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Abstract 
In the wrapper approach for feature selection, a 
popular criterion used is the leave-one-out 
estimate of the classification error.  While being 
relatively unbiased, the leave-one-out error 
estimate is nonetheless known to exhibit a large 
variance, which can be detrimental especially for 
small samples.  We propose reducing its variance 
(i.e. smoothing) at two levels.  At the first level, 
we smooth the error count using estimates of 
posterior probabilities; while at the second level, 
we smooth the posterior probability estimates 
themselves using Bayesian estimation with 
conjugate priors.  Furthermore, we propose using 
the jackknife to reduce the bias inherent in 
Bayesian estimators.  We then show empirically 
that smoothing the error estimate gives improved 
performance in feature selection.  


1.  Introduction 


The problem of automated feature selection has been well 
explored (Blum & Langley, 1997; Jain & Zonker, 1997; 
John, Kohavi, & Pfleger, 1994; Kohavi & John, 1997; 
Koller & Sahami, 1996; Kudo & Sklansky, 2000; Langley 
& Sage, 1994; Langley & Sage, 1997; Liu, Motoda, & 
Dash, 1998; Pudil, Novovicova, & Kittler, 1994; Ruck, 
Rogers, & Kabrisky, 1989; Yang & Pedersen, 1997).  In 
the case of pattern recognition, the objective of feature 
selection is to select those features that best discriminate 
between the classes.  In this paper, we define relevant 
features as those that contribute to the discrimination, 
while irrelevant features are those that do not. 


Feature selection techniques fall broadly into two 
categories: filter and wrapper methods (John, Kohavi, and 
Pfleger, 1994).  In filter methods, statistical tests, such as 
information entropy or class separability, are applied to 
various subsets of features so as to identify the optimal 
subset.  The objective of filter methods is to predict as 
intelligently as possible, without actually invoking any 
classifiers, which subset of features would give the best 
classification accuracy.  In wrapper methods, on the other 
hand, a classifier is induced for a given subset of features, 
and an estimate of the classification error is used to 
evaluate the quality of the subset.  In other words, a 
classifier is invoked directly and the optimal feature 
subset is chosen based on its classification error rate. 


Wrapper methods typically perform better (i.e. they find 
better features) although they are more computationally 
expensive.  While there are arguments for and against 
either method, we believe the best way to measure the 
discriminative ability of a set of features is to estimate the 
classification error directly with a classifier. 


Clearly, a key issue in the wrapper approach is estimating 
the error rate in a robust manner.  We want an estimate 
that has both a small bias and a small variance. We may 
choose the leave-one-out estimate of the classification 
error rate due to the low bias of this type of estimate, and 
find the smallest subset of features such that the estimate 
is minimized.  Although the leave-one-out error estimate 
is relatively unbiased, it has a large variance (Efron, 1983; 
Kohavi, 1995).  In other words, it fluctuates a lot with 
respect to small differences in the data.  This may lead to 
the error estimate becoming inconsistent and unreliable, 
especially when the number of examples is small. 







 


 


We found that we can reduce the estimation variance 
considerably by smoothing the error rate at two levels – 
smoothing the error count using estimates of posterior 
probabilities (Glick, 1978; Pawlak, 1988; Tutz, 1985), 
and smoothing the posterior probability estimates 
themselves using Bayesian estimation with conjugate 
priors (Box & Tiao, 1973; Jeffreys, 1946; Laplace, 1951; 
Lidstone, 1920; Perks, 1947).  Furthermore, we propose 
using the jackknife estimator (Miller, 1974; Quenouille, 
1956) to reduce the bias inherent in Bayesian estimates 
(Bickel & Mallows, 1988; Noorbaloochi & Meeden, 
1983).  While these techniques by themselves are not 
new, no one to our knowledge has ever applied them in 
the context of feature selection.  All these techniques 
combine to give a more robust error estimate, which in 
turn leads to better performance in feature selection, as we 
shall show empirically. 


