
M2R: Enabling Stronger Privacy in MapReduce Computation

Tien Tuan Anh Dinh, Prateek Saxena, Ee-Chien Chang, Beng Chin Ooi, Chunwang Zhang
School of Computing, National University of Singapore

ug93tad@gmail.com, prateeks@comp.nus.edu.sg, changec@comp.nus.edu.sg
ooibc@comp.nus.edu.sg, zhangchunwang@gmail.com

Abstract
New big-data analysis platforms can enable distributed
computation on encrypted data by utilizing trusted com-
puting primitives available in commodity server hard-
ware. We study techniques for ensuring privacy-
preserving computation in the popular MapReduce
framework. In this paper, we first show that protect-
ing only individual units of distributed computation (e.g.
map and reduce units), as proposed in recent works,
leaves several important channels of information leak-
age exposed to the adversary. Next, we analyze a variety
of design choices in achieving a stronger notion of pri-
vate execution that is the analogue of using a distributed
oblivious-RAM (ORAM) across the platform. We de-
velop a simple solution which avoids using the expen-
sive ORAM construction, and incurs only an additive
logarithmic factor of overhead to the latency. We im-
plement our solution in a system called M2R, which en-
hances an existing Hadoop implementation, and evaluate
it on seven standard MapReduce benchmarks. We show
that it is easy to port most existing applications to M2R
by changing fewer than 43 lines of code. M2R adds fewer
than 500 lines of code to the TCB, which is less than
0.16% of the Hadoop codebase. M2R offers a factor of
1.3× to 44.6× lower overhead than extensions of previ-
ous solutions with equivalent privacy. M2R adds a total of
17% to 130% overhead over the insecure baseline solu-
tion that ignores the leakage channels M2R addresses.

1 Introduction

The threat of data theft in public and private clouds from
insiders (e.g. curious administrators) is a serious con-
cern. Encrypting data on the cloud storage is one stan-
dard technique which allows users to protect their sen-
sitive data from such insider threats. However, once
the data is encrypted, enabling computation on it poses
a significant challenge. To enable privacy-preserving
computation, a range of security primitives have sur-
faced recently, including trusted computing support for
hardware-isolated computation [2, 5, 39, 41] as well as
purely cryptographic techniques [21,22,47]. These prim-

itives show promising ways for running computation
securely on a single device running an untrusted soft-
ware stack. For instance, trusted computing primitives
can isolate units of computation on an untrusted cloud
server. In this approach, the hardware provides a con-
fidential and integrity-protected execution environment
to which encryption keys can be made available for
decrypting the data before computing on it. Previous
works [8, 14, 39, 40, 49] have successfully demonstrated
how to securely execute a unit of user-defined compu-
tation on an untrusted cloud node, using support from
hardware primitives available in commodity CPUs.

In this paper, we study the problem of enabling
privacy-preserving distributed computation on an un-
trusted cloud. A sensitive distributed computation task
comprises many units of computation which are sched-
uled to run on a multi-node cluster (or cloud). The input
and output data between units of computation are sent
over channels controlled by the cloud provisioning sys-
tem, which may be compromised. We assume that each
computation node in the cluster is equipped with a CPU
that supports trusted computing primitives (for example,
TPMs or Intel SGX). Our goal is to enable a privacy-
preserving execution of a distributed computation task.
Consequently, we focus on designing privacy in the pop-
ular MapReduce framework [17]. However, our tech-
niques can be applied to other distributed dataflow frame-
works such as Spark [62], Dryad [27], and epiC [28].

Problem. A MapReduce computation consists of two
types of units of computation, namely map and re-
duce, each of which takes key-value tuples as input.
The MapReduce provisioning platform, for example
Hadoop [1], is responsible for scheduling the map/reduce
operations for the execution in a cluster and for provid-
ing a data channel between them [32]. We aim to achieve
a strong level of security in the distributed execution of a
MapReduce task (or job) — that is, the adversary learns
nothing beyond the execution time and the number of
input and output of each computation unit. If we view
each unit of computation as one atomic operation of a
larger distributed program, the execution can be thought
of as running a set of operations on data values passed

1

via a data channel (or a global “RAM”) under the ad-
versary’s control. That is, our definition of privacy is
analogous to the strong level of privacy offered by the
well-known oblivious RAM protocol in the monolithic
processor case [23].

We assume that the MapReduce provisioning platform
is compromised, say running malware on all nodes in
the cluster. Our starting point in developing a defense
is a baseline system which runs each unit of computation
(map/reduce instance) in a hardware-isolated process, as
proposed in recent systems [49, 59]. Inputs and outputs
of each computation unit are encrypted, thus the adver-
sary observes only encrypted data. While this baseline
offers a good starting point, merely encrypting data in-
transit between units of computation is not sufficient (see
Section 3). For instance, the adversary can observe the
pattern of data reads/writes between units. As another
example, the adversary can learn the synchronization be-
tween map and reduce units due to the scheduling struc-
ture of the provisioning platform. Further, the adversary
has the ability to duplicate computation, or tamper with
the routing of encrypted data to observe variations in the
execution of the program.

Challenges. There are several challenges in building
a practical system that achieves our model of privacy.
First, to execute map or reduce operations on a single
computation node, one could run all computation units
— including the entire MapReduce platform — in an ex-
ecution environment that is protected by use of existing
trusted computing primitives. However, such a solution
would entail little trust given the large TCB, besides be-
ing unwieldy to implement. For instance, a standard im-
plementation of the Hadoop stack is over 190K lines of
code. The scope of exploit from vulnerabilities in such a
TCB is large. Therefore, the first challenge is to enable
practical privacy by minimizing the increase in platform
TCB and without requiring any algorithmic changes to
the original application.

The second challenge is in balancing the needs of pri-
vacy and performance. Addressing the leakage channels
discussed above using generic methods easily yields a
solution with poor practical efficiency. For instance, hid-
ing data read/write patterns between specific map and
reduce operations could be achieved by a generic obliv-
ious RAM (ORAM) solution [23, 55]. However, such
a solution would introduce a slowdown proportional to
polylog in the size of the intermediate data exchange,
which could degrade performance by over 100× when
gigabytes of data are processed.

Our Approach. We make two observations that en-
able us to achieve our model of privacy in a MapRe-
duce implementation. First, on a single node, most of the
MapReduce codebase can stay outside of the TCB (i.e.

code performing I/O and scheduling related tasks). Thus,
we design four new components that integrate readily to
the existing MapReduce infrastructure. These compo-
nents which amount to fewer than 500 lines of code are
the only pieces of trusted logic that need to be in the
TCB, and are run in a protected environment on each
computation node. Second, MapReduce computation
(and computation in distributed dataflow frameworks in
general) has a specific structure of data exchange and ex-
ecution between map and reduce operations; that is, the
map writes the data completely before it is consumed by
the reduce. Exploiting this structure, we design a com-
ponent called secure shuffler which achieves the desired
security but is much less expensive than a generic ORAM
solution, adding only a O(logN) additive term to the la-
tency, where N is the size of the data.

Results. We have implemented a system called M2R
based on Hadoop [1]. We ported 7 applications from a
popular big-data benchmarks [26] and evaluated them on
a cluster. The results confirm three findings. First, port-
ing MapReduce jobs to M2R requires small development
effort: changing less than 45 lines of code. Second, our
solution offers a factor of 1.3× to 44.6× (median 11.2×)
reduction in overhead compared to the existing solu-
tions with equivalent privacy, and a total of 17%−130%
of overhead over the baseline solution which protects
against none of the attacks we focus on in this paper. Our
overhead is moderately high, but M2R has high compati-
bility and is usable with high-sensitivity big data analysis
tasks (e.g. in medical, social or financial data analytics).
Third, the design is scalable and adds a TCB of less than
0.16% of the original Hadoop codebase.

