
LedgerView: Access-Control Views on Hyperledger Fabric
Pingcheng Ruan

National University of Singapore

Singapore

e0079643@u.nus.edu

Yaron Kanza

AT&T Chief Data Office

New Jersey, USA

kanza@research.att.com

Beng Chin Ooi

National University of Singapore

Singapore

ooibc@comp.nus.edu.sg

Divesh Srivastava

AT&T Chief Data Office

New Jersey, USA

divesh@research.att.com

ABSTRACT
We present LedgerView—a system that adds access control views to

permissioned blockchains. The approach is motivated by an AT&T

application of tracking refurbished devices. A blockchain is a de-

centralized tamper-resistant ledger managed by a group of peers.

It is used in many applications for storing and sharing sensitive
information, e.g., monetary transactions, health records, personal

documents, etc. But in blockchain, all the peers see all the stored

transactions, while in some applications, access to sensitive informa-

tion should be limited, that is, concealed from peers and users who

do not have proper access permissions. In database management

systems, sets of records that are visible to some users and concealed

from others are defined by views, but existing blockchain systems

lack such access-control capabilities. Thus, in this paper, we intro-

duce access-control views for Hyperledger Fabric. We present two

types of views—revocable and irrevocable, according to whether ac-

cess to sensitive information can or cannot be revoked. We explain

how to implement the two types of view by using cryptographic

hash functions and encryption keys, and we show how to support

Role-Based Access Control (RBAC). Experiments with supply chain

transactions illustrate the incurred costs of the views in LedgerView,

including latency, transaction rate and storage overhead.

CCS CONCEPTS
• Information systems→ Database views; • Security and pri-
vacy→ Access control.

KEYWORDS
Blockchain, access control, views, RBAC, privacy, supply chain

ACM Reference Format:
Pingcheng Ruan, Yaron Kanza, Beng Chin Ooi, and Divesh Srivastava. 2022.

LedgerView: Access-Control Views on Hyperledger Fabric. In Proceedings
of the 2022 International Conference on Management of Data (SIGMOD ’22),
June 12–17, 2022, Philadelphia, PA, USA. ACM, New York, NY, USA, 14 pages.

https://doi.org/10.1145/3514221.3526046

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9249-5/22/06. . . $15.00

https://doi.org/10.1145/3514221.3526046

1 INTRODUCTION
Nowadays, blockchain has many industrial applications. It was ini-

tially introduced as a tamper-proof decentralized ledger for preven-

tion of double spending in cryptocurrencies like Bitcoin [39]. How-

ever, in recent years many new blockchain applications were devel-

oped, in a variety of areas, including supply chain management [21,

58], healthcare [16], identity management [22], finance [56], trans-

portation [31], management of personal data [62], tracking IoT

devices [8] and managing drones [18]. Blockchain has become an

important tool for managing shared data in applications with no

agreed-upon trusted entity that could store and manage all the

data, or when data records should result from a consensus between

organizations that do not fully trust each other [26].

Blockchain was initially designed as a transparent ledger, e.g., in

cryptocurrencies all the users see all the transactions. Transparency

is needed for preventing double spending—a case where a user pays

with the same coins in two different transactions. However, nowa-

days blockchain has many uses, not just managing cryptocurrencies.

In many applications, the information stored on the blockchain is

sensitive and should be concealed from some of the users, including

some or all of the peers who manage the blockchain. An example

of that is a blockchain application for storing health records [27].

Such records contain sensitive private information and should not

be revealed to unauthorized users. Access to the information should

be granted to authorized users, but the set of authorized users could

change over time, e.g., new healthcare workers may need access to

health records that were stored before they were hired.

At AT&T, a blockchain-based proof of concept application has

been built for tracking refurbished mobile devices. When refur-

bishing devices, parts that were taken from disposed devices may

be used. To offer certified refurbished devices with repair services

and warranty, the history of used parts should be recorded. Since

parts are made by many manufacturers, used in devices of differ-

ent companies and are refurbished in different laboratories, there

is no single entity that tracks all the devices and parts. However,

laboratories need to know the entire history of every part they use,

manufacturers want to knowwhere their parts are used if they need

to provide warranty, and stores may need to know if the refurbished

devices they are selling contain used parts. Thus, a ledger of parts

and devices has been built on top of Hyperledger Fabric.

The tracking of refurbished devices should not breach business

confidentiality, e.g., a manufacturer should only track parts it pro-

duced, a repair lab should not have access to information on parts

used by other labs, etc. Existing features of Hyperledger Fabric

https://doi.org/10.1145/3514221.3526046
https://doi.org/10.1145/3514221.3526046

like channels and private data collections do not provide sufficient

access control for this application because a priori it is unknown

who will be allowed to track a part.

In database management systems, an access control module

manages access permissions and prevents unauthorized users from

accessing restricted data [24]. A similar system is needed for pro-

tecting sensitive information on a blockchain. The following exam-

ple illustrates access-control views in a supply chain management

system, similar to the refurbished-device tracking application.

Example 1.1. Fig. 1 presents a data supply chain with 2 man-

ufacturers, 3 warehouses, 2 delivery services and several shops.

The manufacturers, shops and warehouses store information about

items they produced or handled. Every delivery transaction is visi-

ble to all the entities who handled the item. Since there is no single

entity that is trusted to manage all the data, the information is

kept on a blockchain. However, without any access control, all the

information is visible to every user. Such a solution does not pro-

vide business confidentiality. Each manufacturer, warehouse, shop

and delivery service should only be able to see the information

pertaining to items they processed, delivered or received.

Access-control views are used in database management systems

for specifying access permissions, but blockchains lack them. For

instance, consider in Example 1.1 views 𝑉𝑀1 and 𝑉𝑀2 of all the

delivery records of items produced by Manufacturer 1 and Manu-

facturer 2, respectively. Granting Manufacturer 1 (Manufacturer 2)

access only to 𝑉𝑀1 (𝑉𝑀2) would satisfy the business confidential-

ity requirements. However, there are no access-control views in

blockchains. Implementing such views on blockchain requires cop-

ing with transparency, immutability and lack of central control.

Access to a view is granted or revoked by users who are au-

thorized to do so. In a centralized access-control system, a central

system is responsible for enforcing the access-control policy. Guar-

anteeing that the access-control policy is enforced correctly in a

decentralized environment is more challenging. In many applica-

tions, the peers who manage the blockchain cannot be fully trusted.

Decisions regarding data are based on a consensus mechanism

under the assumption that the majority of the peers are honest

(trustworthy). But even a single dishonest peer can leak sensitive

information. So, it is undesirable to allow all the peers to access

sensitive information when not all of them can be trusted.

Another challenge when managing access control on blockchain

is to revoke access permissions. The blockchain is immutable; so

past records cannot be changed. Designing access control in which

access can be revoked should cope with that. Immutability of the

blockchain also makes updates of views a challenging task. If views

are stored on the ledger, it is impossible to update the view records

when the underlying data change. Thus, views on a blockchain

should be designed for an append-only ledger.

In this paper, we present the LedgerView system for supporting

access-control views. Our main contributions are as follows.

• Introducing access-control views for blockchain, where sen-

sitive information can be hidden by either encryption or

hashing, based on the user preferences.

• Implementing the access-control views and role-based access

control (RBAC) on Hyperledger Fabric.

Figure 1: An illustration of a supply chain with 2 manufac-
turers, 3 warehouses, 2 delivery services and several shops.

• Showing that the methods support verifiable completeness

and soundness—a user can verify that each view contains

exactly the set of transactions it should consist.

• Presenting a modular system architecture to manage views,

query them and verify their integrity.

• We implemented a workload generator for supply chain

applications, for benchmarking the LedgerView system.

• Extensive experiments over a supply chain workload demon-

strate the effectiveness of our system.

2 RELATEDWORK
In this section, we survey related work.

Access control. Access control is a core component in many data-

base management systems [11, 49]. Access control views have been

studied extensively in the literature for different types of access

control methods, e.g., role-based access control [48], and differ-

ent types of data, including for relational database systems [14],

XML [2, 30, 60], cloud databases [4], and so on. The methods we

present in this paper are very different from those in the literature

because we need to cope with the unique features of blockchain, in-

cluding decentralized management, immutability and transparency.

Provenance on Blockchains. A blockchain is a secured ledger

that establishes a decentralized consensus on the order of trans-

actions. It provides an immutable storage of transaction history

in a provenance-friendly manner—users can inspect the ledger to

track item lineage. In a variety of areas, the provenance capabilities

of blockchains are exploited, to support different business applica-

tions, including supply chains [33, 38], cloud data management [53],

and Internet-of-Things [29, 54]. Typically, the above applications

are limited to offline analysis. However, it is possible to expose the

on-chain lineage to smart contracts, and by that allow developers

to express business rules in which the logic of online transactions

can be affected by lineage of related data items [45].

Cross blockchain transactions. The popularity of Decentralized

Finance has motivated studies of cross-chain swaps. A cross-chain

swap is an atomic transaction that consists of sub-transactions in

two or more different ledgers. For example, a purchase of Bitcoins

with Ether coins is a transaction composed of cryptocurrency trans-

actions on both the Bitcoin and the Ethereum ledgers. The goal of

the swap protocol is to guarantee atomicity—the end result should

be equivalent to a case where either all the sub-transactions are

committed or none of them is. The protocol operates under the

assumption that participants may arbitrarily deviate from the pro-

tocol for their best interest. This problem was formulated in [40],

where the authors present a heuristic solution for two participants.

Herlihy [28] generalizes the technique to multiple participants.

Zakhary et al. [61] propose a further generalization by relaxing

assumptions regarding network synchronicity and sequential exe-

cution. Notably, AHL [17] uses a 2-phase commit (2PC) protocol to

coordinate cross-chain transactions, on top of byzantine protocols,

and Caper [5] adds data confidentiality to swaps.

Blockchain channels. Blockchain channels allow limiting the

information blockchain peers can access, by providing a private

communication link between peers [55]. Transactions on a channel

can only be viewed by peers that are members of that channel.

Channels, however, are different from views in the following as-

pects. First, a transaction can be included in several views but only

in one channel. In Example 1.1, there can be a view per each man-

ufacturer, warehouse and delivery service. The same transaction

could be in the views of a manufacturer, a warehouse and a delivery

service. Second, there is no flexible way to grant and revoke access

permissions when using channels. In channels, adding or removing

members is similar to adding peers to a permissioned blockchain,

and hence, it is limited. Third, channels lack access-permission

rules that are based on attributes of the users or of the data records.