2.  The Classifier 


For this work, we chose to employ the nearest neighbor 
classifier, which is also a popular choice for wrapper 
methods (Blum & Langley, 1997; Kudo & Sklansky, 
2000; Langley & Sage, 1994; Langley & Sage, 1997).  
The nearest neighbor classifier is very simple to induce 
(zero training time), very amenable to analysis, has no 
learning parameters to adjust, can be modified easily to 
handle conflicting examples, and gives reasonably good 
performance.  More importantly, it has been shown 
(Langley & Iba, 1993) that the error rate for the nearest 
neighbor classifier increases with the number of irrelevant 
features for a fixed number of examples.  In other words, 
its performance is sensitive to the presence of irrelevant 
features.  It has also been proven (Cover & Hart, 1967) 
that given enough examples, the nearest neighbor error 
rate is at most twice the Bayesian error rate.  Finally, the 
nearest neighbor classifier is not constrained by any non-
linearity in the interclass boundary, i.e. it is able to learn 
even when the class is determined by a complex nonlinear 
combination of features (unlike say, the naïve Bayes or 
linear perceptron classifiers). 


3.  Mathematical Framework 


3.1  Basic Model 


We have a set of n examples, }1|),{( niyS ii K== x , 
where ix  is a vector containing d nominal features, and 


}1{ myi K∈  is a class label given m classes.  Each 


feature )(k
ix , where dk K1= , can have one of several 


different values, possibly missing.  If the class conditional 
(posterior) probability distributions are known, then the 
Bayesian maximum a posteriori (MAP) classifier is 
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The corresponding Bayesian error probability is then 
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The Bayesian classifier is optimal, i.e. its error probability 
is smaller than that of any other classifier (a simple proof 
of this for 2 classes can be found in Devroye, Gyorfi, and 
Lugosi (1996); it is easily extensible to multiple classes).  
However, the computation of the Bayesian error 
probability is a very complex and difficult problem, 
except in special cases when all the probability 
distributions are already known.  Hence, we estimate the 
error probability from the empirical error rate: 
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where g(x) is the class decision output of a chosen 
classifier given x as the input, and 
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Unfortunately, the above estimate is equivalent to the 
resubstitution rate (or apparent error rate), which is 
known to be very optimistically biased, particularly for 
the nearest neighbor classifier.  To obtain a relatively 
unbiased estimate of the error rate, we use the leave-one-
out method: 
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where ig−  is the classifier’s decision function based on 
the data set with ),( ii yx  removed. 


In the case of the nearest neighbor classifier, 
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i is the set of examples nearest to ix , and can 
include examples with the same feature values as ix , i.e. 
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where ),D( ji xx is the distance between ix  and jx . 


In this paper, we focus on the nominal domain as a 
preliminary study.  For nominal feature vectors, we have 
found the following distance measure to perform well: 







 


 


∑ −=
d


k


k
j


k
iji


2)()(),D( xxxx       [8] 













≠


=
=


−


. andpresent  are sboth value if1
present. is  values theof oneonly  if


missing. are sboth value ifor   if0


   where


)()(
2
1


)()(


)()(


k
j


k
i


k
j


k
i


k
j


k
i


xx


xx


xx


 


               [9] 


3.2  Smoothing the Error Rate 


As mentioned earlier, the main objection against using the 
leave-one-out estimate is its large variance.  To overcome 
this problem, we can smooth outoneleave


empL −−  as follows: 
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where )|(P iii y x−  is the posterior probability estimated 
from the data with ),( ii yx  removed.  Smoothing the 
classification error estimate was first proposed by Glick 
(1978) as a means of reducing the estimate’s variance.  
This approach has been further explored in Devroye, 
Gyorfi, and Lugosi (1996), Pawlak (1988), Tutz (1985). 


)|(P iii y x−  can be estimated as a parameter of the 
multinomial distribution.  First, we define a symmetric 
Dirichlet distribution as a Dirichlet distribution with all its 
parameters α1,…,αm set equal to α.  Then, taking a 
symmetric Dirichlet distribution as the conjugate prior to 
the multinomial distribution, a Bayesian estimate of 
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where α is the hyperparameter of the conjugate prior, 
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The above formulation neatly handles the case of 
conflicting examples as well as avoids the need for 
breaking distance ties, which can be rather problematic 
especially for nominal-valued domains. 