Contributions. In summary, our work makes three key
contributions:

• Privacy-preserving distributed computation. We
define a new pragmatic level of privacy which can
be achieved in the MapReduce framework requiring
no algorithmic restructuring of applications.

• Attacks. We show that merely encrypting data in en-
claved execution (with hardware primitives) is inse-
cure, leading to significant privacy loss.

• Practical Design. We design a simple, non-
intrusive architectural change to MapReduce. We
implement it in a real Hadoop implementation
and benchmark its performance cost for privacy-
sensitive applications.

2 The Problem

Our goal is to enable privacy-preserving computation for
distributed dataflow frameworks. Our current design and

2

map

mapper

shuffler
map

map

shuffler
map

reduce

reduce

reduce

...

...

...

......

reducer

mapper

reducer

reducer

shuffle phase

Figure 1: The MapReduce computation model.

implementation are specific to MapReduce framework,
the computation structure of which is nevertheless simi-
lar to other distributed dataflow engines [27, 28, 62], dif-
fering mainly in supported operations.
Background on MapReduce. The MapReduce lan-
guage enforces a strict structure: the computation task
is split into map and reduce operations. Each instance
of a map or reduce, called a computation unit (or unit),
takes a list of key-value tuples1. A MapReduce task con-
sists of sequential phases of map and reduce operations.
Once the map step is finished, the intermediate tuples
are grouped by their key-components. This process of
grouping is known as shuffling. All tuples belonging to
one group are processed by a reduce instance which ex-
pects to receive tuples sorted by their key-component.
Outputs of the reduce step can be used as inputs for the
map step in the next phase, creating a chained MapRe-
duce task. Figure 1 shows the dataflow from the map to
the reduce operations via the shuffling step. In the actual
implementation, the provisioning of all map units on one
cluster node is locally handled by a mapper process, and
similarly, by a reducer process for reduce units.

2.1 Threat Model
The adversary is a malicious insider in the cloud, aiming
to subvert the confidentiality of the client’s computation
running on the MapReduce platform. We assume that the
adversary has complete access to the network and storage
back-end of the infrastructure and can tamper with the
persistent storage or network traffic. For each compu-
tation node in the cluster, we assume that the adversary
can corrupt the entire software stack, say by installing
malware.

We consider an adversary that perpetrates both pas-
sive and active attacks. A passive or honest-but-curious
attacker passively observes the computation session, be-

1To avoid confusion of the tuple key with cryptographic key, we
refer to the first component in the tuple as key-component.

having honestly in relaying data between computation
units, but aims to infer sensitive information from the
observed data. This is a pragmatic model which includes
adversaries that observe data backed up periodically on
disk for archival, or have access to performance moni-
toring interfaces. An active or malicious attacker (e.g.
an installed malware) can deviate arbitrarily from the ex-
pected behavior and tamper with any data under its con-
trol. Our work considers both such attacks.

There are at least two direct attacks that an adversary
can mount on a MapReduce computation session. First,
the adversary can observe data passing between compu-
tation units. If the data is left unencrypted, this leads to
a direct breach in confidentiality. Second, the adversary
can subvert the computation of each map/reduce instance
by tampering with its execution. To address these basic
threats, we start with a baseline system described below.

Baseline System. We consider the baseline system in
which each computation unit is hardware-isolated and
executed privately. We assume that the baseline sys-
tem guarantees that the program can only be invoked on
its entire input dataset, or else it aborts in its first map
phase. Data blocks entering and exiting a computation
unit are encrypted with authenticated encryption, and all
side-channels from each computation unit are assumed to
be masked [51]. Intermediate data is decrypted only in
a hardware-attested computation unit, which has limited
memory to securely process up to T inputs tuples. Sys-
tems achieving this baseline have been previously pro-
posed, based on differing underlying hardware mecha-
nisms. VC3 is a recent system built on Intel SGX [49].

Note that in this baseline system, the MapReduce pro-
visioning platform is responsible for invoking various
trusted units of computation in hardware-isolated pro-
cesses, passing encrypted data between them. In Sec-
tion 3, we explain why this baseline system leaks sig-
nificant information, and subsequently define a stronger
privacy objective.

2.2 Problem Definition
Ideally, the distributed execution of the MapReduce pro-
gram should leak nothing to the adversary, except the to-
tal size of the input, total size of the output and the run-
ning time. The aforementioned baseline system fails to
achieve the ideal privacy. It leaks two types of informa-
tion: (a) the input and output size, and processing time
of individual computation unit, and (b) dataflow among
the computation units.

We stress that the leakage of (b) is significant in many
applications since it reveals relationships among the in-
put. For instance, in the well-known example of comput-
ing Pagerank scores for an encrypted graph [44], flows
from a computation unit to another correspond to edges

3

in the input graph. Hence, leaking the dataflow essen-
tially reveals the whole graph edge-structure!

Techniques for hiding or reducing the leakage in (a)
by padding the input/output size and introducing timing
delays are known [36, 42]. Such measures can often re-
quire algorithmic redesign of the application [9] or use of
specialized programming languages or hardware [34,35],
and can lead to large overheads for applications where
the worst case running time is significantly larger than
the average case. We leave incorporating these orthogo-
nal defenses out-of-scope.

Instead, in this work, we advocate focusing on elimi-
nating leakage on (b), while providing a formulation that
clearly captures the information that might be revealed.
We formulate the admissible leakage as Ψ which cap-
tures the information (a) mentioned above, namely the
input/output size and running time of each trusted com-
putation unit invoked in the system. We formalize this
intuition by defining the execution as a protocol between
trusted components and the adversary, and define our pri-
vacy goal as achieving privacy modulo-Ψ.

Execution Protocol. Consider an honest execution of a
program on input I = 〈x1,x2, . . . ,xn〉. For a given map-
reduce phase, let there be n map computation units. Let
us label the map computation units such that the unit with
label i takes xi as input. Recall that the tuples generated
by the map computation units are to be shuffled, and
divided into groups according to the key-components.
Let K to be the set of unique key-components and let
π : [n+1,n+m]→K be a randomly chosen permutation,
where m = |K|. Next, m reduce computation units are to
be invoked. We label them starting from n+1, such that
the computation unit i takes tuples with key-component
π(i) as input.

Let Ii,Oi,Ti be the respective input size (measured by
number of tuples), output size, and processing time of the
computation unit i, and call Ψi = 〈Ii,Oi,Ti〉 the IO-profile
of computation unit i. The profile Ψ of the entire execu-
tion on input I is the sequence of Ψi for all computation
units i ∈ [1, . . . ,n+m] in the execution protocol. If an
adversary Ã can initiate the above protocol and observe
Ψ, we say that the adversary has access to Ψ.

Now, let us consider the execution of the program on
the same input I = 〈x1,x2, . . . ,xn〉 under a MapReduce
provisioning protocol by an adversary A . A semi-honest
adversary A can obtain information on the value of the
input, output and processing time of every trusted in-
stance, including information on trusted instances other
than the map and reduce computation units. If the adver-
sary is malicious, it can further tamper with the inputs
and invocations of the instances. In the protocol, the ad-

versary controls 6 parameters:

(C1) the start time of each computation instance,
(C2) the end time of each instance,
(C3) the encrypted tuples passed to its inputs,
(C4) the number of computation instances,
(C5) order of computation units executed,
(C6) the total number of map-reduce phases executed.