Private data collections. In Hyperledger Fabric, users can de-

fine a private data collection [10], to support privacy-demanding

applications [35, 42]. In this setting, contract states are managed

privately by the peers and only signatures of the data are stored

on the blockchain. Thus, this setting cannot support irrevocable

access permissions. In addition, the peers have access to contract

states. This may cause a privacy breach in applications like tracking

refurbished devices where peers should not access information on

devices or parts they have not manufactured, processed or sold.

Access-control ledger. The use of blockchain for storing access

control permissions was studied in several papers [16, 34, 36, 37].

The goal is to store on the blockchain access permissions or access

requests for sensitive data or restricted systems. The sensitive data

set is not stored on the blockchain itself. The blockchain is only a

ledger of access permissions. These papers, however, do not provide

blockchain views or any other flexible access control method where

sets of records are defined using queries (the views) and sets of users

with access permissions are specified by roles or sets of identifiers.

3 BLOCKCHAIN APPLICATION
This section presents the framework and the blockchain application.

Blockchain. Blockchain is a ledger managed by peers in a de-

centralized fashion. A blockchain ledger consists of a sequence

𝐵0, . . . , 𝐵𝑚 of blocks of transactions. Block 𝐵0 is the genesis block.
Any block 𝐵𝑖 other than the genesis block contains the crypto-

graphic hash of the previous block, that is, the hash of block 𝐵𝑖−1.
We denote by 𝑡𝑖,1, . . . , 𝑡𝑖,𝑛𝑖 the transactions stored in block 𝐵𝑖 . In

cryptocurrencies like Bitcoin, transactions represent transfer of

coins between addresses (aliases of users). In other blockchain appli-

cations, transactions can include financial information [56], health

records [16], user identity information [22], IoT data [8], personal

data [62], and records on parts of cellular devices.

A blockchain is managed by a group of peers. The peers create

blocks which batch transactions and add them to the chain based

on a consensus mechanism. There are two types of blockchain. In a

permissionless blockchain, the set of peers may change arbitrarily—

new peers can join the set or leave it at any time. In a permissioned
blockchain, the set of peers is fixed or is determined by pre-defined

rules. Consensus algorithms for permissionless blockchains include

Proof of Work [39], Proof of Stake [32, 47], Proof of Location [19],

Proof of Space [43], etc. Many consensus algorithms were devel-

oped or adopted for permissioned blockchains, including PBFT [13],

Tendermint [6], and the recent Whatever-Voting [51] . For a com-

parison of consensus protocols, see [20, 26, 41, 50].

We denote by 𝑃 the set of peers that manage the blockchain.

We denote by𝑈 the users, a set that includes the blockchain peers,

which create blocks, and people or applications that access the

blockchain to read the content of blocks but without creating blocks.

Each user 𝑢 ∈ 𝑈 has a pair of public and private keys, denoted

PubK𝑢 and PrivK𝑢 , in correspondence. This pair of keys can be

based on RSA [44] or any other public-key cryptosystem.

Smart contract. In Bitcoin, transactions represent transfer of cryp-

tocurrency between addresses. Only a limited set of operations

can be performed in transactions, e.g., hashing or verification of

cryptographic signatures, but many blockchain applications require

a richer set of tools. Thus, blockchains like Ethereum and Hyper-

ledger Fabric support smart contracts (chaincode)—code executed
by the blockchain peers for allowing users to define arbitrary func-

tions that are computed in a decentralized manner. The transactions

are generalized into invocations of a smart contract that modifies

internal states of the contract.

While smart contracts increase the utility of blockchains, they

often consume computational resources and add complexity to the

system. In blockchains that support smart contracts, a state can no

longer be represented by transactions only. State values are main-

tained explicitly, synchronized among the mutually-distrusting

peers and are part of the consensus. Typically, it is done using a

Merkle tree. A Merkle tree is a rooted labeled binary tree whose

leaves store values and the label of each inner node is the hash of

the concatenation of the labels (or values) of its children.

For state management, the blockchain protocols specify a deter-

ministic tree-building procedure with contract states as the leaves

of the Merkle tree [59]. The root hash of the Merkle tree serves

as the state digest, and it is included in each block header, as a

snapshot of the states. Consensus regarding a block in the chain is a

consensus on the digest in the block header, and hence, a consensus

on the digest of states. A Merkle path from the root hash to a state

stored in a leaf provides an integrity proof for a contract state. Note

that the size of values stored in the leaves of the Merkle tree does

not affect the size of the digest stored on the ledger.

In many systems, the data stored on the ledger and the states of

smart contracts aremaintained in a local database, where theMerkle

tree is used for validating the integrity of data and of answers to

queries posed to the local database. By using the local database,

a query over the ledger is computed efficiently. In Hyperledger

Fabric, LevelDB or CouchDB are used for storing the state database

and answering queries that are posed to the blockchain.

Sensitive information. A blockchain may include sensitive in-

formation such as health records, personal documents, financial

data and location data. Each transaction 𝑡𝑖 𝑗 has two parts, a non-

secret part denoted 𝑡𝑖 𝑗 [𝑁] and a secret part, denoted 𝑡𝑖 𝑗 [𝑆]. The
non-secret part is visible to all the users and can be used in the

consensus protocol, to determine which transactions to include in

the blockchain. The access to the secret part should be limited and

granted to users according to the access permissions.

Example 3.1. Suppose that in the supply chain of Example 1.1

every transfer of items is recorded on the blockchain, e.g., transfers

from a manufacturer to a warehouse or from a warehouse to a shop.

Each transaction includes shipment data. Details like shipment

number, date and the involved entities are included in the non-

secret part. The type of items, amount of delivered items and price

are confidential and included in the secret part.

All the transactions on the blockchain are visible to all the peers,

and thus, the secret part is concealed by either encrypting it or

storing on the blockchain just the cryptographic hash of the secret.

We elaborate on that in the following sections. The encryption of

a secret part can be by a symmetric encryption key like AES [15]

or TDEA [9], or using a public key cryptosystem like RSA [44].

As a secure cryptographic hash, SHA-256 can be used [25]. We

assume that each transaction has a unique identifier, and we denote

by tid𝑖 𝑗 the identifier of transaction 𝑡𝑖 𝑗 . Accordingly, a transaction
is a 3-tuple (tid𝑖 𝑗 , 𝑡𝑖 𝑗 [𝑁], 𝑡𝑖 𝑗 [𝑆]) of identifier, non-secret part and
secret part.

Granting and revoking access. Each transaction is added to the

blockchain by some user 𝑢 ∈ 𝑈 . We assume that 𝑢 knows the

secret part or the key to decrypt it, for all the transactions 𝑢 adds

to the blockchain. Granting access to user 𝑢 ′ for transaction 𝑡𝑖 𝑗 is
providing the means for 𝑢 ′ to see the secret part of 𝑡𝑖 𝑗 . Revoking
access means that the permission to see the secret part is repealed

so that a request to access the secret information would be denied.

To grant access to sets of records, we use access-control views.
A view specifies a set of records and access permissions specify

the users who are allowed to read these records. There are two

types of access-control permissions over blockchain, revocable and
irrevocable. A revocable access permission is similar to standard

access control in database management systems. An irrevocable

permission cannot be revoked and it is unique to blockchains. We

present views with revocable and irrevocable permissions.

Verifiable soundness and completeness. Given a database 𝐷

and a query𝑄 over 𝐷 , a view𝑉 can be defined as𝑄 (𝐷), that is, the
result of applying 𝑄 to 𝐷 . If 𝑉 is a maintained view, the following

two properties are required. (1) Soundness: 𝑉 is sound if 𝑉 ⊆ 𝑄 (𝐷),
and (2) completeness: 𝑉 is complete if 𝑉 ⊇ 𝑄 (𝐷).

In a decentralized environment, it is not always possible to guar-

antee soundness and completeness. Thus, we relax the requirement

to the ability to verify soundness and completeness of the view at

any given time𝑇 . Verifiable soundness and verifiable completeness at
𝑇 are the ability of users with access permissions to 𝑉 to verify the

soundness and completeness of 𝑉 according to all the transactions

that were added to the underlying dataset until time 𝑇 .

View definition. Typically, views are defined using a query. In

a maintained view, the query answer is stored and updated when

there are changes in the underlying data. In an unmaintained view,
the view query is executed when the view is invoked. For access

control, we can store on the blockchain a maintained view and

grant users access to it, or store on the blockchain only the informa-

tion regarding who has access to data and provide the data when

requested if access is allowed according to the blockchain.

A view definition is a predicate 𝑃𝑉 over the non-secret part of

transactions. A predicate 𝑃𝑉 defines a view 𝑉 = {𝑡𝑖 𝑗 | 𝑃𝑉 (𝑡𝑖 𝑗 [𝑁])}
with the set of transactions 𝑡𝑖 𝑗 for which 𝑃𝑉 (𝑡𝑖 𝑗 [𝑁]) is true.

Example 3.2. Consider the supply chain in Example 1.1. Suppose

that each shipment transaction has from and to attributes, to spec-

ify the entities in the shipment. A predicate 𝑃 (to) = “Warehouse 1”

specifies the set of all transactions that are delivered toWarehouse 1.

The view defined in Example 3.2 is local and does not connect

transactions to one another, e.g., it cannot relate to the history

of item deliveries. To address this, we add recursion to the view

definition, in a datalog fashion [3]. Since datalog programs with

recursion are a well known concept, we avoid providing formal

definitions here, and only explain the main concepts.

A datalog rule contains a head and body and it is defined in

a recursive way. Given a predicate 𝑃 (𝑡) over transactions, a rule
𝑄 (𝑡) ← 𝑃 (𝑡) specifies that 𝑄 (𝑡) is true for all the transactions that
satisfy predicate 𝑃 (𝑡). In this case, 𝑄 (𝑡) is the head of the rule and

𝑃 (𝑡) is the body of the rule.

A rule𝑄 (𝑡) ← 𝑃1 (𝑡), 𝑃2 (𝑡), . . . , 𝑃𝑚 (𝑡) specifies that𝑄 is satisfied

by transactions that satisfy the predicates 𝑃1, 𝑃2, . . . , 𝑃𝑚 . For a set

of rules 𝑄 (𝑡) ← 𝑃1 (𝑡), 𝑄 (𝑡) ← 𝑃2 (𝑡), . . ., 𝑄 (𝑡) ← 𝑃𝑘 (𝑡), the trans-
actions satisfying𝑄 (𝑡) are the union {𝑡 | 𝑃1 (𝑡) ∨ 𝑃2 (𝑡) ∨ . . . 𝑃𝑘 (𝑡)}
comprising the set of transactions satisfying at least one of the rules.

