
Integrative Approach for Computationally Inferring Protein 
Domain Interactions  

See-Kiong Ng Zhuo Zhang Soon-Heng Tan 
Laboratories for Information Technology 

21 Heng Mui Keng Terrace 
Singapore 119613 

 

 
ABSTRACT 
Motivation: The current need for high-throughput protein 
interaction detection has resulted in interaction data being 
generated en masse, using experimental methods such as yeast-
two-hybrids and protein chips.  Such data can be errorful and they 
often do not provide adequate functional information for the 
detected interactions; it is therefore useful to develop an in silico 
approach to further validate and annotate the detected protein 
interactions.   
Results: Given that protein-protein interactions involve physical 
interactions between protein domains, domain-domain interaction 
information can be useful for validating, annotating, and even 
predicting protein interactions. However, large-scale 
experimentally determined domain-domain interaction data do not 
exist; as such, we describe an integrative approach to 
computationally derive putative domain interactions from 
multiple data sources, including rosetta stone sequences, protein 
interactions, and protein complexes.  We show the usefulness of 
such an integrative approach by applying the derived domain 
interactions to predict and validate protein-protein interactions.  
Contact: skng@lit.a-star.edu.sg  

1. INTRODUCTION 
The genome era has produced extensive lists of genes and their 
encoded proteins for many living organisms (Benson et al., 2002; 
Hubbard et al., 2002).  However, simply knowing the parts list of 
genes and proteins does not tell us much about how life’s many 
biological processes work.  The cellular machinery is a complex 
dynamic system with hundreds of thousands of bio-molecules 
interacting with one another to execute life’s many functions.  To 
fully understand the genetic program of life, a comprehensive 
description of protein-protein interactions is required. 

Historically, scientists have been studying individual protein 
interactions with top-down, hypothesis-driven approaches, 
designing focused experiments to derive detailed information for 
testing hypotheses about each interaction studied. Today, the need 
for high-throughput interaction detection has resulted in large 
quantities of protein interaction data being generated at an 
unprecedented rate, using methods such as two-hybrid systems 
(Ito et al., 2001; Ito et al., 2000; Uetz et al., 2000) and protein 
chips (Zhu et al., 2001). However, these detection systems often 
provide only mere detection of the physical molecular 
interactions. Such a paradigm shift to bottom-up, data-driven 
approaches has resulted in a lack of information for understanding 
the interactions that are now detected en masse.  In addition, the 
prevalent focus on quantity may have also resulted in a 
compromise on the quality of the interaction data, as high error 
rates have been detected in interaction data generated by current 

high throughput methods (von Mering et al., 2002).  This calls for 
a need to validate the detected protein-protein interactions with 
other means. It is a key bioinformatic and experimental challenge 
now to explore methods that can characterize and validate the 
large quantities of detected protein interactions in a reliable and 
efficient manner. 

This paper attempts to address this problem by focusing on 
domain-domain interactions.  As protein-protein interactions 
involve physical interactions between the proteins’ subunits or 
domains, domain-domain interactions can be useful for validating, 
annotating, and even predicting protein interactions.  However, 
unlike protein-protein interaction detection where large-scale 
experiments have been performed to elucidate the map of various 
species’ interactomes (Ito et al., 2001; McCraith et al., 2000; Rain 
et al., 2001; Uetz et al., 2000), high-throughput experimental 
results for domain-domain interactions remained unavailable.  
Deriving such information with bioinformatic means must be 
considered. 

We describe an integrative approach to computationally infer 
putative domain-domain interactions from heterogeneous data 
sources ranging from Rosetta stone sequences to protein 
interactions and complexes.  We use a confidence scoring system 
to integrate interaction information derived from multiple data 
sources.  We show that such an integrative approach, which draws 
from multiple data sources and methods, can provide higher 
confidence predictions and better coverage than a non-integrative 
approach.  We study the strengths of using domain interactions as 
evidential supports for protein interactions, and illustrate how 
they are best used for validating detected protein interactions and 
complexes. 

