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Abstract

In the wrapper approach for feature selection, a
popular criterion used is the leave-one-out
estimate of the classification error. While being
relatively unbiased, the leave-one-out error
estimate is nonetheless known to exhibit a large
variance, which can be detrimental especially for
small samples. We propose reducing its variance
(i.e. smoothing) at two levels. At the first level,
we smooth the error count using estimates of
posterior probabilities; while at the second level,
we smooth the posterior probability estimates
themselves using Bayesian estimation with
conjugate priors. Furthermore, we propose using
the jackknife to reduce the bias inherent in
Bayesian estimators. We then show empirically
that smoothing the error estimate gives improved
performance in feature selection.

1. Introduction

The problem of automated feature selection has been well
explored (Blum & Langley, 1997; Jain & Zonker, 1997;
John, Kohavi, & Pfleger, 1994; Kohavi & John, 1997,
Koller & Sahami, 1996; Kudo & Sklansky, 2000; Langley
& Sage, 1994; Langley & Sage, 1997; Liu, Motoda, &
Dash, 1998; Pudil, Novovicova, & Kittler, 1994; Ruck,
Rogers, & Kabrisky, 1989; Yang & Pedersen, 1997). In
the case of pattern recognition, the objective of feature
selection is to select those features that best discriminate
between the classes. In this paper, we define relevant
features as those that contribute to the discrimination,
while irrelevant features are those that do not.

Feature selection techniques fall broadly into two
categories: filter and wrapper methods (John, Kohavi, and
Pfleger, 1994). In filter methods, statistical tests, such as
information entropy or class separability, are applied to
various subsets of features so as to identify the optimal
subset. The objective of filter methods is to predict as
intelligently as possible, without actually invoking any
classifiers, which subset of features would give the best
classification accuracy. In wrapper methods, on the other
hand, a classifier is induced for a given subset of features,
and an estimate of the classification error is used to
evaluate the quality of the subset. In other words, a
classifier is invoked directly and the optimal feature
subset is chosen based on its classification error rate.

Wrapper methods typically perform better (i.e. they find
better features) although they are more computationally
expensive. While there are arguments for and against
either method, we believe the best way to measure the
discriminative ability of a set of features is to estimate the
classification error directly with a classifier.

Clearly, a key issue in the wrapper approach is estimating
the error rate in a robust manner. We want an estimate
that has both a small bias and a small variance. We may
choose the leave-one-out estimate of the classification
error rate due to the low bias of this type of estimate, and
find the smallest subset of features such that the estimate
is minimized. Although the leave-one-out error estimate
is relatively unbiased, it has a large variance (Efron, 1983;
Kohavi, 1995). In other words, it fluctuates a lot with
respect to small differences in the data. This may lead to
the error estimate becoming inconsistent and unreliable,
especially when the number of examples is small.



We found that we can reduce the estimation variance
considerably by smoothing the error rate at two levels —
smoothing the error count using estimates of posterior
probabilities (Glick, 1978; Pawlak, 1988; Tutz, 1985),
and smoothing the posterior probability estimates
themselves using Bayesian estimation with conjugate
priors (Box & Tiao, 1973; Jeffreys, 1946; Laplace, 1951;
Lidstone, 1920; Perks, 1947). Furthermore, we propose
using the jackknife estimator (Miller, 1974; Quenouille,
1956) to reduce the bias inherent in Bayesian estimates
(Bickel & Mallows, 1988; Noorbaloochi & Meeden,
1983). While these techniques by themselves are not
new, no one to our knowledge has ever applied them in
the context of feature selection. All these techniques
combine to give a more robust error estimate, which in
turn leads to better performance in feature selection, as we
shall show empirically.

2. The Classifier

For this work, we chose to employ the nearest neighbor
classifier, which is also a popular choice for wrapper
methods (Blum & Langley, 1997; Kudo & Sklansky,
2000; Langley & Sage, 1994; Langley & Sage, 1997).
The nearest neighbor classifier is very simple to induce
(zero training time), very amenable to analysis, has no
learning parameters to adjust, can be modified easily to
handle conflicting examples, and gives reasonably good
performance. More importantly, it has been shown
(Langley & Iba, 1993) that the error rate for the nearest
neighbor classifier increases with the number of irrelevant
features for a fixed number of examples. In other words,
its performance is sensitive to the presence of irrelevant
features. It has also been proven (Cover & Hart, 1967)
that given enough examples, the nearest neighbor error
rate is at most twice the Bayesian error rate. Finally, the
nearest neighbor classifier is not constrained by any non-
linearity in the interclass boundary, i.e. it is able to learn
even when the class is determined by a complex nonlinear
combination of features (unlike say, the naive Bayes or
linear perceptron classifiers).

