
 

 

 
Abstract 

 
We investigated the problem of deducing the geo-
graphical coordinates of pixels in an oblique view video. 
Our goal is to register the oblique-view video of an urban 
scene with its cadastral map. The oblique-view videos 
were taken from a very low flying camera whereas the 
cadastral map contained only the top-down outline of 
buildings without any photographic content and without 
other objects such as trees, cars, people, or any street 
feature. Our registration comprises a two-step process 
that uses structure from motion and a matched-filter class 
of technique. The structure from motion step takes the 
video as input and outputs a 3D point cloud of the scene.  
As this point cloud contains objects that are not 
represented in the cadastral map, our algorithm was 
designed to emphasize automatically the scene points that 
are likely to be from building façade so that effects of 
mismatch in content between the cadastral map and the 
oblique video can be minimized. For the registration step, 
we used a coarse-to-fine iterative implementation of 
matched filter to get a globally optimum solution, with 
built in tolerance to some scale and rotation invariance. 
We had implemented the entire system and had tested with 
real world data. Good results were obtained. 
 

1.  Introduction 
In many applications such as a search and rescue 
operation, it is important to attach geographical 
information (such as 3D absolute coordinates) to points of 
interest in an image.  Modern sensors like Global 
Positioning Satellite (GPS) cannot solve this problem 
adequately because GPS can only measure the location of 
the camera but not the location of the remote scene that 
the camera is viewing.  Some kind of reference is needed. 
One way is to use a reference map with geographical 
coordinates so that one can align the image with it to 
derive the geographical coordinates of each pixel in the 
image.   Our choice of reference map is a cadastral map. 

We chose cadastral maps because in most countries, 
cadastral maps of residential and commercial areas are 
available as they are needed for real estate taxation 
purposes [16].  Therefore, during a crisis situation, these 
cadastral maps are often readily available. In a search and 
rescue operation for example, drones flying near the 
disaster area will stream back video that captures scenes of 
the area with civilians that need help. By registering this 
video with the cadastral map, the civilian’s absolute 
geological location can be inferred so that the rescue team 
can be dispatched to the correct location.   
Such kind of registration is a very challenging problem 
due to the following reasons: 1) Drones are usually 
operated at a low altitude with its camera viewing 
obliquely at a remote scene. Registering an oblique view 
with a top-down view cadastral map is challenging due to 
the large difference in viewing angles.  2) Cadastral map is 
essentially a schematic diagram containing only the 2D 
outline of buildings without any photographic content of 
the scene.  Trees, cars, people and street features that are 
present in the oblique video are completely missing in the 
cadastral map. Registering video with a cadastral map is 
therefore challenging due to the mismatch in information. 
To overcome the above difficulties, we developed a 
solution by first transforming the oblique-view video 
scene into its 3D point cloud through structure from 
motion (SfM).  We devised a technique to automatically 
find the vertical direction of the 3D point cloud and 
collapse all the 3D points along this vertical direction.  In 
this way, we could successfully convert an oblique video 
scene into a top-down 2D point cloud so that we could 
register it with the reference cadastral map. Our method 
also has the benefit of enhancing the points that 
correspond to building outlines so that the image matching 
process is less affected by the mismatch in content 
between the point cloud the cadastral map. As structure 
from motion has inherent scale ambiguity problems, we 
used the navigation sensors on board the drone to get an 
initial estimate of the scale and let the registration 
algorithm search for the accurate scale. We used an 
iterative implementation of matched filter to obtain a 
globally optimum registration solution. Section 2 
describes the related work in this problem. Section 3 
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explains our technique and Section 4 shows our 
experiment results. 