α can also be regarded as the smoothing parameter.  
Using arbitrary α corresponds to Lidstone’s law 
(Lidstone, 1920).  Setting α = 0 gives the maximum 
likelihood estimator, while α = 1 corresponds to 
Laplace’s law of succession (Laplace, 1951).  α = 0.5 is a 
popular choice that corresponds to Jeffreys-Perks’ law or 


Expected Likelihood Estimation (Box & Tiao, 1973; 
Jeffreys, 1946; Perks, 1947).  More recently, Kohavi, 
Becker, and Sommerfield (1997) showed that setting α = 
1/Li is a reasonably good heuristic for reducing the bias in 
Laplace’s law of succession.  Other approaches to 
smoothing the probability estimator, tailored for sparsely 
represented domains such as natural language processing, 
can be found in Chen and Goodman (1996), Friedman and 
Singer (1999), Ristad (1995). 


Simple algebraic manipulation shows that Equation 11 
can be rewritten as a linear combination: 
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3.3  Jackknifing the Bayesian Estimator 


It is known that Bayes estimators are generally biased 
except in very special cases (Bickel & Mallows, 1988; 
Noorbaloochi & Meeden 1983).  Hence, we propose using 
a statistical method to reduce the bias in the Bayesian 
estimator of the posterior probabilities.  The jackknife 
technique introduced by Quenouille (1956) and reviewed 
by Miller (1974) has been proven effective in reducing 
the bias in many estimators. 


Let θ̂  be an estimator of the parameter θ based on L 
examples.  Also let j−θ̂  be the corresponding estimator 
based on 1−L  examples with the jth example removed.  
Then the jackknife estimator θ~  is defined as 
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Applying this to the posterior probability estimator, we 
get (proof not shown): 
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Again, the above can be expressed as a linear 
combination, although the combination weights here are 
more complex: 
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We may also employ bootstrap methods (Efron, 1979), 
whereby estimates are averaged over many “bootstrap 
samples” each drawn with replacement from the original 
sample.  However, this would be too computationally 
expensive, especially in the context of feature selection 
whereby the search space can be very large. 


4.  Search Engine 


When the number of features is large (say ≥ 20), an 
exhaustive search through all possible subsets of features 
for the optimal one would be impractical.  We need to 
employ a more intelligent strategy for searching through 
the solution space.  Comparison of a number of existing 
search algorithms (Jain & Zonker, 1997; Kudo & 
Sklansky, 2000) seem to favor the sequential 
forward/backward floating search methods (SFFS/SBFS) 
(Pudil, Novovicova, & Kittler, 1994) as well as the 
genetic algorithm (GA) (Holland, 1975). 


The SFFS/SBFS algorithm adds or deletes one feature at a 
time but backtracks (i.e. delete a selected feature or add a 
deleted feature) whenever it can find an improvement in 
the criterion.  The genetic algorithm, on the other hand, is 
a stochastic search algorithm that mimics the evolutionary 
process to find the solution. 


As the genetic algorithm requires fine-tuning of many 
parameters, we chose to employ a combined SFFS/SBFS 
method as the search engine, whereby the better solution 
between those generated by SFFS and SBFS is chosen.  
The quality of a solution is based on its error estimate and 
the number of features chosen.  A good solution would 
have low error and few features. 


5.  Experiments 


5.1  Bias-Variance Decomposition 


It is well known in statistical machine learning that the 
mean squared error (MSE) can be decomposed into the 
variance and the square of the bias: 
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where ∗L  is the Bayesian error probability, L̂  is an 
estimate of the error, and the expectation is taken over all 
possible data sets of a given size. 


In this subsection, we conduct simulation studies of the 
behavior of the mean squared error, variance and bias of 
each type of error estimate discussed in this paper. 


5.1.1  EXPERIMENTAL SETUP 
For a given sample of size n, we generate random vectors 
of 3 nominal features.  Each feature is randomly assigned 
one of 3 values with equal probabilities.  We fix the 
number of classes at 3, and randomly assign a class label 
to each feature vector according to a predefined set of a 
priori class probabilities.  The class probabilities are in 
turn generated randomly from a uniform distribution.  
Hence, we can take the conditional probabilities to be 
equal to the corresponding a priori class probabilities.  
This implies that we can directly compute the Bayesian 
error as: 
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We conduct 1000 trials of 1000 simulations each.  In each 
trial, a set of class probabilities is generated and 1000 
simulations are conducted using these class probabilities.  
In each simulation, we generate data sets of various sizes.  
We perform two analyses: small-sample analysis with 
data set sizes ranging from 5 to 50 at increments of 5, and 
large-sample analysis with data set sizes ranging from 50 
to 500 at increments of 50.  The analyses are performed 
on 6 types of error estimates: the unsmoothed leave-one-
out error count, the smoothed error estimates with α = 0 
(maximum likelihood estimator), α = 0.5 (Jeffreys-Perks’ 
law), α = 1 (Laplace’s law of succession), and the 
jackknifed versions of Jeffreys-Perks’ law and Laplace’s 
law of succession.  (The jackknife estimator for the 
maximum likelihood estimate in this case happens to be 
the maximum likelihood estimator itself.)  For each data 
set size and each type of error estimate, we compute the 
mean squared error, variance and bias over 1000 
simulations in a trial.  These statistics are then averaged 
over the 1000 trials.  The results for the small-sample 
analysis are illustrated in Figure 1, while the results for 
the large-sample analysis are illustrated in Figure 2. 