Datalog rules can be recursive. For example, Delivery(𝑡, from, to)
contains transactions 𝑡 delivered between the two locations speci-

fied by to and from. The following set of rules

𝑃1 (𝑡, from, to) ← Delivery(𝑡, from, “Warehouse 1”)
𝑃1 (𝑡, 𝑋, 𝑍) ← Delivery(𝑡, 𝑋,𝑌), 𝑃1 (𝑡1, 𝑌 , 𝑍)

𝑃 (𝑡) ← 𝑃1 (𝑡, 𝑋,𝑌)
defines a predicate 𝑃 (𝑡) of all the transactions that are part of a de-
livery to “Warehouse 1”. The predicates can relate to any attribute of

stored transactions or of blocks that contain them, e.g., transaction

time, transaction identifier, block creation time, block identifier, etc.

Similar queries help tracing parts for refurbished devices.

4 ACCESS-CONTROL VIEWS
In this section we show how to create views with revocable and ir-

revocable access permissions. For refurbished devices, information

on a repurposed part or related to a warranty is irrevocable. Infor-

mation on devices that have not been dismantled may be revocable.

In Hyperledger Fabric, encryption is used in channels and hash

is used in private data collections. We explore both encryption-

based and hash-based views, to provide equivalent revocable and

irrevocable views for channels and private data collections. In all

the methods, we assume that the blockchain peers cannot be fully

trusted, hence, the secret part of transactions is hidden from the

peers. In this section, we elaborate on that.

4.1 Encryption-based Irrevocable Permissions
We present now encryption-based irrevocable access-control views,

namely EI. In EI, the secret part of each transaction is stored en-

crypted and the decryption key is provided only to users who are

granted access to the secret information.

Storing transactions. Initially, before adding a transaction 𝑡𝑖 𝑗 to
the blockchain, the user𝑢 who adds 𝑡𝑖 𝑗 generates a new key𝐾𝑖 𝑗 , and

conceals the secret part of 𝑡𝑖 𝑗 by encrypting it with the key𝐾𝑖 𝑗 . Each

transaction is encrypted with a unique symmetric encryption key.

Transaction 𝑡𝑖 𝑗 is stored as a 3-tuple (tid𝑖 𝑗 , 𝑡𝑖 𝑗 [𝑁], enc(tij [S],Kij))
of identifier, non-secret part and encrypted secret part.

Initially, only user 𝑢 has the key to see the transaction. To grant

access to the secret part of transactions, the keys should be dissem-

inated to authorised users. This is done via access-control views.

Creating a view. An access-control view is a list of keys of the

transactions it comprises. Suppose that user𝑢 wants to grant access

to transactions 𝑡1, . . . , 𝑡𝑛 . Let 𝐾1, . . . , 𝐾𝑛 be the keys of the transac-

tions 𝑡1, . . . , 𝑡𝑛 , in correspondence. To create an access-control view

𝑉 , user 𝑢 produces a new symmetric key 𝐾𝑉 . The view 𝑉 is stored

on the blockchain as a list enc([tid1,K1, . . . , tidn,Kn],KV), that is,
the encryption with the view key 𝐾𝑉 of the keys 𝐾1, . . . , 𝐾𝑛 and

the identifier of the corresponding transactions. The list is stored

as a transaction 𝑡𝑉 . Note that at this point only 𝑢 knows 𝐾𝑉 so no

secret information is revealed yet. However, providing the key 𝐾𝑉
to a user 𝑢 ′ will allow 𝑢 ′ to decrypt the content of 𝑡𝑉 , acquire the

keys of 𝑡1, . . . , 𝑡𝑛 , and access the secret parts of these transactions.

Granting access to a view. To grant users 𝑢 ′
1
, . . . , 𝑢 ′𝑚 with access

to a view 𝑉 , the user 𝑢 that created 𝑉 can send the key to these

users via a secured communication channel. Another option is

to create and add to the blockchain a transaction that contains

the encryption of 𝐾𝑉 with the public keys of 𝑢 ′
1
, . . . , 𝑢 ′𝑚 , that is,

enc(KV , PubKu′1), . . . , enc(KV , PubKu′m). Each user 𝑢 ′
𝑖
will be able

to decrypt enc(KV , PubKu′i) using the private key PrivK𝑢′
𝑖
. Any

user who is not among 𝑢 ′
1
, . . . , 𝑢 ′𝑚 will not know the private key

for decrypting the content of this dissemination transaction.

The blockchain is an append-only ledger; so all the transactions,

including the view and the access to the view, are tamper-resistant

and cannot be deleted. Hence, access permissions are irrevocable.

4.2 Encryption-based Revocable Permissions
We now describe revocable permissions for an encryption-based

storage of transactions as in Section 4.1, namely ER.

Creating a view. To make the access permission revocable, the

secret information should be disseminated in a way that allows

denying access when permissions change. The secret information

should not be revealed by an immutable blockchain transaction.

Instead, the transaction keys should be provided to users with an

access permission upon request, as long as the access permission

was granted and has not been revoked.

Consider a revocable view 𝑉 created by user 𝑢, for transac-

tions 𝑡1, . . . , 𝑡𝑛 . Let 𝑢
′
1
, . . . , 𝑢 ′𝑚 be the users that should have ac-

cess to the transactions in view 𝑉 . The user 𝑢 has access to all

the keys of the transactions in 𝑉 , but these keys are not irre-

versibly provided to the users 𝑢 ′
1
, . . . , 𝑢 ′𝑚 . Instead, to implement

revocable access permissions, the view has two parts, 𝑉ids and

𝑉access . The first part is the identifiers of the transactions in the

view, i.e., 𝑉ids = {tid1, . . . , tid𝑛} is the list of identifiers of the

transactions 𝑡1, . . . , 𝑡𝑛 contained in 𝑉 . The 𝑉access part is used for

managing access to the view. User 𝑢 creates a unique key 𝐾𝑉 for

the view. That key is disseminated to the users encrypted, as a

list 𝑉access = {enc(KV , PubKu′1), . . . , enc(KV , PubKu′m)}. Key 𝐾𝑉 is

stored encrypted and only a user 𝑢 ′
𝑖
who knows the private key

PrivK𝑢′
𝑖
can read it. Note that 𝐾𝑉 is not a key of any transaction;

so knowing it still does not guarantee access to secret information.

The user 𝑢 who created the view 𝑉 is considered the view owner
and any access to the information on the view is through this user.

Granting and revoking access.When a user 𝑢 ′
𝑗
wants to access

transactions 𝑡𝑖1 , . . . , 𝑡𝑖𝑘 of view 𝑉 , it requests the keys of trans-

actions 𝑡𝑖1 , . . . , 𝑡𝑖𝑘 from 𝑢. These keys are provided encrypted as

enc(Ki1 ,KV), . . . , enc(Kim ,KV). If the user 𝑢 ′𝑗 has the key 𝐾𝑉 , it can
decrypt the sent keys and access the transactions. We assume here

that 𝐾𝑉 is a symmetric encryption key. Note that this does not

reveal transaction keys that were not requested.

To grant additional users access to the view, 𝑢 can share the key

𝐾𝑉 with these users, encrypted using their public key. To revoke

access from some users, 𝑢 needs to replace the key 𝐾𝑉 with a new

key, say 𝐾 ′
𝑉
, and disseminate the new key 𝐾 ′

𝑉
to the users that still

have permission to access𝑉 . This is done as described above, i.e., by

encrypting the new key 𝐾 ′
𝑉
with the public keys of the authorized

users and including that in the transaction of 𝑉access stored on the

blockchain. After the change, 𝑢 should only use 𝐾 ′
𝑉

to encrypt

requested transaction keys. When access is revoked, users may still

have access to information they downloaded and stored locally, but

they cannot access and download additional information.

4.3 Hash-based Irrevocable Access Permissions
The hash-based methods are very similar to the encryption-based

methods, however, for a complete exposition, we present them. It is

important to understand them when comparing our methods with

private data collections of Hyperledger Fabric.

In hash-based views, only the hash of the the secret part of trans-

actions is stored on the blockchain. For irrevocable access control

(namely, HI), the secret part of transactions should be revealed

only to authorized users, so it is stored in an encrypted view. The

decryption key is provided only to users with access permission.

Storing transactions with a secret part. Initially, before adding
a transaction 𝑡𝑖 𝑗 to the blockchain, the user 𝑢 who adds the trans-

action conceals the secret part of 𝑡𝑖 𝑗 by selecting a random salt 𝑠 ,
computing the hash of ℎ(𝑡𝑖 𝑗 [𝑆] ∥ 𝑠), where 𝑡𝑖 𝑗 [𝑆] ∥ 𝑠 is the con-

catenation of the secret part of 𝑡𝑖 𝑗 with the salt 𝑠 , and storing this

hashed value on the blockchain instead of storing 𝑡𝑖 𝑗 [𝑆] itself. The
salt prevents seeing that two secret values are the same in different

transactions, to prevent a Dictionary Attack [12]. Each transac-

tion 𝑡𝑖 𝑗 is stored as a 4-tuple (tid𝑖 𝑗 , 𝑡𝑖 𝑗 [𝑁], 𝑠𝑖 𝑗 , ℎ(𝑡𝑖 𝑗 [𝑆] ∥ 𝑠𝑖 𝑗)) of the
identifier, non-secret part, salt and hash of salt and secret part.

Initially, only user 𝑢 has the secret values of transactions. To

grant access to the secret part of transactions, these values are

disseminated to authorised users, via the access-control views.

