization and classification. A kernel function
(linearby default) canbeusedto reducethecompu-
tational costof training and testing in high dimen-
sional space. If the training examples arenonsep-
arable, a regularization parameter 4 (

- B
by de-

fault) can be usedto control the trade-off between
achievinga large margin and a low training error.
In WEKA’s implementation of SVM, eachnominal
feature with C possible values is converted into C
binary (0 or 1) features. If a nominal feature takes
the � th feature value, then the � th binary feature is
setto 1 andall theother binaryfeaturesaresetto 0.
We tried higher order polynomial kernels, but they
gave poorer results. Our reported results in this pa-
perusedthelinear kernel.

4.2 AdaBoost

AdaBoost(Freund andSchapire, 1996) is a method
of training an ensemble of weak learnerssuchthat
the performanceof the whole ensemble is higher
than its constituents. The basicideaof boosting is
to give more weights to misclassified training ex-
amples, forcing thenew classifier to concentrate on
thesehard-to-classify examples. A test exampleis
classified by a weighted vote of all trained classi-
fiers. We usethedecisionstump(decision treewith
only therootnode)astheweaklearnerin AdaBoost.
WEKA implements AdaBoost.M1. We used100 it-
erationsin AdaBoost asit giveshigher accuracy than
thedefault number of iterationsin WEKA (10).

4.3 Naive Bayes

The Naive Bayesclassifier (Duda and Hart, 1973)
assumesthefeaturesareindependent giventheclass.
During classification, it choosesthe classwith the
highest posterior probability. The default setting
usesLaplace (“add one”) smoothing.

4.4 Decision Trees

The decision tree algorithm (Quinlan, 1993) parti-
tionsthetraining examplesusingthefeaturewith the
highestinformationgain. It repeatsthis processre-
cursively for eachpartition until all examplesin each
partition belong to oneclass.A testexampleis clas-
sifiedby traversingthelearned decision tree. WEKA

implements Quinlan’s C4.5decision treealgorithm,
with pruning by default.

5 Evaluation Data Sets

In the SENSEVAL-2 English lexical sampletask,
participating systemsare required to disambiguate
73 wordsthathave their POSpredetermined. There
are8,611training instancesand4,328testinstances
tagged with WORDNET senses. Our evaluation is
based on all the official training and test data of
SENSEVAL-2.

For SENSEVAL-1, we used the 36 trainable
words for our evaluation. Thereare 13,845 train-
ing instances1 for these trainablewords,and7,446
testinstances.For SENSEVAL-1, 4 trainablewords
belongto theindeterminatecategory, i.e.,thePOSis
not provided. For these words, we first useda POS
tagger (Ratnaparkhi, 1996) to determine thecorrect
POS.

For a word � that may occur in phrasal word
form (eg, the verb “turn” and the phrasal form
“turn down”), we train a separateclassifier for each
phrasal word form. During testing, if � appearsin
a phrasal word form, the classifier for that phrasal
word form is used. Otherwise, theclassifier for � is
used.

6 Empirical Results

We ran the different learning algorithmsusing var-
ious knowledge sources. Table 2 (Table 3) shows

1Weincluded718traininginstancesfrom theHECTORdic-
tionaryusedin SENSEVAL-1, togetherwith 13,127trainingin-
stancesfrom thetrainingcorpussupplied.



Algorithm POS SurroundingWords Collocations SyntacticRelations Combined
(i) (ii) (iii) (iv) (v) (vi) (vii) (viii) = (ix) =DFE

=3
DGE

=0
DGE

=3
DGE

=0
DGE

=3
DGE

=0 i+ii+i v+vi i+iii+v+vii
SVM
- 1-per-class 54.7 51.6 57.7 52.8 60.5 49.1 54.5 61.5 65.4
AdB
- normal 53.0 51.9 52.5 52.5 53.2 52.4 51.2 54.6 53.6
- 1-per-class 55.9 53.9 55.4 55.7 59.3 53.5 52.4 62.4 62.8
NB
- normal 58.0 55.8 52.5 54.5 39.5 54.1 54.0 61.6 53.4
- 1-per-class 57.6 56.2 51.5 55.8 37.9 54.0 54.2 62.7 52.7
DT
- normal 55.3 50.9 49.1 57.2 52.4 54.2 53.7 56.8 52.6
- 1-per-class 54.9 49.7 48.1 54.3 51.3 52.7 51.5 52.2 50.0

Table2: Contribution of knowledgesourceson SENSEVAL-2 dataset(micro-averagedrecall on all words)

Algorithm POS SurroundingWords Collocations SyntacticRelations Combined
(i) (ii) (iii) (iv) (v) (vi) (vii) (viii) = (ix) =DFE

