
Exploiting Single-Threaded Model in Multi-Core Systems

Chang Yao‡, Divyakant Agrawal], Gang Chen§, Qian Lin‡
Beng Chin Ooi‡, Weng-Fai Wong‡, Meihui Zhang†

‡National University of Singapore,]University of California at Santa Barbara
§Zhejiang University †Singapore University of Technology and Design

ABSTRACT
The widely adopted single-threaded OLTP model assigns a single
thread to each static partition of the database for processing trans-
actions in a partition. This simplifies concurrency control while
retaining parallelism. However, it suffers performance loss arising
from skewed workloads as well as transactions that span multiple
partitions. In this paper, we present a dynamic single-threaded in-
memory OLTP system, called LADS, that extends the simplicity
of the single-threaded model. The key innovation in LADS is the
separation of dependency resolution and execution into two non-
overlapping phases for batches of transactions. After the first phase
of dependency resolution, the record actions of the transactions are
partitioned and ordered. Each independent partition is then exe-
cuted sequentially by a single thread, avoiding the need for locking.
By careful mapping of the tasks to be performed to threads, LADS
is able to achieve a high degree of balanced parallelism. We eval-
uate LADS against H-Store, a partition-based database; DORA,
a data-oriented transaction processing system; and Silo, a multi-
core in-memory OLTP engine. The experimental study shows that
LADS achieves up to 20× higher throughput than existing systems
and exhibits better robustness with various workloads.

1. INTRODUCTION
Online transaction processing (OLTP) is at the core of the In-

ternet economy. However, while hardware has been scaling ac-
cording to Moore’s Law [37], the scaling of transaction process-
ing has been lackluster. Figure 1 shows a historical plot of rela-
tive single-threaded CPU performance [1] and IBM’s TPC-C per-
formance [3]. As a reference, we can see a widening gap be-
tween hardware capability scaling and that of OLTP. As we move
into the multi-core era, servers will not only have much more sig-
nificant processing capabilities but also much larger memory [23,
46]. Unfortunately, the historical trend seems to cast doubt as to
whether the ever-improving hardware capabilities can be efficiently
translated to significantly better OLTP performance. Harizopoulos
et al. [17] showed that traditional database management systems
(DBMS) spent substantial amounts of time on logging (≈12%),
locking/latching (≈30%) and buffer management (≈35%). In other

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

N
o
rm

a
liz

e
d
 p

e
rf

o
rm

a
n
c
e

Year

Intel single-threaded CPU performance
IBM OLTP performance per thread

Figure 1: A historical plot illus-
trates an increasing trend and gap
of CPU and OLTP performance.

 0

 20

 40

 60

 80

 100

0 5 10 20 30 40 50 60 70 80 90 100

C
P

U
 u

ti
liz

a
ti
o
n
 b

re
a
k
d
o
w

n
 (

%
)

Percentage of cross-partition transactions (%)

Working Idle

Figure 2: CPU utilization of H-
Store that supports single-threaded
model.

words, even if the entire database resides in memory and transac-
tions are short-lived, the overheads of managing concurrent trans-
action execution would severely limit the scalability, especially when
there are heavily-contended critical sections [32].

Traditional concurrency control protocols can be categorized into
lock-based protocols and timestamp-based protocols. For lock-
based protocols, lock thrashing and deadlock avoidance are the
main challenges. For timestamp-based protocols, the main issues
are the high abort rate and the need for a well coordinated times-
tamp allocation. Recently, the single-threaded model is widely
used [20, 21, 32, 39] to improve the efficiency of in-memory database
systems. In this model, each worker thread is uniquely assigned
to a static partition of the database. When a transaction arrives,
a worker that is responsible for its processing will obtain all the
locks of the partitions to be accessed. By doing so, all the critical
sections that are contended for can be resolved in advance. In a
scenario where most transactions only need to access data in a sin-
gle partition, the threads can work independently, achieving a high
degree of parallelism. However, in practice, no matter how well the
database has been partitioned, transactions that span multiple parti-
tions cannot be totally avoided. Such transactions typically cause a
substantial amount of blocking as threads tend to contend with each
other to acquire all the necessary locks, resulting in more CPU idle
time. Furthermore, continuously changing workloads may cause
load imbalance where some worker threads experience significant
blocking while others have too much work to handle. For a stat-
ically partitioned database where each partition is assigned to a
thread, a skewed workload could lead to skewed CPU utilization.
Consequently, it significantly reduces the efficiency of the entire
system. As illustrated in Figure 2, the percentage of CPU idle time
of H-Store [20] increases with the increase of cross-partition trans-
actions. When there is no cross-partition transaction in the work-
load, each worker thread can process transactions independently
without any blocking. When the workload contains cross-partition

1

A B C D E F G HI J K LM N O P

A B C I J E A

(b) workload statistics

C B I J E

(a) skewed workload distribution

(c) uniform workload distribution

Figure 3: Dynamic partitioning based on actual workloads.

transactions, potential contention among worker threads appears
with its probability rising along the increment of cross-partition
transactions. To resolve contention, thread blocking is usually in-
evitable, which degrades the CPU utilization.

In this paper, we examine the design of multi-core in-memory
OLTP systems with the goal of improving the throughput of trans-
action processing through better fitting of the single-threaded model
onto modern multi-core hardware. In particular, we propose LADS,
a dynamic single-threaded OLTP system, which separates the con-
currency control from the actual transaction execution. LADS first
resolves a batch of transactions into a set of record actions. A
record action is a consecutive sequence of (atomic) operations on
the same tuple within a transaction. LADS makes use of depen-
dency graphs [45] to capture dependency relations among record
actions within a batch of transactions. It then decomposes the de-
pendency graphs into sub-graphs such that the sub-graphs are about
the same size, and the number of edges across these sub-graphs
is minimized. The sub-graphs are subsequently distributed to the
available worker threads for execution in such a manner that the ac-
tions to be performed on the same record are assigned to the same
worker. Within one sub-graph, record actions are executed in trans-
action order to resolve the dependencies between transactions. For
record actions with dependencies (edges) between sub-graphs of
different worker threads, LADS also ensures that they are executed
in order so that dependencies among sub-graphs of the same trans-
action can be quickly resolved. Hence, transaction aborts due to
out-of-order execution of conflicting record actions are completely
eliminated. Further, instead of partitioning the database statically,
LADS dynamically partitions the workload according to its actual
distribution to achieve a higher CPU utilization. As shown in Fig-
ure 3, LADS first tracks the workload distribution during the trans-
action dependency resolution, and then partitions the workload dy-
namically to balance the workload among the available workers.
In this example, LADS partitions the workload into four parts,
{A},{B,I},{C} and {J,E}, and assigns them to the available work-
ers. Meanwhile, LADS is also locality aware as it takes into ac-
count the memory hierarchy of the multi-core platform, and sup-
ports optimizations to avoid cache coherence overhead. More im-
portantly, LADS reduces the use of centralized components with
no locks/latches required during its processing, which further im-
proves the computation efficiency.

The design of LADS is based on the principle of fast batch pro-
cessing in a multi-core in-memory system which enables a laten-
cy/throughput trade-off. As with any batch processing system, la-
tency is a valid concern. However, in practice, this is not as big
an issue as it appears to be. First, in real applications, requests at
the client side are always sent to the server in batches in order to
reduce the network overhead [26]. Besides, transactions are pro-
cessed and committed in a batched manner in systems using group

commit protocols [10] to reduce disk I/O cost, and in-memory sys-
tems need to write transaction logs to disk to ensure reliability [41].
Second, data accesses in multi-core in-memory systems are very
fast compared with that of traditional disk-based systems. This
should reduce the overall latency. Finally, the latency due to batch
processing can be optimized by tuning the batch size. In short, the
latency of a well designed multi-core transaction processing can be
bounded to an acceptable bound. Evaluation of our implementation
of LADS shows that it achieves significantly higher throughput,
and scales well.

In summary, LADS offers the following innovations:

• The representation and resolution of dependencies between
atomic record actions of a batch of transactions in depen-
dency graphs.

• The separation of contention resolution and transaction exe-
cution into two stages that allows for the decentralized and
dynamic partitioning of the dependency graphs into work
balanced subgraphs which can be scheduled onto indepen-
dent threads such that no synchronization is required.

• Techniques to deal with issues including dependency across
dependency sub-graphs, range queries, and logging within
the same two-phase execution framework.