Creating a view. Suppose that user 𝑢 wants to grant access to

transactions 𝑡1, . . . , 𝑡𝑛 . Before the view is created, only the hash

values ℎ(𝑡1 [𝑆] ∥ 𝑠1), . . . , ℎ(𝑡𝑛 [𝑆] ∥ 𝑠𝑛) of the secret parts of the

transactions are stored on the blockchain. To create a view 𝑉 and

grant access to the secret parts of transactions 𝑡1, . . . , 𝑡𝑛 , user 𝑢

creates a new key 𝐾𝑉 , and stores on the blockchain the encrypted

content enc((tid1, t1 [S]),KV), . . . , enc((tidn, tn [S]),KV).
Granting access to the view. The key 𝐾𝑉 is distributed to all

the users with access permissions to view 𝑉 , encrypted using the

public keys of these users. If user 𝑢 ′ receives from 𝑢 the key 𝐾𝑉 ,

then𝑢 ′ can decrypt 𝑡1 [𝑆], . . . , 𝑡𝑛 [𝑆] and verify that their hash values
concatenated with the salt are equal to the hash values ℎ(𝑡1 [𝑆] ∥
𝑠1), . . . , ℎ(𝑡𝑛 [𝑆] ∥ 𝑠𝑛) stored on the blockchain. Note that access to

the data is irrevocable because if 𝑢 ′ has the key 𝐾𝑉 then that key

reveals the secret part of each transaction in the view.

4.4 Hash-based Revocable Permissions
In hash-based view with revocable permissions (HR), the secret part

of transactions is concealed—only the hash of the concatenation of

the secret with salt is stored on the ledger. The view is similar to

ER view, as in Section 4.2, with adaptation to hash-based storage.

Creating a view. To make the access permission revocable, secret

information is not irreversibly disseminated to users, and secret in-

formation is not revealed by a transaction stored on the blockchain.

Secret information is only provided upon request and only to au-

thorized users, i.e., to users with an access permission.

Consider a revocable view 𝑉 created by user 𝑢, for transactions

𝑡1, . . . , 𝑡𝑛 . Let 𝑢
′
1
, . . . , 𝑢 ′𝑚 be the users that should have access to the

view 𝑉 . User 𝑢 must know the secret part of all the transactions

in 𝑉 to grant access to that information. But these secrets are only

provided to the users 𝑢 ′
1
, . . . , 𝑢 ′𝑚 upon request, in a revocable way.

To support revocable access permissions, the view comprises

the two parts 𝑉ids and 𝑉access . The list 𝑉ids = {tid1, . . . , tid𝑛} is the
list of identifiers of the transactions 𝑡1, . . . , 𝑡𝑛 that 𝑉 consists of.

The list 𝑉access is created with a key 𝐾𝑉 that is selected by 𝑢 and

disseminated to the authorized users encrypted using their public

keys, 𝑉access = {enc(KV , PubKu′1), . . . , enc(KV , PubKu′m)}. Key 𝐾𝑉
is stored encrypted and only a user 𝑢 ′

𝑖
who knows the private key

PrivK𝑢′
𝑖
can get 𝐾𝑉 . The user 𝑢 who created 𝑉 is considered the

view owner and any access to secret information is via 𝑢.

Granting and revoking access.When a user 𝑢 ′
𝑗
wants to access

transactions 𝑡𝑖1 , . . . , 𝑡𝑖𝑘 of view 𝑉 , it requests the secret values of

these transactions from 𝑢. These values are provided encrypted

as enc(ti1 [S],KV), . . . , enc(tik [S],KV). If the user 𝑢 ′
𝑗
has the key

𝐾𝑉 , it can decrypt the provided information and see the secret

part of the requested transactions. We assume here that 𝐾𝑉 is a

symmetric encryption key. Note that this does not reveal secret

parts of transactions that were not included in the request. The

user 𝑢 ′
𝑗
can verify that the decrypted values 𝑡𝑖1 [𝑆], . . . , 𝑡𝑖𝑘 [𝑆] are

indeed the secret values stored on the blockchain by computing

ℎ(𝑡𝑖 𝑗 [𝑆] ∥ 𝑠𝑖 𝑗) and verifying that the computed value is equal to the

value stored on the blockchain for transaction 𝑡𝑖 𝑗 .

To grant access to the view,𝑢 can securely share the key𝐾𝑉 with

the new users who should gain access to𝑉 , where 𝐾𝑉 is encrypted

using their public key. To revoke access from users, 𝑢 needs to

replace the key 𝐾𝑉 with a new key, say 𝐾 ′
𝑉
, and disseminate the

new key𝐾 ′
𝑉
to the users that still have a permission to access𝑉 . The

new key 𝐾 ′
𝑉
is encrypted using the public keys of the authorized

users, and the encrypted keys are included in 𝑉access . After the

change, 𝑢 should only use 𝐾 ′
𝑉
to encrypt secret values it serves.

4.5 Encryption versus Hashing
In the encryption-based methods, all the information is stored on

the blockchain, where the secret data is encrypted, while in the

hash-based methods, only the hash of the secret is stored on the

blockchain. An advantage of encryption is that users maintain only

transaction keys, while the actual data is stored on the blockchain.

When storing just the hash values on the blockchain, the secret

information must be stored by the users, and the hash values on

the blockchain are only used for verification. A disadvantage of

encryption is the cost of creating a new key per each transaction.

The storage space of the hash values is fixed while for the en-

crypted data it depends on the attribute size. Hence, if the average se-

cret size per transaction is larger than the hash size, the encryption-

based methods will use more space than the hash-based methods,

and vice versa. For example, hash is preferred when records con-

tain large objects like images or videos. Encryption is suitable for

storing small records like personal details of people.

Both revocable and irrevocable views can be implemented using

encryption or hashing. The decision whether to use a revocable or

an irrevocable view depends on the application. These two types of

views may serve different purposes. For example, health records are

typically stored in a revocable way; so that access could be revoked

from healthcare workers who are no longer active, e.g., when they

retire. Access to legal information, like deeds, patents, licences, and

warranty should typically be irrevocable, to make the information

available in the future to all the involved parties.

4.6 Role-Based Access Control
In role-based access control (RBAC), roles are assigned to users and

access permissions are given to roles [23, 48]. A user 𝑢 can access

an entity 𝑒 only if 𝑢 has a role with access permissions to 𝑒 . Admin-

istrative roles to allow access to non-business-related information

are examples of roles in the refurbished devices application.

Let 𝑈 be a set of users, 𝑅 be a set of roles and 𝐷 be a dataset.

Let V ⊆ 2
𝐷
be the set of views over 𝐷—each view is a subset of

items of 𝐷 . Assignment of roles to users is a subset 𝐴𝑟 ⊆ 𝑈 × 𝑅.
Access permission is a set of pairs 𝐴𝑝 ⊆ 𝑅 ×V . A pair (𝑢, 𝑟) ∈ 𝐴𝑟
means that user 𝑢 has role 𝑟 , e.g., user 𝑢 is a nurse with access

to medical records. The assignment of roles is many-to-many. An

access permission (𝑟,𝑉) ∈ 𝐴𝑝 means that users with role 𝑟 are

authorized to access view 𝑉 . The access-permission relation is

many-to-many. For a role assignment 𝐴𝑟 and access permissions

𝐴𝑝 , the set 𝐷𝑢 = {𝑉 | ∃𝑟 .(𝑢, 𝑟) ∈ 𝐴𝑟 ∧ (𝑟,𝑉) ∈ 𝐴𝑝 } consists of the

views user 𝑢 is allowed to access. In a blockchain setting, access

permissions relate to views that are sets of transactions.

RBAC can be implemented for all four types of access-control

views presented. To support this, first, the association𝐴𝑝 of roles to

views is stored on the blockchain as a transparent list. This list can

be stored as a transaction or as a state of a smart contract. Second,

the association 𝐴𝑟 between roles and public keys of users is stored

on the blockchain in the same way. Any user can apply join to 𝐴𝑝
and 𝐴𝑟 , to find all the public keys of users with access permissions,

for any given view. These public keys are used for granting access

to the views. Let K𝐴𝑟 ⊲⊳𝐴𝑝
(𝑉) denote the set of all public keys of

users with access to 𝑉 according to 𝐴𝑟 and 𝐴𝑝 .

In irrevocable views, EI and HI, access to a view 𝑉 is granted by

providing the key 𝐾𝑉 that is used for decryption of the information

(keys in EI and values in HI). In the irrevocable version of RBAC,

the key 𝐾𝑉 is distributed to all the users with access permissions

by encrypting it with their keys and disseminating the encrypted

information. Formally, this set is {enc(Kv,Ki) |Ki ∈ KAr⊲⊳Ap (V)}.
The users with access permissions have the corresponding private

keys and they can decrypt 𝐾𝑉 and access the view. Other users

are not privy to the key 𝐾𝑉 and cannot read the content of the

encrypted view 𝑉 . The implementation of the key distribution for

the revocable view methods ER and HR is similar.

When a role grants access to many views, it is inefficient to

distribute each key 𝐾𝑉 independently. Thus, a pair PrivK𝑟 and

PubK𝑟 of public and private keys is created for each role 𝑟 , as if

the role is a user. This can be done by any user. The private key

PrivK𝑟 is securely shared with all the users with role 𝑟 , e.g., by

encrypting PrivK𝑟 with the public keys of these users and sending

the encrypted PrivK𝑟 to them. Then, in all the four methods, the

access to the view is granted to the role whose public key is PubK𝑟
in the same way that it is granted to a user, as described in Section 4.

The methods are indifferent to whether the public key belongs to a

single user or to a group of users defined by a role. When the set of

users changes for role 𝑟 , a new key is created and disseminated.

4.7 Soundness and Completeness
We now analyze the proposed approach. A malicious user who

generates or updates a view can (1) add to a view a transaction

that should not be included in the view, (2) add to the view a trans-

action that should be included in the view but in a corrupted or

tampered way, or (3) not add to the view a transaction that should

be included in the view. We explain now how verifiable soundness

and completeness (defined in Section 3) are maintained.

Case 1: Suppose that a transaction 𝑡 has a non-secret part 𝑡 [𝑁]
that does not satisfy the view definition. Including 𝑡 in view 𝑉

will violate the soundness of the view. However, because 𝑡 [𝑁] is
the non-secret part of the transaction, any user with access to the

view can detect such transactions and verify that there are no such

transactions in the view. Hence, verifiable soundness is maintained.

Case 2: If a corrupted transaction is added to the view, this could

violate the soundness of the view. A case where the non-secret part

of a transaction is corrupted can be detected by any user with access

to the view, by comparing the non-secret part of the transaction to

the non-secret part of the transaction stored on the ledger. If the

secret information is corrupted, the hash of the transaction would

Blockchain
Node

View Storage
Contract

View
Manager
(Run by View

Onwer)

View
User

Client

Txn with Secret
Payload

View
Manager

Blockchain
Node

View
Manager

Blockchain
Node

Consensus

Figure 2: System architecture. Each blockchain node is asso-
ciated with a view manager, under the same administrative
domain of the view owner (dashed box). Transactions with
secret data are added to the blockchain and accessed through
a view manager. The view contract provides the integrity
guarantee. The number of blockchain nodes may vary.

not match the one on the ledger, in the hash-based methods. The

keys would not match, in the case of corrupted keys in encryption-

based methods. Hence, verifiable soundness is maintained.