5.1.2  DETAILED ANALYSIS 
As these figures show, the unsmoothed error estimate 
exhibits the largest variance and the smallest bias, while 
the smoothed error estimate using Laplace’s law of 
succession for the posterior probabilities has the smallest 
variance and the largest bias.  There is clearly a trade-off 
between bias and variance as α varies.  The jackknife 
lowers the bias for both Jeffreys-Perks’ law and Laplace’s 
law of succession, as expected. 
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Figure 1. Small-sample analysis of the various types of 
classification error estimates with respect to their mean squared 
errors, variances and biases. 
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Figure 2. Large-sample analysis of the various types of 
classification error estimates with respect to their mean squared 
errors, variances and biases. 







 


 


In every case, the mean squared error and the variance 
drop quickly as the number of examples increases. As the 
number of examples grows, the mean squared errors for 
low-bias/high-variance estimates drop more rapidly than 
for those high-bias/low-variance estimates.  For example, 
the unsmoothed error estimate has the largest mean 
squared error when the number of examples is 5, but it 
has the smallest mean squared error when the number of 
examples is 100 or more.  Conversely, the smoothed error 
estimate using Laplace’s law of succession has the 
smallest mean squared error when the number of 
examples is 5, but it has the largest mean squared error 
when the number of examples is 100 or more. 


Interestingly, the bias of the error estimate using the 
maximum likelihood estimator remains relatively constant 
regardless of the number of examples, while its mean 
squared error appears to converge towards a constant 
(larger than that of the unsmoothed estimate).  As the 
number of examples increases, both the bias and the mean 
squared error of the other smoothed estimates converges 
to the maximum likelihood case, while those of the 
unsmoothed estimate drop considerably lower.  At the 
same time, the bias and the mean squared error for the 
jackknifed estimators drop as a faster rate than those of 
the non-jackknifed ones. 


On the other hand, the variance of the unsmoothed 
estimate remains relatively higher than the smoothed 
estimates even when the number of examples is large, 
while the variances of all the smoothed estimates drop to 
almost zero as the number of examples increases.  We can 
thus infer that the mean squared error in the smoothed 
estimate is due mainly to its inherent bias when the 
number of examples is large. 


In the context of feature selection, the variance is a more 
important factor than the bias, especially when the 
number of examples is small, since we are more 
concerned with relative error estimates rather their 
absolute values when comparing different feature subsets.  
The above studies suggest that smoothed error estimates 
are better suited for small samples. 


5.2  Feature Selection 


We now show empirically that in the wrapper approach 
for feature selection, using a smoothed error estimate can 
give better performance than using the unsmoothed error 
count. We conduct experiments on both artificial and real-
world data.  The artificial data sets are Corral (John, 
Kohavi, & Pfleger, 1994) and LED-24 from the UCI 
repository (Blake & Merz, 1998).  The real-world data 
sets are Voting and SPECT-Heart, both from the UCI 
repository.  The features (i.e. attributes) in these data sets 
are all nominal, and their properties are given in Table 1. 


Only the training and testing examples for the SPECT-
Heart data has been given explicitly.  For the rest of the 
data sets (i.e. Corral, LED-24 and Voting), we arbitrarily 
fix the number of training and testing examples, and 
conduct 10 simulations whereby we randomly partition 
the data set into the training and testing examples; the 
results are then averaged over the 10 simulations. 


We perform feature selection on the training set and test 
the selected features on the testing set to give the 
percentage of classification errors.  The results are given 
in Table 2 and Table 3.  Using the smoothed error 
estimate with the jackknifed Jeffreys-Perks estimator 
gives the best overall performance on the test data.  Note 
that the test error rates using all the original features are 
typically very high because the nearest neighbor classifier 
is particularly sensitive to irrelevant features. 