These novel ideas allow LADS to perform up to 20× faster than
state-of-the-art systems. More importantly, LADS can better ex-
ploit the advances in hardware, and achieve a scaling that is more
in line with Moore’s Law.

The remainder of the paper is organized as follows. In Section
2, we review the related work. A novel dynamic single-threaded
transaction processing model is presented in Section 3. We describe
the implementation details of LADS in Section 4. A comprehensive
evaluation is presented in Section 5. Finally, the paper is concluded
in Section 6.

2. RELATED WORK
Many research efforts have been devoted to improve the perfor-

mance of multi-core in-memory systems. We provide a brief survey
on works that are relevant to our proposal.

2.1 Systems with Traditional Concurrency Con-
trol Protocols

Systems using lock-based protocols typically require a lock man-
ager, in which lock tables are maintained to grant and release locks.
The data structure in the lock manger is typically very large and
complex, which incurs both storage and processing overheads. Light-
weight Intent Lock (LIL) [24] maintains a set of lightweight coun-
ters in a global lock table instead of lock queues for intent locks.
Although LIL simplifies the data structure of intent locks, trans-
actions that cannot obtain all the locks have to be blocked until a
release message from the other transactions is received. In order
to reduce the overhead of a global lock manager, associating the
lock states with each data record has been proposed [15]. However,
this technique requires each record to maintain a lock queue, and
hence increases the burden of record management. By compress-
ing all the lock states at one record into a pair of integers, Very
Lightweight Locking [35] simplifies the data structure to some ex-
tent. However, it achieves this by dividing the database into disjoint
partitions, which affects the performance on workloads that cannot
be well partitioned.

Optimistic Concurrency Control (OCC) [25], which is a vari-
ant of timestamp-based protocol, is widely adopted. However, its

2

performance is sensitive to contention intensity [4, 17]. Multi-
Version Concurrency Control (MVCC) [7, 30] is another protocol
with which read operations do not block write operations. HyPer
extends MVCC to enforce serializability [31], and BOHM [13]
optimizes MVCC by avoiding all shared memory writes for read
tracking.

Hekaton [11] employs lock-free data structures and OCC-based
MVCC protocol to avoid applying writes until the transaction is
about to commit. However, the centralized timestamp allocation
may remain the bottleneck, and the read overhead may increase
since each read needs to update the dependency set of the other
transactions. Silo [42] is an in-memory OLTP database prototype
optimized for multi-core systems. Silo supports a variant of OCC
method which employs batch timestamp allocation to alleviate the
performance loss. FOEDUS [23] is proposed to scale up the database
and allow transactions to manipulate both DRAM and NVRAM
efficiently. However, both Silo and FOEDUS do not perform nor
scale well for high contention workloads.

Research efforts have also been devoted to decomposing trans-
actions into smaller pieces to increase execution parallelism [6, 14,
38]. Homeostasis protocol [36] extracts consistency requirements
from transactions via program analysis, with which transactions
can be correctly executed while minimizing communications. Ap-
plication level analysis could provide conditions for coordination-
free execution [5]. However, compared with LADS, these works
only support transaction-level conflict checking and resolution that
do not expose all the available parallelism.

2.2 Systems with Single-Threaded Model
H-Store [20] is a partitioned database system, where each parti-

tion is treated as an independent database. A thread in each par-
tition is responsible for processing the transactions, and there is
no need for concurrency control within a partition. The single-
threaded model provides high efficiency for single-partition trans-
actions. However, a transaction that spans multiple partitions needs
to obtain partition-level locks before processing operations, which
inevitably restricts the single-threaded model’s scalability and pro-
cessing efficiency. HyPer [21] is another partitioned database sys-
tem that also makes use of the single-threaded model.

DORA [32] is a logically partitioned database for multi-core sys-
tems. Unlike H-Store and HyPer, DORA decomposes a transaction
into transaction pieces and assigns them to the threads based on
where the data of interest reside. It employs a private locking mech-
anism to resolve conflicts during processing. Although it eliminates
the centralized lock manager used in the traditional two-phase lock-
ing protocol, it may still incur some amount of overhead on the
local lock management. Further, like H-Store, transactions span-
ning multiple partitions are potentially a performance bottleneck.
PLP [33] extends DORA by physically partitioning the database
based on a multi-rooted B+-tree structure, where each partition
corresponds to a subtree and is managed by one thread. It supports
flexible repartitioning to reduce the costly effect of cross-partition
transactions. However, it requires a centralized routing table, and
frequent repartitioning also affects parallelism among transactions.
In contrast, LADS employs the single-threaded model in both de-
pendency graph construction and actual transaction execution. Ex-
ecution of transactions according to the dependency graph reduces
the coordination cost among the threads to an extent, which im-
proves its efficiency and scalability.

Load balancing is typically required to redistribute the work-
load among partitions in single-threaded systems, and various tech-
niques have been proposed in recent years. Horticulture [34] pro-
vides an automatic partitioning algorithm and generates partition-

ing strategy for a sample workload. E-Store [40] provides a two-
tiered approach to handle hot and cold chunks respectively. It first
distributes hot tuples throughout the cluster and then allocates cold
tuples to fill the remaining space. Squall [12] introduces fine-grained
live repartitioning by interleaving data migration with execution.
All these techniques perform repartitioning or reconfiguration by
tracking transactions’ historical access patterns. However, real-
time load balancing based on the analysis of historical information
is difficult to materialize. They are therefore not effective for ran-
domized workloads since frequent repartitioning incurs high over-
head. In comparison, LADS processes transactions in a batched
manner and supports a real-time load balancing by evenly distribut-
ing a batch of workload to the available workers, without the need
to track historical access patterns.

3. TRANSACTION PROCESSING IN LADS
Traditionally, any contention that exists among transactions is

resolved by means of locks or timestamps. This can lead to thread
blocking or waste of computation due to transaction aborts. In
LADS, each worker thread obtains a batch of transactions from the
transaction queue, and resolves their dependencies at the granular-
ity of record action (defined below) before processing them. The
batch size is determined based on the number of transactions in
the transaction queue and a pre-defined maximum batch size. In
this manner, LADS separates contention resolution from the actual
transaction execution.

LADS first constructs dependency graphs in parallel according
to the transactions’ timestamps and logics. Specifically, each worker
constructs one dependency graph for a set of transactions and then
decomposes the constructed graph into sub-graphs. During the
actual transaction execution, each worker thread executes accord-
ing to one sub-graph. With dependency graphs, workers can pro-
cess the transactions with the guarantee of conflict serializability.
As mentioned earlier, LADS exploits single-threaded model to the
fullest, and consequently, single-threaded model is adopted in the
dependency graph construction, dependency graph partitioning and
actual transaction execution.

3.1 Dependency Graph Construction
Before constructing a dependency graph for a set of transactions,

LADS has to resolve dependency relations within one single trans-
action. It parses the statements of a transaction and decomposes it
into a set of record actions, where each record action only accesses
a single record in the database. The formal definition of the record
action is given below:

DEFINITION 1. Record Action A transaction is a unit of oper-
ations performed on the database. Operations consecutively con-
ducted on the same record within one transaction (with no interven-
ing operation on another distinct record) constitute a single record
action α.

Given a record action α, r(α) denotes the record on which it acts
upon, and c(α), f(α), ρ(α) respectively denote the transaction’s
timestamp, function set and parameter set.

Figure 4(a) shows an example, where the database has only one
table. There are three types of transactions, namely transfer, save,
and withdraw. In this example, transaction t8 attempts to trans-
fer $7 from account 1003 to account 1005. LADS firstly decom-
poses t8 into two record actions, (8 : minus, 1003, 7) and (8 :
add, 1005, 7). Record action (8 : minus, 1003, 7) operates on
account 1003 by subtracting $7 from its balance. Record action
(8 : add, 1005, 7) attempts to add $7 to account 1005.