3. Mathematical Framework

3.1 Basic Model

We have a set of n examples, S ={(x;,y;)|i=1...n},
where X; is a vector containing d nominal features, and

y;€{l...m} is a class label given m classes. Each

(k)

feature x;’, where k=1...d, can have one of several

different values, possibly missing. If the class conditional
(posterior) probability distributions are known, then the
Bayesian maximum a posteriori (MAP) classifier is

g (x)= argmax{P(h | x)} [1]
hefl...m}

The corresponding Bayesian error probability is then

L'=P(g"(x)zy)= P(argmax{P(h |x)} # y} [2]

he{l...m}

The Bayesian classifier is optimal, i.e. its error probability
is smaller than that of any other classifier (a simple proof
of this for 2 classes can be found in Devroye, Gyorfi, and
Lugosi (1996); it is easily extensible to multiple classes).
However, the computation of the Bayesian error
probability is a very complex and difficult problem,
except in special cases when all the probability
distributions are already known. Hence, we estimate the
error probability from the empirical error rate:

Lo =Eg0#2)=2 3 5(ex)#3) ]

where g(x) is the class decision output of a chosen
classifier given x as the input, and

1 if proposition Q is true;
5(0)= . [4]
0 otherwise.

Unfortunately, the above estimate is equivalent to the
resubstitution rate (or apparent error rate), which is
known to be very optimistically biased, particularly for
the nearest neighbor classifier. To obtain a relatively
unbiased estimate of the error rate, we use the leave-one-
out method:

Lt =L 6(g (x) % ) [5]

where g_; is the classifier’s decision function based on
the data set with (x;, y;) removed.

In the case of the nearest neighbor classifier,

<NN> _ <NN> _
g5 —argrilax\{(xj,yj)eA_i |y, =h| 6]
A™>is the set of examples nearest to X,, and can

include examples with the same feature values as x;, i.e.

A ={(x,,y,) €S| j#i,

[7]
D(x;,x;) < D(x;,x;) Vk e {l...n} }

where D(x;,X ;) is the distance between x; and x ;.
In this paper, we focus on the nominal domain as a

preliminary study. For nominal feature vectors, we have
found the following distance measure to perform well:



d 2
D(xl-,xj) = Z“XEI() - xi-“” (8]
k

where “x,(k) - x(jk)“

0 ifxM = x(ik) or if both values are missing.

if only one of the valuesis present.

1
2
1 *)

(9]

if both values are present and x(k ) » X;

3.2 Smoothing the Error Rate

As mentioned earlier, the main objection against using the

leave-one-out estimate is its large variance. To overcome
leave—one—out

this problem, we can smooth L, as follows:
smooin 1 2
Lemp "’ _ZZ(I_P—I‘(}G‘ |Xi)) [10]

i
where P_;(y; |x;) is the posterior probability estimated

from the data with (x;,y;) removed. Smoothing the

classification error estimate was first proposed by Glick
(1978) as a means of reducing the estimate’s variance.
This approach has been further explored in Devroye,
Gyorfi, and Lugosi (1996), Pawlak (1988), Tutz (1985).

P_;(y;]1x;) can be estimated as a parameter of the
multinomial distribution. First, we define a symmetric
Dirichlet distribution as a Dirichlet distribution with all its
parameters «;,...,c, set equal to « Then, taking a
symmetric Dirichlet distribution as the conjugate prior to
the multinomial distribution, a Bayesian estimate of

P_(y; |x;) is

A L +a
(i 1x)) L +ma [11]

where « is the hyperparameter of the conjugate prior,
L=y e A 1y, = [12]

‘ A<NN>

[13]

The above formulation neatly handles the case of
conflicting examples as well as avoids the need for
breaking distance ties, which can be rather problematic
especially for nominal-valued domains.

o can also be regarded as the smoothing parameter.
Using arbitrary « corresponds to Lidstone’s law
(Lidstone, 1920). Setting o = 0 gives the maximum
likelihood estimator, while « = 1 corresponds to
Laplace’s law of succession (Laplace, 1951). a=0.51isa
popular choice that corresponds to Jeffreys-Perks’ law or

Expected Likelihood Estimation (Box & Tiao, 1973;
Jeffreys, 1946; Perks, 1947). More recently, Kohavi,
Becker, and Sommerfield (1997) showed that setting o =
1/L; is a reasonably good heuristic for reducing the bias in
Laplace’s law of succession. Other approaches to
smoothing the probability estimator, tailored for sparsely
represented domains such as natural language processing,
can be found in Chen and Goodman (1996), Friedman and
Singer (1999), Ristad (1995).

