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ABSTRACT
Methods and Results: We introduce a new method
to discover many diversified and significant rules from
high dimensional profiling data. We also propose to
aggregate the discriminating power of these rules for
reliable predictions. The discovered rules are found to
contain low-ranked features; these features are found to
be sometimes necessary for classifiers to achieve perfect
accuracy. The use of low-ranked but essential features in
our method is in constrast to the prevailing use of an ad-
hoc number of only top-ranked features. On a wide range
of data sets, our method displayed highly competitive
accuracy compared to the best performance of other
kinds of classification models. In addition to accuracy,
our method also provides comprehensible rules to help
elucidate the translation between raw data and useful
knowledge.
Supplementary information: http://sdmc.lit.org.sg/
GEDatasets/supplementaldata/eccb2003/ECCB2003.
html.
Contact: jinyan@i2r.a-star.edu.sg

1 INTRODUCTION
Microarray gene expression profiling is a technology that
has been widely used in post-genome cancer research
studies Golub et al. (1999); Yeoh et al. (2002); Singh et
al. (2002); Gordon et al. (2002), while mass spectrometry
is also increasingly being used in the cancer research field
for measuring the mass-charge ratios of molecular proteins
in tumor tissues Petricoin et al. (2002). Both microarray
and mass spectrometry generate high-dimensional data
from large-scale measurements of genes and proteins. The
complexity of the resulting data then naturally requires
computational analysis tools to extract significant and
reliable rules from the data. The discovery of such rules
can then ease the difficulty for translating the complex
raw data into relevant and clinically useful diagnostic or
prognostic knowledge.

We define a rule as a set of conjunctive conditions
with a predictive term. The general form of our rules is
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represented as follows:

If cond1 and cond2 and · · · condm ,
then a predictive term

The predictive term in a rule often refers to a single class
(e.g. a particular subtype of a cancer). All conditions in
a rule are required to be true in some samples of the
predictive class, but not all true in any samples of any
classes other than the one in the predictive term.

In cancer and other disease diagnosis, the number m
of conditions is preferred to be no more than 5 for easy
understanding. Ideally, rules with m = 1, 2, or 3 are
best for clinical diagnosis. The following rule Li et al.
(2003) is an example containing two conditions on the
gene expression profiles of childhood leukemia cells:

If the expression of 40454 at is ≥ 8280.25
and the expression of 41425 at is ≥ 6821.75,
then this sample is subtype E2A-PBX1.

This rule is not satisfied by any cells of any leukemia sub-
types other than E2A-PBX1, while 100% of the samples
in the E2A-PBX1 class each satisfy both of the two con-
ditions on gene expression profiling. It is therefore useful
for clinical diagnosis purposes.

This paper aims to study two problems:

1. How to discover many significant rules from high-
dimensional data, and

2. How to aggregate the discriminating power of the
many rules to make reliable predictions.

The first problem addresses issues in understanding the
mechanism of a disease or identification of new pathways:
the discovery of valid and understandable rules from
expression data will provide important insights on the
underlying biological processes. The second problem,
seeking to improve the discriminating power of the rules,
will address the need for accuracy in clinical diagnosis and
prognosis, or subtype classification of diseases.

The rest of the paper is organized as follows: Section 2
provides more background information and describes our
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contribution made in this paper. Section 3 explains with
examples the intuition that ‘the second could be best’, an
observation that has inspired our new approach. Section 4
describes formally our method for the discovery of rules
based on the concept of tree committees. Section 5
describes state-of-the-art committee classifiers such as
bagging and boosting which are the most relevant work to
ours, and explains the differences between them and our
approach. Section 6 describes two gene expression data
sets and one proteomic data set, all having large numbers
of samples ranging from nearly 200 to 327. We also
report rigorous results for accurate classification. Section 7
concludes this paper with a discussion of other possible
ways for the discovery of trees and rules.

2 BACKGROUND AND CONTRIBUTION
Traditionally, classification rules are discovered from
training data (the known samples) by decision-tree based
methods such as CART and C4.5 Breiman et al. (1984);
Quinlan (1993). However, such rules have a limitation:
They are mutually exclusive, covering the entire of
training samples exactly only once. We call this the single
coverage constraint. Due to this constraint, decision-tree
methods are not encouraged to derive many significant
rules; such possible omission of significant rules in
the resulting system may bias unjustified predictions.
Decision-tree methods have also the so-called fragmen-
tation problem Pagallo and Haussler (1990); Friedman
et al. (1996): as less and less training data are used to
search for root nodes of subtrees, a series of many locally
important but globally un-important rules are generated.
These minor rules may in turn mis-guide the resulting
system, decreasing the accuracy of the decision trees.

