
12

Fast Practical Solution of Sorting by Reversals

Alberto Caprara* Giuseppe Lancia t See Kiong Ngt

Abstract
We deal with the practical solution of the problem of Sort-
ing a permutation By Reversals (SBR), which has relevant
applications in computational biology. We present a success-
ful approach based on the use of Linear Programming (LP).
In particular, we deal with an LP relaxation with exponen-
tially many variables, that can be handled by generating
variables "on the fly", according to a so-called column gen-
eration scheme. A major advantage with respect to previous
analogous approaches is that the subproblem to face in the
column generation phase requires no longer the solution of
min-cost general matching problems, but the solution of rain-
cost bipartite matching problems. Experiments show that,
at least for our purposes, there is a speed-up of one order
of magnitude in going from general matching to bipartite
matching, although the best-known algorithms for. the two
problems have the same theoretical worst-case complexity.
We also prove the worst-case ratio between the lower bound
value obtained by our new method and previous ones.

The LP relaxation is used within a polynomial-time
heuristic and an enumerative exact algorithm for SBR. We
show the effectiveness of our approach through extensive
computational experiments. In particular, we can solve
to proven optimality the largest real-world instances from
the literature in few seconds, and the other (smaller) real-
world instances within few milliseconds on a workstation.
Moreover, we can solve to optimality random instances
with n = 100 within 2-3 seconds, as well as provide a
solution within 2% of the optimum for ranxtom instances
with n = 500 within 10 minutes.

These results show that, although the problem is hard
and the exact algorithm we propose has apparently expo-
nential running time even on average (in particular, random
instances with n = 400 seem to take months, if not much
longer), the instances of practical interest can be solved to
proven optimality very fast.
Key words: sorting by reversals, alternating-cycle decom-
position, column generation, matching, experimental results.

1 I n t r o d u c t i o n

In this paper we deal with the problem of Sorting a
permutation By Reversals (SBR), which is defined as
follows. Let r = (Trl . . . 7r,) be a permutation of
(1 , . . . , n } , and denote by ~ the identity permutation
(1 2 . . . n - 1 n). A reversal of the interval (i , j) is an
inversion of the subsequence ~ . . . ~j of 7r, represented
by the p e r m u t a t i o n p = (1 . . . i - 1 j j - 1 . . . i +

~S, Universit~ di Bologna, Viale Risorgimento 2, 40136
Bologna, Italy, e-marl: acapraxaQdeis .uaibo. i~

tDEI, Universit~ di Padova, Via Gradenigo 6/A, 35131
Padova, Italy, e-mall: lancia0dei.unipd, i t

$Smithkline Beecham Pharmaceuticals P~zD, Bioinformatics,
New Frontiers Science Park (North), Third Avenue, Harlow, Essex
CM19 5AW, UK, e-mail: skagQcs.crm.edu

1 i j + l . . . n). Composition of ~ with p yields

where elements 7r~,...,Trj have been reversed. Given
a permutat ion 7r, SBR calls for a shortest sequence
of reversals PI , - . . ,Pd(~) such tha t 7rpl ...pd(~) = ~.
The optimal solution value d (r) is called the reversal
distance of ~r.

The main application of the problem is in computa-
tional biology. Let the order of the genes in two single
chromosome organisms be represented by two permuta-
tions ~r and T of {1 , . . . ,n}. An inversion of the segment
comprising the genes from the i-th to the j - t h is repre-
sented by a reversal of the interval (i , j) . A shortest
sequence of reversals needed to transform r into r is
clearly equal to an optimal solution of SBR on T-17r.
Therefore, the solution of SBR yields a possible sce-
nario to explain how an organism evolved from another,
under the simplifying assumptions tha t inversions were
the only rearrangement to occur, and that evolution re-
quired the minimum number of rearrangements. Even
if these assumptions lead to some approximation, both
are well-motivated. Indeed, on the one hand inversions
are by far the most frequent type of rearrangement, and
on the other rearrangements are very rare events.

With the more general aim of reconstructing an evo-
lutionary tree (see e.g. [24]), SBR may be the subprob-
lem to be solved to evaluate the distance between two
species in the tree. In this respect, it would be conve-
nient to have very fast (in practice) algorithms to solve
it.

SBR has been widely studied in the last years,
among others, by Kececioglu and Sankoff [23, 22], Bafna
and Pevzner [1], Hannenhalli and Pevzner [17, 18],
Caprara, Lancia and Ng I8], Berman and Hannen-
halli [3], Irving and Christie [19], Tran [25], Ka-
plan, Shamir and Tarjan [20], Caprara [6, 7], Christie
[10]. Most of these papers deal with the complex-
ity and theoretical approximability of the problem.
In particular, SBR was shown to be NP-hard in [6]
and Max SNP-hard in [4]. References [23, 1, 10]
present, respectively, polynomial-time 2-approximation,
~-approximation, and 23--approximation algorithms.

In this paper we are concerned about the practical
solution of SBR. We present a successful approach based
on the use of Linear Programming (LP). In particular,

13

we deal with an LP relaxation with exponentially many
variables, that can be handled by generating variables
"on the fly", according to a so-called column generation
scheme. A major advantage with respect to previous
analogous approaches (see [23], [8]) is that the subprob-
lem to face in the column generation phase requires no
longer the solution of min-cost general matching prob-
lems, but the solution of min-cost bipartite matching
problems. Experiments show that , at least for our pur-
poses, there is a speed-up of one order of magnitude
in going from general matching to bipartite matching,
although the best-known algorithms for the two prob-
lems have the same theoretical worst-case complexity.
We also prove the worst-case ratio between the lower
bound value obtained by our new method and previous
ones.