Simple algebraic manipulation shows that Equation 11
can be rewritten as a linear combination:

mao

. L. Il
P . X, ) = ! —4
- %) L+ma L

_|qo_me l_,-+ ma 1
Li+ma) L; Li+ma m

1
L+ma m
[14]

1

3.3 Jackknifing the Bayesian Estimator

It is known that Bayes estimators are generally biased
except in very special cases (Bickel & Mallows, 1988;
Noorbaloochi & Meeden 1983). Hence, we propose using
a statistical method to reduce the bias in the Bayesian
estimator of the posterior probabilities. The jackknife
technique introduced by Quenouille (1956) and reviewed
by Miller (1974) has been proven effective in reducing
the bias in many estimators.

Let O be an estimator of the parameter € based on L
examples. Also let 0. ; be the corresponding estimator

based on L—1 examples with the /™ example removed.
Then the jackknife estimator 6 is defined as

L-1& 4
6 = —Za [15]
L J

Applying this to the posterior probability estimator, we
get (proof not shown):

lN)fi i 1x;)

. L-14 .
=L; P (y; |Xi)_L—ZP—i—j(yi |x;)
J

i

li+a
- iLl-+ma
_L[—l(li I ~1+a L) I +a j
L; L, -1+ma L, -1+ma
[16]
Again, the above can be expressed as a linear

combination, although the combination weights here are
more complex:



m*a?

l;
(L; + ma)(L; —1+ma)] L; (17

ma’ 1

—+ P—
L +ma)L;-1+ma) m

f)—i(yi Ix;) :[1

We may also employ bootstrap methods (Efron, 1979),
whereby estimates are averaged over many “bootstrap
samples” each drawn with replacement from the original
sample. However, this would be too computationally
expensive, especially in the context of feature selection
whereby the search space can be very large.

4. Search Engine

When the number of features is large (say > 20), an
exhaustive search through all possible subsets of features
for the optimal one would be impractical. We need to
employ a more intelligent strategy for searching through
the solution space. Comparison of a number of existing
search algorithms (Jain & Zonker, 1997, Kudo &
Sklansky, 2000) seem to favor the sequential
forward/backward floating search methods (SFFS/SBFS)
(Pudil, Novovicova, & Kittler, 1994) as well as the
genetic algorithm (GA) (Holland, 1975).

The SFFS/SBFS algorithm adds or deletes one feature at a
time but backtracks (i.e. delete a selected feature or add a
deleted feature) whenever it can find an improvement in
the criterion. The genetic algorithm, on the other hand, is
a stochastic search algorithm that mimics the evolutionary
process to find the solution.

As the genetic algorithm requires fine-tuning of many
parameters, we chose to employ a combined SFFS/SBFS
method as the search engine, whereby the better solution
between those generated by SFFS and SBFS is chosen.
The quality of a solution is based on its error estimate and
the number of features chosen. A good solution would
have low error and few features.

5. Experiments

5.1 Bias-Variance Decomposition

It is well known in statistical machine learning that the
mean squared error (MSE) can be decomposed into the
variance and the square of the bias:

MSE = E[(L —L*)Z}
= E[(L —E[i])z}+ (E[i]—L*)z [18]

= Variance + Bias®

where L° is the Bayesian error probability, L is an
estimate of the error, and the expectation is taken over all
possible data sets of a given size.

In this subsection, we conduct simulation studies of the
behavior of the mean squared error, variance and bias of
each type of error estimate discussed in this paper.