=3
DGE

=0
DGE

=3
DGE

=0
DGE

=3
DGE

=0 i+ii+i v+vi i+iii+v+vii
SVM
- 1-per-class 70.3 65.5 70.3 69.5 74.0 65.1 69.8 76.3 79.2
AdB
- normal 67.2 63.5 64.4 64.2 65.2 65.7 65.6 68.2 68.4
- 1-per-class 71.6 67.0 68.9 69.7 71.2 69.4 68.3 77.7 78.0
NB
- normal 71.5 66.6 63.5 69.1 53.9 69.4 69.6 75.7 67.2
- 1-per-class 71.6 67.3 64.1 70.3 53.0 69.8 70.4 76.3 68.2
DT
- normal 69.2 66.2 65.0 70.2 67.9 68.9 68.6 73.4 70.2
- 1-per-class 68.7 66.6 65.4 67.0 64.4 67.6 64.8 71.4 67.8

Table3: Contribution of knowledgesourceson SENSEVAL-1 dataset(micro-averagedrecall on all words)

POS SVM AdB NB DT S1 S2 S3
noun 68.8 69.2 66.4 60.0 68.2 69.5 66.8
verb 61.1 56.1 56.6 51.8 56.6 56.3 57.6
adj 68.0 64.3 68.4 63.8 73.2 68.8 66.8
all 65.4 62.8 62.7 57.2 64.2 63.8 62.9

(a)SENSEVAL-2 dataset

POS SVM AdB NB DT s1 s2 s3
noun 85.2 84.9 82.3 81.3 84.9 80.6 80.8
verb 77.0 74.4 73.3 69.5 70.5 70.9 68.7
adj 75.8 74.6 74.5 70.9 76.1 74.3 73.5

indet 76.9 76.8 74.3 70.2 77.6 76.9 76.6
all 79.2 78.0 76.3 73.4 77.1 75.5 74.6

(b) SENSEVAL-1 dataset

Table4: Bestmicro-averaged recall accuraciesfor
eachalgorithm evaluated andofficial scoresof the
top 3 participating systems of SENSEVAL-2 and
SENSEVAL-1

the accuracy figuresfor the different combinations
of knowledge sourcesand learning algorithms for
the SENSEVAL-2 (SENSEVAL-1) data set. The
nine columns correspond to: (i) using only POS
of neighboring words (ii) using only single words
in the surrounding context with feature selection
( , �H-I.

) (iii) sameas(ii) but without feature se-
lection ( , � -J0

) (iv) using only local collocations
with feature selection ( , �K-L. ) (v) sameas(iv) but
without feature selection ( , ��-M0

) (vi) usingonly
syntactic relations with feature selection on words
( , �F-N.

) (vii) sameas(vi) but without feature se-
lection ( , �!-O0

) (viii) combining all four knowl-
edgesourceswith feature selection (ix) combining
all four knowledge sources without feature selec-
tion.

SVM is only capable of handling binary class
problems. The usual practice to deal with multi-
classproblemsis to build one binary classifier per
output class(denoted “1-per-class”). The original
AdaBoost, Naive Bayes, and decision tree algo-



POS SVM AdB NB DT
S1 S2 S3 S1 S2 S3 S1 S2 S3 S1 S2 S3

noun P P Q P P Q P R P R R R
verb S S S P P P P P P R R R
adj R P P R T P R P P R R T
all Q Q S T P P T P P R R R

(a)SENSEVAL-2 dataset(usingmicro-averagedrecall)

POS SVM AdB NB DT
s1 s2 s3 s1 s2 s3 s1 s2 s3 s1 s2 s3

noun P S S P P S T P Q T P P
verb S S S Q P S Q P S P P P
adj P P P P P P T P P P P P

indet P P P P P P P P P P P P
all Q S S P Q S P P S R P P

(b) SENSEVAL-1 dataset(usingmacro-averaged recall)

Table5: Pairedt-test on SENSEVAL-2 andSENSEVAL-1 datasets: “ U ”, (“
)

” and“ � ”), and(“ V ” and
“ W ”) correspond to the p-value

)I0X$Y0[Z
, \ 0X$Y0]B	�
0X$Y0[Z_^ , and ` 0X$Y0]B

respectively. “
)

” or “ V ” meansour
algorithm is significantly better.

rithmscanalready handle multi-classproblems,and
wedenote runsusing theoriginal AdB, NB, andDT
algorithmsas“normal” in Table2 andTable3.

Accuracy for eachword task � canbe measured
by recall (r) or precision (p), definedby:

r
- no. of testinstancescorrectly labeled

no. of testinstancesin word task �
p
- no. of testinstancescorrectly labeled

no. of testinstancesoutput in word task �
Recallis veryclose(but notalwaysidentical) to pre-
cision for thetopSENSEVAL participating systems.
In this paper, our reported results arebased on the
official fine-grainedscoring method.

To compute an average recall figureover a setof
words,we caneither adopt micro-averaging (mi) or
macro-averaging (ma),definedby:

mi
- total no. of testinstancescorrectly labeled

total no. of testinstancesin all word tasks

ma
- B
�
acbedword tasksdf
�6g

word tasks
recall for word task �

That is, micro-averaging treats eachtestinstance
equally, sothataword taskwith many testinstances
will dominate the micro-averaged recall. On the
other hand, macro-averaging treatseachword task
equally.