Case 3: Not adding to a view all the transactions it should include

will violate completeness. There are two ways to test completeness

of the view at given time 𝑇 . First, by iterating over all the trans-

actions in the ledger, up to time 𝑇 , and verifying that all those

that satisfy the view definition are included in the view. Second,

by comparing the view to a complete list of the view transactions

maintained by a smart contract. Such a list is continuously updated

for efficient verification. We elaborate on that in the next section.

By that, verifiable completeness at 𝑇 is maintained.

Proposition 4.1. Given a view 𝑉 and a user 𝑢 with access per-
mission to 𝑉 and to the ledger, then for any time 𝑇 , 𝑢 can test and
verify the soundness and completeness of 𝑉 at 𝑇 .

5 IMPLEMENTATION
In this section we describe the system and its architecture. The code

is available on GitHub [1].

5.1 Hyperledger Fabric
We implemented the system usingHyperledger Fabric 2.2—a permis-

sioned blockchain system [7]. Fabric is customized for enterprise-

grade applications, and has a couple of unique features. The smart

contracts were implemented using a special life cycle, known as

chaincode. In the life cycle of a transaction, the first step is an

endorsement phase, where clients collect invocation effects of chain-

codes from a subset of peers (namely endorsers). These invocations
are cryptographically signed by the endorsers. The signed endorse-

ments are included in transactions and distributed to orderers. The
orderers reach a consensus on the order of transactions, batch them

into blocks and link the blocks to form the chain. Each peer in-

dependently pulls blocks from orderers and applies the effect of

View Update:

Alice

View
Manager

(a) Txn T (b) Txn T

(c*) View-modifying
Txn to invoke

ViewStorage Contract

Blockchain
Node

View Storage
Contract

Bob

View
Manager

(1) View V
Blockchain

Node
View Storage

Contract

(3*) View V

(4*) View Data

(5) Txn ID tid

(6) The Processed
Secret

View Query:

(2) View Key
and Others

Figure 3: View-management workflow, for both encryption-
based and hash-based view managers. Alice is a blockchain
user who invokes a transaction 𝑇 , which is included in view
𝑉 . Bob is a view user accessing view 𝑉 . Steps marked with an
asterisk are only executed for irrevocable views, where view
data are uploaded to a view contract on the chain.

transactions and chaincodes to the local database, after validation

by verification of the signed endorsements.

Although we implemented access-control view on Fabric, our

implementation of views is generic, because we do not rely on

any feature that is unique to Fabric and does not exist in other

blockchain systems. Our system uses smart contracts in a general

way, without relying on the chaincode lifecycle. We only rely on

tamper-evidence guarantees of smart contracts for the integrity of

view data, but these are provided by any blockchain that supports

smart contracts. Any guarantee of state integrity, e.g., by a Merkle

tree, can be used for securing the integrity of blockchain views.

5.2 View as a Smart Contract State
The size of a view can be arbitrarily large. In some cases, access

control views can be as large as the database itself. In such cases,

it is impractical to store the entire view in a single blockchain

transaction. The same may also apply to storing the list of users

who have access to a particular view. To solve that, views and user

lists are implemented as smart-contract states. The entire state

is stored in the leaves of a Merkle tree, for each one of the local

databases of the peers, and the hash at the root is stored on the

ledger, as explained in Section 3. The consensus among the peers

on the view state makes it possible to verify the integrity of the

views while only storing a digest on the ledger.

By representing the view as a state of the smart contract, every

change in the view, like the addition of transactions to the view or

the removal of transactions from the view, is represented by a new

state that is propagated to all the peers. The new state is accepted

as part of the consensus when the new root of the Merkle tree that

reflects the change is included in the header of a block in the chain.

5.3 System Architecture
To implement decentralized view management, a view manager

component is associated with each blockchain node. Users access

views via the view manager for (1) reading from the view, and

(2) adding transactions to the blockchain. The view manager is

implemented using smart contracts. An overview of the architecture

and the interactions between components are depicted in Fig. 2 and

Fig. 3. Next, we elaborate on these components and interactions.

User Applications. There are three types of user applications.
(1) Clients, like Alice in Fig. 3, are users who invoke transactions

with secret data. Client transactions have a hidden secret part. The

access-control views are defined over client transactions.

(2) View Owner. View owners run a process that implements a

ViewManager interface. The view manager intercepts and handles

client requests. It translates requests into transactions, determines

inclusion of transactions in views and regulates access to transac-

tions using the methods presented in Section 4. A view owner can

be any user with access to all the information of the view. Hence, a

view can have many view owners.

(3) View Reader. View readers, like Bob in Fig. 3, issue access re-

quests. The requests are handed over to view owners, to be handled

based on the view name and the public key of the requesting user.

View readers do not always trust view owners; so provided data

can be validated against the blockchain—by checking that returned

secrets match the hash values on the blockchain, or that provided

keys can be used for decryption of the secret data on the blockchain.

ViewManager. The different users interact with the ViewManager.
Transactions are instantiated by contract invocations, as common

in contract-based blockchains. To handle transactions with a secret

part, the smart contracts of the view manager implement a com-

mon interface WithSecret. The WithSecret interface partitions

transactions into a non-secret part and a secret part, and it contains

methods for processing and accessing the secret part of transactions.

An Invoke smart contract implements the invocation logic. For a

given transaction, the invocation associates the concealed secret

data in the transaction with the transaction identifier in the local

database of the node. Then, the contract may execute additional

business logic, such as the supply-chain management procedures.

There are twomain components in ViewManager: CryptoHelper
which is a library of basic cryptographic primitives, and ViewBuffer
for managing the information on each view. ViewManager and the

interactions between the components are illustrated in Fig. 2.

The ViewBuffer component of ViewManager stores the view

information. This includes (1) ViewKeys, which is a map structure

that associates the view name to the view key, (2) the key 𝐾𝑣 that

encrypts the list of keys in the encryption-based methods of Sec-

tion 4.1, (3) ViewData, which is a map structure that associates the

view name to the relevant data. The implementation of ViewData
changes based on the view method—encryption or hashed-based.

View Management. View management has the following steps.

(1) View owners create views by calling the method CreateView of
the view manager. Each created view has a unique name and a view

definition. The view definition is an implementation of the predicate

that defines the view. It is a function that determines for each

transaction whether it satisfies the view predicate. Transactions

that satisfy the view predicate are included in the view. If the view

owner opts for an irrevocable view, the view manager calls Init for
instantiating the view when executing the ViewStorage contract
(to be explained later), which manages the view storage.

(2) Transactions with a secret part are inserted into the blockchain

through InvokeWithSecret. The view manager processes the se-

cret data provided by the client, based on its subclass implemen-

tation of ProcessSecret, to cope with different view types. The

processed secret and the other arguments adhere to the WithSecret
interface. The view owner retrieves the transaction identifier based

on the formatted parameters, and determines all the view-definition

predicates that are satisfied by the parameters. For each view whose

predicate is satisfied, the view manager calls InsertIntoView, to
include the transaction identifier in the view. For example, clients,

like Alice in Fig. 3, contact the view owner and invoke a trans-

action, e.g., for insertion into the blockchain or for adding to a

view. The request is processed by the view owner who invokes

InvokeWithSecret in its ViewManager process. The view man-

ager of a view owner processes the request and securely delivers

the data to a ViewStorage contract that handles the data storage.

(3) A view user, like Bob in Fig. 3, may pose a query to a view by

invoking QueryView via the viewmanager. Despite implementation

differences, the public key of the user is provided with the query

for authentication. Query results are encrypted with that key.

View Storage Contract. A view-storage contract is called for stor-

ing data of irrevocable views. The type of view (revocable versus ir-

revocable) is set when CreateView is first called. The ViewStorage
contract maintains a map structure ViewInfo that associates the
view name with the view data. The view data is also a map struc-

ture whose internal structure for the key-value pairs depends on

the implementation of ViewManager, to support the different view

types. ViewStorage supports two methods. An Init method ini-

tializes for a given view name an empty view data, i.e., an empty

map. A Merge method adds data to the view by incorporating in

ViewInfo missing key-value pairs from ViewData. By maintaining

the irrevocable view data in a contract, we use security features of

the blockchain to protect the view integrity. Thus, query results

that are returned to view users are protected from tampering.

5.3.1 Encryption-based View Manager. The implementation of the

view manger depends on the view type. We elaborate now on

encryption-based view manager.

Overview. EncryptionBasedManager is a class that implements

the ViewManager interface and the methods of sections 4.1 and 4.2.

The format of the view and the ViewBuffer are designed to support
the encryption-based methods. The view data is a mapping from the

transaction identifier tid𝑖 to the transaction key 𝐾𝑖 , in the notation

of Section 4.1. The procedures InsertIntoView, ProcessSecret,
and QueryView are adapted to this format.

Secret Processing. In ProcessSecret, a new symmetric key is

created for each new transaction. The procedure encrypts the secret

part of the transaction and returns the encrypted text and key.

View Update. When InsertIntoView is executed, the transac-

tion identifier and the generated transaction key are stored in the

ViewBuffer. In the irrevocable case, the view key (which is gen-

erated if needed) is used for encrypting the identifier and the key

of the transaction. The encrypted result is provided to the Merge
procedure of the ViewStorage contract. For views with irrevocable

access permissions, the view data are automatically updated on the

chain to obtain the blockchain-provided immutability.

Querying a View. There are differences between revocable and

irrevocable view management, when answering user queries. For

revocable access permissions, a symmetric key is generated per

each query. This key is used for encrypting the view data, which is a

mapping from transaction identifiers to transaction keys. For irrev-

ocable access permissions, the view key has already been created

in InsertIntoView; so it is directly retrieved from ViewBuffer.
In both cases, the user-provided public key is applied, in order to

encrypt the returned data and protect the view keys.

Validation. Users validate query results against the content of

the blockchain, to verify that the results were not tampered with.

After receiving a reply from a view owner, when calling QueryView,
the user validates the secret data, for each transaction in the view.