Since the adversary A can obtain “more” information
and tamper the execution, a question to ask is, can the
adversary A gain more knowledge compared to an ad-
versary Ã who only has access to Ψ? Using the standard
notions of indistinguishability2 and adversaries [29], we
define a secure protocol as follows:

Definition 1 (Privacy modulo-Ψ). A provisioning pro-
tocol for a program is modulo-Ψ private if, for any ad-
versary A executing the MapReduce protocol, there is a
adversary Ã with access only to Ψ, such that the output
of A and Ã are indistinguishable.

The definition states that the output of the adversaries
can be directly seen as deduction made on the informa-
tion available. The fact that all adversaries have output
indistinguishable from the one which knows Ψ suggests
that no additional information can be gained by any A
beyond that implied by knowledge of Ψ.
Remarks. First, our definition follows the scenario pro-
posed by Canneti [11], which facilitates universal com-
position. Hence, if a protocol is private module-Ψ for
one map-reduce phase, then an entire sequence of phases
executed is private module-Ψ. Note that our proposed
M2R consists of a sequence of map, shuffle, and reduce
phases where each phase starts only after the previous
phase has completed, and the chain of MapReduce jobs
are carried out sequentially. Thus, universal composition
can be applied. Second, we point out that if the developer
restructures the original computation to make the IO-
profile the same for all inputs, then Ψ leaks nothing about
the input. Therefore, the developer can consider using or-
thogonal techniques to mask timing latencies [42], hid-
ing trace paths and IO patterns [35] to achieve ideal pri-
vacy, if the performance considerations permit so.

2.3 Assumptions
In this work, we make specific assumptions about the
baseline system we build upon. First, we assume that the
underlying hardware sufficiently protects each computa-
tion unit from malware and snooping attacks. The range
of threats that are protected against varies based on the
underlying trusted computing hardware. For instance,

2non-negligible advantage in a distinguishing game

4

traditional TPMs protect against software-only attacks
but not against physical access to RAM via attacks such
as cold-boot [25]. More recent trusted computing prim-
itives, such as Intel SGX [41], encrypt physical mem-
ory and therefore offer stronger protection against adver-
saries with direct physical access. Therefore, we do not
focus on the specifics of how to protect each computa-
tion unit, as it is likely to change with varying hardware
platform used in deployment. In fact, our design can
be implemented in any virtualization-assisted isolation
that protects user-level processes on a malicious guest
OS [12, 52, 57], before Intel SGX becomes available on
the market.

Second, an important assumption we make is that of
information leakage via side-channels (e.g. cache laten-
cies, power) from a computation unit is minimal. Indeed,
it is a valid concern and an area of active research. Both
software and hardware-based solutions are emerging, but
they are orthogonal to our techniques [18, 30].

Finally, to enable arbitrary computation on encrypted
data, decryption keys need to be made made available
to each hardware-isolated computation unit. This pro-
visioning of client’s keys to the cloud requires a set of
trusted administrator interfaces and privileged software.
We assume that such trusted key provisioning exists, as
is shown in recent work [49, 65]. We refer readers to the
extended version of the paper [20] for more details on the
scheme we implement.

3 Attacks

In this section, we explain why a baseline system that
merely encrypts the output of each computation unit
leaks significantly more than a system that achieves pri-
vacy modulo-Ψ. We explain various subtle attack chan-
nels that our solution eliminates, with an example.
Running Example. Let us consider the canonical ex-
ample of the Wordcount job in MapReduce, wherein the
goal is to count the number of occurrences of each word
in a set of input files. The map operation takes one file
as input, and for each word w in the file, outputs the tu-
ple 〈w,1〉. All outputs are encrypted with standard au-
thenticated encryption. Each reduce operation takes as
input all the tuples with the same tuple-key, i.e. the same
word, and aggregates the values. Hence the output of
reduce operations is an encrypted list of tuples 〈w,wc〉,
where wc is the frequency of word w for all input files.
For simplicity, we assume that the input is a set of files
F = {F1, . . . ,Fn}, each file has the same number of words
and is small enough to be processed by a map operation3.
What does Privacy modulo-Ψ Achieve? Here all the

3Files can be processed in fixed size blocks, so this assumption is
without any loss of generality

map computation units output same size tuples, and af-
ter grouping, each reduce unit receives tuples grouped
by words. The size of map outputs and group sizes con-
stitute Ψ, and a private modulo-Ψ execution therefore
leaks some statistical information about the collection of
files in aggregate, namely the frequency distribution of
words in F . However, it leaks nothing about the con-
tents of words in the individual files — for instance, the
frequency of words in any given file, and the common
words between any pair of files are not leaked. As we
show next, the baseline system permits a lot of inference
attacks as it fails to achieve privacy modulo-Ψ. In fact,
eliminating the remaining leakage in this example may
not be easy, as it may assume apriori knowledge about
the probability distribution of words in F (e.g. using dif-
ferential privacy [48]).

Passive Attacks. Consider a semi-honest adversary that
executes the provisioning protocol, but aims to infer ad-
ditional information. The adversary controls 6 parame-
ters C1-C6 (Section 2.2) in the execution protocol. The
number of units (C4) and map-reduce phases executed
(C6) are dependent (and implied) by Ψ in an honest exe-
cution, and do not leak any additional information about
the input. However, parameters C1,C2,C3 and C5 may
directly leak additional information, as explained below.

• Dataflow Patterns (Channel C3). Assume that the
encrypted tuples are of the same size, and hence do
not individually leak anything about the underlying
plain text. However, since the adversary constitutes
the data communication channel, it can correlate the
tuples written out by a map unit and read by a spe-
cific reduce unit. In the Wordcount example, the
ith map unit processes words in the file Fi, and then
the intermediate tuples are sorted before being fed
to reduce units. By observing which map outputs
are grouped together to the same reduce unit, the
adversary can learn that the word wi in file Fi is the
same as a word w j in file Fj. This is true if they
are received by the same reduce unit as one group.
Thus, data access patterns leak significant informa-
tion about overlapping words in files.
• Order of Execution (Channel C5). A determinis-

tic order of execution of nodes in any step can re-
veal information about the underlying tuples be-
yond what is implied by Ψ. For instance, if the
provisioning protocol always sorts tuple-keys and
assigns them to reduce units in sorted order, then
the adversary learns significant information. In the
WordCount example, if the first reduce unit always
corresponds to words appearing first in the sorted
order, this would leak information about specific
words processed by the reduce unit. This is not di-
rectly implied by Ψ.

5

• Time-of-Access (Channel C1,C2) Even if data ac-
cess patterns are eliminated, time-of-access is an-
other channel of leakage. For instance, an optimiz-
ing scheduler may start to move tuples to the re-
duce units even before the map step is completed
(pipelining) to gain efficiency. In such cases, the ad-
versary can correlate which blocks written by map
units are read by which reduce units. If outputs of
all but the ith map unit are delayed, and the jth re-
duce unit completes, then the adversary can deduce
that there is no dataflow from the ith map unit to jth

reduce unit. In general, if computation units in a
subsequent step do not synchronize to obtain out-
puts from all units in the previous step, the time of
start and completion leaks information.