In our approach, we still use decision trees to discover
rules. But we use committees of trees instead of single
trees. As a tree is a collection of rules where every
leaf of the tree corresponds to a rule, multiple trees can
contain many significant rules. The use of multiple trees
breaks the single coverage constraint, and allows the
same training samples to be explained by many either
significant or minor rules. This is a good idea because
the mutually exclusive rules in one decision tree cut
off many interactions among features. However, multiple
trees contain significant rules that can capture many
interactions from different aspects. The multiple cross-
supportive rules therefore much strengthen the power of
prediction.

As another contribution, our method solves the fragmen-
tation problem by weighting rules with their coverage to
prevent the minor rules from playing equal role as the
more significant rules in making decisions.

Our approach differs fundamentally from the state-
of-the-art committee methods such as bagging Breiman

(1996) and boosting Freund and Schapire (1996). Unlike
them, our method always uses the original training data
instead of bootstrapped, or pseudo, training data to
construct a sequence of different decision trees. Our rules
reflect precisely the nature of the original training data,
while the rules produced by the bagging or boosting
methods may not be correct when applied to the original
data, as they sometimes only approximate the true rules.
The bagging or boosting rules should therefore be em-
ployed very cautiously, especially in the applications of
bio-medicine where such concerns could be critical.

Specifically, we discover a committee of multiple trees
using a cascading approach. First, we rank all features into
a list according to their gain ratio Quinlan (1993). Then
we build the first tree using the first top-ranked feature as
the root node, the second tree using the second top-ranked
feature as root node, and so on. In general, we build the
kth tree using the kth top-ranked feature as root node.

Given a test sample for classification, our method makes
the final decision by voting, in a weighted manner, the
rules in the k trees of the committee that the test sample
satisfies. We assign weights to the rules according to
their coverage in the original training data; that is, each
rule is weighted by the maximal percentage of training
samples in a class that satisfy this rule. This weighting
method distinguishes between significant and minor rules,
so that those rules all contribute in accordance to their
proportional roles to the final voting.

Note that all original features are open for our selection
to form rules, so our method avoids the difficult classical
problem of how many top-ranked features to be used for
a classification model. We found that our significant rules
often contain low-ranked features, and that these features
are sometimes necessary for classifiers to achieve perfect
accuracy. If ad-hoc numbers of only top-ranked features
are used as traditionally, we would miss many significant
rules and sometime lose perfect accuracy. We will show an
example to explain this later in Section 6.1. We also note
that the number of features used in our rules is as small as
3 or 5, so they are easily understandable.

On a wide range of data sets, our method also displays
highly competitive accuracy compared to the best per-
formance of other kinds of classification models. So, our
method can provide both highly accurate and comprehen-
sible rules to elucidate the translation between the raw
data and useful knowledge for the scientific understanding
and clinical diagnosis of many common diseases such as
cancer.

3 MOTIVATING EXAMPLES
In this section, we present real examples discovered from
high-dimensional profiling data to explain the following
three facts:
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• Significant rules often contain globally low-ranked
features;

• If the construction of a tree is confined to a set of
globally top-ranked features, the rules in the resulting
tree may be less significant than those rules derived by
using the whole feature space; and

• Alternative trees can often outperform or compete with
the performance of the ‘optimal’ tree when the same
set of test data are applied.

These facts and observations suggest us: (1) not only rely
on top-ranked features; (2) not only use one single tree,
namely only one set of mutually exclusive rules. These
facts let us realize that not only top-ranked features are
important in building significant rules, and that decision
trees rooted by second-best features are also reliable and
useful. We sometimes use the term ‘second could be best’
to outline and refer to these facts and observations.

3.1 Significant rules often contain globally
low-ranked features

A rule has a coverage, namely the percentage of the
samples in a class satisfying the rule. Suppose a class
consists of 100 positive samples and a rule is satisfied by
75 of them, then this rule’s coverage is 75%. A significant
rule is one with a large coverage—e.g. of at least 50%.
Otherwise, we define it as a minor rule.

Given a data set pair having two classes—positive and
negative—of samples, a feature’s discriminating power
to differentiate the two classes can be roughly measured
by its gain ratio Quinlan (1993), or by entropy Fayyad
and Irani (1992). The entropy method measures the class
distribution under a feature of the whole collection of
samples. If the distribution—e.g. expression levels of
a gene for x tumor and normal samples—shows clear
boundary between the tumor and normal classes, this
feature is then assigned a small entropy value. A small
entropy value indicates a low or zero uncertainty for
differentiating the two classes by this single feature, and
such features are thus ranked at top positions.

To demonstrate the first observation that significant
rules often contain low-ranked features, our example is a
significant rule discovered from a prostate disease data set
that comprises expression profiles from 52 tumor cells and
50 normal cells Singh et al. (2002):

If 32598 at ≤ 29 and 33886 at ≤ 10 and
34950 at ≤ 5, then this is a tumor cell.