2. BACKGROUND 
Domains are modules of amino acid sequence within the proteins 
themselves with specific evolutionarily conserved motifs that 
have structural or functional implications.  Protein domains are 
therefore reusable sequence units that can be found in multiple 
protein contexts, and all proteins can in principle be characterized 
by combinations of domains.  The domains form the structural or 
functional units of proteins that partake in intermolecular 
interactions.  The existence of certain domains in proteins can 
therefore suggest the propensity for the proteins to interact or 
form a stable complex to bring about certain biological functions.  
The analysis of many protein-protein interactions can thus be 
reduced to understanding the underlying domain-domain 
interactions between the proteins. 

Researchers have recently begun to investigate the use of domain-
domain interactions for in silico prediction of protein-protein 



interactions.  Wojcik and Schächter (Wojcik et al., 2001) have 
shown that using domain profile pairs can provide better 
prediction of protein interactions than using full-length sequences.  
Gomez and Rzhetsky (Gomez et al., 2002) explored the use of 
domain interaction with network topology to predict protein-
protein interactions statistically, while Deng et al. (Deng et al., 
2002) recently devised a maximum likelihood approach to infer 
domain-domain interactions and then used the inferred domain-
domain interactions to predict protein interactions.  The domain 
interaction information in these related works were either 
implicitly or explicitly derived solely from known protein-protein 
interactions. 

Alternative computation means for predicting protein-protein 
interactions using protein domains have also been considered.  
The gene fusion method, also known as the “Rosetta Stone” 
method, has been used to predict protein-protein interactions 
(Enright et al., 1999; Marcotte & Pellegrini & Ng et al., 1999), as 
well as in combination with other non-homology methods to 
computationally assign functional links between proteins 
(Marcotte & Pellegrini & Thompson et al., 1999).   By focusing 
on domains instead of genes, the modified domain fusion method 
can also be used to infer domain-domain interactions from 
sequences in different species. 

Results from previous works have shown that domain-domain 
interactions are good common denominators for protein 
interaction prediction (Deng et al., 2002; Sprinzak et al., 2001; 
Wojcik et al., 2001).  In these previous works, domain 
interactions were inferred solely from known protein-protein 
interactions.  Here, we adopt an integrative approach that uses 
multiple data sources, including experimentally derived protein 
interactions, inter-molecular relationships in protein complexes, 
and computationally predicted Rosetta stone sequences, to 
collectively infer putative domain-domain interactions.  Such an 
integrative approach should provide better coverage and enhance 
prediction reliability, as interactions independently derived from 
multiple data sources and methods are more likely to be genuine 
than those derived from a single data source or method.  With a 
database of high quality putative domain-domain interactions in 
terms of coverage and reliability, better global analysis of protein-
protein interactions can then be achieved. 

3. MATERIALS AND METHODS 
Our integrative approach uses multiple data sources for inferring 
interaction information.  Currently, we use three different data 
sources: protein interactions, protein complexes, and domain 
fusions.  Of course, this approach allows additional methods and 
data sources to be incorporated for even higher coverage and 
better quality predictions. 

Once domain-domain interactions are inferred from the various 
data sources, they are integrated into a common database and 
sorted with a confidence scoring system that assigns higher scores 
to domain interactions that are more certain and multiply derived.  
This database of putative domain-domain interactions can then be 
used for validating, annotating, and predicting protein-protein 
interactions. 

3.1 Domain Characterization of Proteins 
The very first step is to characterize the input proteins by their 
respective protein domains, reducing protein-protein interactions 

to domain-domain interactions.  We refer to the Pfam database 
(Bateman et al., 2002) for pre-defined protein-domain 
relationships instead of deriving our own domain profiles such as 
in (Wojcik et al., 2001).   Pfam contains a large collection of 
multiple sequence alignments and profile hidden Markov models 
(HMM) covering the majority of protein domains.  Proteins not 
listed by the Pfam database can be aligned with a profile HMM 
constructed from the seed alignment using the HMMER2 
software (http://hmmer.wustl.edu) (Durbin et al., 1998). 