The LP relaxation is used within a polynomial-
time heuristic and an enumerative exact algorithm for
SBR. We show the effectiveness of our approach through
extensive computational experiments. In particular, we
can solve to proven optimality the largest real-world
instances from the literature in few seconds, and the
other (smaller) instances within few milliseconds on
a workstation. Moreover, we can solve to optimality
random instances with n = 100 within 2-3 seconds, as
well as provide a solution within 2% of the optimum for
random instances with n = 500 within 10 minutes.

These results show that , although the problem is
hard and the exact algorithm we propose has apparently
exponential running time even on average (in particular,
random instances with n = 400 seem to take months, if
not much longer), the instances of practical interest can
be solved to proven optimality very fast.

The paper is organized as follows. In Section 2
we survey known results in the literature, describing
a combinatorial relaxation of SBR and the associated
(natural) Integer Linear Programming (ILP) formula-
tion, whose LP relaxation can be solved using general
matching for column generation. Section 3 explains our
new LP relaxation, showing that the associated column
generation problem can be solved by bipartite matching
and that, even in the worst case, the lower bound value
obtained is at least 3/4 times that of the original LP
relaxation. We also illustrate exact and heuristic algo-
rithms based on the use of this LP relaxation. Finally,
in Section 4 we present computational results both on
real-world and random instances.

2 S B R a n d Alternating-Cycle Decompositions
Consider a permutation ~r = (~rl . . . 7rn) of {1 , . . . n) .
Throughout the paper, n will denote the number of
elements of the permutation ~r considered. Following
the description in [1], define the breakpoint graph G(Tr) =

4

Figure 1: The breakpoint graph G(lr) associated with
lr = (4 2 1 3). Gray edges are drawn as thin lines, black
edges as thick lines.

(V, B U Y) of 7r as follows. Add to 7r the elements 7to := 0
and ~rn+t := n + 1, re-defining r := (0 ~rl . . . rn n + 1).
Also, let the inverse permutat ion ~r -1 of lr be defined by
r~ l := i for i = 0 , . . . , n + 1. Let V := { 0 , . . . , n + 1},
where each node v E V represents an element of ~r.
Graph G(~r) is bicolored, i.e. its edge set is partitioned
into two subsets, each represented by a different color.
B is the set of black edges, each of the form (~ri, lri+l), for
all i e (0 , . . . , n} such tha t [zri- ~iq-l[~ 1, i.e. elements
which are in consecutive positions in ~r but not in the
identity permutation r. Such a pair 7ri,lri+t is called a
breakpoint of lr, and an element 7ri is called a singleton
if both r i - l , r i and ~ri,~ri+l are breakpoints of ~r. Let
b(lr) := [B I be the number of breakpoints of ~r. Y is
the set of gray edges, each of the form (i , i + 1), for all
i e (0 , . . . , n} such tha t I~r~ -t - ~r/~l] ~ 1, i.e. elements
which are in consecutive positions in r but not in ~.
Note that each node i • V has either degree 0, 2 or
4, and has the same number of incident gray and black
edges. Therefore, [B I = [Y](= b(lr)). Figure 1 depicts
the breakpoint graph associated with the permutation
(4 2 1 3).

An alternating cycle of G(Tr) is a cycle whose
edges are alternately grey and black, without edge
repetitions b u t possibly with node repetitions. For-
really, an alternating cycle is a sequence of edges
bl , yl , b2, Y2, . . . , bin, Ym , such that:

(i) bi E B , Yi • Y for i = 1 , . . . , m ;

(ii) bl and yj have a common endpoint for i = j =
1 , . . . , m and for i = j + 1, j = 1 , . . . , m ;

(iii) bl and bi+l (resp. Yi and Yi+I) have no common
endpoint for i = 1 , . . . ,m;

(iv) bl ~ bj (resp. Yi ~ Yj) for 1 < i < j < m;
where indices are understood to be modulo m. For ex-
ample, edges (0, 4), (4, 3), (3,1), (1, 0) and (4, 2), (2, 3),
(3, 5), (5, 4) form alternating cycles in the graph of Fig-
ure 1.

An alternating-cycle decomposition of G(Tr) is a
collection of edge-disjoint alternating cycles, such

14

that every edge of G is contained in exactly one
cycle of the collection. It is easy to see that
G(Tr) always admits an alternating-cycle decomposi-
tion (recalling that an alternating cycle is allowed to
visit the same cycle twice). In the graph of Fig-
ure 1, alternating cycles (0,4),(4,3),(3,1),(1,0) and
(4, 2), (2, 3), (3, 5), (5, 4) form an alternating-cycle de-
composition. For a given lr, let c(~r) be the maxi- (2.4)
mum cardinality of an alternating-cycle decomposition
of G(Tr). Bafna and Pevzner [1] (see also Kececioglu and
Sankoff [23]) proved the following property

THEOREM 2.1. ([1], [23]) For every permutation 7r,
b(Tr) -c(Ir) <_ d(~).
Therefore b(Tr) - c(lr) gives a valid lower bound on
the optimal solution value of SBR. The above discus-
sion motivates the study of the following Alternating-
Cycle Decomposition (ACD) problem, which, given the
breakpoint graph G(~r) of a permutation 7r, calls for
a maximum-cardinality alternating-cycle decomposition
of G(~).