Active Attacks. While we allow the adversary to abort
the computation session at any time, we aim to prevent
the adversary from using active attacks to gain advantage
in breaking confidentiality. We remind readers that in our
baseline system, the adversary can only invoke the pro-
gram with its complete input set, without tampering with
any original inputs. The output tuple-set of each compu-
tation unit is encrypted with an authenticated encryption
scheme, so the adversary cannot tamper with individual
tuples. Despite these preliminary defenses, several chan-
nels for active attacks exist:

• Tuple Tampering. The adversary may attempt to du-
plicate or eliminate an entire output tuple-set pro-
duced by a computation unit, even though it cannot
forge individual tuples. As an attack illustration,
suppose the adversary wants to learn how many
words are unique to an input file Fi. To do this, the
adversary can simply drop the output of the ith map
unit. If the number of tuples in the final output re-
duces by k, the tuples eliminated correspond to k
unique words in Fi.
• Misrouting Tuples. The adversary can reorder in-

termediate tuples or route data blocks intended for
one reduce unit to another. These attacks subvert
our confidentiality goals. For instance, the adver-
sary can bypass the shuffler altogether and route the
output of ith map unit to a reduce unit. The output of
this reduce unit leaks the number of unique words
in Fi. Similar inference attacks can be achieved by
duplicating outputs of tuples in the reduce unit and
observing the result.

4 Design

Our goal is to design a MapReduce provisioning proto-
col which is private modulo-Ψ and adds a small amount

MapT

mapper

MapT

Reducer

grouping

x
1

x
2

x
3

x
...

x
n-1

x
n

MapT MapTMapT MapT

ReduceT

Secure Shuffler

o
1

o
2

o
3

o
...

o
n-1

o
n

I
n+1

I
n+2 I

n+...
I
n+m

O
n+1

O
n+2 O

n+...
O

n+m
JOB

I

MixT MixT MixT MixTMixT MixT

ReduceT ReduceT ReduceT ReduceT ReduceT

GroupT GroupT GroupT GroupT GroupT GroupT

Figure 2: The data flow in M2R. Filled components are trusted.
Input, intermediate and output tuples are encrypted. The orig-
inal map and reduce operations are replaced with mapT and
reduceT. New components are the mixer nodes which use
mixT, and another trusted component called groupT.

of the TCB to the existing MapReduce platform. We ex-
plain the design choices available and our observations
that lead to an efficient and clean security design.

4.1 Architecture Overview

The computation proceeds in phases, each consisting of
a map step, a shuffle step, and a reduce step. Figure 2
depicts the 4 new trusted components our design intro-
duces into the dataflow pipeline of MapReduce. These
four new TCB components are mapT, reduceT, mixT
and groupT. Two of these correspond to the execution
of map and reduce unit. They ensure that output tuples
from the map and reduce units are encrypted and each
tuple is of the same size. The other 2 components im-
plement the critical role of secure shuffling. We explain
our non-intrusive mechanism for secure shuffling in Sec-
tion 4.2. Further, all integrity checks to defeat active at-
tacks are designed to be distributed requiring minimal
global synchronization. The shuffler in the MapReduce
platform is responsible for grouping tuples, and invoking
reduce units on disjoint ranges of tuple-keys. On each
cluster node, the reducer checks the grouped order and
the expected range of tuples received using the trusted
groupT component. The outputs of the reduce units are
then fed back into the next round of map-reduce phase.

Minimizing TCB. In our design, a major part of the
MapReduce’s software stack deals with job scheduling
and I/O operations, hence it can be left outside of the
TCB. Our design makes no change to the grouping and
scheduling algorithms, and they are outside our TCB as

6

shown in the Figure 2. Therefore, the design is concep-
tually simple and requires no intrusive changes to be im-
plemented over existing MapReduce implementations.
Developers need to modify their original applications to
prepare them for execution in a hardware-protected pro-
cess in our baseline system, as proposed in previous sys-
tems [39, 40, 49]. Beyond this modification made by the
baseline system to the original MapReduce, M2R requires
a few additional lines of code to invoke the new privacy-
enhancing TCB components. That is, MapReduce appli-
cations need modifications only to invoke components in
our TCB. Next, we explain how our architecture achieves
privacy and integrity in a MapReduce execution, along
withe the design of these four TCB components.

4.2 Privacy-Preserving Execution
For any given execution, we wish to ensure that each
computation step in a phase is private modulo-Ψ. If the
map step, the shuffle step, and the reduce step are in-
dividually private modulo-Ψ, by the property of serial
composibility, the entire phase and a sequence of phases
can be shown to be private. We discuss the design of
these steps in this section, assuming a honest-but-curious
adversary limited to passive attacks. The case of mali-
cious adversaries is discussed in Section 4.3.

4.2.1 Secure Shuffling

As discussed in the previous section, the key challenge
is performing secure shuffling. Consider the naive ap-
proach in which we simply move the entire shuffler into
the platform TCB of each cluster node. To see why this is
insecure, consider the grouping step of the shuffler, often
implemented as a distributed sort or hash-based group-
ing algorithm. The grouping algorithm can only process
a limited number of tuples locally at each mapper, so ac-
cess to intermediate tuples must go to the network during
the grouping process. Here, network data access patterns
from the shuffler leak information. For example, if the
shuffler were implemented using a standard merge sort
implementation, the merge step leaks the relative posi-
tion of the pointers in sorted sub-arrays as it fetches parts
of each sub-array from network incrementally4.

One generic solution to hide data access patterns is to
employ an ORAM protocol when communicating with
the untrusted storage backend. The grouping step will
then access data obliviously, thereby hiding all corre-
lations between grouped tuples. This solution achieves
strong privacy, but with an overhead of O(logk N) for
each access when the total number of tuples is N [55].

4This can reveal, for instance, whether the first sub-array is strictly
lesser than the first element in the second sorted sub-array.

mapper mapper mapper

mixT mixT mixT mixT

mixT mixT mixT mixT

reducer reducer reducer

mixer mixer

mixer mixer

Figure 3: High level overview of the map-mix-reduce execution
using a 2-round mix network.

Using a sorting algorithm for grouping, the total over-
head becomes O(N logk+1 N), which translates to a fac-
tor of 30−100× slowdown when processing gigabytes of
shuffled data.

A more advanced solution is to perform oblivious sort-
ing using sorting networks, for example, odd-even or
bitonic sorting network [24]. Such an approach hides
data access patterns, but admits a O(log2 N) latency (ad-
ditive only). However, sorting networks are often de-
signed for a fixed number of small inputs and hard to
adapt to tens of gigabytes of distributed data.

We make a simple observation which yields a non-
intrusive solution. Our main observation is that in
MapReduce and other dataflow frameworks, the se-
quence of data access patterns is fixed: it consists of cy-
cles of tuple writes followed by reads. units start reading
and processing their inputs only after the map units have
finished. In our solution, we re-write intermediate en-
crypted tuples with re-randomized tuple keys such that
there is no linkability between the re-randomized tuples
and the original encrypted map output tuples. We ob-
serve that this step can be realized by secure mix net-
works [31]. The privacy of the computation reduces di-
rectly to the problem of secure mixing. The total latency
added by our solution is an additive term of O(logN) in
the worst case. Since MapReduce shuffle step is based on
sorting which already admits O(N logN) overhead, our
design retains the asymptotic runtime complexity of the
original framework.