3

ID Balance
1000 3
1001 14
1002 25
1003 27
1004 101
1005 56
1006 24
1007 25
1008 37
1009 12

4:minus,1000,5

4:add,1001,51:add,1001,4 3:minus,1001,8 7:add,1001,4

2:minus,1003,8 6:minus,1003,4

2:add,1005,8

6:add,1000,4

8:minus,1003,7

8:add,1005,7

Record action on record 1005 with function
minus, timestamp 8 and parameter 7

Temporal dependency Logical dependency

Begin
 UPDATE deposit SET Balance=Balance-7 WHERE D=1003;
 UPDATE deposit SET Balance=Balance+7 HERE ID=1005;
Commit

t8:Transfer(1003,1005,7)
8:minus,1003,7

8:add,1005,7Decompose t8 into a
set of Record actions

Insert Record actions
into Dependency Graph

1000

1001 1003

1005

1
1

2

4 3

2 2

1000

1001 1003

1005

1
1

2

4 3

2 2

Transfer Dependency Graph
to Weighted Graph

Decompose Weighted Graph

(a) (b)

Figure 4: Example of dependency graph construction and partitioning with three types of transactions: Save, Withdraw, Transfer.

Next, we define two types of dependency relations on record ac-
tions: logical dependency�logic and temporal dependency�temporal.

DEFINITION 2. Logical Dependency Record action αi logi-
cally depends on αj , denoted as

αi �logic αj

if and only if both αi and αj belong to the same transaction, i.e.,
c(αi) = c(αj), and αi must be executed after αj .

From the above definition, we can see that �logic determines the
logical execution order of record actions within one transaction. In
the previous example, record action (8 : add, 1005, 7) is logically
dependent on (8 : minus, 1003, 7), since transaction t8 has to
ensure that the balance in account 1003 is sufficient. Apart from the
logical dependency relation, we also need to resolve the contention
of record actions from different transactions, which is defined by
the temporal dependency relation �temporal.

DEFINITION 3. Temporal Dependency A temporal dependency
exists between record actions αi and αj , denoted as

αi �temporal αj

if and only ifαi andαj belong to different transactions with c(αi) >
c(αj), and r(αi) = r(αj)

As shown in Figure 4(a), record actions (8 : minus, 1003, 7)
and (8 : add, 1005, 7) temporally depend on (6 : minus, 1003, 4)
and (2 : add, 1005, 8), respectively.

Now, we define the dependency graph, where a vertex repre-
sents a record action and an edge represents a dependency relation
between two record actions. The formal definition is as follows:

DEFINITION 4. Dependency Graph Given a set of transac-
tions T = {t1, t2, · · · , tn}, and the associated sets of record ac-
tions ϕt1 , ϕt2 , · · · , ϕtn , the dependency graph G = (V, E) is a
directed graph and consists of

• V = ϕt1 ∪ ϕt2 ∪ · · · ∪ ϕtn , and

• E = {(αi, αj)|(αj �logical αi or αj �temporal αi), αi ∈
ϕti , αj ∈ ϕtj}

In particular, it is not efficient to analyze every record action α
on record r(α) as we add α into dependency graph G. Furthermore,
explicitly recording all the temporal dependency edges between a
pair of record actions may result in many edges. Therefore, dur-
ing dependency graph construction, we maintain the latest record
action L(k) for each record k that has been accessed in G.

By decomposing a transaction into record actions, logical de-
pendency relations are naturally resolved. When record action α
is inserted into the dependency graph, an edge from L(r(α)) to
α is created, since α �temporal L(r(α)). We maintain an action
queue φk for each record k. Given a record action α, it should
be appended to the end of φr(α). The record actions in a queue
should satisfy either �temporal or �logical. Record actions in dif-
ferent queues may only have �logical. Note that �temporal never
exists between record actions in different queues according to its
definition. The dependency graph construction algorithm for a set
of transactions T is given in Algorithm 1.

Algorithm 1: Dependency graph construction
Input: transaction set T
Output: dependency graph G for T
Initialize an empty graph G
foreach t ∈ T do

φt ← {α1, α2, ..., αm} decomposed from t
for i← 1 to m do /* for temporal dependency */
G.AddVertex(αi)
if L(r(αi)) exists then G.AddEdge(L(r(αi)), αi)
L(r(αi))← αi

for i← 1 to m− 1 do /* for logical dependency */
for j ← i+ 1 to m do

if αi �logic αj then G.AddEdge(αj , αi)

return G

During the dependency graph construction, each worker thread
maintains a constructor to resolve dependency relations among a
batch of transactions, which is essentially a consecutive number of
transactions from its transaction queue, and build the dependency
graph accordingly. When the system is saturated, the batch size
is equal to the pre-defined maximum batch size. Otherwise, af-
ter finishing one round of batch processing, the worker will check

4

the transaction queue. If the number of transactions waiting in
the transaction queue is less than the pre-defined maximum batch
size, all of them will be processed as a batch. The batch size in
LADS changes dynamically to adapt to workloads of different re-
quest rates.

Each worker is responsible for the construction of one depen-
dency graph. To better exploit the parallelism in the CPU, several
graphs can be constructed in parallel by different worker threads.
Each thread can construct a dependency graph asynchronously since
dependency graph construction for a batch of transactions is a com-
pletely independent process.

3.2 Dependency Graph Partitioning
Each worker thread then decomposes each constructed depen-

dency graph G = (V, E) into sub-graphs for distribution over all
the available worker threads. For optimal performance, it is neces-
sary to ensure that, as far as possible, each worker thread gets the
same amount of work. Furthermore, execution of a record action
in one worker thread may result in sending of information to its
dependent record actions in other worker threads.

The objective of the decomposition is to get a partition Ψ of V
with n elements. That is Ψ = {V1,V2, · · · ,Vn}, where

V1 ∪ · · · ∪ Vn = V
Vi ∩ Vj = ∅, ∀i 6= j

such that the partitions are of about the same size with minimal
number of cross-partition edges.

We note that the graph decomposition problem is isomorphic to
the classical uniform graph partitioning problem [22]. To solve the
problem, we only need to minimize the size of edge cut among the
partitions. ∑

i 6=j

| ⊗ij |

where ⊗ij = {(αp, αq)|αp ∈ Vi and αq ∈ Vj} with constraint
that

∀i, |Vi| ≤ (1 + ε)
|V|
n

As all the record actions in φk are to be performed on the same
record k, it is better to group them to the same partition. We define
a new weighted graph G = (V,E).

V = {φi|φi 6= ∅}

E = {(φi, φj)|αp ∈ φi, αq ∈ φj (αp, αq) ∈ E or (αq, αp) ∈ E}

A vertex in the weighted graph G is a record action queue, whose
weight equals to the number of record actions in the queue. The
weight of one edge equals to the number of logical dependency re-
lations between the two queues. We use function w to calculate
the weight. Compared with the initial dependency graph G, the
weighed graphs G has much fewer vertices and edges. This sim-
plifies the complexity of partitioning. In Figure 4(b), the weighted
graph only contains four vertices and three edges. The graph de-
composition problem is to minimize the following function:∑

i 6=j

w(⊗ij)

where ⊗ij = {(p, q)|p ∈ Vi, q ∈ Vj} with the constraint that

∀i, w(Vi) ≤ (1 + ε)
w(V)

n

We adopt a greedy algorithm to accelerate the dependency graph
partitioning. LADS first evenly partitions the weighted graph ac-
cording to key range and extracts edge cuts based on the partition-
ing result. Since LADS is designed for a multi-core environment
such as NUMA [28], we also take data locality into consideration
for performance purposes. Correspondingly, data within the same
NUMA node are given a higher probability for them to be in the
same partition. It then invokes a repartitioning process to minimize
the weight of the edge cuts. The basic idea is summarized in Al-
gorithm 2. To illustrate the idea, consider the earlier example and
Figure 4(b), where the weighted graph is decomposed into two par-
titions, {1000, 1001} and {1003, 1005}. During transaction exe-
cution, worker 1 is responsible for the record actions on accounts
1000 and 1001, and worker 2 is responsible for the record actions
on accounts 1003 and 1005.