2.  Related Work 
 
Registering airborne nadir view (i.e. top down view) 
imagery with orthographic reference images had been 
successfully demonstrated in the past [3,27,28].  These 
methods however cannot be applied to registering oblique-
view images with top-down reference image due to 
perspective foreshortening, occlusion and the appearance 
of building facades that are mostly missing in top-down 
reference views. Researchers aiming to solve such 
problems often relied on texture, lines and prior 
knowledge of camera parameters to perform affine 
transformation or other 2D image transformations in order 
to warp the oblique-view into a top-down view. There 
were successful cases of such approach that essentially 
involve an ortho-rectification process [7,8,20,30]. 
However, such successes are difficult to be achieved for 
extremely oblique views for two reasons.  Firstly, 2D 
warping cannot sufficiently account for the vast viewpoint 
differences between an extremely oblique view and a top-
down view. Secondly, these warpings require the detection 
of image features which may not be a trivial task. For 
example, a common approach is to do line detection to the 
oblique view images to recover camera parameters needed 
for ortho-rectification. Such kind of approach however 
required the oblique image to contain a rich set of vertical 
and horizontal lines from building structures. This would 
not work if the buildings were obscured by natural objects 
such as trees or if the view was too narrow to contain a 
rich set of building structures. In our problem scenario, we 
have to deal with extremely oblique views as our video 
input is derived from air-drones flying at very low 
altitudes viewing a remote scene that does not necessarily 
contain a lot of unobstructed building linear features.  
Moreover, we are matching images of two different 
modalities: video and a cadastral map.  Our cadastral map 
contains only the outlines of buildings and does not 
include any photographic information which could 
otherwise be used for feature matching with the input 
video image. Essentially, we need to do cross modality 
matching to register the oblique view image with a top 
down non-photo map. Cross-modality image registration 
had been a very important research topic over the years. 
The problem of aligning a picture of a scene with a 
different modality of the same scene would require 
techniques that exploit the higher order features or 
statistics that could represent a common layer for the two 
modalities.  Viola and Jones [24] used mutual information 
to match images of different modalities. Huttenlocher and 
Ullman [12] as well as Lowe [17] matched projections of 
3D points onto 2D edge images. The 3D points are from 

relatively complete 3D modeling that may not be available 
in the scenario that this project is trying to solve.   Ni [19] 
used Hough Transform [6] to detect linear features for 
matching with 2D maps. Wang and You [26] used an 
interest region extraction and matching approach to 
successfully match nadir view optical images with LiDAR 
data.  Ding et al. [5], Wang and Neumann [25] matched 
oblique view images with Lidar based on matching line 
segments between the Lidar data and image. They 
combined the line segments into more complex descriptors 
to achieve matching robustness. Zhao et al. [29] and also 
Labe and Forstner [15] turned an oblique video into 3D 
point cloud using structure from motion [11] and register 
the resultant point cloud with a nadir view 3D point set 
using Iterative Closest Point (ICP) [2]. To our knowledge, 
the work that is closest to our problem is by Habbecke and 
Kobbelt [10] and also Kaminsky et al. [14].  Habbecke and 
Kobbelt used a combination of vanishing points [1], 
corresponding corners and lines to compute the camera 
transformation matrix that would align the oblique view 
with the top down cadastral map.  Their method is not 
applicable to our scenario as vanishing points and feature 
correspondences are not easily obtainable in our data set 
due to presence of trees and other forms of occlusion.  
Kaminsky used a set of cost functions to align 3D point 
cloud with building floor plans.  Their method requires a 
relatively large coverage of 3D point cloud to avoid 
getting trapped in local minima.  Our data sets were 
obtained from relatively narrow field of view with 
relatively small coverage of the scene, therefore it would 
be prone to local minima if a simple cost function 
minimization approach were used.   
Other than the traditional methods of geo-registration, 
researchers had also used sophisticated GPS/INS 
equipment onboard airborne vehicles to directly associate 
video recordings with readings from those location-
tracking devices. The advantage of this approach is that it 
gives a good initial estimate of the region of search for 
purposes of registration. Cramer and Stallmann [4], and 
also Grenzdorfer [9] developed a specially calibrated 
system that could achieve registration with good accuracy. 
Despite achieving small registration errors, such methods 
have several disadvantages. The biggest disadvantage 
w.r.t. our problem domain is that the location tracking 
devices can only return readings for the current location of 
the aircraft but cannot read the geo-location of the remote 
area that the camera onboard the aircraft is viewing. 
Unless the drone subsequently flies to be right on top of 
the area of interest, one will not be able to directly infer 
the geo-coordinates of those remotely seen areas.  
In this project, we converted the oblique view images into 
3D point cloud, estimated the vertical direction, and 
projected the 3D point cloud onto the horizontal plan so 
that it could be registered with the cadastral map. We used 



 

 

an iterative implementation of matched filter to get the 
globally optimum solution. 
 

3.  Methodology 
 
3.1 3D Reconstruction from Oblique Video 
 
We reconstructed the 3D scene from the oblique video 
using Structure From Motion (SfM) [11,21]. We alleviated 
the scale ambiguity problem by using the onboard inertial 
navigation sensor.  A rough estimate of the scale was thus 
obtained and used as the initial estimate to be refined in 
the registration process.  
 