Our design achieves privacy using a cascaded mix net-
work (or cascaded-mix) to securely shuffle tuples [31].
The procedure consists of a cascading of κ intermedi-
ate steps, as shown in Figure 3. It has κ identical steps
(called mixing steps) each employing a number of trusted
computation units called mixT units, the execution of

7

which can be distributed over multiple nodes called mix-
ers. Each mixT takes a fixed amount of T tuples that
it can process in memory, and passes exactly the same
number of encrypted tuples to all mixT units in the sub-
sequent step. Therefore, in each step of the cascade, the
mixer utilizes N/T mixT units for mixing N tuples. At
κ = log N

T , the network ensures the strongest possible un-
linkability, that is, the output distribution is statistically
indistinguishable from a random distribution [31].

Each mixT unit decrypts the tuples it receives from
the previous step, randomly permutes them using a
linear-time algorithm and re-encrypts the permuted tu-
ples with fresh randomly chosen symmetric key. These
keys are known only to mixT units, and can be derived
using a secure key-derivation function from a common
secret. The processing time of mixT are padded to a
constant. Note that the re-encryption time has low vari-
ance over different inputs, therefore such padding incurs
low overhead.

Let Ω represents the number of input and output tu-
ples of cascaded-mix with κ steps. Intuitively, when κ is
sufficiently large, an semi-honest adversary who has ob-
served the execution does not gain more knowledge than
Ω. The following lemma states that indeed this is the
case. We present the proof in Appendix A.

Lemma 1. Cascaded-mix is private module-Ω under
semi-honest adversary, given that the underlying encryp-
tion scheme is semantically secure.

4.2.2 Secure Grouping

After the mixing step, the shuffler can group the random-
ized tuple keys using its original (unmodified) grouping
algorithm, which is not in the TCB. The output of the
cascaded-mix is thus fed into the existing grouping al-
gorithm of MapReduce, which combines all tuples with
the same tuple-key and forward them to reducers. Read-
ers will notice that if the outputs of the last step of the
cascaded-mix are probabilistically encrypted, this group-
ing step would need to be done in a trusted component.
In our design, we add a last (κ +1)-th step in the cascade
to accommodate the requirement for subsequent group-
ing. The last step in the cascade uses a deterministic
symmetric encryption Fs, with a secret key s, to encrypt
the key-component of the final output tuples. Specifi-
cally, the 〈a,b〉 is encrypted to a ciphertext of the form
〈Fs(a),E(a,b)〉, where E(·) is a probabilistic encryption
scheme. This ensures that the two shuffled tuples with
the same tuple-keys have the same ciphertext for the key-
component of the tuple, and hence the subsequent group-
ing algorithm can group them without decrypting the tu-
ples. The secret key s is randomized in each invocation of
the cascaded-mix, thereby randomizing the ciphertexts
across two map-reduce phases or jobs.

What the adversary gains by observing the last step
of mixing is the tuples groups which are permuted using
Fs(·). Thus, if Fs(·) is a pseudorandom function family,
the adversary can only learn about the size of each group,
which is already implied by Ψ. Putting it all together
with the Lemma 1, we have:

Theorem 1. The protocol M2R is modulo-Ψ private (un-
der semi-honest adversary), assuming that the underly-
ing private-key encryption is semantically secure, and
Fs(·) is a pseudorandom function family.

4.3 Execution Integrity
So far, we have considered the privacy of the protocol
against honest-but-curious adversaries. However, a mali-
cious adversary can deviate arbitrarily from the protocol
by mounting active attacks using the 6 parameters un-
der its control. In this section, we explain the techniques
necessary to prevent active attacks.

The program execution in M2R can be viewed as a
directed acyclic graph (DAG), where vertices denote
trusted computation units and edges denote the flow of
encrypted data blocks. M2R has 4 kinds of trusted com-
putation units or vertices in the DAG: mapT, mixT,
groupT, and reduceT. At a high-level, our integrity-
checking mechanism works by ensuring that nodes at the
jth level (by topologically sorted order) check the con-
sistency of the execution at level j−1. If they detect that
the adversary deviates or tampers with the execution or
outputs from level j−1, then they abort the execution.

The MapReduce provisioning system is responsible
for invoking trusted computation units, and is free to de-
cide the total number of units spawned at each level j.
We do not restrict the MapReduce scheduling algorithm
to decide which tuples are processed by which reduce
unit, and their allocation to nodes in the cluster. How-
ever, we ensure that all tuples output at level i−1 are pro-
cessed at level i, and there is no duplicate. Note that this
requirement ensures that a computation in step i starts
only after outputs of previous step are passed to it, im-
plicitly synchronizes the start of the computation units at
step i. Under this constraint, it can be shown that chan-
nels C1-C2 (start-end time of each computation node)
can only allow the adversary to delay an entire step, or
distinguish the outputs of units within one step, which is
already implied by Ψ. We omit a detailed proof in this
paper. Using these facts, we can show that the malicious
adversary has no additional advantage compared to an
honest-but-curious adversary, stated formally below.

Theorem 2. The protocol M2R is private modulo-Ψ un-
der malicious adversary, assuming that the underlying
authenticated-encryption is semantically secure (confi-
dentiality) and secure under chosen message attack (in-
tegrity), and Fs(·) is a pseudorandom function family.

8

Proof Sketch: Given a malicious adversary A that ex-
ecutes the M2R protocol, we can construct an adversary
Ã that simulates A , but only has access to Ψ in the
following way. To simulate A , the adversary Ã needs
to fill in information not present in Ψ. For the output
of a trusted unit, the simulation simply fills in random
tuples, where the number of tuples is derived from
Ψ. The timing information can likewise be filled-in.
Whenever A deviates from the protocol and feeds a
different input to a trusted instance, the simulation
expects the instance will halt and fills in the information
accordingly. Note that the input to A and the input
constructed for the simulator Ã could have the same
DAG of program execution, although the encrypted
tuples are different. Suppose there is a distinguisher
that distinguishes A and Ã , let us consider the two
cases: either the two DAG’s are the same or different.
If there is a non-negligible probability that they are the
same, then we can construct a distinguisher to contradict
the security of the encryption, or Fs(·). If there is a
non-negligible probability that they are different, we can
forge a valid authentication tag. Hence, the outputs of
A and Ã are indistinguishable.

Integrity Checks. Nearly all our integrity checks can
be distributed across the cluster, with checking of invari-
ants done locally at each trusted computation. There-
fore, our integrity checking mechanism can largely bun-
dle the integrity metadata with the original data. No
global synchronization is necessary, except for the case
of the groupT units as they consume data output by an
untrusted grouping step. The groupT checks ensure
that the ordering of the grouped tuples received by the
designated reduceT is preserved. In addition, groupT
units synchronize to ensure that each reducer processes
a distinct range of tuple-keys, and that all the tuple-keys
are processed by at least one of the reduce units.

4.3.1 Mechanisms

In the DAG corresponding to a program execution, the
MapReduce provisioning system assigns unique instance
ids. Let the vertex i at the level j has the designated
id (i, j), and the total number of units at level j be |Vj|.
When a computation instance is spawned, its designed
instance id (i, j) and the total number of units |Vj| are
passed as auxiliary input parameters by the provision-
ing system. Each vertex with id (i, j) is an operation
of type mapT, groupT, mixT or reduceT, denoted
by the function OpType(i, j). The basic mechanism
for integrity-checking consists of each vertex emitting a
tagged-block as output which can be checked by trusted
components in the next stage. Specifically, the tagged
block is 6-tuple B = 〈O, LvlCnt, SrcID, DstID, DstLvl,

DstType 〉, where:
O is the encrypted output tuple-set,
LvlCnt is the number of units at source level,
SrcID is the instance id of the source vertex,
DstID is instance id of destination vertex or NULL
DstLvl is the level of the destination vertex,
DstType is the destination operation type.