A key question raised by the discussion above con-
cerns the strength of lower bound b(Tr) - c(=) on the
optimal solution value d(Tr). Since the very first com-
putational experiments on SBR, it was observed that
this bound is very often equal to the optimum, and this
was a strong enough motivation to encourage the use
of this bound within a branch-and-bound framework.
In principle, according to worst-case analysis, the lower
bound can be quite far from the optimum, namely the
following holds

THEOREM 2.2. ([6], [10]) For every permutation ~, (2.5)
b(r)-c(Tr) _> ~d(~). Moreover, there exist permutations
for which bOr) - cOr) = 2 dC~r).
In fact, a theoretical result which motivates the strength
of the lower bound is

THEOREM 2.3. ([7]) The probability that b(lr) -
c(~') < d(~r) .for a random permutation 7r with n
elements is O(1/nS).

From a complexity point of view, all the negative
results for SBR apply to ACD as well [6, 4]. On
the other hand, from a practical point of view, the
great advantage of dealing with ACD instead of SBR
is the fact that the former has a strong, natural ILP
formulation with one variable for each alternating-cycle
of G(Tr), which was proposed in [23, 8]. Let C denote
the set of all the alternating cycles of G(Tr), and for each
C 6 C introduce a binary variable xc. A natural ILP
model is
(2.1)

subject to

(2.2)

max Z 2c
cEc

Z xc < 1,
Cge

e 6 E ,

(2.3) x c 6 {0 ,1} , C 6 C.

A valid upper bound [c*0r)J on c(lr), and hence a
valid lower bound [b(Tr) - c* (~r)] on d(Tr), is given by
the optimal solution value c* (Tr) of the LP relaxation of
(2.1)-(2.3), obtained by replacing constraints (2.3) with

zc >_ 0, C 6 C.

Solving the LP relaxation (2.1), (2.2) and (2.4)
amounts to solving an LP having [E I = O(n) con-
straints, and ICI = O(2 n) variables, i.e. a possibly huge
number of variables. This can be done by column gen-
eration techniques (see e.g. [2]), starting from a "small"
LP with a restricted subset of the variables (implicitly
fixing the other variables to 0), and iteratively solving
the small LP, testing if the solution is optimal for the
overall LP, and, if not, adding few variables with posi-
tive (in case of maximization) reduced cost to the small
LP. The optimality test, namely the detection of vari-
ables with positive reduced cost, is called column gen-
eration problem.

Due to a fundamental result of GrStschel, Lov~sz
and Schrijver [15] based on Khachian's ellipsoid algo-
rithm [21], the overall approach works in polynomial
time provided the column generation problem can be
solved efficiently. In particular, for LP (2.1), (2.2) and
(2.4), it is easy to show that this problem, given a weight
Ue associated with each edge e E E, calls for finding an
alternating cycle C 6 C such that

Z u~ < 1,
eEC

or proving that none exists. Reference [8] describes a
polynomial-time algorithm for this problem, proving the
following statement.

THEOREM 2.4. ([8]) LP (2.1), (2.2) and (2.4) can
be solved in polynomial time 5n n).
The algorithm presented in [8] to solve the column gen-
eration problem computes up to n + 1 min-cost perfect
matching problems in a suitably-defined (nonbipartite)
graph.

3 A M u c h Fas te r to Solve LP R e l a x a t i o n

The solution of rain-cost general matching problems
in the solution of LP (2.1), (2.2) and (2.4) turns out
to eat almost all of the overall computing time, even
by using state-of-the-art codes for matching [14] and
by trying a number of heuristic procedures to identify
positive reduced-cost variables before resorting to the
use of these codes. To overcome this serious drawback,
we came up with an alternative LP relaxation, which is
described in this section.

15

bl ~ y 4 ~ ~ y J b3

Figure 2: Pseudo alternating cycle C = bl,yl,b2,y2,
b3,y3, b2,y4, where Db2,e = 2 and #e,c = 1 for e E
c \

3.1 The new LP relaxation A surrogate alter-
nating cycle of G(n) is a cycle whose edges are alter-
nately black and grey, possibly with edge repetitious,
that does not contain a strictly smaller surrogate alter-
nating cycle. More precisely, a surrogate alternating cy-
cle is a minimal sequence of edges hi, yl , b2, y2, . . . , bin,
Ym, such that :

(i) bi e B, Yi E Y for i = 1, . . . , rn;

(ii) bi and yj have a common endpoint for i = j =
1 , . . . , m and for i = j + 1, j = 1 , . . . ,m;

(iii) bi and bi+l (resp. Yi and yi+1) have no common
endpoint for i = 1 , . . . , m.

In other words, condition (iv) in the definition of alter-
nating cycle has been removed. By minimal we mean
that the sequence of edges does not contain another sur-
rogate alternating cycle as a subsequence. Note that
alternating cycles are also surrogate alternating cycles.
We call pseudo alternating cycle a surrogate alternating
cycle which is not an alternating cycle, i.e. such that
bi = bj or Yi = Yj for some 1 < i < j < m. An example
of a pseudo alternating cycles is given in Figure 2. Let
S denote the set of surrogate alternating cycles of G(Tr)
and P = S \ C the set of pseudo alternating cycles of

The new LP relaxation that we propose is the
counterpart of (2.1), (2.2) and (2.4), where the set C of
alternating cycles is replaced by the set ,~ of surrogate
alternating cycles. In other words, the LP model reads

(3.6) max ~ x c
CE8

subject to

(3.7) ~ ~e,V xc <_ 1, e E E
COe

(3.8) xc _> 0, C ~ C,

where, for each C E 8 and e E C, ~e,C is the number
of times that edge e appears in the sequence defining
surrogate alternating cycle C. Note that the new LP