The Pfam database consists of two classes of domains: Pfam-A 
and Pfam-B.  The domains from Pfam-A are manually curated 
and functionally assigned, whereas domains from Pfam-B are 
automatically generated by programs based on the ProDom 
database (Corpet et al., 2000).  Results from previous works have 
shown that it is advantageous to use a larger set of domains to 
ensure sufficient coverage; for example, the assignment of 
domains to the proteins was found to be a major limitation in 
(Sprinzak et al., 2001), where their usable data were reduced by 
50% because many of the interacting proteins cannot be assigned 
with a recognizable domain.  In our case, Pfam-A also covers 
only 52.8% of our training proteins.  As our main objective is to 
use domain-domain interactions to validate protein interactions, it 
is important to use as large a set of domains as possible to ensure 
coverage.  Futhermore, although the overall quality of the Pfam-B 
domains may not be as good as the manually curated Pfam-A 
domains, the Pfam-B domains that emerge eventually in domain-
domain interactions are quite likely to be genuine domains even 
though they are yet to be manually curated.  We therefore used 
both Pfam-A and Pfam-B to characterize the interacting proteins 
in our training set. 

3.2 Inference of Domain-Domain Interactions 
Three different data sources are currently used in our integrative 
approach for inferring domain-domain interaction information: 
experimentally derived protein-protein interactions, inter-protein 
relationships in detected protein complexes, and predicted domain 
fusion events. 

3.2.1 Protein-protein interactions 
The conventional data source for deriving domain-domain 
interactions is from pairwise protein-protein interactions.  This 
was the method used in previous works (Bock et al., 2001; Deng 
et al., 2002; Gomez et al., 2002; Sprinzak et al., 2001; Wojcik et 
al., 2001). Given two proteins that are known to bind to one 
another (e.g. in yeast-two-hybrid experiments), we can infer that 
some domains from the two sets of domains from the proteins 
could potentially interact with one another.  For example, if two 
proteins Pr and Ps are known to bind to each other, then we infer 
that the domain dr,i potentially interacts with domain ds,j with a 

minimal probability of 
srmm

1 , where mr and ms are the number of 

domains in proteins Pr and Ps respectively, and dr,i and ds,j are the 
ith and jth domains of proteins Pr and Ps respectively. 

Here, we used the protein-protein interaction data from the DIP 
(Xenarios et al., 2002) database, a comprehensive curated catalog 
of about 18,000 experimentally determined interactions between 
proteins from over 110 organisms.  For evaluation, we used only 
the 9,708 yeast interactions in DIP, and derived 38,524 possible 
interacting domain-domain combinations.  Of course, many of 



these domain-pairs could be chanced occurrences; we will be 
using a probabilistic scoring system to weed out these spurious 
predictions. 

3.2.2 Protein complexes 
Most biological functions involve the formation of protein 
complexes; several proteins can come together to form a multi-
protein complex.  Domain interaction information can be inferred 
from the inter-molecular relationships in these protein complexes. 

Suppose proteins P1, …, Pn are known to form an n-protein 
complex, , we can infer that domain dr,i potentially interacts with 

domain ds,j with a minimal probability of 
srmm

n 1
2

1

⋅
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, where 

mr and ms are the number of domains in proteins Pr and Ps 
respectively, and dr,i and ds,j are the ith and jth domains of proteins 
Pr and Ps respectively.  We currently used a set of 232 yeast 
protein complexes that comprises of an average of 11.5 proteins 
per complex from the Cellzome database (McCraith et al., 2000), 
together with 7,451 complexes from the PDB (Westbrook et al., 
2002) that have at least 2 chains and no more than 5 different 
proteins, as a second additional data source to derive domain-
domain interactions.  A total of 11,102 putative interacting 
domain pairs were inferred from this second data source. 