This rule is a significant rule with a coverage of 94%
(49/52) in the tumor class. Let us look at the three features’
ranking positions. While gene 32598 at sits at the first
position, the other two of the three genes in this significant
rule are globally lower-ranked: gene 33886 at sits at the

Table 1. Various ranking positions of the three features used in a significant
rule discovered from a prostate disease gene expression profiling data. Here
S-to-N stands for the signal-to-noise measurement Golub et al. (1999)

Features 32598 at 34950 at 33886 at

ranking positions
S-to-N 6 8109 9775
t-statistics 13 8302 9790
entropy 1 869 47
gain ratio 1 210 266
X 2 2 42 1095

210th position and 34950 at sits at the 266th position in
the entire set of 12 600 genes.

The rank order here is based on the gain ratio method.
To verify that this is not an artifact of the ranking method
used, we have also explored alternative ranking in terms of
other metrics such as signal-to-noise measurement Golub
et al. (1999), t-statistics, entropy Fayyad and Irani (1992),
and X 2 measurement Liu and Motoda (1998). Table 1
shows the ranking positions of the three genes using
various ranking methods. We found that in general, the
ranking of the genes agrees even when different methods
are used. Therefore, this example illustrates that even very
low-ranked genes can be included in significant rules.

As a second example, we present another significant
rule, discovered from the same prostate cancer data set
above, which is dominant in the normal class:

If 32598 at> 29 and 40707 at> −6,
then this is a normal cell.

This rule is significant with an 82% (41/50) coverage in
the normal class. The ranking positions of the two genes
are as follows: gene 32598 at sits at the first position,
while its component gene 40707 at is globally lower-
ranked at a position below 1000th.

Differentially expressed genes in a microarray exper-
iment can be up-stream causal genes or can be merely
down-stream surrogates. We note that a surrogate gene’s
expression should be strongly correlated to a causal gene’s
and hence they should have similar discrimination power
and should have similar ranking. Thus, if a significant rule
contains both high-ranked and low-ranked genes, we can
suspect that these genes have independent paths of activa-
tion and thus there are at least two genes that are causal.

We have observed this interesting phenomenon in many
other data sets such as a childhood leukemia data set Yeoh
et al. (2002), a lung cancer data set Gordon et al.
(2002), an ovarian disease data set Petricoin et al. (2002).
In total, we examined over 50 significant rules which
contain around 120 features. 56% of these features sit at
position range between 10 and 500; 26% features have
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Table 2. Five rules in a C4.5 tree derived from a prostate disease gene
expression profiling data

Rules 1 2 3 4 5

Coverage 94% 6% 12% 6% 82%
Class Tmr Nml Nml Tmr Nml
# of features 3 3 2 2 2

positioned below 500. Overall, we can say that the low-
ranked features are important components in building
significant rules. The use of only top-ranked features for
data analysis, which is a common pre-filtering strategy
deployed by many methods in this field, is not impartial
indeed. In the next subsection, we further illustrate this
point from a different angle: there can indeed be important
changes in the derived rules’ significance level if a
decision tree is constructed using only top-ranked features.

3.2 Down change of rules’ significance if discovery
is based on a small number of top-ranked
features

Here, we use C4.5 Quinlan (1993) to build up two trees,
namely two groups of rules, and then compare the rules
to see if there are any changes. First, we construct a tree
based on the original whole feature space. The selection
of tree nodes is freely open to any features, including
globally low-ranked features. Figure 1a shows the tree
discovered from the prostate disease data set Singh et al.
(2002). Each path of the tree, from root to a leaf, represents
a single rule. So, this tree has five rules, obtained by
the depth-first traversal to the five leaves. We name the
rules 1, 2, 3, 4 and 5 from the left side to right. Their
respective coverage and number of features contained are
listed in Table 2. Rule 1 is the most significant rule: it
has a 94% coverage over the tumor class. Recall that
this rules contains two extremely lower-ranked features as
mentioned earlier.

Next, we limit our second tree to be constructed with
only 3 globally top-ranked features, namely 32598 at,
38406 at, and 37639 at. The number 3 is chosen to be
equal to the number of features in the most significant rule
(Rule 1) in the first tree. Figure 1b shows the structure
of the second tree; the rules’ respective coverage and the
number of features they contained are reported in Table 3.

An important observation is the unexpected decrease of
the significance of top rule in the second tree constructed
with only pre-filtered top-ranked features. This observa-
tion supports our belief that the best could be the second:
best top-ranked feature groups do not necessarily produce
the most important rules.

In fact, we can prove that if the lowest feature position
in the most significant rule is p, then at least p number of

Table 3. Four rules in a C4.5 tree built on only three top-ranked features

Rules 1 2 3 4

Coverage 88% 14% 10% 88%
Class Tmr Nml Tmr Nml
# of features 2 3 3 2

top-ranked features are necessary for deriving a decision
tree which can contain a rule with the same significance.
It is hard to know the number p if the whole feature space
is not considered. So, to pre-set a threthold to select top-
ranked features is a heuristic that has a risk of losing useful
low-ranked features.