4

1 2

Figure 3: Graph G(~r) and the associated graph D(Tr).

relaxation is a relaxation of LP (2.1), (2.2) and (2.4)
as the former has a wider set of variables. Obviously,
~e,c = 1 for each alternating cycle C and edge e 6 C,
and, by definition, ~e,C _> 2 for at least one edge e in
a pseudo alternating cycle C (in fact it is easy to show
that I~e,c <_ 2; see below). This yields the following

REMARK 3.1. In every integer solution of (3.6)-
(3.8), z c = O for all C e P.
Therefore, by solving LP (3.6)-(3.8) instead of (2.1),
(2.2) and (2.4), the bounds obtained may be weaker,
but if the optimal LP solution is integer then we
have an optimal ACD solution. In other words, with
the additional restriction that the variables must be
binary, (3.6)-(3.8) yields an alternative ILP formulation
of ACD.

3.2 Column generation by bipartite matching
The dual of (3.6)-(3.8) has the form

(3.9)

subject to

(3.10)

min ~ ue
eEE

~_,#~,c Ue >_ 1, C E S,
eEC

(3.11) ue > 0, e • g .

The associated column generation problem requires
finding, if any, a surrogate alternating cycle C E $ such
that ~eeC/~e,c u~ < 1 for a given u* vector. Call
Y~eec ~e,c u~ the weight of C 6 S. We next show how
to solve this problem.

Construct the arc-weighted directed graph D(Tr) =
(V,A) from G(Tr) and u* as follows. D(Tr) has the same
node set V as G(r) and, roughly speaking, each path
consisting of a black and a grey edge in G(Tr) is replaced
by an arc in D(Tr). Formally, for each node pair i, j E V,
D(r) has an arc (i , j) 6 A if there exists k 6 V such
that (i,k) 6 B and (k , j) 6 Y . The arc weight for (i , j)
is given by u~i,k ~. To be precise, there may exist two
such k, in which'case we consider the one leading to the
minimum weight of arc (i,j). Figure 3 shows the graph

16

D(Tr) associated with graph G(Tr) in Figure 1. Let A
denote the set of simple (i.e. without node repetitions)
directed cycles of D(lr), called dicycles in the following.

THEOREM 3.1. Each surrogate alternating cycle of
G(Tr) corresponds to a dicycle of D(rr) of the same
weight, and viceversa.

Proof. Omitted.

COROLLARY 3.1. For a given u*, G(Tr) contains a
surrogate alternating cycle C E S of weight < 1 if and
only if D(~r) contains a dicycle of weight < 1.

We now describe how we check the existence of
dicycles having weight < 1 in D(r) . First of all, we
introduce loops in D(r), i.e. arcs of the form (i,i)
for all i E V, and initialize their weight to 0. The
solution of an Assignment Problem (AP) on the weight
matrix of D(Tr) corresponds to a set of dicycles of D(Tr)
(possibly including loops) such that each node is visited
by exactly one dicycle in the set and the sum of the
weights of the arcs in the dicycles is a minimum. The
problem coincides with the rain-cost perfect matching
problem on the complete bipartite graph having [V[
nodes on each shore of the bipartition, and where the
cost of edge (i,j) is equal to the weight of arc (i , j) if
(i,j) E A, to +oo otherwise (see e.g. [14]).

The solution of the AP corresponds to all the loop
arcs, and has value 0. Note that, provided an ACD
solution is contained in the set of variables in the current
LP, the "interesting" alternating cycles visit at least
one node of degree 4, as possible alternating cycles
visiting only nodes of degree 2 are already contained
in the variable set. Therefore, we consider each node
i of degree 4 in G(rr), in turn, set to +oo the weight
of the corresponding loop in D(~r), and solve the AP
for the new distance matrix. The new AP solution is
formed by a minimum-weight dicycle in D(Tr) visiting
node i, and by loop arcs. Hence, we get the rain-weight
alternating cycle visiting node i in G(rr). This latter
AP need not be solved from scratch', since by starting
from the solution of the first AP (with all loop weights
equal to 0), the computation of an augmenting path is
sufficient (see [14] for details). Trying all the nodes of
degree 4 in G(Ir) guarantees finding, if any, a dicycle of
D(Tr) (and an alternating cycle of G(Tr)) of weight < 1,
solving the column generation problem.

By using efficient implementations of the Hungarian
method (see e.g. [14]), one can solve the initial AP in
time O([VI[A[log IV[), and each of the other APs by just
one augmentation step, in time O([A[log [VI). Noting
that [A[= O([V D = O(n) due to the structure of D(rr),
where in particular every i E V has at most 4 ingoing
and outgoing arcs, one has the following

THEOREM 3.2. The column generation problem for
LP (3.6)-(3.8) can be solved in O(n 2 logn) time.

COROLLARY 3.2. LP (3.6)-(3.8) can be solved in
polynomial time (in n).
Nevertheless, it is not the theoretical worst-case com-
plexity but the much smaller time required in practice
that determines the success of the procedure above with
respect to a procedure to solve the column generation
problem for LP (2.1), (2.2) and (2.4).

3.3 Worst-ease compar i son of the old and new
lower bounds We now turn our attention to a the-
oretical comparison of the lower bounds obtained by
solving the old and new LP relaxations, motivated by
the fact that these bounds turn out to be basically the
same in practice. Let c* (Tr) denote the optimal solution
value of LP (2.1), (2.2) and (2.4), and ~(~r) the optimal
solution value of LP (3.6)-(3.8). Clearly, c*(r) < ~(Tr),
i.e. [b(~r) - c*(rr)l is a better lower bound on d(Tr) than
[b(Tr) -~(Tr)]. It is possible to show that there are exam-
ples in which c*(rr) = 1 and ~(rr) = O(n) for arbitrarily
large n, implying that the worst-case ratio between ~(Tr)
and c* (~r) can be very bad. Anyway, we will show in the
following that the ratio between the actual lower bounds
on SBI~ is bounded by ¼, giving a partial theoretical ex-
planation of empirical evidence.