In our design, each vertex with id (i, j) fetches the
tagged-blocks from all vertices at the previous level, de-
noted by the multiset B, and performs the following con-
sistency checks on B:

1. The LvlCnt for all b ∈B are the same (say `(B)).
2. The SrcID for all b ∈B are distinct.
3. For set S = {SrcID(b) |b ∈B}, |S| = `(B).
4. For all b ∈B, DstLvl(b) = j.
5. For all b ∈B, DstID(b) = (i, j) or NULL.
6. For all b ∈B, DstType(b) = OpType(i, j).

Conditions 1,2 and 3 ensure that tagged-blocks from
all units in the previous level are read and that they are
distinct. Thus, the adversary has not dropped or dupli-
cated any output tuple. Condition 4 ensures that the
computation nodes are ordered sequentially, that is, the
adversary cannot misroute data bypassing certain levels.
Condition 6 further checks that execution progresses in
the expected order — for instance, the map step is fol-
lowed by a mix, subsequently followed by a group step,
and so on. We explain how each vertex decides the
right or expected order independently later in this sec-
tion. Condition 5 states that if the source vertex wishes
to fix the recipient id of a tagged-block, it can verifiably
enforce it by setting it to non-NULL value.

Each tagged-block is encrypted with standard authen-
ticated encryption, protecting the integrity of all meta-
data in it. We explain next how each trusted computation
vertex encodes the tagged-block.
Map-to-Mix DataFlow. Each mixT reads the output
metadata of all mapT. Thus, each mixT knows the to-
tal number of tuples N generated in the entire map step,
by summing up the counts of encrypted tuples received.
From this, each mixT independently determines the to-
tal number of mixers in the system as N/T . Note that
T is the pre-configured number of tuples that each mixT
can process securely without invoking disk accesses, typ-
ically a 100M of tuples. Therefore, this step is com-
pletely decentralized and requires no co-ordination be-
tween mixT units. A mapT unit invoked with id (i, j)
simply emit tagged-blocks, with the following structure:
〈·, |Vj|,(i, j),NULL, j+1,mixT〉.
Mix-to-Mix DataFlow. Each mixT re-encrypts and per-
mutes a fixed number (T) of tuples. In a κ-step cascaded
mix network, at any step s (s < κ − 1) the mixT out-
puts T/m tuples to each one of the m mixT units in the

9

step s+ 1. To ensure this, each mixT adds metadata to
its tagged-block output so that it reaches only the speci-
fied mixT unit for the next stage. To do so, we use the
DstType field, which is set to type mixTs+1 by the mixer
at step s. Thus, each mixT node knows the total num-
ber of tuples being shuffled N (encoded in OpType), its
step number in the cascaded mix, and the public value T .
From this each mixT can determine the correct number
of cascade steps to perform, and can abort the execution
if the adversary tries to avoid any step of the mixing.
Mix-to-Group DataFlow. In our design, the last mix
step (i, j) writes the original tuple as 〈Fs(k),(k,v, tctr)〉,
where the second part of this tuple is protected with
authenticated-encryption. The value tctr is called a
tuple-counter, which makes each tuple globally distinct
in the job. Specifically, it encodes the value (i, j,ctr)
where ctr is a counter unique to the instance (i, j). The
assumption here is that all such output tuples will be
grouped by the first component, and each group will be
forwarded to reducers with no duplicates. To ensure that
the outputs received are correctly ordered and untam-
pered, the last mixT nodes send a special tagged-block
to groupT nodes. This tagged-block contains the count
of tuples corresponding to Fs(k) generated by mixT unit
with id (i, j). With this information each groupT node
can locally check that:

• For each received group corresponding to g=Fs(k),
the count of distinct tuples (k, ·, i, j,ctr) it receives
tallies with that specified in the tagged-block re-
ceived from mixT node (i, j), for all blocks in B.

Finally, groupT units need to synchronize to check if
there is any overlap between tuple-key ranges. This
requires an additional exchange of tokens between
groupT units containing the range of group keys and
tuple-counters that each unit processes.
Group-to-Reduce Dataflow. There is a one-to-one
mapping between groupT units and reduceT units,
where the former checks the correctness of the tuple
group before forwarding to the designated reduceT.
This communication is analogous to that between mixT
units, so we omit a detailed description for brevity.

5 Implementation

Baseline Setup. The design of M2R can be imple-
mented differently depending on the underlying archi-
tectural primitives available. For instance, we could im-
plement our solution using Intel SGX, using the mech-
anisms of VC3 to achieve our baseline. However, In-
tel SGX is not yet available in shipping CPUs, there-
fore we use a trusted-hypervisor approach to implement
the baseline system, which minimizes the performance

overheads from the baseline system. We use Intel TXT
to securely boot a trusted Xen-4.4.3 hypervisor kernel,
ensuring its static boot integrity 5. We give details of
our implementation in Xen in the extended version of
the paper [20]. The inputs ands output of map and re-
duce units are encrypted with AES-GCM using 256-bit
keys. The original Hadoop jobs are executed as user-
level processes in ring-3, attested at launch by the hy-
pervisor, making an assumption that they are protected
during subsequent execution. The MapReduce jobs are
modified to call into our TCB components implemented
as x86 code, which can be compiled with SFI constraints
for additional safety. The hypervisor loads, verifies and
executes the TCB components within its address space
in ring-0. The rest of Hadoop stack runs in ring 3 and
invokes the units by making hypercalls. Note that the
TCB components can be isolated as user-level processes
in the future, but this is only meaningful if the processes
are protected by stronger solutions such as Intel SGX or
other systems [12, 14, 52].
M2R TCB. Our main contributions are beyond the base-
line system. We add four new components to the TCB
of the baseline system. We have modified a stan-
dard Hadoop implementation to invoke the mixT and
groupT units before and after the grouping step. These
two components add a total 90 LoC to the platform TCB.
No changes are necessary to the original grouping algo-
rithm. Each mapT and reduceT implement the trusted
map and reduce operation — same as in the baseline sys-
tem. They are compiled together with a static utility code
which is responsible for (a) padding each tuple to a fixed
size, (b) encrypting tuples with authenticated encryption,
(c) adding and verifying the metadata for tagged-blocks,
and (d) recording the instance id for each unit. Most of
these changes are fairly straightforward to implement. To
execute an application, the client encrypts and uploads
all the data to M2R nodes. The user then submits M2R
applications and finally decrypts the results.