3.3 Alternative trees can perform equally well in
prediction

The aim of this subsection is to see if it is possible to
generate, from the same training data set, two trees (or two
groups of rules) that are diversified but perform equally
well in prediction.

Given a data set, we use C4.5 to generate the ‘optimal’
tree using the most discriminatory feature as the root
node. Next, to generate an alternative tree, we use an
approach that is slightly different from C4.5: we force
the second-best feature to become the root node for this
tree. The remaining nodes are then built by the standard
C4.5 method. We found that such pairs of trees often have
almost the same prediction power, and sometimes, the
second tree even outperforms the first one.

For illustration, we report an example of a pair of
trees where the so-called second-best tree actually greatly
outperformed the first. Figure 2 shows the ‘optimal’ C4.5
tree constructed on a layered data set to differentiate the
subtype Hyperdip>50 against other subtypes of childhood
leukemia Yeoh et al. (2002). Although this C4.5 tree
made no mistakes on the training data, it made 13 errors
out of 49 test samples. In this case, our second-best tree
managed to independently improve the dismal accuracy
of the first tree by making only 9 mistakes on the testing
set. Interestingly, when the pair of trees are combined by
our method (shown in next section), the resulting hybrid
made even fewer mistakes of only 6.

On closer inspection of this pair of trees, we found
that the set of features used in the first tree is disjoint
from the set used in the second tree. The former has
the following four features at its tree nodes: 36620 at,
39806 at, 32845 at and 34365 at; but the latter has a
different set of features at its four tree nodes: 38518 at,
32139 at, 35214 at and 40307 at. Therefore, the two trees
are really diversified. The two trees each contain two
significant rules each for one of the two classes. Again,
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32598 at

33886 at
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34950 at

Normal
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� 5 > 5

> 10

<= 29

32598 at

38406 at

37639 at

<= 29 > 29

Normal<= 420 > 420

Normal Tumor

Tumor

<= 127 > 127

(a) (b)

Fig. 1. Two trees induced from the prostate disease data set of gene expression profiles of 102 cells: (a) the standard C4.5 tree constructed by
using whole feature set; (b) a tree constructed by using only three top-ranked features.

36620 at

39806 at

� c

Hr50

32845 at

> b

� a
> a

others

� b

34365 at

� d

others

Hr50 others

> c

> d

Fig. 2. A decision tree induced by C4.5 from a layered data set
to differentiate the subtype Hyperdip>50 against other subtypes of
childhood leukemia Yeoh et al. (2002). Here Hr50 = Hyperdip>50,
a = 16115.4, b = 4477.9, c = 3453.4, d = 2400.9.

these significant rules contain very low-ranked features
such as 34365 at that sits at the 1878th position. Another
particularly interesting point here is that the coverage of
the top rules in the second tree has increased as compared
to the rules in the first tree. This could explain why the
second tree outperformed the first.

Yet another example can be found in trees constructed
from the layered data set Yeoh et al. (2002) to differentiate
the subtype MLL against other subtypes of childhood
leukemia. Here, the first standard C4.5 tree made 1
mistake out of 55 test samples, while our second tree made
2 mistakes. However, by combining the two trees, the
hybrid made no mistakes with the test set. Randomly, we
examined ten such pairs of trees and found 4 pairs where
the first tree won, 3 pairs where the second tree won, and
3 pairs where the two trees got a tie in performance.

As our tree pairs have generally similar prediction
power, we can treat them as ‘experts’ who understood
the inherent inter-relationship of the features in the data
with their own diversified experience. This suggests a
committee of trees approach: we can increase the diversity
of the trees’ ‘expertise’ by generating a third tree, a fourth

tree, and so on. The wide range of diversities provided
by such a committee of trees or rules, together with the
high quality of the individual trees in the committee, will
provide a good basis for scientists to study bio-medical
data and to conduct cancer diagnosis reliably.

4 METHODS
This section describes our new methods to discover
significant rules using the concept of tree committees,
and presents methods to use the rules as an ensemble
for reliable predictions. We first discuss the two-class
case, then generalize our methods to handle multi-class
applications. Important variants of these methods will be
presented later in Section 7 .

4.1 Rule discovery
Given a training data set D having two classes of samples,
positive and negative, we use the following steps to
iteratively derive k trees from D, where k is significantly
less than the number of features used in D, and usually we
set k as 20:

Step 1: Use gain ratios to rank all the features into an
ordered list with the best feature at the first position.

Step 2: i = 1.

Step 3: Use the i th feature as root node to construct the
i th tree.

Step 4: Increase i by 1 and goto Step 3, until i = k.

Then rules can be directly generated from these trees by
the depth-first traversals. To identify significant rules, we
just rank all the rules according to each rule’s coverage,
the top-ranked ones are significant. The significant rules
may then be used for understanding possible interactions
between the features (e.g. genes or proteins) involved
in these rules. To use the rules for class prediction, our
method is described in the next subsection.

i97



J.Li et al.