LEMMA 3.1. For every pseudo alternating cycle C
o/G(~),

p~,c >_ 4,
e 6 B N C

i.e. every pseudo alternating cycle of G(rr) contains
at least ~ black edges, counting each edge with its
multiplicity within the cycle.

Proof. Omitted.

THEOREM 3.3. For every permutation 7r,

b(Tr) - e(Tr) _> 3(b(Tr) - c*(Tr)).

Moreover, there exist permutations for which b(Tr) -~(Tr)
is arbitrarily close to 3(b(Tr) - c*(r)).

Proof. Let ~(~r) = cc + ~7~, where ~c is the contri-
bution to objective function (3.6) of the variables corre-
sponding to alternating cycles of G(Tr), whereas ~ is the
contribution of the variables corresponding to pseudo
alternating cycles of G(rr). Note that

(3.12) e(=) = ec + eH > c* (~) > ~c.

Recall that b(Tr) is the number of black edges of G(rr),
and note that every alternating cycle of G(Tr) contains
at least two black edges, as G(Tr) has no parallel edges,
whereas by Lemma 3.1 every pseudo alternating cycle-
of G(Tr) contains at least 4 black edges. Adding up

17

constraints (3.7) for black edges we get

eEB Cge 068

+

CEC CE~

where ~c := ~eeBnCDe,C for C 6 S. As ~c _> 2 if
C 6 C and/3c _> 4 if C 6 7 ~, we get

CEC CE7 ~ CEC CE7 ~

which imples that

y~xc <b(r) 1
- 4 2 ~ xc .

CE7 ~ CEC

Hence, for the solution of (3.6)-(3.8), say ~,

- - 7 - 4 2
C67 ~ C6C

Using the last inequality in (3.12), one gets

b(~) -c*(~) - b(r) - 5 c -

_ _ u

b(Tr) - cc 4"

The illustration of the (asymptotically) tight examples
is omitted.

3.4 Exact and heurist ic a lgor i thms based o n
the LP relaxat ion An effective heuristic algorithm
for ACD is the following diving heuristic in which one
solves LP (3.6)-(3.8), obtaining solution z*, fixes to 1
all variables xc with x~ = 1 as well as the fractional
variable closest to 1 corresponding to an alternating
cycle (i.e. not to a pseudo alternating cycle), solves
again the LP, and so on, until an integer solution is
found. Corollary 3.2 shows that this algorithm runs in
polynomial time, as the number of variables to fix to 1
before termination is O(n).

We next briefly outline an exact enumerative al-
gorithm for ACD. Branch-and-Price (B&P) algorithms
are branch-and-bound algorithms in which an LP re-
laxation with exponentially many variables is solved at
every node of the branch-decision tree by column gener-
ation, see [2]. A B&P algorithm for ACD follows quite
naturally from formulation (3.6)-(3.8). In particular, a
main issue to be addressed in B&P algorithms is the
definition of a branching rule which preserves the struc-
ture of the column generation problem in the nodes of

the branch-decision tree. For the specific case of ACD,
such a branching rule amounts to replacing a node of
degree 4 in G(~) by two nodes of degree 2, each inci-
dent with a black and a grey edge, in the two possible
ways.

A main point with the algorithms above is how
to turn them into algorithms for SBR, which is the
problem that we would like to solve. The main step in
this direction is the very nice interpretation of an ACD
solution in terms of Signed SBR, which is a relevant
variant of SBR where elements have signs and the
effect of a reversals is also to flip signs in the reversed
subsequence. SSBR is in principle closer to the real-
world genome rearrangement problem, in that genes
have an orientation which can be represented by signs.
Nevertheless, this orientation is unknown in most cases,
and this motivates the interest for SBR. A breakthrough
result obtained by Hannenhalli and Pevzner [17] is
that SSBR can be solved in polynomial time. The
algorithm they proposed was later improved by Berman
and Hannenhalli [3] and Kaplan, Shamir and Tarjan
[20], leading to the following

THEOREM 3.4. ([17], [3], [20]) SSBR can be solved
in O(n 2) time.

We omit the description of the relationship between
ACD solutions and SSBR and their use within our
algorithms.

4 Exper imenta l Resu l t s

In this section we present the experimental results
that we carried out to testify the effectiveness of our
algorithm. We tested both real-world and randomly
generated instances from the literature.

Our algorithm was coded in C and ran on a Dig-
ital Ultimate Workstation 500 MHz, which is approxi-
mately 2-3 times faster than a PC Pentium 350 MHz.
The LP solver used is CPLEX 6.0. The solution of the
Assignment Problems in the column generation phase
was carried out using a C implementation of the Hun-
garian method (see e.g. [14]) along the same lines as the
FORTRAN one by Carpaneto, Martello and Toth [9],
adapted so as to take care of the sparsity of the cost
matrix. The min-cost perfect matching code used for
the solution of LP (2.1), (2.2) and (2.4) is the one by
Cook and Rohe [11], which is the state-of-the-art for the
solution of the problem.

Most of the following subsections will present results
for random permutations. By random permutation with
n elements we mean a permutation chosen with uniform
probability among the n! permutations with n elements.