3.2.3 Domain fusions 
The previous two data sources were both experimentally 
determined.  For a third data source, we employed one that was 
computationally predicted.  Scientists have observed that some 
pairs of interacting proteins have homologs in another organism 
that are fused into a single protein chain. For instance, separate 
genes encoding two interacting proteins in the yeast genome 
might be found as a single gene encoding a longer fused protein 
in the human genome.  This observation can be used as a basis for 
predicting protein-protein or domain-domain interactions: if 
proteins, or protein domains, disparate in one organism are fused 
together in a second organism, it suggests that they may function 
or interact together in the first organism. The fused protein 
sequence Pr-Ps is called Rosetta Stone Sequence (Enright et al., 
1999; Marcotte & Pellegrini & Ng et al., 1999).  

The domain fusion method therefore looks for protein domains 
that are separate in one organism but fused together in another to 
postulate potential interactions between the domains. Scanning 
the SWISS-PROT (Bairoch et al., 2000) database that contained 
proteins from over 7,000 species, the domain fusion method 
yielded 4,792 putative domain-domain interactions+.  

3.3 An Integrative Scoring System 
A weighted scoring system was devised to integrate the 
interactions derived from the heterogeneous data sources in a 
systematic way, assigning higher confidence to domain 
interactions that are more certain and are derived from multiple 
sources. 

                                                                 
+ Only Pfam-A domains are available in the third-party data 

source that we used (see Acknowledgements). 

3.3.1 Scoring inferences from protein interactions 
The putative interacting domain pairs were generated by 
combination between the sets of domains in the interacting 
proteins, which means that many of the inferred domain pairs 
were random occurrences.  To detect those that are more likely to 
genuine, we compare the observed weighted frequencies of 
domain pairs against the corresponding expected frequencies of 
domain pairings by random occurrence.  The greater the observed 
frequency is over the expected frequency, the more confident we 
can be about the inferred domain interactions. 

We compute the observed and expected weighted frequencies of 
an inferred interacting domain pair <dx,dy> as follows: 
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where 

N int
 =   number of protein-protein interactions used 

for training 

wi

evidence  =   weight of evidence supporting the i-th 

protein-protein interaction  
 = total number of distinct experiments 

detecting the i-th protein interaction∗ 

wi

domain
 =   weight of domain pair being responsible for 

the i-th protein-protein interaction 

 =   minimal probability 
siri mm ,,

1 , as described 

previously 
),( yx

iλ  = total number of occurrences of the domain 

pair <dx,dy> in the i-th protein interaction# 
)(xf  =  frequency of domain dx found in the 

interacting proteins of the training set 
We define the confidence score for a derived interacting domain 
pair <dx,dy> as the number of times it was observed more than it 
was expected as a random occurrence: 

),(),(),( intintint yxyxyx EOS =  

This scoring scheme is based on odd-ratios; as such, domain-
domain interactions that are derived from multiple protein 
interactions and are less likely to be chanced occurences would be 
favored. The probablistic weighting scheme allows the 
assignment of higher scores to those inferred from interacting 
proteins with fewer domains (hence, more certain).   

                                                                 
∗ Here we are treating protein-protein interactions that have been 

independently observed from multiple experiments as 
equivalent to being separate interactions for inference. 

# Although the domain pairing relation <dx,dy> is symmetric, 
<dx,dy> and <dy,dx> are counted separately, as are multiple 
occurrences of the same domain in either proteins. 