4.2 Class prediction
Given a test sample T , each of the k trees in the committee
will have a specific rule to tell us a predicted class label for
this test sample.

Denote the k rules from the tree committee as:

rulepos
1 , rulepos

2 , · · · , rulepos
k1

,

ruleneg
1 , ruleneg

2 , · · · , ruleneg
k2

.

Here k1 + k2 = k. Each of rulepos
i (1 ≤ i ≤ k1) predicts

T to be in the positive class, while each of ruleneg
i (1 ≤

i ≤ k2) predicts T to be in the negative class. Sometimes,
the k predictions can be unanimous—i.e. either k1 = 0 or
k2 = 0. In these situations, the predictions from all the
k rules agree with one another, and the final decision is
obvious and seemed reliable. Oftentimes, the k decisions
are mixed with either a majority of positive classes or a
majority of negative classes. In these situations, we use the
following formulas to calculate two classification scores
based on the coverages of these rules:

Scorepos(T ) =
k1∑

i=1

coverage(rulepos
i ),

Scoreneg(T ) =
k2∑

i=1

coverage(ruleneg
i ).

If Scorepos(T ) is larger than Scoreneg(T ), we assign
the positive class to the test sample T . Otherwise, T is
predicted as negative.

By using the rules’ coverage as weights, we avoid
the pitfalls of simple equal voting adopted by bag-
ging Breiman (1996). Our weighting policy allows the
tree committee to automatically distinguish the contribu-
tions from the minor rules and from the significant rules
in the prediction process.

For multi-class problems, the classification score for a
specific class, say class C, is calculated as:

ScoreC(T ) =
kC∑

i=1

coverage(ruleCi ).

The class that receives the highest score is then predicted
as the test sample’s class.

5 COMPARISON WITH THE
STATE-OF-THE-ART CLASSIFIERS

In this section, we review C4.5 Quinlan (1993) for discov-
ering a set of mutually exclusive rules, namely, a decision
tree, and then highlight the difference of our committee
trees from standard C4.5 trees. Then, we review two state-
of-the-art committee classifiers—bagging Breiman (1996)

and boosting Freund and Schapire (1996)—to compare
their working platforms with ours. We will present our su-
perior performance over the traditional committee classi-
fiers in the next section.

C4.5 Quinlan (1993) is a heuristic algorithm for induc-
ing decision trees. C4.5 uses an entropy-based selection
measure to determine which feature is most discrimina-
tory. This measure is also called gain ratio, or maximum
information gain. Most decision trees in the literature are
constructed by C4.5. In our committees of trees, however,
most are not standard C4.5 trees. This is because instead of
using only the most discriminatory feature, we have em-
ployed a wide range of feature choices for building the
root nodes of the trees. Our trees also have strong predic-
tion power, and sometimes even better performance than
the standard C4.5 trees, as discussed in Section 3.

Committee decision techniques such as AdaBoost Fre-
und and Schapire (1996) and Bagging Breiman (1996)
have also been proposed to reduce the errors of single trees
by voting the member decisions of the committee Bauer
and Kohavi (1999); Quinlan (1996). Unlike our approach,
AdaBoost and Bagging both apply a base classifier (e.g.
C4.5) multiple times to generate a committee of classifiers
using bootstrapped training data. Assume that a given
set of training data has N samples, and a number R of
repetitions or trials of the base classifier is to be applied.
By the bagging idea, for each trial t = 1, 2, · · · , R, a
bootstrapped training set is generated from the original
data. Although this new training set is the same size as the
original data, some samples may no longer appear in the
new set while others may appear more than once. Denote
the R bootstrapped training sets as B1, B2, · · · , BR . For
each Bt , a classifier Ct is built. A final, bagged classifier
C∗ is constructed by aggregating C1, C2, · · · , and CR .
The output of C∗ is the class predicted most often by its
sub-classifiers, with ties broken arbitrarily.

Similar to bagging, boosting also uses a committee of
classifiers for classification by voting. Here, the construc-
tion of the committee of classifiers is different: while bag-
ging builds the individual classifiers separately, boosting
builds them sequentially such that each new classifier is
influenced by the performance of those built previously. In
this way, those samples incorrectly classified by previous
models can be emphasized in the new model, with an aim
to mold the new model become an expert for classifying
those hard instances. A further difference between the two
committee techniques is that boosting weights the indi-
vidual classifiers’ output depending on their performance,
while bagging gives equal weights to all the committee
members. AdaBoost.M1 Freund and Schapire (1996) is a
very good example of the boosting idea.

Our method differs from these traditional committee
classifiers in the management of the original training data.
Bagging and boosting generate bootstrapped training data
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for every iteration’s construction of trees. Our method
keeps both the size of the original data and the features’
values unchanged throughout the whole process. As a
result, our rules will always reflect precisely the nature
of the original data, whereas because of the use of
bootstrapped training data, some bagging or boosting rules
may not be true when applied to the original training data.