3.2  Obtaining Top-Down View of Reconstructed 
Point Cloud 
    
Structure from motion produces a 3D point cloud that 
enabled us to view the scene from any viewpoint. The 
optimal choice was obviously the top-down view direction 
that was also used by the reference cadastral map.  
To project the point cloud onto a plan view plane, we 
needed to estimate the geographical vertical direction of 
the point cloud.  This was not a trivial task in general. In 
our scenario however, the urban scenes that we worked on 
were mostly situated on relatively flat grounds that were 
much wider than the building heights.  We capitalized on 
this scenario and made an assumption that the SfM 
reconstructed point cloud would have very dominant 
horizontal components and a relatively weak vertical 
component. In such a scenario, the vertical direction could 
be robustly identified using Principal Component Analysis 
(PCA) [13]. The vertical direction of the point cloud was 
given by the principal component that corresponds to the 
smallest eigenvalue since the vertical component was the 
direction of least variance. After finding the vertical 
direction, we projected the 3D point cloud onto the PCA 
vector space spanned by the other 2 principal components.  
The z (up) coordinate became 0 as a result of the 
projection.  The point cloud was then in the same viewing 
direction as the reference cadastral map.  
We also used a filter to remove irrelevant objects while 
preserving building contours (Fig. 3.1). The filter was 
designed under the assumption that building walls were 
mainly vertical. Therefore many points on the same wall 
surface would be projected to a dense line in the 2D top-
down view, making the projected building boundary 
consisting of dense points. In contrast, the top-down view 
projection from noise objects such as trees and roofs were 
more spread-out and therefore less dense. We made use of 

this heuristic to prune away trees and roof features which 
were not present in the cadastral map.  
 
 
3.3  Registering Query Cloud with Reference 
Cloud 
 
We had discussed how to convert the input video first to 
3D point cloud using SfM, then project the point cloud 
onto a 2D top-down view to facilitate matching with the 
reference cadastral plan view. We highlighted that we also 
used a sparse-point removal filter to reduce noise in the 
projected point cloud. We will refer to this resultant point 
cloud as the “query cloud” in the sequel. This “query 
cloud” was to be registered with the reference cadastral 
map.  The reference cadastral map was essentially a binary 
map that captures only the top-down outline of buildings. 
We discretized these building top-down outlines to a 
collection of points and will refer to them as the “reference 
cloud” from now on. 
Our oblique view to top-down cadastral map registration 
problem has now been transformed into matching an SfM-
derived 2D query cloud to its reference cloud. The 
registration problem remained challenging as the query 
cloud was still relatively noisy. Its content was also vastly 
different from the reference cloud as reference cloud did 
not contain trees and other foreign objects. There were 
many approaches we could take to tackle this registration 
problem.  
 

 
 
Figure 3.1: Top-left: Top-down view of reconstructed point 
cloud. Bottom-left: Top-down view of reconstructed cloud with 
noise points removed. This will be used as the query cloud. 
Right: The reference cadastral map with lines discretized into 
points (reference cloud). The blue box indicates the area 
occupied by the query cloud. Notice that the query cloud covers 
only a small section of the reference cloud, causing many 
optimization techniques to be trapped in local minima and failed. 
 



 

 

We had tried using SIFT feature matching [18], Hough 
Transform [6], Iterative Closest Point (ICP) [2] class of 
techniques as well as matched-filtering.  We found that 
SIFT feature matching did not work due to the presence of 
noise in the query cloud. Hough Transformation patterns 
were not distinctive enough to serve as good registration 
features. ICP’s registration accuracy was low as it was 
prone to be trapped in local minima for the large initial 
position errors in our problem.  We found that an iterative 
implementation of matched filter produced the best results. 
 
3.4  Matched Filter for Registration 
 
Matched filter is known to be the optimum detection filter 
in the presence of additive noise. We implemented our 
matched filter using Fast Fourier Transform (FFT). Doing 
matched filtering in the frequency domain is significantly 
faster than doing it in the spatial domain due to the highly 
efficient FFT algorithm [22,23]. To implement matched 
filtering in the frequency domain, one needs to multiply 
the FFT of the reference image with the complex 
conjugate of the FFT of the query image. An inverse FFT 
of the product gives the matched filter output in the spatial 
domain. The matched filter output image will exhibit the 
brightest and sharpest spot at the location on the reference 
image that most resembles the query image. In other 
words, the translation of this spot from the center of the 
image is exactly the pixel-wise translation of the query 
image in order to be matched with the reference image. 
Unlike techniques based on optimizing functions such as 
ICP, the matched filter will find the global best-match and 
is comparable with ICP in terms of run time. However, a 
matched filter has no tolerance to rotation errors unless the 
synthetic discriminant function class of filters is used [23]. 
Furthermore, as in ICP, it cannot tolerate scaling errors as 
well. Therefore, we used a coarse-to-fine iterative method 
to search for the rotation angle and scale that minimized 
errors. We limited the search range for rotational error to 
be ± 10 degrees and the scaling error to be ± 10%. This 
search range was sufficient as it was within the errors 
introduced in most inertial navigation devices. 