3.3.2 Scoring inferences from protein complexes 
For protein complexes, we can assign confidence scores in a 
similar fashion.  Here, the observed and expected weighted 
frequencies are: 
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where 

N cplx
 =   number of protein complexes in the training set 

M i
 =   number of possible protein-protein pairs in the 

i-th protein complex 
 = 
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ni  where ni is the number of proteins in the 

i-th protein complex 
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evidence  =   weight of evidence supporting the i-th protein 

complex  
 = total number of distinct experiments detecting 

the i-th protein complex 
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<dx,dy> in the j-th pairing of proteins in the i-th 
protein complex 

)(xf  =  frequency of domain dx found in all the protein 
components of the training set 

 
Again, the confidence score for a domain interaction <dx,dy> 

inferred from protein complex data is: 
),(),(),( cplxcplxcplx

yxyxyx EOS =  

3.3.3 Scoring inferences from domain fusions 
For domain-domain interactions <dx,dy> inferred from predicted 
domain fusion events, instead of using a probablistically weighted 
odd-ratio scheme similar to those described above, we currently 
assign a standard scoring of Sfus(x,y) = 2 (to indicate a non-
chanced occurrence).  This is because we have obtained our 
domain fusion data from a third party (see Acknowledgements) 
and the background data for deriving a probabilistic scoring were 
unavailable at the time of writing.   

3.3.4 Putting it together 
For each independently inferred domain-domain interaction 
<dx,dy>, we compute a combined weighted confidence score as 
follows: 

),(),(),(),(
fus fuscplx cplxintint

yxyxyxyxscore SwSwSw ++=  

Although this scoring scheme allows giving more weights to 
inferences from selected data sources that are found to be more 
reliable than others, we use equal weighting, wint = wcplx = wfus = 
1, for all three data sources in the current system.  Different 
weights can be used later when we have established the relative 
usefulness of the different data sources. 

4. SYSTEM 
We have developed an automated interacting domain discovery 
system, InterDom, based on this integrative approach.  The 
InterDom system was implemented in a UNIX environment, and 
the data are stored in a relational database in mySQL for 
scalability. Automated methods for searching the various 
databases and for dynamically displaying the selected tables and 
domain interaction graphs to the users were built with a 
combination of Perl, PHP, Java, and HTML 
The InterDom database is accessible on the World Wide Web 
(http://InterDom.lit.org.sg).  The site provides a useful web 
interface for validating and annotating detected protein-protein 
interactions and complexes that are computationally predicted or 
experimentally detected.  For example, user can enter a list of two 
or more molecule names that have suspected interaction 
relationships, and the system will validate the hypothesis by 
linking the input molecules with potential domain-domain 
interactions between them. The resulting structure is laid out 
graphically in a java applet for easy viewing and navigation, as 
shown in Figure 1. 

5. EVALUATION 
As large-scale experimentally determined domain-domain 
interaction data do not exist, we could not directly assess the 
accuracy of our inferred domain-domain interactions.  Instead, we 
evaluate the usefulness of our integrative approach by applying 
the domain-domain interactions inferred to validate experimental 
protein-protein interaction data.  Quality of the inferred domain-
domain interactions is evaluated by measuring the efects of more 
data sources on the true positive rates on positive protein 
interaction data, as well as the false positive rates on negative 
protein interaction data. 

For true positive rates, we performed a 20-fold cross-validation on 
the 9,708 yeast protein interaction data from DIP.  A true positive 
is a protein interaction that can be validated with at least one 
domain-domain interaction inferred from the data sources used.  
For false positive rates, because sufficient experimentally 
validated non-interacting protein pair data are currently 
unavailable, we generate 20 sets of 485 putative non-interacting 
protein pairs each by randomly pairing the proteins from the 20-
fold cross-validation, excluding, of course, any actual interacting 
pairs. An “estimated” false positive, in this case, is a protein pair 
from a negative set that can be validated with an inferred domain-
domain interaction. 

We evaluated the quality of domain-domain interactions inferred 
from one data source (protein interactions), two data sources 
(protein interactions plus complexes), and three data sources 
(protein interactions, complexes, and domain fusions).  The 
resulting average true positive and false positive rates on the yeast 
protein testing data set are shown in Table 1. 



Table 1. Average true positive and false positive rates for protein 
interaction validation based on inferred domain-domain 
interaction information from various data sources.  