6 Evaluation

This section describes M2R performance in a small clus-
ter under real workloads. We ported 7 data intensive jobs
from the standard benchmark to M2R, making less than
25% changes in number of lines of code (LoC) to the
original Hadoop jobs. The applications add fewer than
500 LoC into the TCB, or less than 0.16% of the entire
Hadoop software stack. M2R adds 17− 130% overhead
in running time to the baseline system. We also compare
M2R with another system offering the same level of pri-
vacy, in which encrypted tuples are sent back to a trusted

5Other hypervisor solutions such as TrustVisor [40], Over-
shadow [14], Nova [56], SecVisor [50] could equivalently be used

10

Job LoC changed (vs.
Hadoop job)

TCB increase (vs. Hadoop
codebase) Input size (vs. plaintext size) Shuffled bytes # App hyper-

calls
Platform hy-
percall

Wordcount 10 (15%) 370 (0.14%) 2.1G (1.06×) 4.2G 3277173 35
Index 28 (24%) 370 (0.14%) 2.5G (1.15×) 8G 3277173 59
Grep 13 (13%) 355 (0.13%) 2.1G (1.06×) 75M 3277174 10
Aggregate 16 (18%) 395 (0.15%) 2G (1.19×) 289M 18121377 12
Join 30 (22%) 478 (0.16%) 2G (1.19×) 450M 11010647 14
Pagerank 42 (20%) 429 (0.15%) 2.5G (4×) 2.6G 1750000 21
KMeans 113 (7%) 400 (0.12%) 1G (1.09×) 11K 12000064 8

Table 1: Summary of the porting effort and TCB increase for various M2R applications, and the application runtime cost factors. Number of app
hypercalls consists of both mapT and reduceT invocations. Number of platform hypercalls include groupT and mixT invocations.

Job Baseline (vs. no en-
cryption)

M2R (% increase vs.
baseline)

Download-and-compute
(× M2R)

Wordcount 570 (221) 1156 (100%) 1859 (1.6×)
Index 666 (423) 1549 (130%) 2061 (1.3×)
Grep 70 (48) 106 (50%) 1686 (15.9×)
Aggregate 125 (80) 205 (64%) 9140 (44.6×)
Join 422 (211) 510 (20%) 5716 (11.2×)
Pagerank 521 (334) 755 (44%) 1209 (1.6×)
KMeans 123 (71) 145 (17%) 6071 (41.9×)

Table 2: Overall running time (s) of M2R applications in compari-
son with other systems: (1) the baseline system protecting computation
only in single nodes, (2) the download-and-compute system which does
not use trusted primitives but instead sends the encrypted tuples back to
trusted servers when homomorphic encrypted computation is not pos-
sible [59].

client. We show that M2R is up to 44.6× faster compared
to this solution.

6.1 Setup & Benchmarks

We select a standard benchmark for evaluating Hadoop
under large workloads called HiBench suite [26]. The
7 benchmark applications, listed in Table 1, cover a
wide range of data-intensive tasks: compute intensive
(KMeans, Grep, Pagerank), shuffle intensive (Word-
count, Index), database queries (Join, Aggregate), and
iterative (KMeans, Pagerank). The size of the encrypted
input data is between 1 GB and 2.5 GB in these case stud-
ies. Different applications have different amount of shuf-
fled data, ranging from small sizes (75MB in Grep, 11K
in KMeans) to large sizes (4.2GB in Wordcount, 8GB in
Index).

Our implementation uses the Xen-4.3.3 64-bit hyper-
visor compiled with trusted boot option. The rest of M2R
stack runs on Ubuntu 13.04 64-bit version. We con-
duct our experiments in a cluster of commodity servers
equipped with 1 quad-core Intel CPU 1.8GHz, 1TB hard
drive, 8GB RAM and 1GB Ethernet cards. We vary our
setup to have between 1 to 4 compute nodes (running
mappers and reducers) and between 1 to 4 mixer nodes
for implementing a 2-step cascaded mix network. The
results presented below are from running with 4 com-
pute nodes and 4 mixers each reserving a 100MB buffer
for mixing, averaged over 10 executions.

6.2 Results: Performance

Overheads & Cost Breakdown. We observe a linear
scaleup with the number of nodes in the cluster, confirm-
ing the scalability of M2R. In our benchmarks (Table 2),
we observe a total overhead of between 17%− 130%
over the baseline system that simply encrypts inputs and
outputs of map/reduce units, and utilizes none of our
privacy-enhancing techniques. It can also be seen that
in all applications except for Grep and KMeans, run-
ning time is proportional to the size of data transferred
during shuffling (shuffled bytes column in Table 1). To
understand the cost factors contributing to the overhead,
we measure the time taken by the secure shuffler, by
the mapT and reduceT units, and by the rest of the
Hadoop system which comprises the time spent on I/O,
scheduling and other book-keeping tasks. This relative
cost breakdown is detailed in Figure 4. From the re-
sult, we observe that the cost of the secure shuffler is
significant. Therefore, reducing the overheads of shuf-
fling, by avoiding the generic ORAM solution, is well-
incentivized and is critical to reducing the overall over-
heads. The two main benchmarks which have high over-
heads of over 100%, namely Wordcount and Index, incur
this cost primarily due to the cost of privacy-preserving
shuffling a large amount of data. In benchmarks where
the shuffled data is small (Grep, KMeans), the use of
mapT/reduceT adds relatively larger overheads than
that from the secure shuffler. The second observation is
that the total cost of the both shuffler and other trusted
components is comparable to that of Hadoop, which pro-
vides evidence that M2R preserves the asymptotic com-
plexity of Hadoop.

Comparison to Previous Solutions. Apart from the
baseline system, a second point of comparison are pre-
viously proposed systems that send encrypted tuples
to the user for private computation. Systems such as
Monomi [59] and AutoCrypt [58] employ homomorphic
encryption for computing on encrypted data on the single
servers. For operations that cannot be done on the server
using partially homomorphic encryption, such Monomi-
like systems forward the data to a trusted set of servers
(or to the client’s private cloud) for decryption. We re-
fer to this approach as download-and-compute approach.

11

Wordcount Index Grep Aggregate Join Pagerank KMeans0.0

0.2

0.4

0.6

0.8

1.0
no

rm
al

iz
ed

 ru
nn

in
g

tim
e

mapT + reduceT secure shuffler Hadoop

Figure 4: Normalized break-down time for M2R applications. The run-
ning time consists of the time taken by mapT and reduceT, plus the
time by the secure shuffler. The rest comes from the Hadoop runtime.

We estimate the performance of a Monomi-like system
extended to distributed computation tasks, for achieving
privacy equivalent to ours. To compare, we assume that
the system uses Paillier, ElGamal and randomized search
schemes for homomorphic computation, but not OPE or
deterministic schemes (since that leaks more than M2R
and our baseline system). We run operations that would
fall outside such the expressiveness of the allowed ho-
momorphic operations, including shuffling, as a separate
network request to the trusted client. We batch network
requests into one per MapReduce step. We assume that
the network round trip latency to the client is only 1ms —
an optimistic approximation since the average round trip
delay in the same data center is 10− 100ms [4, 61]. We
find that this download-and-compute approach is slower
compared to ours by a factor of 1.3× to 44.6× (Table 2),
with the median benchmark running slower by 11.2×.
The overheads are low for case-studies where most of
the computation can be handled by homomorphic oper-
ations, but most of the benchmarks require conversions
between homomorphic schemes (thereby requiring de-
cryption) [58, 59] or computation on plaintext values.

Platform-Specific Costs. Readers may wonder if the
evaluation results are significantly affected by the choice
of our implementation platform. We find that the dom-
inant costs we report here are largely complementary to
the costs incurred by the specifics of the underlying plat-
form. We conduct a micro-benchmark to evaluate the
cost of context-switches and the total time spent in the
trusted components to explain this aspect. In our plat-
form, the cost of each hypercall (switch to trusted logic)
is small (13µs), and the execution of each trusted com-
ponent is largely proportional to the size of its input data
as shown in Figure 5. The time taken by the trusted
computation grows near linearly with the input data-size,
showing that the constant overheads of context-switches
and other platform’s specifics do not contribute to the
reported results significantly. This implies that simple
optimizations such as batching multiple trusted code in-
vocations would not yield any significant improvements,
since the overheads are indeed proportional to the total
size of data and not the number of invocations. The total

number of invocations (via hypercalls) for app-specific
trusted logic (mapT, reduceT) is proportional to the to-
tal number input tuples, which amounts for less than half
a second overhead even for millions of input tuples. The
number of invocations to the other components (mixT
and groupT) is much smaller (8−59) and the each invo-
cation operates on large inputs of a few gigabytes; there-
fore the dominant cost is not that of context-switches, but
that of the cost of multi-step shuffling operation itself and
the I/O overheads.