4.  Experiments 
 
All video streams used in the experiments were taken by a 
drone-mounted Sony HDR-CX430V color camera, which 
produced videos in MTS format with a frame rate of 29 
frames/s. The raw frame size was 1920 x 1080 pixel. The 
drone was also equipped with a GPS with measurement 
accuracy of ± 10 meters and a compass with measurement 
accuracy of  ±10 degrees.  

We conducted tests on a total of 6 different video 
sequences shot from oblique view angles. 3 of these video 
streams captured low-rise building clusters sized at 375.25 
m (EW) x 342.11 m (NS) whereas the remaining 3 
captured high-rise building clusters sized at 657.47m   
(EW) x 646.30 m (NS).  
For each of these 6 sequences, we first conducted 
simulation tests to understand how well our algorithm will 
work in the presence of large initial position errors 
coupled with moderate scale and orientation initial errors. 
We have to be robust to large initial position errors as they 
could occur due to inaccuracies in compass readings and 
synchronization of these readings with the video frames 
captured at long distances.  We programmatically injected 
errors in the initial values of position, scale and 
orientation.  The range of errors was -10 degrees to +10 
degrees, from 90% to 110%, and from (-500 m, -500 m) to 
(+500 m, +500 m) for orientation, scale and position 
respectively. This resulted in 45 sets of initial values for 
each of the 6 video sequences.   
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Fig.4.1 Green points represent the query cloud.  White points 
represent the reference cloud. This figure shows an example of 
registration results with initial translational, rotational and 
scaling errors. (a) Rotation = 10 degrees from correct value, scale 
= 1.1 of correct scale, translation = (238.19, -374.187) from 
correct position. (b) Our matched filter based registration result.  
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Fig.4.2 (a) one snapshot of video. (b) initial position of the query 
cloud (green) on the reference cloud (white). (c) result from ICP.  
(d) result from our matched filtering 
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Fig.4.3 (a) one snapshot of video. (b) initial position of the query 
cloud (green) on reference cloud (white).  (c) result from ICP.  
(d) result from our matched filtering 
 



 

 

Fig.4.1 shows an example of such a test case.  Fig.4.1a 
shows the initial position, scale and orientation of the 
point cloud.  It was translated by 238 and 374 meters in 
horizontal and vertical directions respectively, and scaled 
bigger than correct size by 10%, and rotated by 10 degrees 
from the correct orientation.  These errors were within the 
operation precision range of commercial grade inertia 
navigation devices. Despite the large error in initial 
position in addition to moderate errors in scale and 
orientation, our coarse-to-fine iterative matched filter 
method was able to produce good registration results 
(Fig.4.1b).   Notice also the relatively small signature of 
our point cloud w.r.t. the cadastral map that would cause 
energy minimization approaches like ICP to be trapped in 
local minima. 
Fig.4.2 and Fig.4.3 show the registration results on two 
more real scenes respectively.  Notice the presence of trees 
and other ground or roof features that are missing in the 
cadastral map.  The mismatch in information, the vast 
difference in viewpoints between the oblique video and 
the top-down view cadastral map, and the relatively small 
signature of the point cloud in the midst of a relatively 
larger area of the cadastral map present challenges not yet 
solved by existing techniques.   In each of these cases, our 
matched filter based algorithm was able to find the correct 
registration whereas ICP method failed due to local 
minima.  ICP was trapped in local minima essentially 
because of the relatively small signature of the point cloud 
w.r.t. the cadastral map.  
The computer we used for the experiment was equipped 
with a four-core Intel i7-4700MQ CPU clocked at 
2.40GHz.   However, at run time, only single thread was 
used. The memory size was 8G. The average running time 
of our iterative matched filter and ICP to recover original 
rotation, scale and position were 466 seconds and 66 
seconds respectively (Fig 4.4).  We believe that matched 
filtering timing can be further improved using an image 
pyramid approach. 
We used 6 real-life data sets in total. From these 6 sets of 
data, we found that the error of our iterative matched filter 
registration approach produced an average registration 
error of 0.3 degrees for rotation, 1.6% for scale and 2.2 
meters for translation. In a crisis situation, this will be of 
sufficient precision for rescue team workers to narrow 
down the search for victims that require urgent help. In 
comparison, ICP produced an average registration error of 
24.98 degrees for rotation,  9.1% for scale and 160.6 
meters for translation in these scenarios when initial 
positioning error was large. 
It should be noted that for even greater robustness, one can 
make use of prior knowledge of rough viewing angle to 
prune away irrelevant building outlines in the cadastral 
map prior to the matched filtering process.  For example, 