Algorithm 2: Graph partitioning
Input: weighted graph G = (V,E)
Output: a set of sub-graphs {G1,G2,. . . ,Gn}

Partition G into a set of sub-graphs {G1,G2,. . . ,Gn} with
about the same weight according to the key range
Ecross =

⋃
p 6=q
⊗pq /* edge cut among the partitions */

foreach eij ∈ Ecross do
benefit[eij] = w(Ecross) - w(Ei→jcross)

end
max itrs = maximum iteration number
for l← 1 to max itrs do

Sort (benefit)
eij = benefit.EdgeWithMaxBenefit ()
Gp = GetSubgraph (vi)
Gq = GetSubgraph (vj)
if ∀k,w(Vk) ≤ (1 + ε)w(V)

n
& benefit[eij] >0 then

Gp.RemoveVertex (vi)
Gq .AddVertex (vi)
Update (benefit)

else
Break

end
end
return {G1,G2,. . . ,Gn}

3.3 Transaction Execution

3.3.1 Transaction Execution Based on Dependency
Graphs

A global synchronization operation is enforced to ensure that all
the worker threads will complete the graph construction and par-
titioning phase before entering the transaction execution phase si-
multaneously. Given a set of partitions Ψ = {V1,V2, · · · ,Vn},
LADS distributes it to the available workers to perform the ac-
tual transaction execution in parallel. Each worker i executes the
record actions of Vi in a greedy manner as summarized in Algo-
rithm 3. Initially, the worker selects record actions with no in-
edges in the sub-graph and inserts them into an executable set that
it maintains. Any record action in the executable set will not con-
flict with any other remaining record actions and can be executed
correctly. A worker thread then iteratively selects record actions
from the executable set to execute. After one record action is ex-
ecuted, it will be removed from the sub-graph together with its
out-edges from the original dependency graph G. Those record
actions without in-edges in the residual graph should then be in-
serted into the executable set. Figure 5 illustrates an example of

5

the above procedure. Initially, there is one executable record action
(2 : minus, 1003, 8) in sub-graph 2. When it is executed, record
actions (6 : minus, 1003, 4) and (2 : add, 1005, 8) are inserted
into the executable set. The process is repeated until all the record
actions in Vi are fully executed.

Algorithm 3: Dependency graph execution
Input: dependency graph Gi=(Vi,Ei)
R = ∅ /* initialize executable set */
whileR 6= ∅ & Gi.Size ()>0 do
R.AddVertex (Gi.RootVertex ())
αq =R.Pop ()
αq .Execute ()
Gi.RemoveOutEdge (αq)
Gi.RemoveVertex (αq)

LADS evenly partitions the workload for the transaction execu-
tion phase, thus addressing the problem of workload skew. In ad-
dition, LADS reorders operations before transaction execution so
that operations on the same record can be executed within a short
time interval, thereby improving cache hit rate.

As there are more than one dependency graph available during
the execution, it is possible that there exist conflicts among depen-
dency graphs. We resolve such conflicts by processing the conflict-
ing dependency graphs sequentially. After all the record actions of
a graph are fully processed, the corresponding transactions commit
in a group manner.

3.3.2 Handling Transaction Aborts
Since LADS resolves all the conflicts among transactions before

transaction execution, transaction abort caused by the conflicts is
eliminated. However, transaction aborts due to field constraints of
the database are still possible. For instance, the remaining balance
in Figure 4(a) cannot be negative. This can lead to cascading aborts
even in LADS. To avoid the overhead of cascading aborts, we add a
condition-variable-check function as the first record action in each
transaction. Other record actions in the transaction logically de-
pend on this first record action. If the first record action aborts,
it sends disable messages to the rest of the record actions in the
same transaction. As a consequence, no cascading abort is possible
during the transaction execution. For example, in Figure 5, record
action (4 : minus, 1000, 5) will abort, since the balance left in
account 1000 is not sufficient. Before aborting, it will send a dis-
able message to record action (4 : add, 1001, 5), which will not be
executed later on.

3.3.3 Handling Range Queries
LADS also supports queries that access a range of keys in the

database. The keys accessed by such a range query may change
during the actual transaction execution, and violates serializability.
LADS deals with this challenge by organizing the record action of
range query at a coarser granularity. In this case, LADS treats the
entire transaction as a single record action that needs to update the
entire column, table, or partition, as the case may require. So all
the record actions of the subsequent transactions to be performed
on that column (table or partition) must depend on this compos-
ite record action. In the worst case where all the transactions per-
form range queries, LADS would degrade to a partitioned database
system. As range query is usually rare in OLTP applications, this
should not be a problem in practice.

Disable Message
|
|
|
|
|
|

Sub-Dependency Graph 1

4:minus,1000,5

4:add,1001,5

1:add,1001,4

3:minus,1001,8

7:add,1001,4

2:minus,1003,8

6:minus,1003,4

2:add,1005,8

6:add,1000,4

8:minus,1003,7

8:add,1005,7

Temporal dependency

Logical dependency

Sub-Dependency Graph 2

Record action that can be executed

Sub-Dependency Graph 1

4:add,1001,5

1:add,1001,4

3:minus,1001,8

7:add,1001,4

6:minus,1003,4

2:add,1005,8

6:add,1000,4

8:minus,1003,7

8:add,1005,7

Sub-Dependency Graph 2

Sub-Dependency Graph 1 and Sub-Dependency Graph 2

both execute one Record action.

Record action that should be aborted

4:minus,1000,5

Figure 5: Dependency graph execution.

3.4 Correctness
We now prove that the dependency graph G constructed by LADS

guarantees conflict serializability. The dependency graph G works
as a schedule η of transaction set T . We can prove that η is conflict-
serializable. According to conflict serializability theorem [44], we
only need to show that the conflict graph G(η) constructed based
on η is acyclic.

DEFINITION 5. Conflict Graph Given the dependency graph
G = {V, E}, let η be its schedule. The conflict graph G(η) =
(V ,E) of η is defined by

V = T

(ti, tj) ∈ E ⇐⇒ (i 6= j) and ∃αi, αj ∈ V, αj � αi

According to our previous definitions of dependency relations,
the conflict relation in the conflict graph G(η) should be either
�temporal or �logic.

First, let us consider �temporal in G(η). If there is a directed
edge from αi to αj , then i < j. Now if G(η) is cyclic, then we
can always find a cycle with edges, (αi0 , αi1), (αi1 , αi2), · · · ,
(αiv−1 , αiv), (αiv , αi0), where i0 < i1 < · · · < iv−1 < iv
and iv < i0. Obviously, this violates the initial condition, namely
i < j. In other words, if we only consider �temporal, G(η) must be
acyclic.

Next, we consider �logic. Based on its definition, �logic will not
lead to an edge in G(η) because �logic only exists between two
record actions within the same transaction. So G(η) is still acyclic.
We can conclude that G(η) must be acyclic and thus η is a conflict-
serializable schedule.

4. IMPLEMENTATION
In this section, we present the architecture of LADS. As a rela-

tional database engine, LADS organizes data into tables. Each row
with a unique key is called a record, which is stored in a segment
of allocated memory.

6

OLTP Application

Dependency Graph Execution Engine

Transaction Initiator

Storage Manager

Statistics

Manager

Database

Schema

Graph

Configuration

Stored

Procedures

Workload

Information

Recovery Manager

Graph Construction

Graph Execution

Transaction

Queue

Transaction

Queue

Transaction

Queue

Constructor Constructor Constructor Constructor

Executor Executor Executor Executor

Dependency

Graph

Dependency

Graph

Dependency

Graph

Dependency

Graph

Sub-

Dependency

Graph Queue

Sub-

Dependency

Graph Queue

Sub-

Dependency

Graph Queue

Sub-

Dependency

Graph Queue

Dynamic

Partitioning

Figure 6: LADS system architecture.

4.1 System Architecture
The architecture of LADS consists of four components as shown

in Figure 6.
The Transaction Initiator maintains a set of transaction request

queues that are handled by different worker threads. Typically, ar-
riving transactions are not processed by the system immediately.
Rather, they will wait in a transaction queue. In some applications,
transaction requests may have different priorities [8, 29]. LADS
can adjust the priority of each queue (worker thread) accordingly.

The Dependency Graph Execution Engine is responsible for
constructing dependency graphs and conducting the transaction ex-
ecution in batches. To improve efficiency, worker threads con-
struct multiple dependency graphs in parallel. LADS processes the
graphs based on their priorities. The number of parallel threads is
equal to the number of transaction queues, and the threads alternate
between graph construction and graph execution phase, much like
a simple Bulk Synchronous Parallel execution model [43].

The Storage Manager is designed to manage the data in the
database. It interacts with the execution engine to retrieve, insert,
update and delete data. Both the B+-tree index and hash index are
supported. LADS guarantees the serializability and conflict-free
read/write operations.