4.1 Improvements with the new LP relaxation
Table I reports the results obtained by solving instances

18

associated with random permutations with our exact
algorithm and with a variant of it that uses LP relax-
ation (2.1), (2.2) and (2.4), solving rain-cost (nonbipar-
tire) perfect matching problems in the column genera-
tion phase as illustrated in [8].

We solved instances up to size 200. For each value
of n, we report average values over 10 instances. For
the variant (column old LP) we report the number of
instances solved to proven optimality within a time limit
of 1 hour (column # sol), the solution time (time), the
time spent in the solution of matching problems for
column generation (match time), the average number of
nodes considered in the branch-decision tree (# nodes)
and the time spent in the root node (root time), mainly
for the solution of the LP relaxation. For our algorithm
(column new LP) we give the same information, in
particular column AP time reports the time spent in the
solution of assignment problems for column generation.
Finally, we report the average ratios between the old
and new LP relaxation values, before rounding up these
values. (After rounding up, the lower bound values
provided by these two LP relaxations turned out to be
always the same for all the 60 instances tried.) Finally,
we give in column speed-up the speed-up factor achieved
by using the new LP relaxation instead of the old one
for the solution of the LP at the root node.

Table 1 shows the clear improvement in running
time (almost one order of magnitude for n ~ 100)
achieved by using the new LP relaxation, whose lower
bound value is essentially the same as that of the old
LP relaxation.

4.2 Randomly generated instances Table 2 re-
ports results of our B&P algorithm for random permu-
tations with n up to 200. For each value of n we ran
our algorithm on 10 instances, and we report the aver-
age (maximum) number of singletons in the permuta-
tion (column #singO, the average (maximum) number
of reversals in the optimal (or best found) solution (#
rev), the number of instances solved to proven optimal-
ity within a time limit of 1 hour (column # sol), the
average (maximum) running time (time), the average
(maximum) time spent at the root node (root time),
the average time (average percentage over total time)
for the solution of LPs by CPLEX (LP time), the av-
erage time (average percentage over total time) for the
solution of assignment problems in the column genera-
tion phase (AP time), the average (maximum) number
of nodes explored in the branch-decision tree (# nodes),
the average (maximum) percentage gap between the op-
timal (or best found) solution value and the lower bound
at the root node (root gap). This gap is computed as
d(Ir)-fb(Ir)-~(Ir)]

dC~)

These results show a considerable improvement
with respect to the previous best algorithm [8], that
could solve instances with size up to 100, which are now
solved within 2-3 seconds. Within our time limit of
1 hour, we can consistently solve to proven optimality
instances with n up to 200. To our knowledge, real-
world instances are going to have a much smaller n (see
also the next subsection), hence we expect our algorithm
to be able to solve these instances to proven optimality
within small computing time.

We tackled larger instances by applying our diving
heuristic algorithm. The results are given in Table
3, where the columns have the same meaning as in
Table 2, with the exception of column final gap, that
reports the average (maximum) percentage gap between
the solution found and the LP lower bound. Table 3
shows that even for instances with n = 500 we can find
solutions provably within 2% of the optimum in about
10 minutes. Even if the size of the sample is very small,
it seems that the running time of our heuristic algorithm
in practice is basically O(n4).

4.3 Results for real-world ins tances We tested
our algorithm on the largest real-world instances that
we could find, which are obtained by comparing the
genomes of men and mouse, and were given us by Srid-
har Hannenhalli [16]. The input format is a partially
signed permutation, meaning that the orientation of
only part of the genes (namely, 47 out of 138) within
the genomes is known. From this input we derived two
instances, one by ignoring the signs of the elements and
the other by considering the actual partially signed per-
mutation. Table 4 illustrates the results of our algo-
rithm on the two instances. The columns given in the
table have the same meaning as the omonimous columns
in Table 2. In particular, the minimum number of rever-
sals is 106 if signs are ignored and 118 if they are taken
into account. To our knowledge, our algorithm is the
first one capable of finding a provably optimal solution
for these two instances.

Moreover, we obtained from Mathieu Blanchette [5]
a number of smaller size permutations associated with
mitochondrial genomes. The size of these permutations
is much smaller than the man-mouse one above, namely
eacah permutation has 37 elements. We used our code
to compute the distances between each pair of permu-
tations, reported in Table 5, where we also report the
scientific name of each species associated with the 20
genomes. The overall time for computing the whole
table was 4.5 seconds, i.e., an average of about 0.025
seconds to compare a pair. This shows that, even if
the problem id NP-hard, the reversal distance for per-
mutations of this size can be computed very fast, and

19

therefore one may afford computing several times this
distance within algorithms that t ry to reconstruct evo-
lutionary trees (see e.g. [24]).

Acknowledgments The work of the first two authors
was partially supported by MURST and CNR, Italy.
We are grateful to Sridhar Hannenhalli and Mathieu
Blanchette for having provided us with the real-world
instances of the problem illustrated in Subsection 4.3.
Finally, we thank Bob Carr, Matteo Fischetti, David
Sankoff and Paolo Toth for helpful discussions on the
subject.

References

[1] V. Bafna and P.A. Pevzner, "Genome Rearrangements
and Sorting by Reversals", SIAM Journal on Comput-
ing 25 (1996) 272-289.

[2] C. Barnhart, E.L. Johnson, G.L. Nemhanser, M.W.P.
Savelsbergh and P.H. Vance, "Branch-and-Price: Col-
umn Generation for Solving Huge Integer Programs",
Operations Research 46 (1998) 316-329.