5.1.1 EXPERIMENTAL SETUP

For a given sample of size n, we generate random vectors
of 3 nominal features. Each feature is randomly assigned
one of 3 values with equal probabilities. We fix the
number of classes at 3, and randomly assign a class label
to each feature vector according to a predefined set of a
priori class probabilities. The class probabilities are in
turn generated randomly from a uniform distribution.
Hence, we can take the conditional probabilities to be
equal to the corresponding a priori class probabilities.
This implies that we can directly compute the Bayesian
error as:

I = P(argmax{P(h)}i y] =1- max {P(h)} [19]
he{l...m} he{l...m}

We conduct 1000 trials of 1000 simulations each. In each
trial, a set of class probabilities is generated and 1000
simulations are conducted using these class probabilities.
In each simulation, we generate data sets of various sizes.
We perform two analyses: small-sample analysis with
data set sizes ranging from 5 to 50 at increments of 5, and
large-sample analysis with data set sizes ranging from 50
to 500 at increments of 50. The analyses are performed
on 6 types of error estimates: the unsmoothed leave-one-
out error count, the smoothed error estimates with oz = 0
(maximum likelihood estimator), & = 0.5 (Jeffreys-Perks’
law), @ = 1 (Laplace’s law of succession), and the
jackknifed versions of Jeffreys-Perks’ law and Laplace’s
law of succession. (The jackknife estimator for the
maximum likelihood estimate in this case happens to be
the maximum likelihood estimator itself.) For each data
set size and each type of error estimate, we compute the
mean squared error, variance and bias over 1000
simulations in a trial. These statistics are then averaged
over the 1000 trials. The results for the small-sample
analysis are illustrated in Figure 1, while the results for
the large-sample analysis are illustrated in Figure 2.

5.1.2 DETAILED ANALYSIS

As these figures show, the unsmoothed error estimate
exhibits the largest variance and the smallest bias, while
the smoothed error estimate using Laplace’s law of
succession for the posterior probabilities has the smallest
variance and the largest bias. There is clearly a trade-off
between bias and variance as o varies. The jackknife
lowers the bias for both Jeffreys-Perks’ law and Laplace’s
law of succession, as expected.
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In every case, the mean squared error and the variance
drop quickly as the number of examples increases. As the
number of examples grows, the mean squared errors for
low-bias/high-variance estimates drop more rapidly than
for those high-bias/low-variance estimates. For example,
the unsmoothed error estimate has the largest mean
squared error when the number of examples is 5, but it
has the smallest mean squared error when the number of
examples is 100 or more. Conversely, the smoothed error
estimate using Laplace’s law of succession has the
smallest mean squared error when the number of
examples is 5, but it has the largest mean squared error
when the number of examples is 100 or more.

Interestingly, the bias of the error estimate using the
maximum likelihood estimator remains relatively constant
regardless of the number of examples, while its mean
squared error appears to converge towards a constant
(larger than that of the unsmoothed estimate). As the
number of examples increases, both the bias and the mean
squared error of the other smoothed estimates converges
to the maximum likelihood case, while those of the
unsmoothed estimate drop considerably lower. At the
same time, the bias and the mean squared error for the
jackknifed estimators drop as a faster rate than those of
the non-jackknifed ones.

On the other hand, the variance of the unsmoothed
estimate remains relatively higher than the smoothed
estimates even when the number of examples is large,
while the variances of all the smoothed estimates drop to
almost zero as the number of examples increases. We can
thus infer that the mean squared error in the smoothed
estimate is due mainly to its inherent bias when the
number of examples is large.

In the context of feature selection, the variance is a more
important factor than the bias, especially when the
number of examples is small, since we are more
concerned with relative error estimates rather their
absolute values when comparing different feature subsets.
The above studies suggest that smoothed error estimates
are better suited for small samples.

5.2 Feature Selection

We now show empirically that in the wrapper approach
for feature selection, using a smoothed error estimate can
give better performance than using the unsmoothed error
count. We conduct experiments on both artificial and real-
world data. The artificial data sets are Corral (John,
Kohavi, & Pfleger, 1994) and LED-24 from the UCI
repository (Blake & Merz, 1998). The real-world data
sets are Voting and SPECT-Heart, both from the UCI
repository. The features (i.e. attributes) in these data sets
are all nominal, and their properties are given in Table 1.

Only the training and testing examples for the SPECT-
Heart data has been given explicitly. For the rest of the
data sets (i.e. Corral, LED-24 and Voting), we arbitrarily
fix the number of training and testing examples, and
conduct 10 simulations whereby we randomly partition
the data set into the training and testing examples; the
results are then averaged over the 10 simulations.