The Statistics Manager collects runtime statistical information
such as real-time throughput and latency. It also interacts with the
other components to adjust the system configuration dynamically.
For example, since LADS processes transactions in batches, the
batch size affects both the throughput and latency. A larger batch
size should result in a higher throughput, while a smaller batch size
provides a shorter response time. The maximum batch size can be
adjusted accordingly based on the statistics and the requirements.

4.2 Implementation Details

4.2.1 Timestamp Assignment
When a transaction arrives, LADS assigns a timestamp to the

transaction and inserts it into the transaction queue. Compared
with other timestamp-based protocols, the timestamp assignment
in LADS is thread-private and does not rely on any centralized re-
sources. LADS only makes use of timestamps to resolve temporal
dependency for transactions in the same transaction queue. How-
ever, it is possible that conflicts also exist between transactions that
are in different transaction queues. As shown in Figure 6, LADS

if (condition lc is satisfied)
update A

else
update B

Conditional logic

Update A Update B

(a) Transform the conditional statement into dependency graph.

(b) The condition is satisfied during
the execution.

(c) The condition is not satisfied
during the execution.

Conditional logic

Update A Update B

Disable Message

Conditional logic

Update A Update B

Disable Message

Figure 7: A conditional statement example.

constructs several graphs in parallel. It will then execute them one
after another. By doing this, LADS resolves the conflicts between
dependency graphs without using the timestamps.

4.2.2 Data Layout
LADS maintains a row-based database, and each record contains

the following information:

• The record data. To reduce cache coherence overhead, LADS
employs cache line alignment when it stores the record data.

• The pointer to a record action queue. LADS adds a field in
each record to store the pointer that refers to its record action
queue.

As discussed in Section 3.3, after all the record actions of one
graph have been processed, the transactions will commit at the
same time. The record data is only modified by the last update.
In the example shown in Figure 5, four record actions operate on
account 1001. However, only the update performed by record ac-
tion (7 : add, 1001, 4) modifies the record in place.

4.2.3 Transaction Decomposition
To build the dependency graph, LADS first parses the statements

of each transaction, and then transforms them into a set of record
actions. Although OLTP transactions are typically short-lived, they
may contain some complex statements such as conditional state-
ments.

7

LADS handles transactions with conditional logic by adding ex-
tra record actions. In Figure 7, the transaction updates record A if
it satisfies the condition lc. Otherwise, it updates record B. Figure
7(a) shows how this conditional logic is represented in the depen-
dency graph. During actual transaction execution, the record action
that handles the conditional logic should send messages to disable
record actions in the false branch, as shown in Figure 7(b) and Fig-
ure 7(c).

4.2.4 Transaction Logs and Checkpointing
Being an in-memory data engine, LADS stores all the data in

main memory. Yet, for reliability, LADS flushes transaction logs
into disks for recovery purposes. LADS makes use of command
logging [27]. Each record action in the dependency graph is asso-
ciated with a log record consisting of the record key, function set,
parameters, and dependency information. No real data is recorded
in the log files, and hence the logging overhead and size of the logs
are reduced. During recovery, we only need to replay those log
records to reconstruct the dependency graphs and then execute the
reconstructed graph. Instead of generating log records for a single
transaction, LADS can construct log records for transactions in a
batched manner. Writing all those log records as a batch fully uti-
lizes the disk I/O bandwidth, thereby improving the system’s over-
all performance. Furthermore, each worker maintains a separate
log buffer to eliminate contention during the processing.

In order to recover the database within a bounded time, LADS
also performs periodic checkpointing. It maintains several check-
pointing threads. The entire memory is divided up into sections
and each checkpointing thread is responsible for one such section.
Even as the checkpointing threads are working, transactions con-
tinue to execute. However, those commits are not reflected in the
checkpointing. This means our checkpointing is not a consistent
snapshot of the database, and it needs to combine with the logging.
To recover from a failure, LADS has to reload the latest checkpoint,
and replay the transaction log records from that time point onwards.
It then reprocesses the committed transactions.

5. EXPERIMENTS
In this section, we shall evaluate LADS against H-Store [20],

a partition-based database that adopts the single-threaded model;
DORA [32], a data-oriented transaction processing system; and
Silo [42], a multi-core in-memory OLTP engine with optimistic
concurrency control protocol. The original H-Store is mainly im-
plemented in Java. For a fairer comparison, we reimplemented H-
Store in C++, and also reduced some of its functionalities, such as
network communication. For clarity, we call our implementation
H’-Store. Similarly, since DORA is originally implemented on a
disk-based storage manager called Shore-MT [19], we extended
DORA so that it makes use of the same storage manager as LADS
to maintain the entire database in memory.

5.1 Experimental Setup
All the experiments are conducted on a multi-core server equipped

with four Intel Xeon 2.2 GHz processors that have six cores each.
This gives us a total of 24 cores. The server has 64 GB of DRAM.
The four processors are connected to form a NUMA architecture.
Each core has a private 32 KB L1 cache, a 256 KB L2 cache and
supports two hyper-threads. Each six-core processor has a 12 MB
L3 cache shared by its cores.

Two popular OLTP benchmarks, namely YCSB [9] and TPC-
C [2], are used in the evaluations. First, the YCSB benchmark
contains various combinations of read/write operations. Originally,
each YCSB transaction only reads/writes a single data record, which

 0

 500

 1000

 1500

 2000

 2500

0 25 50 75 100

T
h

ro
u
g

h
p
u

t
(K

 t
x
n
s
/s

e
c
)

Percentage of write operation (%)

LADS Silo DORA H’-Store

(a) Percentage of corss-partition
transaction is 0%

 0

 500

 1000

 1500

 2000

 2500

0 25 50 75 100

T
h

ro
u
g

h
p
u

t
(K

 t
x
n
s
/s

e
c
)

Percentage of write operation (%)

LADS Silo DORA H’-Store

(b) Percentage of corss-partition
transaction is 10%

Figure 8: Effects of write operations on the YCSB benchmark.
The number of threads is fixed as 24 and Zipfian θ=0.8.

Table 1: Parameter values for evaluations
Parameter Values
Number of threads 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48
YCSB Zipfian θ 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1
Percentage of YCSB writes 0, 0.25, 0.5, 0.75, 1
Number of TPC-C warehouse 4, 8, 24
Percentage of cross-partition 0, 0.1, 0.2, 0.3, 0.5, 0.6, 0.7, 0.8, 0.9, 1transaction

usually generates few conflicts during execution. To simulate the
situation with high contention of data access in the evaluations, we
extend the YCSB benchmark such that each transaction reads or
writes 20 records. Moreover, we shrank the record size from the
standard 1000 bytes to 100 bytes. This makes a fairer comparison
with Silo which requires allocating memory space for every ver-
sion of a recored, and shrinking the record size mitigates the issue
of Silo’s memory allocation being its performance bottleneck [42].
Second, the TPC-C benchmark simulates a complete order-entry
environment whose transaction scenario is more complex than that
of YCSB. Five types of transactions (New-Order, Payment, De-
livery, Order-Status and Stock-Level) are generated in the TPC-C
benchmark.

In a multi-core environment, contention among threads seriously
affects system performance. There are three factors that typically
dominate the intensity of contention. The first is the percentage of
write operations in the workload. While reads on the same record
can always be operated in parallel, writes on the same record must
be performed sequentially. Hence, more write operations usually
lead to higher contention. The second is the skewness of data ac-
cess. In practice, OLTP applications tend to access certain data
more frequently. For example, in an online shopping scenario, pop-
ular items are accessed more frequently than others. YCSB simu-
lates the skewness of data access through a Zipfian distribution [16]
in which the parameter θ determines the level of skewness. For a
given number of working threads, a larger θ results in more con-
tentions. In the evaluations, by setting θ to 0.5, 0.8 and 0.9, 10%
of the records in the database are accessed by about 35%, 60%
and 75% of all transactions, respectively. The third factor is the
number of concurrent threads. A larger amount of parallel transac-
tions usually leads to more contention. Apart from the three factors
above, for partitioned database systems with the single-threaded
model, the percentage of cross-partition transactions is another im-
portant factor. A cross-partition transaction may block the threads
that work on the partitions where the transaction needs to access,
and thus affect system performance. In the following experiments,
we study the performance of LADS with respect to all these factors
using the two benchmarks. The parameters are listed in Table 1,
where each underlined value indicates the default setting.