[3] P. Berman and S. Hannenhalli, "Fast Sorting by Rever-
sal", Proceedings of 7th Annual Symposium on Combi-
natorial Pattern Matching, Lecture Notes in Computer
Science (1996), Springer Verlag.

[4] P. Berman and M. Karpinski, "On Some Tighter Inap-
proximability Results", ECCC Report No. 29 (1998),
University of Trier, 1998.

[5] M. Blanchette, personal communication.
[6] A. Caprara, "Sorting Permutations by Reversals and

Eulerian Cycle Decompositions", SIAM Journal on
Discrete Mathematics 12 (1999) 91-110.

[7] A. Capraxa, "On the Tightness of the Alternating-
Cycle Lower Bound for Sorting by Reversals", Journal
of Combinatorial Optimization 3 (1999) 149-182.

[8] A. Caprara, G. Lancia and S.K. Ng, "A Column-
Generation Based Branch-and-Bound Algorithm for
Sorting by Reversals", in M. Farach-Colton, Fred S.
Roberts, M. Vingron and M. Waterman (eds.) Mathe-
matical Support for Molecular Biology; DIMACS Se-
ries in Discrete Mathematics and Theoretical Com-
puter Science 47 (1999) 213-226, AMS Press.

[9] G. Carpaneto, S. Martello and P. Toth, "Algorithms
and Codes for the Assignment Problem", Annals of
Operations Research 13 (1988) 193-223.

[10] D.A. Christie, "A 3/2 Approximation Algorithm for
Sorting by Reversals", Proceedings of the 9th Annual
A CM-SIAM Symposium on Discrete Algorithms (1998)
244-252, ACM Press.

[11] W.J. Cook and A. Rohe, "Computing Minimum-
Weight Perfect Matchings', INFORMS Journal on
Computing 11 (1999) 138-148.

[12] M. Farach-Colton, Fred S. Roberts, M. Vingron and M.
Waterman (eds.) Mathematical Support for Molecular
Biology; DIMACS Series in Discrete Mathematics and
Theoretical Computer Science 47 (1999), AMS Press.

[13] N. Franklin, "Conservation of genome form but not

sequence in the transcription antitexmination determi-
nants of bacteriophages A, ~b21 and P22", Journal of
Molecular Evolution 181 (1985) 75-84.

[14] A.M.H. Geraxds, "Matching", in M.O. Ball, T.L. Mag-
nanti, C.L. Monma and G.L. Nemhauser (eds.), Net-
works; Handbooks in Operations Research and Manage-
ment Sciences, North Holland (1995).

[15] M. GrStschel, L. Lov~sz and A. Schrijver, ~rhe Ellip-
soid Method and its Consequences in Combinatorial
Optimization", Combinatoriea 1 (1981), 169-197.

[16] S. Hannenhalli, personal communication.
[17] S. Hannenhalli and P.A. Pevzner, "Transforming Cab-

bage into Turnip (Polynomial Algorithm for Sorting
Signed Permutations by Reversals)", Proceedings of the
27th Annual ACM Symposium on the Theory of Com-
puting (1995) 178-187, ACM Press.

[18] S. Hannenhalli and P.A. Pevzner, "To Cut .. . or Not
to Cut (Applications of Comparative Physical Maps in
Molecular Evolution)", Proceedings of the 7th Annual
A CM-SIAM Symposium onDiscrete Algorithms (1996)
304-313, ACM Press.

[19] R.W. Irving and D.A. Christie, "Sorting by Reversals:
a Conjecture of Kececioglu and Sankoff", Working
Paper (1996), Dept. of Computer Science, University
of Glasgow.

[20] H. Kaplan, R. Shamir and R.E. Tarjan, "Faster
and Simpler Algorithm for Sorting Signed Permu-
tations by Reversals", Proceedings of the 8th An-
nual ACM-SIAM Symposium on Discrete Algorithms
(1997), ACM Press.

[21] L.G. Khachian, "A Polynomial Algorithm for Linear
Programming", Soviet Mathematics Doidady 20 (1979.)
191-194.

[22] J. Kececioglu and D. Sankoff, "Efficient Bounds for
Oriented Chromosome Inversion Distance", Proceed-
ings of 5th Annual Symposium on Combinatorial Pat-
tern Matching, Lecture Notes in Computer Science 807
(1994) 307-325, Springer Verlag.

[23] J. Kececioglu and D. Sankoff, "Exact and Approxi-
mation Algorithms for Sorting by Reversals, with Ap-
plication to Genome Rearrangement", Algorithmiea 13
(1995) 180-210.

[24] D. Sankoff, G. Sundaram and J. Kececioglu, "Steiner
Points in the Space of Genome Rearrangements", In-
ternational Journal of Foundations of Computer Sci-
ence 7 (1996) 1-9.

[25] N. Tran, "An Easy Case of Sorting by Reversals", Pro-
ceedings of 8th Annual Symposium on Combinatorial
Pattern Matching, Lecture Notes in Computer Science
1264 (1997) 83-89, Springer Verlag.