In addition to being different from bagging and boost-
ing, our method also differs from another voting method
called the randomized decision trees Dietterich (2000).
This algorithm is a modified version of the C4.5 learning
algorithm in which the decision about which split to
introduce at each internal node of the tree is randomized.
With a different random choice, a new tree is then con-
structed. Twenty of the best splits (in terms of gain ratio)
for a feature were considered to be the pool of random
choices Dietterich (2000). Every member of a committee
of randomized trees constructed by this method always
shares the same root node feature. The only difference be-
tween the members is at their internal nodes. In contrast,
our trees in a committee differs from one another not only
at root node but also at internal features. Our committees
of trees have much larger potential for diversity than the
randomized trees.

6 DATA AND EVALUATION
We report here the performance of our method and
compare it with bagging and boosting methods, as well
as support vector machines (SVM) Burges (1998) and k-
nearest neighbours on a wide array of expression data,
including a childhood leukemia gene expression data Yeoh
et al. (2002), an ovarian tumor proteomic data Petricoin
et al. (2002), a lung cancer gene expression data Gordon
et al. (2002), as well as other data Armstrong et al.
(2002); Golub et al. (1999). All these data have been
grouped in our supplementary website http://sdmc.lit.org.
sg/GEdatasets.

We report our results based on two measures: test error
numbers—the number of misclassifications on indepen-
dent test samples, and the error numbers of 10-fold cross
validation. When the error numbers are represented in the
format x : y, it means that x number of samples from the
first class and y number of samples from the second class
are misclassified. The number of iterations used in bag-
ging and boosting was set as 20—equal to the number of
trees used in our method. The main software package used
in the experiments is Weka version 3.2, its Java-written
open source are available at http://www.cs.waikato.ac.nz/
∼ml/weka/ under the GNU General Public Licence.

6.1 Classification of ovarian tumor and normal
patients by proteomics

Our first evaluation is on a recent ovarian data set Petricoin
et al. (2002) which is about how to distinguish ovarian

Table 4. The error numbers (Cancer : Normal) of 10-fold cross validation by
four classification models over 253 proteomic ovarian data samples

Methods Ours C4.5
Single Bagging Boosting

Errors 0 (0:0) 10 (4:6) 7 (3:4) 10 (4:6)

cancer from non-cancer using serum proteomic patterns
(instead of DNA expression). This proteomic spectra data
generated by mass spectroscopy can be found at http:
//clinicalproteomics.steem.com; there are several similar
data sets in this site. For our evaluation study, we have
chosen the biggest one, which is dated on 6-19-02. The
data have a total of 253 samples: 91 controls (non-cancer)
and 162 ovarian cancers. Each data sample is described
by 15 154 features, namely, the relative amplitudes of
the intensities at 15 154 molecular mass/charge (M/Z)
identities.

For each feature, we normalize all its values (intensities)
of the 253 samples using the following formula: N V =
(V − Min)/(Max − Min), where N V is the normalized
value, V the raw value, Min the minimum intensity
and Max the maximum intensity of the given feature.
The normalized data can be found at our supplementary
website: http://sdmc.lit.org.sg/GEdatasets.

The original data set does not include a separate test
data set. As such, we evaluate our method using 10-fold
cross validation over the whole data set. The performance
is summarized in Table 4. We can see that our method
is remarkably better than all the C4.5 family algorithms,
reducing their 10 or 7 mistakes to a error-free performance
in the total 253 test samples, giving rise to truly excellent
diagnosis accuracy for ovarian cancer based on serum
proteomic data.

For further comparison, we also used SVM and 3-
nearest neighbour to conduct the same 10-fold cross
validation. SVM also achieved 100% accuracy. However,
SVM used all the 15 154 input features together with
40 support vectors and 8308 kernel evaluations in its
decisions. It is difficult to derive understandable explana-
tions of any diagnostic decision made by this system. In
contrast, our method used only 20 trees and less than 100
rules. The other non-linear classifier, 3-nearest neighbour,
have made 15 mistakes (5 in Cancer and 10 in normal); it
is therefore not of comparable performance to ours.

What are the results if ad-hoc numbers of only top-
ranked features are used in the classification models? If
only top 10, 20, 25, 30, 35, or 40 entropy-ranked features
are used, support vector machines could not achieve the
perfect 100% accuracy; our method could not achieve
the perfect 100% accuracy either. All other classifiers
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Table 5. Test error numbers of four models on the 112 independent test
samples in the problem of 6-subtype classification of the ALL disease Yeoh
et al. (2002)

Methods Ours C4.5
Single Bagging Boosting

Errors 7 23 10 22

such as k-nearest neighbour, C4.5 family algorithms, or
naive bayes could not either. So, if the cut threshold were
set as one of these ad-hoc numbers, the classification
algorithms would miss the perfect accuracy on this data
set, as our algorithm and support vector machines can
reach the 100% accuracy when the whole feature space
are considered. In fact, we used some low-ranked features
whose rankings were below the 3000th position. Such a
comparison results indicate that some low-ranked features
are necessary for classifiers to get perfect performance.
Openning all features for consideration (though most of
them may be not in the final rules) as used in our method
is an idea that is more flexible than the idea of using only
top-ranked features.