8

 0

 500

 1000

 1500

 2000

 2500

1 4 8 12 16 20 24 28 32 36 40 44 48

T
h
ro

u
g
h

p
u
t
(K

 t
x
n
s
/s

e
c
)

Number of threads

LADS Silo DORA H’-Store

(a) Workloads of low contention (θ=0.5)

 0

 500

 1000

 1500

 2000

 2500

1 4 8 12 16 20 24 28 32 36 40 44 48

T
h
ro

u
g
h

p
u
t
(K

 t
x
n
s
/s

e
c
)

Number of threads

LADS Silo DORA H’-Store

(b) Workloads of medium contention (θ=0.8)

 0

 500

 1000

 1500

 2000

 2500

1 4 8 12 16 20 24 28 32 36 40 44 48

T
h
ro

u
g
h

p
u
t
(K

 t
x
n
s
/s

e
c
)

Number of threads

LADS Silo DORA H’-Store

(c) Workloads of high contention (θ=0.9)
Figure 9: Effects of skewed workload on the YCSB benchmark.

 0

 500

 1000

 1500

 2000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Th
ro

ug
hp

ut
 (K

 tx
ns

/s
ec

)

YCSB Zipfian θ

LADS Silo DORA H’-Store

(a) Effects of data access skew

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
PU

 u
til

iz
at

io
n

br
ea

kd
ow

n
(%

)

YCSB Zipfian θ

L1 cache L2 cache L3 cache DRAM

(b) Cache efficiency of LADS

 3

 3.2

 3.4

 3.6

 3.8

 4

 4.2

 4.4

 4.6

 4.8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 60

 65

 70

 75

 80

 85

 90

L1
 C

ac
he

 m
is

s
ra

te
 (%

)

L2
, L

3
ca

ch
e

m
is

s
ra

te
 (%

)

YCSB Zipfian θ

L1 cache L2 cache L3 cache

(c) Cache miss rate variation in LADS
Figure 10: Effects of data access skew and cache efficiency.

5.2 Impact of Write Operations
We first evaluate how the performance of the four systems is af-

fected by write operations by running the YCSB benchmark. Fig-
ure 8(a) shows the performance variation when the Zipfian θ is set
to 0.8 and no cross-partition transactions are involved. All the
four systems perform better on workload with more read opera-
tions, since write operations are usually more expensive. The per-
formance of Silo drops significantly as the percentage of write op-
erations increases in the workload. This is because, with increasing
amount of write conflicts, Silo has to spend more time in resolving
contention upon transaction commits. Furthermore, Figure 8(b)
shows the results when cross-partition transactions are involved.
Unlike LADS, the performance of H’-Store and DORA drops sig-
nificantly, and it becomes resilient to the variation of percentage of
write operations. This is expected since thread blocking caused by
cross-partition transaction is expensive and it has more impact than
the effects of write operations.

5.3 Impact of Workload Skewness
Next, we study the impact on system robustness with skewed

workloads. The skewness may exist among partitions and/or within
a single partition.

To simulate the skewness among partitions, we apply all the
workloads on a single partition. Figure 9(a) shows the throughput
of the four systems running the YCSB benchmark. As can be seen,
increasing the number of threads has no effect on the throughput
of H’-Store, because only one thread can work on the partition.
On the other hand, DORA, Silo and LADS scale well with the
increased number of threads. DORA maintains logical partitions
and the periodic adjustment of the logical partitions reduces the ef-
fects of workload skewness. For both Silo and LADS, the whole
database is shared by all available threads that can work on the
same partition simultaneously. With more contentions in the work-
loads, Figure 9(b) and Figure 9(c) show that the throughput of Silo
decreases significantly. This results from the increased transaction

aborts caused by the conflicting data operations. Although both
DORA and LADS are more resilient to variations in contention, the
throughput of DORA increases much slower than that of LADS, es-
pecially for workloads of higher contention. DORA uses locks to
resolve conflicts among transactions. Furthermore, to avoid dead-
locks, each thread in DORA latches the incoming action queues
on all accessed logical partitions before dispatching actions of a
transaction phase. This restricts parallelism. In contrast, LADS
partitions and executes the workloads according to the dependency
graphs computed. Deadlocks and transaction aborts due to con-
flict are totally eliminated. Moreover, the whole processing logic
of LADS is lock/latch-free and does not rely on any centralized
component. Thus, LADS copes better with the workload skewness
among the partitions under different degrees of contention.

Apart from the workloads skewness among partitions, skewness
within a single partition is also common. The skewness of the
YCSB workloads is controlled by the parameter θ of the Zipfian
distribution. Figure 10(a) shows the impact of the Zipfian θ on the
performance of all the four systems when the number of threads is
fixed at 24. The database is evenly divided into 24 partitions ac-
cording to the key range. When θ is small, data accesses are more
likely to be uniformly distributed. As θ increases, the data access
distribution becomes more skewed, resulting in higher contention.
The throughput of Silo drops with the increase of θ, since there are
more transaction aborts due to conflict. The throughput of DORA
slightly decreases at the beginning and then increases at a later
stage. On one hand, higher skewness causes more locking/latching,
which restricts the parallelism during the transaction dispatching
and thus degrades the throughput. On the other hand, higher skew-
ness benefits DORA’s cache efficiency and as a consequence, leads
to a throughput increase. The performance of H’-Store and LADS
increases with the Zipfian θ. This is because some data items are
more frequently accessed, which improves the cache efficiency. To
further examine the cache efficiency of LADS, Figure 10(b) shows
the CPU utilization breakdown of LADS in visiting L1, L2, L3

9

100

1000

2000

3000

0 1 10 100

T
h
ro

u
g
h

p
u
t
(K

 t
x
n
s
/s

e
c
)

Percentage of cross-parition transaction (%)

LADS Silo DORA H’-Store

(a) Workloads of low contention (θ=0.5)

100

1000

2000

3000

0 1 10 100

T
h
ro

u
g
h

p
u
t
(K

 t
x
n
s
/s

e
c
)

Percentage of cross-parition transaction (%)

LADS Silo DORA H’-Store

(b) Workloads of medium contention (θ=0.8)

100

1000

2000

3000

0 1 10 100

T
h
ro

u
g
h

p
u
t
(K

 t
x
n
s
/s

e
c
)

Percentage of cross-parition transaction (%)

LADS Silo DORA H’-Store

(c) Workloads of high contention (θ=0.9)
Figure 11: Effects of cross-partition transactions on the YCSB benchmark.

 0

 200

 400

 600

 800

 1000

 1200

 1400

0 10 20 30 40 50 60 70 80 90 100

T
h
ro

u
g

h
p
u
t
(K

 t
x
n
s
/s

e
c
)

Percentage of cross-partition transaction (%)

LADS Silo DORA H’-Store

(a) 4 warehouses

0

250

500

750

1000

1250

1500

1750

2000

0 10 20 30 40 50 60 70 80 90 100

T
h
ro

u
g

h
p
u
t
(K

 t
x
n
s
/s

e
c
)

Percentage of cross-partition transaction (%)

LADS Silo DORA H’-Store

(b) 8 warehouses

 0

 500

 1000

 1500

 2000

 2500

 3000

0 10 20 30 40 50 60 70 80 90 100

T
h
ro

u
g

h
p
u
t
(K

 t
x
n
s
/s

e
c
)

Percentage of cross-partition transaction (%)

LADS Silo DORA H’-Store

(c) 24 warehouses
Figure 12: Effects of cross-partition transactions on the TPC-C benchmark.

caches and DRAM. We count their accesses and calculate the re-
sults according to statistical empirical values as suggested in [18].
The results show that LADS experiences more cache accesses for
workloads of higher skewness. Furthermore, Figure 10(c) shows
the cache miss rate with respect to the skewness variation. When θ
is increased from 0 to 1, the L1, L2 cache miss rate decreases by
1% and 6%, respectively. LADS executes conflicting operations
successively during the transaction execution, thereby reducing the
cache miss rate. Compared with the L1 and L2 cache miss rates,
the L3 cache miss rate decreases slightly more because cores on the
same die share the same L3 cache. The above results confirm that
LADS exhibits good robustness when faced with skewed single-
partition workloads.

5.4 Impact of Cross-Partition Transactions
We next evaluate the impact of cross-partition transactions on

performance in the four systems, where the number of available
worker threads is fixed to be 24. Figure 11 and Figure 12 show the
throughput of running the YCSB benchmark and TPC-C bench-
mark with different levels of contention as we increase the percent-
age of cross-partition transactions. For the YCSB benchmark, the
database is evenly divided into 24 partitions according to the key
range. For the TPC-C benchmark, the database is statically parti-
tioned by warehouse, such that each partition contains all the tables
in one warehouse. The number of partitions equals to the number
of warehouses.