First, view keys are revealed by decryption, using the private key

of the user. The query answer contains the encrypted view data,

hence, the user can decrypt the view data with the provided view

keys. For views with irrevocable permissions, users retrieve the

encrypted view data from the ViewStorage contract, and then

execute decryption. With the decrypted identifiers and keys, of the

requested transactions, the user can pull from any blockchain node

the relevant transactions and decrypt their secret part.

5.3.2 Hash-based View Manager. The hash-based view manager

HashBasedManager has the same architecture as the encryption-

based manager. The storage, the buffer and methods like view up-

date, querying and validation are modified accordingly.

5.4 Transaction List per View
To test completeness for views, it is efficient to maintain for each

view its list of transactions. But transactions cannot be added to

views through smart contracts because that would require revealing

the view key to the blockchain peers, which would expose infor-

mation to unauthorized users. Thus, insertion of transactions to

the main database is through a smart contract that updates lists

of transaction identifiers per view, but does not update the views

themselves, e.g., if transaction 𝑡𝑖 is added to the blockchain and

should be included in views𝑉1 and𝑉2, then tid𝑖 will be added to the
transaction lists of 𝑉1 and 𝑉2, based on the non-secret part 𝑡𝑖 [𝑁].
We refer to this smart contract as TxListContract.

The smart contract maintains a list of views, their predicates and

their list of transaction identifiers. For each added transaction, its

identifier is added to all the lists for which the view predicate is

satisfied. To cope with the low update rate of blockchains, the list

updates are conducted in batches. Initially, updates are collected

and transaction identifiers are associated with the insertion time

stamp. Every time interval, say 30 seconds, all the accumulated

updates are written to the ledger. Completeness can be tested for

the time of the latest update.

6 EXPERIMENTAL EVALUATION
Goals. The goals of the experiments are as follows. (1) Examine the

effect of our methods on the performance, in terms of transaction

rate, latency and storage space. (2) Compare our access-control

views with a baseline in which different views are stored on inde-

pendent ledgers and cross-blockchain transactions keep the consis-

tency of the views and the main ledger. (3) Explore the overhead

of managing a list of transaction identifers per view—the contract

TxListContract (TLC, for short) described in Section 5.4.

Experimental setup. To test the methods, we deployed an in-

stance of a Fabric 2.2 network in the Google Cloud Platform, GCP.

The network consists of 2 peer processes and 3 orderer processes.

Each process runs on distinct computing nodes of e2-standard-4
machine types. To test a decentralized setting, we deployed nodes in

different geographical regions— two peers at the europe-north1-a
and northamerica-northeast1-a regions, and three orderers at

the asia-southeast1-a region. We opt to use Raft as the consen-

sus protocol of orderers. LevelDB was used for maintaining the

local storage in each node. Every experiment was repeated three

times and we report the average result of the different executions.

6.1 Baseline
As a baseline, we consider the case where each view is stored on a

separate blockchain, called view blockchain, and each blockchain is

accessible only to users with access permissions for the correspond-

ing view. To keep the views consistent with the main blockchain,

which stores all the transactions, we use cross-chain transactions.

If a transaction 𝑡 is included in 𝑛 different views, a cross-blockchain

insertion transaction will guarantee consistency among all the view

blockchains—𝑡 should either be included in all the 𝑛 corresponding

blockchains or in none of them. Hence, the operation is atomic.

We implemented the cross-blockchain transactions protocol of

AHL [17] where each cross-blockchain transaction follows the two-

phase commit (2PC) protocol. The main blockchain operates like

a database transaction coordinator of 2PC. For each database up-

date, it employs a smart contract to determine the updated views

and the view blockchains that store them. It then issues to all of

them a Prepare request. Each view blockchain operates as a 2PC

shard where the 2PC protocol logic is implemented as a smart con-

tract. After gathering sufficient positive responses from the view

blockchains, the main blockchain issues a Commit request to all the

view blockchains, and the update is included in their ledger.

If a cross-blockchain transaction involves 𝑛 blockchains, it is

translated into 2𝑛 blockchain transactions, following the 2PC pro-

tocol. The first 𝑛 transactions simulate the Prepare requests on

each one of 𝑛 blockchains. The following 𝑛 transactions simulate

the corresponding Commit requests of the 2PC protocol. Note that

𝑛 Prepare requests or 𝑛 Commit requests can occur concurrently.

If the majority of the peers in all the blockchains are following

the protocol, the 2PC procedure provides verifiable soundness and

completeness. Each view blockchain will include only transactions

of the view and will include all the transactions (otherwise, the

commit phase of 2PC will not be carried out). Without 2PC, where

view blockchains are independent from the main chain, neither

soundness nor completeness will be guaranteed.

6.2 Supply Chain Workload
We benchmarked the access-control views on a variety of supply

chain workloads similar to the supply chain illustrated in Fig. 1. To

that end, we implemented aworkload generator that produces work-

loads of supply chain transactions according to given parameters.

When a workload is created, first the topology of the supply-chain

graph is defined (e.g., see the graph in Fig. 1). The user specifies the

nodes and the edges of the graph of the supply chain. Each node

represents a real-world entity that is part of the supply chain and

has a need to access information. Each edge from node 𝑛𝑖 to node

𝑛 𝑗 represents a delivery link from node 𝑛𝑖 to node 𝑛 𝑗 , for delivering

received items from 𝑛𝑖 to 𝑛 𝑗 . An item cannot be forwarded by node

𝑛𝑖 to more than one following node.

Some nodes are dispatching nodes, e.g., manufacturers. These

nodes can create items and send them on to following nodes in

the chain. All the other nodes can only forward items that they

received. Some nodes are terminal nodes. They receive items and do

not transfer them on to a following node, e.g., shops in Fig. 1. The

user can select how many items will be dispatched and the behavior

of intermediate nodes. Each transfer is recorded on the blockchain.

In the creation of the workload, when an item is forwarded, all

the nodes that handled it can see the transfer transaction. That is,

nodes can continue tracking an item they delivered. Nodes can also

see all the historical transfers of the items they received. However,

a node should not have access to any other delivery transactions.

For the generated records of the supply-chain, transactions are

stored on a blockchain and access restrictions are implemented

as access-control views. For each node 𝑛, a view 𝑉𝑛 contains all

the transactions that 𝑛 has access to. When an item is transferred,

the transaction is added to the main ledger and all the relevant

views are updated. For example, suppose that item 𝑖 was created

in node 𝑛0, then it was transferred from 𝑛0 to node 𝑛1, then from

𝑛1 to 𝑛2, and the most recent transaction is a transfer of 𝑖 from

node 𝑛2 to node 𝑛3. Then, the transaction (𝑖, 𝑛2, 𝑛3) is added to the

blockchain. The access to it is granted to nodes 𝑛0, 𝑛1, 𝑛2 and 𝑛3.

So, the access-control views of all these nodes, i.e.,𝑉𝑛0
,𝑉𝑛1

,𝑉𝑛2
and

𝑉𝑛3
, are updated by adding this transaction to them. In addition,

the view of node 𝑛3 is updated by adding the historical transfers

of item 𝑖 to it, that is, granting access to 𝑛3 for these transactions.

This means that the transactions (𝑖, 𝑛0, 𝑛1) and (𝑖, 𝑛1, 𝑛2) are added
to view 𝑉𝑛3

, to reflect granting access permissions to 𝑛3 for item 𝑖 .

The workload generator was used for benchmarking the access

control views on supply chains with varying topology, size and

volume of transactions. Note that the size of the supply chain, i.e.,

the number of nodes in it, determines the number of views. We

experimented with two workloads. Workload WL1 with 7 nodes—

one dispatching, 3 intermediate and 3 terminal nodes; and workload

WL2 with 14 nodes—2 dispatching, 5 intermediate and 7 terminal

nodes. Accordingly, there are 7 views in WL1 and 14 views in WL2.

6.3 Results
For different workloads, we measured throughput, latency, storage

overhead and the number of on-chain transaction invocations. For

the baseline we also measured cross-chain invocations.

Transaction Rate.Wemeasured the transaction rate, i.e., the num-

ber of committed application requests per second (TPS), as a func-

tion of the number of clients, over workload WL1. Each client groups
25 requests into a batch and transaction batches are invoked in a se-

quential manner. Fig. 4 presents the result throughput as a function

of the number of client processes. Our view methods achieve higher

scalability than the baseline. Revocable views and irrevocable with

TxListContract have the highest throughput. When the number

of clients exceeds 48, the throughput becomes stable, around 800

requests per second. Similar throughput has been measured for

Fabric in other papers [46, 52, 57].

16 24 32 40 48 56 64 72 80
of Clients

0

200

400

600

800

1000

tp
s

Revocable Encryption
Irrevocable Encryption
Encryption with TLC
Baseline(2PC)

Revocable Hash
Irrevocable Hash
Hash with TLC

Figure 4: Throughput

16 24 32 40 48
of Clients

0

2000

4000

6000

8000

10000

12000

14000

m
s

TLC
Encryption
Hash
Baseline(2PC)
Irrevocable

Figure 5: Latency

1 2 3 4 5
of Application Requests

100

101

102

103

104

of

 B
lo

ck
ch

ai
n

Tx
ns Irrevocable Encryption

Revocable/TLC Encryption
Irrevocable Hash
Revocable/TLC Hash
Baseline(2PC)

Figure 6: Transactions per request

Revocable Irrevocable TLC 2PC

Encryption Baseline
0

4000

8000

12000

16000

m
s

0

20

40

60

pe
rc

en
ta

ge
(%

)

Single-region Latency
Multi-region Latency
Throughput Drop Ratio

Figure 7: Single vs. multiple regions

RevocableIrrevocable TLC 2PC

Encryption Baseline
0

4000

8000

12000

16000

m
s

Time-
out

0
250
500
750
1000

tp
s

S/W Latency
L/W Latency

S/W Throughput
L/W Throughput

Figure 8: Different workloads

1 4 7 14
of Views

103

104

105

106

107

KB

TLC
Encryption
Hash

Baseline(2PC)
Irrevocable

Figure 9: Storage overhead

1 10 50 100
of Views

0

5000

10000

15000

20000

25000

30000

35000

m
s 0

250
500
750
1000

tp
s

Encryption
Hash

Latency
Throughput

Figure 10: Each tx is in all the views

1 10 50 100
of Views

0

1000

2000

3000

4000

5000

6000

m
s 0

250
500
750
1000

tp
s

Encryption
Hash

Latency
Throughput

Figure 11: Each tx is in a single view

200 400 600 800 1000
of Txns per View

0

500

1000

1500

2000

2500

3000

3500

4000
m

s
Chain Query
Local Computation
Soundness
Completeness

Figure 12: Verification performance

For views with irrevocable access, the system handled around

150 requests per second. The lower throughput of irrevocable views

is because in addition to the procedures performed by the revocable

methods, they also call view-modifying transactions, which require

extra computations. (For comparison, in the AT&T app for tracking

refurbished devices the requirement was to support 100 transactions

per second.) The baseline requires many more transactions per

request, i.e., a request is translated into 2𝑛 transactions, for updating

𝑛 views. Hence, it does not scale well, and it has a much lower

throughput of less than 70 requests per second, with a peak at 24

clients. Beyond 48 clients, the baseline becomes unresponsive—the

system cannot handle the large number of cross-chain transactions.