6.2 Subtype classification of childhood leukemia
by gene expression

Acute Lymphoblastic Leukemia (ALL) in children is a
heterogeneous disease. The current technology to identify
correct subtypes of leukemia is an imprecise and expen-
sive process, requiring the combined expertise from many
specialists who are not commonly available in a single
medical center Yeoh et al. (2002). Using microarray gene
expression technology and supervised classification algo-
rithms, this problem can be solved such that the cost of
diagnosis is reduced and at the same time the accuracy of
both diagnosis and prognosis is increased.

Subtype classification of childhood leukemia has been
comprehensively studied previously Yeoh et al. (2002); Li
et al. (2003). The whole data consists of gene expression
profiles of 327 ALL samples. These profiles were obtained
by hybridization on the Affymetrix U95A GeneChip
containing probes for 12558 genes. The data contain
all the known acute lymphoblastic leukemia subtypes,
including T-cell (T-ALL), E2A-PBX1, TEL-AML1, BCR-
ABL, MLL, and hyperdiploid (Hyperdip>50). The data
were divided by doctors Yeoh et al. (2002) into a training
set of 215 instances and an independent test set of 112
samples. There are 28, 18, 52, 9, 14, and 42 training
instances and 15, 9, 27, 6, 6, and 22 test samples
respectively for T-ALL, E2A-PBX1, TEL-AML1, BCR-
ABL, MLL, and Hyperdip>50. There are also 52 training
and 27 test samples of other miscellaneous subtypes.

The original training and test data were layered in a

tree-structure Yeoh et al. (2002). We present the test error
numbers of four classification models, using the 6-level
tree-structured data in Yeoh et al. (2002), in Table 5. Our
test accuracy was shown to be much better than C4.5 and
Boosting, and it was also superior to Bagging. SVM made
23 mistakes on the same set of 112 test samples, while 3-
nearest neighbour committed 22 mistakes. Their accuracy
is therefore only around 80% (1− 23

112 ), which is far below
our accuracy of 94%. Additionally, the SVM model is very
complex, consisting of hundreds of kernel vectors and tens
of thousands of kernel evaluations. In contrast, our rules
contained only 3 or 4 features, most of them with very high
coverage; the rules are therefore highly understandable.

We also report our results with 10-fold cross validations
to see how well we distinguish each subtype from all
other subtypes in the whole data set. The results are listed
in Table 6. Again, our method outperformed the C4.5
algorithm family and 3-nearest neighbour (3-NN), and had
a comparable performance with SVM.

6.3 Classification of lung cancer by gene
expression

Gene expression method can also be used to classify lung
cancer to potentially replace current cumbersome conven-
tional methods to detect, for instance, the pathological dis-
tinction between malignant pleural mesothelioma (MPM)
and adenocarcinoma (ADCA) of the lung. In fact, a recent
study Gordon et al. (2002) has used a ratio-based diag-
nosis to accurately differentiate between MPM and lung
cancer in 181 tissue samples (31 MPM and 150 ADCA),
suggesting that gene expression results can be useful in
clinical diagnosis of lung cancer.

Note that in this case, the training set is fairly small,
containing 32 samples (16 MPM and 16 ADCA), while the
test set is relatively large, having 149 samples (15 MPM
and 134 ADCA). Each sample is described by 12 533
features (genes). We show our results in comparison to
those by the C4.5 family algorithms in Table 7. Once
again, our results are better than C4.5 (single, bagging,
and boosting). Our results are also comparable to SVM
and 3-nearest neighbour in this data set. SVM made only
one mistake over the 149 test samples, and 3-nearest
neighbour made 3 (2:1) mistakes. However, as before,
the complexity of the SVM and the distance model is
much more complicated than our trees, again limiting
their practical use in scientific discovery and clinical
diagnostics. The translation of the complex data into
useful clinical knowledge using our method is much more
straightforward.

6.4 Results on other data sets
The data sets that we have studied so far are all more than
one hundred samples. In this subsection, we report our
results using two relatively smaller data sets Armstrong
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Table 6. 10-fold cross validation results in the problem of subtype classification of the ALL disease

data sets CV-10 Error Numbers for the Whole Data
(whole data size Ours C4.5 SVM 3-NN
in each class) (k = 20) Single Bagging Boosting