As shown by the results, H’-Store is sensitive to the percent-
age of cross-partition transactions. Even a small amount of cross-
partition transactions (as little as 1%) can cause a significant drop
in its throughput, since a cross-partition transaction blocks threads
on all the partitions that it accesses during its execution. Similarly,
the throughput of DORA also drops significantly with respect to the
increase of the percentage of cross-partition transactions. When a
transaction arrives, the thread in DORA latches all the relevant in-
coming queues of its accessed logical partitions before dispatching

it. Furthermore, when a transaction commits, it needs to notify all
the partitions involved to release the related locks. This restricts the
parallelism and tends to generate a performance bottleneck. In con-
trast, Silo and LADS are robust to the variation of the percentage
of cross-partition transactions, since data are shared across all the
worker threads. LADS works like a shared-memory database and
eliminates thread blocking during the dependency graph construc-
tion. It then partitions and executes the workloads according to the
constructed dependency graph like a partitioned database. In short,
the above results confirm that LADS could handle cross-partition
transactions efficiently.

5.5 Scalability and Durability
In the following set of experiments, we evaluate the scalability

of LADS and the cost of ensuring durability.
The results in Figure 9 already show that LADS scales well on

the YCSB benchmark with different levels of contention. We now
evaluate the scalability using the TPC-C benchmark. Figure 13
shows the results with 24 warehouses and 10% of the transactions
involving more than one partition. All the four systems exhibit
good scalability when the number of available workers is less than
24. However, all four systems fail to scale when the number of
warehouses is less than the number of worker threads, although
LADS still shows better scalability than the other three. In TPC-
C, every Payment transaction updates the same field in the ware-
house table. These updates cannot be executed in parallel, even if
idle threads are available. As the number of workers increases, H’-
Store, DORA and Silo obtain little performance gain. LADS also
does not scale smoothly but still maintains an upward trend, albeit
at a slower rate, since LADS can execute record actions on other
tables in parallel.

LADS provides durability by writing logs to disk along transac-
tion processing, which is done by separate threads. Each logging
thread maintains a log buffer and flushes the contents to individual
log file before a transaction commits. In Figure 14, the throughput

10

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

1 4 8 12 16 20 24 28 32 36 40 44 48

T
h
ro

u
g
h
p
u
t
(K

 t
x
n
s
/s

e
c
)

Number of threads

LADS Silo DORA H’-Store

Figure 13: Scalability on the TPC-
C benchmark with 24 warehouses.

 0

 500

 1000

 1500

 2000

 2500

4 8 12 16 20 24 28 32 36 40 44 48

T
h
ro

u
g
h
p
u
t
(K

 t
x
n
s
/s

e
c
)

Number of threads

LADS LADS+Logging

Figure 14: Effects of logging on
the YCSB benchmark.

 0

 500

 1000

 1500

 2000

 2500

 3000

500 5000 10000 15000 20000

T
h
ro

u
g
h
p
u
t
(K

 t
x
n
s
/s

e
c
)

Number of transactions in one batch

8 workers
16 workers

24 workers
32 workers

40 workers
48 workers

Figure 15: Effects of batch size on
throughput.

 100

 200

 300

 400

 500

 600

500 5000 10000 15000 20000

L
a
te

n
c
y
 (

m
s
)

Number of transactions in one batch

8 workers
16 workers

24 workers
32 workers

40 workers
48 workers

Figure 16: Effects of batch size on
latency.

 0

 500

 1000

 1500

 2000

 10 20 30 40 50 60

T
h
ro

u
g
h
p
u
t
(K

 t
x
n
s
/s

e
c
)

Time (minutes)

LADS Silo DORA H’-Store

(a) Throughput

0

100

200

300

400

450

 10 20 30 40 50 60

L
a
te

n
c
y
 (

m
s
)

Time (minutes)

LADS Silo DORA H’-Store

(b) Latency

Figure 17: A one-hour dynamic workload simulation on the
YCSB benchmark.

 0

 20

 40

 60

 80

 100

0.5 0.8 0.9

C
PU

 u
til

iz
at

io
n

br
ea

kd
ow

n
(%

)

YCSB Zipfian θ

Construction

Execution

Communication

Partitioning

Logging

Others

(a) Cost analysis on YCSB

 0

 20

 40

 60

 80

 100

4 8 24

C
P

U
 u

ti
liz

a
ti
o
n
 b

re
a
k
d
o
w

n
 (

%
)

Number of TPC-C warehouses

Construction

Execution

Communication

Partitioning

Logging

Others

(b) Cost analysis on TPC-C

Figure 18: Cost analysis of LADS. The number of threads is fixed
to 24 and the percentage of cross-partition transactions is 10%.

of LADS with logging decreases by 15% compared with that with-
out logging. Although logging incurs additional overheads, it does
not affect the scalability of LADS.

5.6 Impact of Batch Size in LADS
In this section, we evaluate the impact of batch size on the per-

formance in LADS. The batch size is constrained by the number
of transactions in the transaction queue and a pre-defined maxi-
mum batch size. Figure 15 and Figure 16 show the impacts of
the batch size on throughput and latency, respectively. When the
number of threads is fixed, the throughput first increases with the
batch size before plateauing when the computation resources are
fully stretched. With more worker threads, LADS always needs a
larger batch size to fully exploit their computation potential. As
with throughput, the average latency also increases with the batch
size. In LADS, threads process the constructed dependency graphs
sequentially during transaction execution, thereby increasing the
waiting time of the later graphs and thus leads to a higher latency.
A trade-off has to be made between the throughput and latency by
tuning the batch size. In particular, LADS dynamically adjusts the
maximum batch size based on the statistics information and the
user-defined requirements.

5.7 Performance on Dynamic Workloads
In practice, workloads are always changing continuously. With-

out prior knowledge of any future workloads, it is hard for any
system to adapt in real time. Hence, robustness to dynamic work-
loads is an important factor. To evaluate such robustness, we con-
duct experiments to simulate real-world workloads on the YCSB
benchmark by generating transactions with random percentages of
cross-partition transactions and contention intensities. In a one-
hour simulation, we change the workload parameters every minute,
and keep all systems running at full capacity. The average percent-
age of cross-partition transactions is 10% and the average Zipfian θ
is 0.7. For LADS, we set the default size of the transaction queue
to 5000 which is equal to LADS’ pre-defined maximum batch size.

In Figure 17(a), the throughput of LADS fluctuates within a nar-
row range. In contrast, the throughputs of H’-Store, DORA and

Silo show severe fluctuations because they are sensitive either to the
percentage of cross-partition transactions or the intensity of con-
tention. Figure 17(b) shows the average latency with respect to the
dynamic workloads. The average latency of H’-Store and DORA
also fluctuates severely. For H’-Store and DORA, a cross-partition
transaction blocks threads on the partitions that are accessed. Con-
sequently, it increases the waiting time of transactions in the trans-
action queue and leads to a higher latency. Compared with H’-Store
and DORA, the average latency of LADS and Silo shows little vari-
ations for workloads of different settings. Since LADS processes
transactions in a batched manner, its average latency is affected by
both transaction complexity and batch size. The average latency
of LADS is higher than that of Silo, since LADS commits a batch
of transactions at one time. Overall, the results above confirm that
LADS exhibits superior robustness to dynamic workloads.

5.8 Micro-Benchmarking
Finally, we study the performance breakdown in LADS. Fig-

ure 18 shows the percentages of CPU utilizations contributed by
the individual components of LADS.

As shown in Figure 18(a), for the YCSB benchmark, the cost of
each component is almost the same for different contention inten-
sities. Most of the CPUs cycles (about 75%) are spent in resolving
and executing transactions. Such effective CPU utilization on the
actual transaction processing contributes to the better performance
in LADS. The cost of resolving dependency relations within one
transaction depends on the complexity of each transaction. Thus,
the cost of dependency graph construction remains nearly the same
with respect to different contentions. Moreover, by evenly parti-
tioning the workloads in the granularity of records, LADS reduces
the effects of thread starving to a certain extent. Thus, the com-
munication cost, including synchronization cost, takes up only a
small fraction of the total cost during execution. Hence, the cost
of transaction execution stays nearly constant with different con-
tention settings.