2 0

old LP

sol time (match time) # nodes root time
25 10 0.01 (0.00) 1.0 0.01
50 10 0.16 (0.11) 1.0 0.12
75 10 2.58 (2.19) 3.0 0.84
i00, 10 21.65 (19.86) 13.2 3.88
1251 10 133.60 (125.08) 42.5 9.08

1150 10 251.96 (239.48) 30.8 13.76
175 6 1919.67 (1783.37) 320.4 24.41

i200 4 2687.93 (2552.16) 188.8 34.84

new LP

sol time (AP time) # nodes root time
10 0.01 (0.00) 1.1 0.01
10 0.07 (0.03) 1.0 0.04
10 0.52 (0.15) 2.8 0.25
10 2.78 (0.95) 13.9 0.55
10 4.83 (1.77) 9.1 1.26
I0 22.50 (9.53) 32.8 2.23
I0 400.93 (195.24) 506.7 3.33
9 956.55 (479.55) 826.0 5.18

b(x) -e(=)
b(~r) - c*(~')

1.OOO
0.999
1.000
1 .OOO
1.000
1.000
1.ooO
1.ooO

Table 1: Results with the old and new LP relaxations. Average values over 10 instances.

speed-up

1.7
2.6
3.3
7.1
7.2
6.2
7.3
6.7

n # singl
25 19.5 (23)
5o 42.1 (48)
75 70.6(75)
too 95.1 (loo)
125 120.8 (125)
150 144.1 (148)
175 171.0 (173)
2oo lg6.8 (29o)

rev # sol
16.2 (18) lO
35.0 (37) 10
~ . 1 (58) 10
76.1 (78) 10
96.6 (98) i0

116.6 (118) I0
138.6 (141) 10
159.1 (160) 9

t ime root time LP time AP time # nodes root gap
o.o1 (0.02)
0.07 (0.12)
0.52 (1.37)
2.78 (9.40)
4.83 (12.52)

22.50 (84.83)
400.93 (1769.00)
956.55 (3600.00)

o.ot (0.02)
0.04 (0.08)
!0.25 (0.32)
3.55 (0.63)
t.26 (1.47)
2.23 (2.80)
3.33 (4.20)
5.18 (7.13)

o.oo (50.0%)
0.03 (46.2%)
0.26 (49.7%)
1.17 (42.3%)
1.96 (40.6%)
8.89 (39.5%)

142.82 (35.6%)
332.96 (34.8%)

0.00 (25.0%)
0.03 (43.6%)
0.15 (29.6%)
0.95 (34.3%)
1.77 (36.7%)
9.53 (42.3%)

195.24 (48.7%)1
479.55 (50.1%)i

I.i (2)
1.0 (1)

2.8 (16)
13.9 (64)
9.1 (34)

32.8 (156)
506.7 (2341)
826.0 (3306)

0.0% (0.0%)
0.0% (0.0%)
0.2% (1.8%)
D.3% (1.4%)
0.1% (1.0%)
0.7% (0.9%)
0.6% (1.4%)
0.6% (1.2%)

Table 2: Exact solution of random permutations. Average (maximum) values over 10 instances.

. # singl
100 95.1 (10O)
2oo 196.8 (2oo)
300 295.6 (300)
400 395.0 (400)
5oo 4 ~ . o (5oo)

rev
76.5 (79)

159.5 (100)
245.3 (247)
380.2 (333)
417.5 (422)

time
1.10 (1.50)

16.85 (19.42)
88.52 (93.75)

270.43 (287.80)
649.30 (667.13)

LP time
0.47 (43.2%)
4.74 (28.1%)
20.28 (22.9%)
60.73 (22.5%)
143.32 (22.1%)

AP time final gap
0.31 (28.6%) 0.8% (2.5%)
7.21 (42.8%) 0.9% (1.9%)

39.51 (44.6%) 1.6% (2.4%)
123.18 (45.6%) 1.6% (2.1%)
301.85 (46.5%) 1.9% (2.6%)

Table 3: Heuristic solution of random permutations. Average (maximum) values over 10 instances.

instance n # singl # rev time root time LP t ime AP time # nodes root gap
ignoring signs 138 133 106 10.58 0.45 5.11 4.36 18 1

partially signed 138 135 118 2.33 0.25 0.60 0.62 1 0

Table 4: Results for man and mouse genome instances.

21

m i m e
Ii--.n~aiMm:lw~.~i~]i:iw~im--ii--IRIRi~lW, lW~gw, imai~iiT] E

iE '~ lw~a- , ,aw~,aw~,aX- , l iUBHm~On - - m R m g H ~

i ~ a ~ . ~ w ~ , ~ * ~ , . . , . , . w ~ l l ~ l ~ l ~ l ~ ~ ~ ~ ~ [

i n H H H m m . , . ~ . - u ~ . q ~ . , , - . - , ~ - . ~ , . , , , . ~ . ~ . ~ . H g g H i

I n ~ H H ~ a i e a m : i H H n o ~ B H H H n H H [

ll~li~jHnw~:lW~ail:lW~lil,ll~lit]gi~lit,lW~iW~,lltalt,lJ~lE

iHH I I ID I : IW~ , I I ~ I I : I ~HHOi~ l i~ IW~ lW~lW~I I I I I I ID I I ~
l u a a i ~ r i i a r 4 H H O ~ H o n n ~ m H H H n n ~

1 Homo Sapiens
2 Albinaria Coerulea
3 Arbacia Lixula
4 Artemia Franciscana
5 Ascaris Suum
6 Asterina Pectinifera
7 BalanogLossus Carnosus
9 Cepaea Nemoralis
10 Cyprinus Carpio
11 Didelphis Virginiana
12 Drosophila Yakuba
13 Florometra Serratissima
14 Kathar ina Tunicata
15 Lumbricus Terrestris
t6 Onchocerca Volvulus
17 Polypterus Ornatipinnis
18 Protopterus Dolloi
19 Strongylocentrotus Purpura tus
20 Struthio Camelus

Table 5: Mitochondrial genome distances. All permutations have size 37 and the overall time for computing the
table was 4.5 seconds.