As shown in Table2 andTable3, thebest micro-
averaged recall for SENSEVAL-2 (SENSEVAL-1)
is 65.4%(79.2%),obtainedby combining all knowl-
edgesources (without feature selection) and using
SVM asthelearning algorithm.

In Table 4, we tabulate the bestmicro-averaged
recall for eachlearning algorithm, broken down ac-
cording to nouns, verbs,adjectives, indeterminates
(for SENSEVAL-1), and all words. We also tabu-
lateanalogous figuresfor the top threeparticipating
systems for both SENSEVALs. The top threesys-
temsfor SENSEVAL-2 are: JHU (S1) (Yarowsky
et al., 2001), SMUls (S2)(MihalceaandMoldovan,
2001), and KUNLP (S3) (Seo et al., 2001). The
top three systems for SENSEVAL-1 are: hopkins
(s1) (Yarowsky, 2000), ets-pu (s2) (Chodorow et
al., 2000), and tilburg (s3) (Veenstra et al., 2000).
As shown in Table4, SVM with all four knowledge
sourcesachievesaccuracy higher thanthe bestoffi-
cial scores of both SENSEVALs.

We also conducted paired t test to see if one
system is significantly better than another. The
t statistic of the difference between each pair of
recall figures (between eachtest instance pair for
micro-averaging and betweeneachword task pair
for macro-averaging) is computed, giving rise to a
p value. A large p valueindicatesthat the two sys-
temsarenot significantly different from eachother.
The comparison betweenour learning algorithms



and the top threeparticipating systemsis given in
Table 5. Note that we can only compare macro-
averaged recall for SENSEVAL-1 systems, since
the sense of each individual test instanceoutput by
theSENSEVAL-1 participating systemsis notavail-
able. The comparison indicatesthat our SVM sys-
temis better thanthebestofficial SENSEVAL-2 and
SENSEVAL-1 systems at the level of significance
0.05.

Notethatweareableto obtain state-of-the-art re-
sultsusingasingle learning algorithm (SVM), with-
out resorting to combining multiple learning algo-
rithms.Severaltop SENSEVAL-2 participating sys-
temshave attempted the combination of classifiers
using different learning algorithms.

In SENSEVAL-2, JHU used a combination of
various learning algorithms (decision lists, cosine-
based vector models, and Bayesian models) with
various knowledge sources such as surrounding
words, local collocations, syntactic relations, and
morphological information. SMUls usedak-nearest
neighboralgorithm with featuressuchaskeywords,
collocations,POS,andnameentities. KUNLP used
Classification InformationModel, anentropy-based
learning algorithm, with local, topical, andbigram
contexts andtheir POS.

In SENSEVAL-1, hopkins usedhierarchical de-
cision lists with features similar to those used by
JHU in SENSEVAL-2. ets-pu useda Naive Bayes
classifier with topicalandlocal wordsandtheir POS.
tilburg usedak-nearestneighboralgorithm with fea-
turessimilar to thoseusedby (Ng andLee, 1996).
tilburg alsouseddictionary examplesasadditional
training data.

7 Discussions

Basedon our experimentalresults, there appearsto
beno single, universally bestknowledge source. In-
stead, knowledgesources and learning algorithms
interact and influence each other. For example,lo-
cal collocationscontributethemostfor SVM, while
parts-of-speech(POS)contribute the most for NB.
NB evenoutperformsSVM if only POSis used. In
addition, different learning algorithms benefit dif-
ferently from feature selection. SVM performsbest
without featureselection, whereasNB performsbest
with somefeature selection ( , �h-J.

). We will in-

vestigatethe effect of moreelaboratefeature selec-
tion schemeson theperformanceof different learn-
ing algorithmsfor WSDin future work.

Also, using the combination of four knowledge
sources gives better performance than using any
single individual knowledge source for most al-
gorithms. On the SENSEVAL-2 test set, SVM
achieves 65.4% (all 4 knowledge sources), 64.8%
(remove syntactic relations),61.8% (further remove
POS),and60.5%(only collocations) asknowledge
sourcesareremovedoneat a time.

Beforeconcluding, wenotethattheSENSEVAL-
2 participating system UMD-SST (Cabezaset al.,
2001) alsousedSVM, with surrounding wordsand
local collocations as features. However, they re-
ported recall of only 56.8%. In contrast, our im-
plementation of SVM using the two knowledge
sourcesof surrounding wordsandlocal collocations
achievesrecall of 61.8%.Following thedescription
in (Cabezasetal.,2001),ourown re-implementation
of UMD-SST givesa recallof 58.6%,closeto their
reported figure of 56.8%. The performancedrop
from 61.8%maybedueto thedifferentcollocations
usedin thetwo systems.
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