In addition, the result for the TPC-C benchmark is shown in
Figure 18(b). As can be seen, the communication cost increases
when there are fewer warehouses. When the number of warehouses

11

changes from 4 to 24, the percentage of communication cost drops
from 37.5% to 5%. There are two reasons that lead to this change.
First, the contention in the TPC-C benchmark is limited to a small
set of records. This internal characteristic increases the complexity
of obtaining balanced partitions and constrains its execution paral-
lelism. Second, TPC-C transactions have more logical dependency
relations, and most of them are also on the same set of records,
causing an increase in communication cost.

6. CONCLUSION
In this paper, we proposed LADS, a dynamic single-threaded

OLTP system. LADS extends the simplicity of the single-threaded
model while overcoming the latter’s robustness issue under differ-
ent kinds of workloads. LADS resolves conflicts among transac-
tions by constructing dependency graphs for which there are no
aborts that may arise due to conflicts during the transaction exe-
cution. It distributes incoming workloads to available workers in
a balanced manner to achieve higher parallelism and efficiency.
LADS also leverages modern hardware features. Our extensive ex-
perimental study shows that LADS can achieve up to 20× higher
throughput than three state-of-the-art systems.

7. REFERENCES
[1] Single-threaded performance of desktop cpus.

http://www.cpu-world.com/benchmarks/desktop_
CPUs_single.html.

[2] TPC-C. http://www.tpc.org/tpcc/.
[3] TPC-C historical results.

http://www.tpc.org/information/historical.asp.
[4] R. Agrawal, M. J. Carey, and M. Livny. Concurrency control

performance modeling: alternatives and implications. TODS, 1987.
[5] P. Bailis, A. Fekete, M. J. Franklin, A. Ghodsi, J. M. Hellerstein, and

I. Stoica. Coordination avoidance in database systems. PVLDB, 2014.
[6] A. J. Bernstein, D. S. Gerstl, and P. M. Lewis. Concurrency control

for step-decomposed transactions. Information Systems, 1999.
[7] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency

control and recovery in database systems. Addison-wesley New
York, 1987.

[8] M. J. Carey, R. Jauhari, and M. Livny. Priority in DBMS resource
scheduling. University of Wisconsin-Madison 1989.

[9] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears.
Benchmarking cloud serving systems with ycsb. SoCC. ACM, 2010.

[10] D. J. DeWitt, R. H. Katz, F. Olken, L. D. Shapiro, M. R. Stonebraker,
and D. A. Wood. Implementation techniques for main memory
database systems. ACM, 1984.

[11] C. Diaconu, C. Freedman, E. Ismert, P.-A. Larson, P. Mittal,
R. Stonecipher, N. Verma, and M. Zwilling. Hekaton: Sql server’s
memory-optimized oltp engine. SIGMOD. ACM, 2013.

[12] A. J. Elmore, V. Arora, R. Taft, A. Pavlo, D. Agrawal, and
A. El Abbadi. Squall: Fine-grained live reconfiguration for
partitioned main memory databases. SIGMOD, 2015.

[13] J. M. Faleiro and D. J. Abadi. Rethinking serializable multiversion
concurrency control. VLDB, 2015.

[14] H. Garcia-Molina. Using semantic knowledge for transaction
processing in a distributed database. TODS, 1983.

[15] V. Gottemukkala and T. J. Lehman. Locking and latching in a
memory-resident database system. VLDB, 1992.

[16] J. Gray, P. Sundaresan, S. Englert, K. Baclawski, and P. J.
Weinberger. Quickly generating billion-record synthetic databases.
SIGMOD Record. ACM, 1994.

[17] S. Harizopoulos, D. J. Abadi, S. Madden, and M. Stonebraker. OLTP
through the looking glass, and what we found there. SIGMOD, 2008.

[18] J. L. Henning. Spec cpu2000: Measuring cpu performance in the new
millennium. Computer, 2000.

[19] R. Johnson, I. Pandis, N. Hardavellas, A. Ailamaki, and B. Falsafi.
Shore-MT: a scalable storage manager for the multicore era. EDBT.
ACM, 2009.

[20] R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin, S. Zdonik,
E. P. Jones, S. Madden, M. Stonebraker, Y. Zhang, et al. H-Store: a
high-performance, distributed main memory transaction processing
system. VLDB, 2008.

[21] A. Kemper and T. Neumann. Hyper: A hybrid OLTP&OLAP main
memory database system based on virtual memory snapshots. ICDE,
2011.

[22] B. W. Kernighan and S. Lin. An efficient heuristic procedure for
partitioning graphs. Bell system technical journal, 1970.

[23] H. Kimura. Foedus: Oltp engine for a thousand cores and nvram.
SIGMOD, 2015.

[24] H. Kimura, G. Graefe, and H. A. Kuno. Efficient locking techniques
for databases on modern hardware. ADMS@ VLDB, 2012.

[25] H.-T. Kung and J. T. Robinson. On optimistic methods for
concurrency control. TODS, 1981.

[26] R. H. Louie, Y. Li, and B. Vucetic. Practical physical layer network
coding for two-way relay channels: performance analysis and
comparison. Wireless Communications, 2010.

[27] N. Malviya, A. Weisberg, S. Madden, and M. Stonebraker.
Rethinking main memory oltp recovery. ICDE, 2014.

[28] N. Manchanda and K. Anand. Non-uniform memory access (numa).
New York University, 2010.

[29] D. T. McWherter, B. Schroeder, A. Ailamaki, and M. Harchol-Balter.
Priority mechanisms for oltp and transactional web applications.
ICDE, 2004.

[30] C. Mohan, H. Pirahesh, and R. Lorie. Efficient and flexible methods
for transient versioning of records to avoid locking by read-only
transactions. SIGMOD Record, 1992.

[31] T. Neumann, T. Mühlbauer, and A. Kemper. Fast serializable
multi-version concurrency control for main-memory database
systems. SIGMOD, 2015.

[32] I. Pandis, R. Johnson, N. Hardavellas, and A. Ailamaki.
Data-oriented transaction execution. VLDB, 2010.

[33] I. Pandis, P. Tözün, R. Johnson, and A. Ailamaki. Plp: page
latch-free shared-everything oltp. VLDB, 2011.

[34] A. Pavlo, C. Curino, and S. Zdonik. Skew-aware automatic database
partitioning in shared-nothing, parallel OLTP systems. SIGMOD,
2012.

[35] K. Ren, A. Thomson, and D. J. Abadi. Lightweight locking for main
memory database systems. VLDB, 2012.

[36] S. Roy, L. Kot, G. Bender, B. Ding, H. Hojjat, C. Koch, N. Foster,
and J. Gehrke. The homeostasis protocol: Avoiding transaction
coordination through program analysis. SIGMOD, 2015.

[37] R. R. Schaller. Moore’s law: past, present and future. Spectrum,
1997.

[38] D. Shasha, F. Llirbat, E. Simon, and P. Valduriez. Transaction
chopping: Algorithms and performance studies. TODS, 1995.

[39] T. Subasu and J. Alonso. Database engines on multicores, why
parallelize when you can distribute. In EuroSys, 2011.

[40] R. Taft, E. Mansour, M. Serafini, J. Duggan, A. J. Elmore,
A. Aboulnaga, A. Pavlo, and M. Stonebraker. E-store: Fine-grained
elastic partitioning for distributed transaction processing. VLDB,
2014.

[41] K.-L. Tan, Q. Cai, B. C. Ooi, W.-F. Wong, C. Yao, and H. Zhang.
In-memory databases–challenges and opportunities.

[42] S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden. Speedy
transactions in multicore in-memory databases. SOSP, 2013.

[43] L. G. Valiant. A bridging model for parallel computation. Commun.
ACM, 1990.

[44] G. Weikum and G. Vossen. Transactional information systems:
theory, algorithms, and the practice of concurrency control and
recovery. Elsevier, 2001.

[45] A. Whitney, D. Shasha, and S. Apter. High volume transaction
processing without concurrency control, two phase commit, sql or
c++. HPTS, 1997.

[46] X. Yu, G. Bezerra, A. Pavlo, S. Devadas, and M. Stonebraker. Staring
into the abyss: An evaluation of concurrency control with one
thousand cores. VLDB, 2014.

12