BCR-ABL vs others (15:312) 9(9:0) 21(12:9) 13(13:0) 22(13:9) 12(12:0) 15(14:1)
E2A-PBX1 vs others (27:300) 1(1:0) 1(1:0) 1(1:0) 1(1:0) 1(1:0) 1(1:0)
HyperL50 vs others (64:263) 14(10:4) 28(18:10) 19(16:3) 23(14:9) 11(8:3) 21(16:5)
MLL vs others (20:307) 8(7:1) 13(7:6) 10(9:1) 13(7:6) 7(7:0) 9(9:0)
T-ALL vs others (43:284) 2(2:0) 1(1:0) 1(1:0) 1(1:0) 1(1:0) 8(8:0)
TEL-AML1 vs others (79:248) 6(2:4) 16(7:9) 12(5:7) 9(4:5) 4(1:3) 14(5:9)

Table 7. The test error numbers (MPM:ADCA) by four classification models
over independent 149 MPM and ADCA tissue samples

Methods Ours C4.5
Single Bagging Boosting

Errors 3 (1:2) 27 (4:23) 4 (0:4) 27 (4:23)

Table 8. The test error numbers by four classification models on two small
data sets

data sets test error numbers
Ours C4.5 Bagging Boosting

Armstrong 0 4 (2:2:0) 2 (1:1:0) 0

Golub 4(0:4) 3(2:1) 3(0:3) 3(2:1)
Golub(10-f) 1(0:1) 18(9:9) 5(0:5) 13(6:7)

et al. (2002); Golub et al. (1999) to see how our method
fare with small data sets.

The first small data set from Armstrong et al. (2002) is
about the distinction between MLL and other conventional
ALL subtypes. There are a total of only 57 3-class training
samples (20, 17, and 20 respectively for ALL, MLL, and
AML) and 15 test samples (4, 3, and 8 respectively for
ALL, MLL, and AML). Table 8 (the second row) reports
the respective classification performance. Once again,
single C4.5 trees made several more mistakes than the
other classifiers, while our classifier displays outstanding
excellence. SVM has similar results as us, making no
mistakes as well; but 3-nearest neighbour made 2 mistakes
(1:1:0).

For the widely-used ALL vs AML data set Golub et
al. (1999), the performance are also reported in Table 8.
This time, our method made one more mistake than the
C4.5 family algorithms on the 34 test samples. However,

our method was better than SVM (5 mistakes) and 3-NN
(10 mistakes). On the other hand, for a comprehensive
10-fold cross-validation on the entire 72 samples, our
method was much better than the C4.5 family algorithms
by making only 1 mistake (see the last row of Table 8).
In this experiment, SVM made the same mistake as our
method. But k-nearest neighbour made 10 mistakes. If
ad-hoc numbers (50, 100, or 200) of top-ranked features
are pre-set and then used, no classifers could achieve
better performance than when all the original features
are considered. In fact, the performance were most often
worse than. These full results can be found at our
supplementary website. Once again, this indicates that
openning all original features for the selection of forming
our rules is a good idea indeed.

7 VARIANTS AND DISCUSSION
We have shown that our method provides highly com-
petitive accuracy compared to C4.5, bagging, boosting,
SVM, and k-NN. Our new method also provides highly
comprehensible rules that help in translating raw data
into knowledge. As described, our committees of trees
are constructed by forcing some top-ranked features
iteratively as the root node of a new tree. There are
also alternative ways to construct other types of tree
committees that are in accordance with our idea that the
second could be the best.

One way is to extend this idea to the selection of best
features for the nodes at the second level of trees instead
of only applying it to root node level. Suppose we allow
k number of feature choices (usually top k features) for
every node, then we can build a committee of nk trees if
the trees always have n nodes. If we allow k number of
feature choices for nodes only at the first two levels (the
root level and its immediate children level), we can get
27 trees when k = 3. This approach focuses our attention
on top-ranked genes either globally at root node level or
locally at children nodes’ level.

Another possible alternative approach is to use reduced
training data formed by deleting one feature after building
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one tree. The first tree is constructed using the whole
original data. We then remove the feature from the original
data which was understood as the most important feature
by C4.5. We proceed to apply C4.5 to the reduced data to
generate a second tree, and so on. We have tested this idea
and found the performance by those trees are collectively
good.

With pre-feature selections, for example using only
top-ranked features, SVM and k-nearest neighbour can
often (but not always) increase their accuracy. We have
also done another comparison study of the classification
models when a feature selection is processed on training
data. In general, we can still win. The full results can be
found at our supplementary website.

Emerging patterns Dong and Li (1999) have been shown
to be an important concept for discovering significant rules
from bio-medical data Li et al. (2003). However, due to
the inherent complexity of the patterns, mining algorithms
of emerging patterns may not be sufficiently efficient
when applied to high-dimension data (e.g. data dimension
of 100). Our method in this work can quickly discover
significant rules using wide feature spaces. However, as
C4.5 is a heuristic method, our answer to discover all
significant rules is still incomplete. On the other hand, the
emerging pattern approach can solve the incompleteness
problem if the data dimension is not that high. Combining
the emerging pattern approach and the C4.5 heuristics, we
may find a good way to get a close approximate to the
optimal answer, and this provides for a topic for further
research.
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