Latency. Fig. 5 depicts the per-request latency for our viewmethods

and the baseline, over workload WL1. The irrevocable views have a

higher latency than the revocable views due to the additional view-

modifying on-chain transactions. Note that the time needed for

off-chain computations, like encryption and hash computations, is

negligible. Employing TxListContract (TLC) reduces the number

of on-chain transactions and decreases latency, making the latency

of irrevocable views close to that of revocable views. The baseline

has high latency, and as the number of clients increases many more

cross-chain transactions are needed and the latency soars.

Processing Cost. The performance is affected by the total num-

ber of on-chain transactions, hence, we measured the number of

on-chain transactions as a function of the number of Application

Requests (see Fig. 6). Without the extra view-modifying contract,

in revocable views and when using TxListContract, the number

of application requests is equal to the number of on-chain transac-

tions. In irrevocable views, we need an extra on-chain transaction

to invoke the view storage contract; so the number of on-chain

transactions is doubled—𝑟 requests will result in 2𝑟 on-chain trans-

actions. The cross-chain baseline, for comparison, requires 2 · |𝑉 | ·𝑛,
where |𝑉 | is the average number of views per transaction, and 𝑛 is

the number of requests. In Fig. 6, |𝑉 | = 10.

Spatial Distribution.We investigated the effect of spatial distribu-

tion on the performance by comparing deployment on a single GCP

region to deployment on distant GCP regions. See results in Fig. 7.

The effect on latency is small for our methods but it is significant

for the baseline. However, the throughput of our methods dropped

by 20-30% and dropped by more than 40% for the baseline.

Different Workloads.We compared the performance of the meth-

ods over workloads WL1 and WL2. The results are presented in Fig. 8,

where S/W refers to the smaller workload (WL1) and L/W to the larger
one (WL2). Since the views are maintained as a smart-contract in-

stance and most of the operations are off-chain, the increase in the

size of the workload has a very small effect—the effect is negligible

in comparison to on-chain computations. For the baseline, however,

the increase in workload leads to too many cross-chain transactions,

and it reached a timeout without delivering results.

Storage Overhead. We examined the storage overhead of the

blockchain per the number of views, after committing 40 supply-

chain requests. Fig. 9 presents the results. Without the view-storage

contract, the revocable methods need the least space and are not

affected by the number of views. When using TxListContract, the
list of transaction identifiers and view predicates are stored in the

smart contract. This reduces storage in the contract state, and the

overall storage. For irrevocable views without TxListContract,
increasing the number of views requires storing more contract

states, which leads to more storage overhead. Yet, the baseline

approach is the most wasteful in storage space because it needs

to duplicate transactions—a transaction in 𝑛 views is duplicated 𝑛

times. Therefore, the total space needed for the baseline approach

is tenfold greater than the storage space used by our view methods.

Scalability. We examined the effect on latency and throughput of

an increase in the number of views and the number of transactions

per view. When each transaction is in all the views (Fig. 10), increas-

ing the number of views from 1 to 100 makes the latency rise from

around 2500ms to about 17000ms, and it drops the throughput from

around 800 TPS to 80 TPS. When each transaction is in a single view

(Fig. 11), increasing the number of views has only a small affect on

the performance—the latency is about 2500 ms in all scenarios and

the throughput values are between 600 and 900 TPS. The results

are similar for both the hash-based and encryption-based methods.

The difference between the cases in Fig. 10 and Fig. 11 is because

when updating many views per transaction, the transaction needs

to include more information in its payload. This increases the size

of transactions and reduces the number of transactions per block,

affecting the throughput and the latency.

Verification Delay. Fig. 12 presents the cost of verifying soundness
and completeness of a view. There is a linear increase in verification

time per the number of transactions, for both soundness and com-

pleteness. Most of the delay is due to access to the ledger, while local

3 5 7 9
of Peers

0

200

400

600

800

1000

1200

1400

tp
s

View on Private Data
View on Public Data
Only Private Data (No Views)

Figure 13: Comparison with Private Data Collections
computations only slightly increase the delay. Soundness verifica-

tion is much more costly than verifying completeness, because the

soundness test requires access to the ledger per each transaction, to

validate it, while completeness uses the list presented in Section 5.4.

Note that the cost of soundness verification can be reduced when

assuming that users with access to the data can be trusted; however,

in our system we do not make such an assumption.

Comparison with Private Data.We compared the efficiency of

our views with the private data collections of Fabric (described in

Section 2). The results, presented in Fig. 13, compare (1) a private

data collection, (2) a revocable view on top of private data collection,

by including our soundness and completeness tests, and (3) our

revocable hash-based view. There is a slight performance decrease

when comparing views to private data collections, and utilizing

built-in private data collections in our methods does not improve

performance. Recall that our views provide additional capabilities

that private data collections do not provide, e.g., irrevocable views,

effective way to grant and revoke access to revocable views, etc.

7 CONCLUSIONS
In this paper, we presented the LedgerView system that adds access-

control views to Hyperledger Fabric. We demonstrated the use of

access-control views for management of supply chains and in an

AT&T application of tracking parts of refurbished cellular devices.

We introduced four methods of views on blockchain. Two methods

are based on data encryption (comparable with channels) and two

methods protect sensitive data by storing on the blockchain only

the hash values of sensitive data (comparable with private data col-

lections). We showed how to implement views with revocable and

irrevocable access permissions. Revocable access permissions allow

revoking access to data from users, e.g., from retired employees.

Irrevocable access should be used for irrevocable information, e.g.,

warranty, contracts, ownership documents, deeds, etc.

To validate the effectiveness of LedgerView, we compared it to

a baseline of storing different views on independent blockchains

and using cross-chain transactions for guaranteeing consistency.

Experiments with supply-chain workloads show that LedgerView

has much higher throughput than the baseline and the cost of the

baseline is much higher than the cost of LedgerView, in terms of

latency, storage overhead, and communication between nodes.

ACKNOWLEDGMENTS
This work was supported by the National Research Foundation, Sin-

gapore under its Emerging Areas Research Projects (EARP) Funding

Initiative. We would like to thank Thomas Jenkins from AT&T for

his insights on tracking refurbished devices.

REFERENCES
[1] Ledgerview. https://github.com/sbip-sg/BlockchainView.

[2] Serge Abiteboul. On views and XML. ACM SIGMOD Record, 28(4):30–38, 1999.
[3] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of databases,

volume 8. Addison-Wesley Reading, 1995.

[4] Abdulrahman Almutairi, Muhammad Sarfraz, Saleh Basalamah, Walid Aref, and

Arif Ghafoor. A distributed access control architecture for cloud computing. IEEE
software, 29(2):36–44, 2011.

[5] Mohammad Javad Amiri, Divyakant Agrawal, and Amr El Abbadi. Caper: a

cross-application permissioned blockchain. PVLDB, 12(11):1385–1398, 2019.
[6] Andy Amoordon and Henrique Rocha. Presenting Tendermint: Idiosyncrasies,

weaknesses, and good practices. In 2019 IEEE International Workshop on
Blockchain Oriented Software Engineering (IWBOSE), pages 44–49. IEEE, 2019.

[7] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstantinos

Christidis, Angelo De Caro, David Enyeart, Christopher Ferris, Gennady Lavent-

man, Yacov Manevich, et al. Hyperledger fabric: a distributed operating system

for permissioned blockchains. In Proceedings of the thirteenth EuroSys conference,
pages 1–15, 2018.

[8] Ahmed Banafa. IoT and blockchain convergence: benefits and challenges. IEEE
Internet of Things, 2017.

[9] Elaine Barker and Nicky Mouha. Recommendation for the triple data encryption

algorithm (tdea) block cipher. Technical report, National Institute of Standards

and Technology, 2017.

[10] Fabrice Benhamouda, Shai Halevi, and Tzipora Halevi. Supporting private data on

hyperledger fabric with secure multiparty computation. IBM Journal of Research
and Development, 63(2/3):3–1, 2019.

[11] Elisa Bertino, Gabriel Ghinita, and Ashish Kamra. Access control for databases:
Concepts and systems. Now Publishers Inc, 2011.

[12] L Bošnjak, J Sreš, and Bosnjak Brumen. Brute-force and dictionary attack on

hashed real-world passwords. In 2018 41st international convention on information
and communication technology, electronics and microelectronics (mipro), pages
1161–1166. IEEE, 2018.

[13] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance and proac-

tive recovery. ACM Transactions on Computer Systems (TOCS), 20(4):398–461,
2002.

[14] Donald D Chamberlin, Jim N Gray, and Irving L Traiger. Views, authorization,

and locking in a relational data base system. In Proceedings of the May 19-22,
1975, national computer conference and exposition, pages 425–430, 1975.

[15] Joan Daemen and Vincent Rijmen. Reijndael: The advanced encryption standard.

Dr. Dobb’s Journal: Software Tools for the Professional Programmer, 26(3):137–139,
2001.

[16] Gaby G Dagher, Jordan Mohler, Matea Milojkovic, and Praneeth Babu Marella.

Ancile: Privacy-preserving framework for access control and interoperability

of electronic health records using blockchain technology. Sustainable cities and
society, 39:283–297, 2018.

[17] Hung Dang, Tien Tuan Anh Dinh, Dumitrel Loghin, Ee-Chien Chang, Qian

Lin, and Beng Chin Ooi. Towards scaling blockchain systems via sharding. In

Proceedings of the 2019 international conference on management of data, pages
123–140, 2019.