Table 1. The UCI data sets used and their properties. 


Data Set # Classes # Features # Train # Test 


Corral 2 6 32 128 


LED-24 10 24 200 3000 


Voting 2 16 300 135 


SPECT-
Heart 


2 22 80 167 


 


Table 2. Error rates on the test data for the features selected 
using various criteria.  For each data set, the lowest test error 
rate obtained is boldfaced. 


Error 
Estimate 


Corral LED-
24 


Voting SPECT
-Heart 


Unsmoothed 5.55 ± 
9.31 


34.18 
± 6.26 


7.19 ± 
0.67 


33.16 


Max 
Likelihood 


0.00 ± 
0.00 


37.88 
± 0.26 


6.67 ± 
0.00 


29.41 


Jeffreys-
Perks 


0.00 ± 
0.00 


32.10 
± 0.03 


6.74 ± 
0.22 


29.41 


Jeffreys-
Perks 
(jackknife) 


0.00 ± 
0.00 


32.10 
± 0.03 


5.78 ± 
0.86 


29.41 


Laplace 11.33 
± 9.25 


32.10 
± 0.03 


6.74 ± 
0.22 


29.41 


Laplace 
(jackknife) 


5.70 ± 
8.71 


32.10 
± 0.03 


6.30 ± 
0.76 


31.55 


[All features] 10.16 
± 1.10 


60.76 
± 0.28 


9.78 ± 
0.44 


41.71 


 







 


 


Table 3. Number of features selected for the various criteria. 


Error 
Estimate 


Corral LED-
24 


Voting SPECT
-Heart 


Unsmoothed 3.80 ± 
0.75 


7.30 ± 
0.46 


3.80 ± 
0.60 


9 


Max 
Likelihood 


4.00 ± 
0.00 


10.00 
± 0.00 


5.00 ± 
0.00 


5 


Jeffreys-
Perks 


4.00 ± 
0.00 


5.00 ± 
0.00 


3.00 ± 
0.00 


5 


Jeffreys-
Perks 
(jackknife) 


4.00 ± 
0.00 


5.00 ± 
0.00 


4.00 ± 
0.45 


6 


Laplace 2.80 ± 
0.98 


5.00 ± 
0.00 


2.10 ± 
0.30 


6 


Laplace 
(jackknife) 


3.40 ± 
0.92 


5.00 ± 
0.00 


3.00 ± 
0.00 


6 


 


6.  Further Discussion 


Instead of using a symmetric Dirichlet distribution, we 
can set each hyperparameter of the Dirichlet distribution 
to be proportional to the class prior probabilities, i.e. 


mhhh K1)P( =∀= λα , where λ is a scaling constant. 
Each class probability can in turn be estimated from the 
entire data set using a symmetric Dirichlet distribution as 
the conjugate prior.  This is similar to the hierarchical 
model proposed by Mackay and Peto (1995).  We then get 
the following Bayesian estimates: 
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where β is the hyperparameter of the symmetric Dirichlet 
distribution for the class prior, and 


{ }ijjji yySyy =∈= |),()( xη      [22] 


We can again express the above as linear combinations: 
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Like α, we can set β = 0, 0.5 or 1.  We would also suggest 
setting λ = mβ, so that the combination weights of the two 


estimates in Equation 23 and Equation 24 become 
equivalent in form.  Of course, there is no real strong 
justification for setting the parameters in this way, but it 
can be argued that the rate of change of the combination 
weights with respect to the number of examples should be 
the same regardless of the probability being estimated. 


The jackknife can also be applied to the above estimates 
in a similar fashion.  The hierarchical model should be 
more accurate since it uses additional information from 
the data set to estimate the class prior probabilities.  
Further analysis of this model remains for future work. 


7.  Conclusion 


We have proposed a refinement to the wrapper method 
for feature selection by smoothing the error estimate.  We 
have also showed empirically that using a version of the 
smoothed error estimate can give improved performance 
(i.e. better able to find the optimal features) compared 
with using the unsmoothed error count. 


We would need to extend our study to k-nearest neighbors 
and other distance measures.  Generalization to numeric 
features may be possible either by discretization or by 
using continuous distributions.  Smoothing the error rate 
is a general approach that should be applicable to other 
cross-validation methods and other types of classifiers. 
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