 
Protein 

interactions 
only 

Protein 
interactions 
and protein 
complexes 

Protein 
interactions, 
complexes, 
and domain 

fusions 
True 

positive 38.92% 58.28% 58.97% 

False 
postive 8.49% 11.51% 12.51% 

Table 1 shows that an integrative approach that uses multiple data 
sources for protein interaction validation is advantageous.  By 
introducing an additional data source of protein complexes, the 
true postive rate was vastly improved without greatly affecting 
the false positive rate with the additional inferred domain-domain 
interactions.  While the addition of the third data source (namely, 
domain fusions) only slightly improves the true positive rate, it 
also did not compromise on the false positive rate. The quality of 
inferred domain-domain interactions should improve as more 
different data sources are integrated.  

Table 2 shows the overlap of the inferred domain-domain 
interaction from the three data sources.  Currently, nearly a 
quarter of the inferred domain-domain interactions were 
independently derived from both protein-protein interaction and 
protein complex data sources, while a lesser degree of overlap 

occurs between domain fusions and interactions and complexes.  
The latter may be due to the fact that only Pfam-A domains had 
been used for domain fusion inferrence, and also that the testing 
data set has been restricted to only yeast proteins, as the effect of 
the domain fusion method may be more pronounced with multi-
species testing data.  Nevertheless, this result suggests the 
vastness of the domain interaction space.  Given the existing 
limited coverage of the various data sources, it is therefore 
essential to adopt an integrative approach to combine more data 
sources and approaches to achieve comprehensive coverage. 

Table 2.  Percentage of domain-domain interactions inferred 
from disparate data sources. 

Interactions
+ 

Complexes 

Interactions  
+  

Domain 
fusions 

Complexes 
+ 

Domain 
fusions 

All 

23.03% 4.70% 4.06% 3.59% 

6. CONCLUSIONS AND FUTURE WORK 
We have presented an integrative approach for computationally 
inferring domain-domain interactions from heterogeneous data 
sources, using a probabilistic confidence scoring scheme.  We 
have shown that by drawing from heterogeneous sources, ranging 
from experimentally determined protein interactions and 
complexes to computationally predicted domain fusion events, the 

Figure 1. The InterDom system.  Here, six septin-complex molecules together with other non-septin proteins were input 
to the system. The system found putative domain-domain interaction links between the six septin members, while the non-
septin members remained unlinked. 



integrative approach’s sensitivity in validating detected protein 
interactions improves as more data sources are integrated.   

We plan to investigate the use of additional data sources and 
methods to derive domain interactions, so that we can arrive at 
better quality data in future.  One possible data source for 
exploitation is the scientific literature.  Scientific text mining is 
becoming an increasingly researched topic in post-genome 
bioinformatics (Mack et al., 2002), as results of scientific research 
are still reported in scientific journals and conferences despite the 
proliferation of sequence and structure databases.  We can use 
text mining approaches such as those described in (Ng et al., 
1999) to automatically extract domain-domain interactions, 
protein-protein interactions, and protein complex information 
from MEDLINE abstracts as additional sources of information for 
inferring domain-domain interactions. 

The specificity of the domain-domain interaction approach for 
protein interaction validation could be further improved by 
exploring other factors that potentially underlie protein 
interactions, and incorporating these factors into the validation 
process.  For example, some interactions between protein domains 
could be non-binary, and may depend on other non-domain 
factors. It is possible to employ machine learning methods to 
detect such complex domain-domain interactions.  For example, 
Bock and Gough (Bock et al., 2001) has used a support vector 
machine system to predict protein-protein interactions based on 
primary structures and physiochemical properties.  It will be 
useful to explore the use of machine learning techniques to 
discover the more complex domain-domain interactions, as well 
as any other biological factors that affect domain-domain 
interactions.  This will lead to useful knowledge for better in 
silico validation, annotation, and even prediction of protein-
protein interactions. 
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