[18] Tamraparni Dasu, Yaron Kanza, and Divesh Srivastava. Geofences in the sky:

herding drones with blockchains and 5G. In Proceedings of the 26th ACM SIGSPA-
TIAL International Conference on Advances in Geographic Information Systems,
pages 73–76, 2018.

[19] Tamraparni Dasu, Yaron Kanza, and Divesh Srivastava. Unchain your blockchain.

In Proc. Symposium on Foundations and Applications of Blockchain, volume 1,

pages 16–23, 2018.

[20] Tien Tuan Anh Dinh, Rui Liu, Meihui Zhang, Gang Chen, Beng Chin Ooi, and

Ji Wang. Untangling blockchain: A data processing view of blockchain systems.

IEEE Transactions on Knowledge and Data Engineering, 30(7):1366–1385, 2018.
[21] Davor Dujak and Domagoj Sajter. Blockchain applications in supply chain. In

SMART supply network, pages 21–46. Springer, 2019.
[22] Paul Dunphy and Fabien AP Petitcolas. A first look at identity management

schemes on the blockchain. IEEE Security & Privacy, 16(4):20–29, 2018.
[23] David Ferraiolo, D Richard Kuhn, and Ramaswamy Chandramouli. Role-based

access control. Artech House, 2003.

[24] Michael Gertz and Sushil Jajodia. Handbook of database security: applications and
trends. Springer Science & Business Media, 2007.

[25] Shay Gueron, Simon Johnson, and Jesse Walker. Sha-512/256. In 2011 Eighth
International Conference on Information Technology: New Generations, pages 354–
358. IEEE, 2011.

[26] Suyash Gupta, Jelle Hellings, and Mohammad Sadoghi. Fault-tolerant distributed

transactions on blockchain. Synthesis Lectures on Data Management, 16(1), 2021.
[27] John D Halamka, Andrew Lippman, and Ariel Ekblaw. The potential for

blockchain to transform electronic health records. Harvard Business Review,
3(3):2–5, 2017.

[28] Maurice Herlihy. Atomic cross-chain swaps. In Proceedings of the 2018 ACM
symposium on principles of distributed computing, pages 245–254, 2018.

[29] Uzair Javaid, Muhammad Naveed Aman, and Biplab Sikdar. Blockpro: Blockchain

based data provenance and integrity for secure iot environments. In Proc. of the
1st Workshop on Blockchain-enabled Networked Sensor Systems, pages 13–18, 2018.

[30] Yaron Kanza, Alberto O Mendelzon, Renée J Miller, and Zheng Zhang.

Authorization-transparent access control for XML under the non-truman model.

In International Conference on Extending Database Technology, pages 222–239.
Springer, 2006.

[31] Yaron Kanza and Eliyahu Safra. Cryptotransport: blockchain-powered ride

hailing while preserving privacy, pseudonymity and trust. In Proceedings of
the 26th ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems, pages 540–543, 2018.

[32] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov.

Ouroboros: A provably secure proof-of-stake blockchain protocol. In Annual
International Cryptology Conference, pages 357–388. Springer, 2017.

[33] Henry M Kim and Marek Laskowski. Toward an ontology-driven blockchain

design for supply-chain provenance. Intelligent Systems in Accounting, Finance
and Management, 25(1):18–27, 2018.

[34] Eleftherios Kokoris-Kogias, Enis Ceyhun Alp, Linus Gasser, Philipp Jovanovic,

Ewa Syta, and Bryan Ford. Calypso: Private data management for decentralized

ledgers. PVLDB, 14(4):586–599, 2020.
[35] Shuaicheng Ma, Tamraparni Dasu, Yaron Kanza, Divesh Srivastava, and Li Xiong.

Fraud buster: Tracking irsf using blockchain while protecting business confiden-

tiality. In CIDR, 2021.
[36] Damiano Di Francesco Maesa, Paolo Mori, and Laura Ricci. Blockchain based

access control. In IFIP international conference on distributed applications and
interoperable systems, pages 206–220. Springer, 2017.

[37] Damiano Di Francesco Maesa, Paolo Mori, and Laura Ricci. A blockchain based

approach for the definition of auditable access control systems. Computers &
Security, 84:93–119, 2019.

[38] Sidra Malik, Salil S Kanhere, and Raja Jurdak. Productchain: Scalable blockchain

framework to support provenance in supply chains. In 17th International Sympo-
sium on Network Computing and Applications (NCA), pages 1–10. IEEE, 2018.

[39] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Technical

report, Manubot, 2019.

[40] Tier Nolan. Alt chains and atomic transfers. In Bitcoin Forum, 2013.

[41] Sunny Pahlajani, Avinash Kshirsagar, and Vinod Pachghare. Survey on private

blockchain consensus algorithms. In 1st International Conference on Innovations
in Information and Communication Technology (ICIICT), pages 1–6. IEEE, 2019.

[42] Zhe Peng, Cheng Xu, Haixin Wang, Jinbin Huang, Jianliang Xu, and Xiaowen

Chu. P2b-trace: Privacy-preserving blockchain-based contact tracing to combat

pandemics. In Proceedings of the 2021 International Conference on Management of
Data, pages 2389–2393, 2021.

[43] Ling Ren and Srinivas Devadas. Proof of space from stacked expanders. In Theory
of Cryptography Conference, pages 262–285. Springer, 2016.

[44] Ronald L Rivest, Adi Shamir, and Leonard Adleman. A method for obtaining

digital signatures and public-key cryptosystems. Communications of the ACM,

21(2):120–126, 1978.

[45] Pingcheng Ruan, Gang Chen, Tien Tuan Anh Dinh, Qian Lin, Beng Chin Ooi, and

Meihui Zhang. Fine-grained, secure and efficient data provenance on blockchain

systems. PVLDB, 12(9):975–988, 2019.
[46] Pingcheng Ruan, Dumitrel Loghin, Quang-Trung Ta, Meihui Zhang, Gang Chen,

and Beng Chin Ooi. A transactional perspective on execute-order-validate

blockchains. In Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data, pages 543–557, 2020.

[47] Fahad Saleh. Blockchain without waste: Proof-of-stake. The Review of financial
studies, 34(3):1156–1190, 2021.

[48] Ravi S Sandhu. Role-based access control. In Advances in computers, volume 46,

pages 237–286. Elsevier, 1998.

[49] Ravi S Sandhu and Pierangela Samarati. Access control: principle and practice.

IEEE communications magazine, 32(9):40–48, 1994.
[50] Lakshmi Siva Sankar, M Sindhu, and M Sethumadhavan. Survey of consensus

protocols on blockchain applications. In 4th International Conference on Advanced
Computing and Communication Systems (ICACCS), pages 1–5. IEEE, 2017.

[51] Felix Martin Schuhknecht, Ankur Sharma, Jens Dittrich, and Divya Agrawal.

chainifydb: How to get rid of your blockchain and use your dbms instead. In

CIDR, 2021.
[52] Ankur Sharma, Felix Martin Schuhknecht, Divya Agrawal, and Jens Dittrich.

Blurring the lines between blockchains and database systems: the case of hyper-

ledger fabric. In Proceedings of the 2019 International Conference on Management
of Data, pages 105–122, 2019.

[53] Sachin Shetty, Val Red, Charles Kamhoua, Kevin Kwiat, and Laurent Njilla. Data

provenance assurance in the cloud using blockchain. In Disruptive Technologies
in Sensors and Sensor Systems, volume 10206, page 102060I. International Society

for Optics and Photonics, 2017.

[54] Marten Sigwart, Michael Borkowski, Marco Peise, Stefan Schulte, and Stefan Tai.

Blockchain-based data provenance for the internet of things. In Proceedings of
the 9th International Conference on the Internet of Things, pages 1–8, 2019.

https://github.com/sbip-sg/BlockchainView

[55] Joao Sousa, Alysson Bessani, and Marko Vukolic. A byzantine fault-tolerant

ordering service for the hyperledger fabric blockchain platform. In 2018 48th
annual IEEE/IFIP international conference on dependable systems and networks
(DSN), pages 51–58. IEEE, 2018.

[56] Alex Tapscott and Don Tapscott. How blockchain is changing finance. Harvard
Business Review, 1(9):2–5, 2017.

[57] Parth Thakkar, Senthil Nathan, and Balaji Viswanathan. Performance bench-

marking and optimizing hyperledger fabric blockchain platform. In 2018 IEEE
26th International Symposium on Modeling, Analysis, and Simulation of Computer
and Telecommunication Systems (MASCOTS), pages 264–276. IEEE, 2018.

[58] Daniel Tse, Bowen Zhang, Yuchen Yang, Chenli Cheng, and Haoran Mu.

Blockchain application in food supply information security. In 2017 IEEE Interna-
tional Conference on Industrial Engineering and Engineering Management (IEEM),

pages 1357–1361. IEEE, 2017.

[59] Gavin Wood et al. Ethereum: A secure decentralised generalised transaction

ledger. Ethereum project yellow paper, 151(2014):1–32, 2014.
[60] Ting Yu, Laks VS Lakshmanan, Divesh Srivastava, and HV Jagadish. Compressed

accessibility map: Efficient access control for XML. In VLDB’02: Proc. of the 28th
International Conference on Very Large Databases, pages 478–489. Elsevier, 2002.

[61] Victor Zakhary, Divyakant Agrawal, and Amr El Abbadi. Atomic commitment

across blockchains. arXiv preprint arXiv:1905.02847, 2019.
[62] Guy Zyskind, Oz Nathan, et al. Decentralizing privacy: Using blockchain to

protect personal data. In 2015 IEEE Security and Privacy Workshops, pages 180–
184. IEEE, 2015.

	Abstract
	1 Introduction
	2 Related Work
	3 Blockchain Application
	4 Access-Control Views
	4.1 Encryption-based Irrevocable Permissions
	4.2 Encryption-based Revocable Permissions
	4.3 Hash-based Irrevocable Access Permissions
	4.4 Hash-based Revocable Permissions
	4.5 Encryption versus Hashing
	4.6 Role-Based Access Control
	4.7 Soundness and Completeness

	5 Implementation
	5.1 Hyperledger Fabric
	5.2 View as a Smart Contract State
	5.3 System Architecture
	5.4 Transaction List per View

	6 Experimental Evaluation
	6.1 Baseline
	6.2 Supply Chain Workload
	6.3 Results

	7 Conclusions
	Acknowledgments
	References