if one knows the angle of viewing is approximately 
towards north, building outlines belonging to northern 
facing facades are likely to be occluded due to the oblique 
viewing.   Therefore, one can safely remove those 
occluded building outlines from the cadastral reference 
map based on this prior information. The matching results 
will potentially be better as there is now a greater match 
between the 3D point cloud and the pruned cadastral map. 
Indeed, we had done experiments on this and verified that 
the methods would result in greater robustness assuming 
the inertial navigation system gave worse errors as shown 
in Fig 4.5.   
 

 
 
 
Figure 4.4: Running time of matched filtering (blue) and ICP 
(green). 
 

5.  Failure Cases  
By design our approach worked best for oblique views 
that captured building facades (exemplified by Fig. 4.2 (a) 
and Fig. 4.3 (a)).  Our method will not work well if the 
view angle is near nadir or very near horizontal.  At near 
nadir, the view is vertically down.  So the 2D top-down 
projection of the reconstructed point cloud will contain 
dense points from building roofs and grounds but not as 
many points from building walls. Therefore the noise-
removal technique which we discussed in Section 3.2 and 
exemplified in Fig 3.1 will fail. When the view angle is 
near horizontal i.e. camera is at ground level, typically 
only a few buildings are visible as many will be occluded.  
As such, unless in contrived situations, there will not be 
enough geometrical information for accurate match 
filtering. Fig. 5.1 illustrates both failure cases with 
examples. We should also point out that our noise-removal 
method made the assumption that most buildings will have 
vertical walls.  If the scene contains buildings with non-
vertical walls such as a pyramid, our noise removal 
method will also fail.  In such a scenario, we will have to 
rely on other buildings with vertical walls in the vicinity to 
aid the registration process, otherwise our method will fail.  
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Figure 4.5: Registration errors using matched filter with and 
without cadastral map pruning on 6 video sequences. (a) 
Rotational error measured in degrees. (b) Scaling error measured 
as percentage of ground truth scale. (c) Translational error 
measured in meters. 
 

6.  Conclusion 
We presented a multi-step approach that combined 
structure from motion and image matching techniques to 
accomplish the task of registering a video sequence with a 
cadastral map that was drastically different in view point 
and modality.  It is not our intention to claim that each  
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(a2)                     (b2) 

         
(a3)                     (b3) 

 
Fig.5.1: Matching failures due to extreme view angles.  Top row 
shows 90 degrees view angle video screenshot, middle row 
shows 3D reconstructed point cloud, bottom row shows the 
matching result. In (a3) and (b3), white represents the reference 
cloud, green the final position of query cloud and blue the region 
where the query cloud should be matched to.  
 
step involved in the workflow is optimum if used as a 
generic tool.  There are many different registration 
techniques available and some work better than others in 
different scenarios.  We have however tested our system in 
real life scenarios and found that it worked sufficiently 
robustly with our data sets. The first step in our workflow 
used structure from motion technique to transform the 
input video to 3D point cloud. This was followed by 
applying the principal component analysis technique to 
establish the top-down vertical direction. The vertical 
direction thus computed would be used for the projection 
of the 3D point cloud onto the horizontal plane. In 
matching with the reference cloud, an iterative 
implementation of matched filter was used. We chose a 
matched filter method instead of an objective cost function 
minimization method like ICP because of the relatively 
small coverage of the 3D point cloud and large initial 
positional errors that made it susceptible to be trapped in 
local minima. The ability to deal with large initial 
positional errors is of practical significance as such errors 
are not uncommon due to long distance viewing and/or 
errors in synchronization between compass readings and 
video frames. The test results showed that our coarse-to-
fine iterative matched filtering was indeed able to produce 
good globally optimum registration results with very good 
tolerance to large initial translational error, and reasonable 
tolerance to rotational and scaling errors.  
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