We perform feature selection on the training set and test
the selected features on the testing set to give the
percentage of classification errors. The results are given
in Table 2 and Table 3. Using the smoothed error
estimate with the jackknifed Jeffreys-Perks estimator
gives the best overall performance on the test data. Note
that the test error rates using all the original features are
typically very high because the nearest neighbor classifier
is particularly sensitive to irrelevant features.

Table 1.  The UCI data sets used and their properties.
Data Set # Classes # Features # Train # Test
Corral 2 6 32 128
LED-24 10 24 200 3000
Voting 2 16 300 135
SPECT- 2 22 80 167
Heart

Table 2.  Error rates on the test data for the features selected

using various criteria. For each data set, the lowest test error
rate obtained is boldfaced.

Error Corral LED- Voting SPECT

Estimate 24 -Heart

Unsmoothed  5.55+ 34.18 7.19%+  33.16

9.31 +6.26 0.67

Max 0.00+ 37.88 6.67f 2941

Likelihood 0.00 =*0.26 0.00

Jeffreys- 0.00+ 3210 674+ 2941

Perks 0.00 1 0.03 0.22

Jeffreys- 0.00+ 32.10 578+ 29.41

Perks 0.00 £0.03 0.86

(jackknife)

Laplace 11.33 3210 6.74= 2941
+925 £0.03 0.22

Laplace 570+ 3210 630x  31.55

(jackknife) 8.71 £0.03 0.76

[All features] 10.16  60.76  9.78 £  41.71
+1.10 +0.28 0.44




Table 3.  Number of features selected for the various criteria.
Error Corral LED- Voting SPECT
Estimate 24 -Heart
Unsmoothed 3.80%+ 730+ 380z 9

0.75 0.46 0.60
Max 4.00 £ 10.00  5.00 £ 5
Likelihood 0.00 +0.00 0.00
Jeffreys- 400+ 500+ 3.00x 5
Perks 0.00 0.00 0.00
Jeffreys- 400+ 500 400z 6
Perks 0.00 0.00 0.45
(jackknife)
Laplace 280+ 500+ 210+ 6
0.98 0.00 0.30
Laplace 340 5.00+ 3.00% 6

(jackknife) 0.92 0.00 0.00

6. Further Discussion

Instead of using a symmetric Dirichlet distribution, we
can set each hyperparameter of the Dirichlet distribution
to be proportional to the class prior probabilities, i.e.
a, =AP(h) Vh=1...m, where A is a scaling constant.

Each class probability can in turn be estimated from the
entire data set using a symmetric Dirichlet distribution as
the conjugate prior. This is similar to the hierarchical
model proposed by Mackay and Peto (1995). We then get
the following Bayesian estimates:

; _ L+ AP()

P,(yvi1x;)= L +4 [20]

B(y,) = ni)+p 21]
n+mp

where fis the hyperparameter of the symmetric Dirichlet
distribution for the class prior, and

no) =198 1y, = | [22]

We can again express the above as linear combinations:

~ A ; A -
P_(y; |Xi):(1_Li +/1]'L—i+ L+ ‘P(y;) (23]
Scon|1__mB | ny) mp 1
Plyi)= (1 n+ mﬂj n " n+mf m [24]

Like o, we can set #=0, 0.5 or 1. We would also suggest
setting A = m/f3, so that the combination weights of the two

estimates in Equation 23 and Equation 24 become
equivalent in form. Of course, there is no real strong
justification for setting the parameters in this way, but it
can be argued that the rate of change of the combination
weights with respect to the number of examples should be
the same regardless of the probability being estimated.

The jackknife can also be applied to the above estimates
in a similar fashion. The hierarchical model should be
more accurate since it uses additional information from
the data set to estimate the class prior probabilities.
Further analysis of this model remains for future work.

7. Conclusion

We have proposed a refinement to the wrapper method
for feature selection by smoothing the error estimate. We
have also showed empirically that using a version of the
smoothed error estimate can give improved performance
(i.e. better able to find the optimal features) compared
with using the unsmoothed error count.

We would need to extend our study to k-nearest neighbors
and other distance measures. Generalization to numeric
features may be possible either by discretization or by
using continuous distributions. Smoothing the error rate
is a general approach that should be applicable to other
cross-validation methods and other types of classifiers.
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