6.3 Results: Security & Porting Effort

Porting effort. We find that the effort to adapt all bench-
marks to M2R is modest at best. For each benchmark, we
report the number of Java LoC we changed in order to
invoke the trusted components in M2R, measured using
the sloccount tool 6. Table 1 shows that all applica-
tions except for KMeans need to change fewer than 43
LoC. Most changes are from data marshaling before and
after invoking the mapT and reduceT units. KMeans
is more complex as it is a part of the Mahout distribution
and depends on many other utility classes. Despite this,
the change is only 113 LoC, or merely 7% of the original
KMeans implementation.
TCB increase. We define our TCB increase as the to-
tal size of the four trusted components. This represents
the additional code running on top of a base TCB, which
in our case is Xen. Note that our design can eliminate
the base TCB altogether in the future by using SGX en-
claves, and only retain the main trusted components we
propose in M2R. The TCB increase comprises the per-
application trusted code and platform trusted code. The
former consists of the code for loading and executing
mapT, reduceT units (213 LoC) as well as the code
for implementing their logic. Each map/reduce codebase
itself is small, fewer than 200 LoC, and runs as trusted
components in the baseline system itself. The platform
trusted code includes that of mixT and groupT, which
amounts to 90 LoC altogether. The entire Hadoop soft-
ware stack is over 190K LoC and M2R avoids moving all
of it into the TCB. Table 1 shows that all jobs have TCB
increases of fewer than 500 LoC, merely 0.16% of the
Hadoop codebase.
Security. M2R achieves stronger privacy than previous
platforms that propose to use encrypted computation for
big-data analysis. Our definition allows the adversary to
observe an admissible amount of information, captured
by Ψ, in the computation but hides everything else. It is
possible to quantitatively analyze the increased privacy
in information-theoretic terms, by assuming the proba-
bility distribution of input data [38, 53]. However, here

6http://www.dwheeler.com/sloccount

12

Wordcount Aggregate MixT10-5

10-4

10-3

10-2

10-1

100

101

tim
e

(s
)

2 102 106

Figure 5: Cost of executing mapT instance of the Wordcount and
Aggregate job, and the cost for executing mixT. Input sizes (number
of ciphertexts per input) varies from 2 to 106.

Job M2R Baseline (additional leakage)
Wordcount # unique words + count word-file relationship
Index # unique words + count word-file relationship
Grep nothing nothing
Aggregate # groups + group size record-group relationship
Join # groups + group size record-group relationship
Pagerank node in-degree whole input graph
KMeans nothing nothing

Table 3: Remaining leakage of M2R applications, compared with that
in the baseline system.

we present a qualitative description in Table 3 highlight-
ing how much privacy is gained by the techniques in-
troduced in M2R over the baseline system. For instance,
consider the two case studies that incur most perfor-
mance overhead (Wordcount, Index). In these examples,
merely encrypting the map/reduce tuples leaks informa-
tion about which file contains which words. This may
allow adversaries to learn the specific keywords in each
file in the dataset. In M2R, this leakage is reduced to
learning only the total number of unique words in the
complete database and the counts of each, hiding in-
formation about individual files. Similarly, M2R hides
which records are in which group for database opera-
tions (Aggregate and Join). For Pagerank, the baseline
system leaks the complete input graph edge structure,
giving away which pair of nodes has an edge, whereas
M2R reduces this leakage to only the in-degree of graph
vertices. In the two remaining case studies, M2R provides
no additional benefit over the baseline.

7 Related Work

Privacy-preserving data processing. One of M2R’s goal
is to offer large-scale data processing in a privacy pre-
serving manner on untrusted clouds. Most systems with
this capability are in the database domain, i.e. sup-
porting SQL queries processing. CryptDB [47] takes a
purely cryptographic approach, showing the practicality
of using partially homomorphic encryption schemes [3,
15, 45, 46, 54]. CryptDB can only work on a small set
of SQL queries and therefore is unable to support ar-
bitrary computation. Monomi [59] supports more com-
plex queries, by adopting the download-and-compute ap-
proach for complex queries. As shown in our evaluation,
such an approach incurs an order of magnitude larger

overheads.
There exist alternatives supporting outsourcing of

query processing to a third party via server-side trusted
hardware, e.g. IBM 4764/5 cryptographic co-processors.
TrustedDB [7] demonstrated that a secure outsourced
database solution can be built and run at a fraction of
the monetary cost of any cryptography-enabled private
data processing. However, the system requires expensive
hardware and a large TCB which includes the entire SQL
server stack. Cipherbase improves upon TrustedDB by
considering encrypting data with partially homomorphic
schemes, and by introducing a trusted entity for query
optimization [6]. M2R differs to these systems in two
fundamental aspects. First, it supports general compu-
tation on any type of data, as opposed to being restricted
to SQL and structured database semantics. Second, and
more importantly, M2R provides confidentiality in a dis-
tributed execution environment which introduces more
threats than in a single-machine environment.

VC3 is a recent system offering privacy-preserving
general-purposed data processing [49]. It considers
MapReduce and utilizes Intel SGX to maintain a small
TCB. This system is complementary to M2R, as it fo-
cuses on techniques for isolated computation, key man-
agement, etc. which we do not consider. The privacy
model in our system is stronger than that of VC3 which
does not consider traffic analysis attacks.

GraphSC offers a similar security guarantee to that
of M2R for specialized graph-processing tasks [43]. It
provides a graph-based programming model similar to
GraphLab’s [37], as opposed to the data-flow model ex-
posed by M2R. GraphSC does not employ trusted prim-
itives, but it assumes two non-colluding parties. There
are two main techniques for ensuring data-oblivious and
secure computation in GraphSC: sorting and garbled cir-
cuits. However, these techniques result in large perfor-
mance overheads: a small Pagerank job in GraphSC is
200,000×−500,000× slower than in GraphLab without
security. M2R achieves and overhead of 2×−5× increase
in running time because it leverages trusted primitives for
computation on encrypted data. A direct comparison of
oblivious sorting used therein instead of our secure shuf-
fler is a promising future work.

Techniques for isolated computation. The current im-
plementation of M2R uses a trusted hypervisor based on
Xen for isolated computation. Overshadow [14] and
CloudVisor [63] are techniques with large TCB, whereas
Flicker [39] and TrustVisor [40] reduce the TCB at the
cost of performance. Recently, Minibox [33] enhances a
TrustVisor-like hypervisor with two-way protection pro-
viding security for both the OS and the applications (or
PALs). Advanced hardware-based techniques include In-
tel SGX [41] and Bastion [12] provide a hardware pro-
tected secure mode in which applications can be exe-

13

cuted at hardware speed. All these techniques are com-
plementary to ours.

Mix networks. The concept of mix network is first de-
scribed in the design of untraceable electronic mail [13].
Since then, a body of research has concentrated on build-
ing, analyzing and attacking anonymous communication
systems [16, 19]. Canetti presents the first definition of
security that is preserved under composition [11], from
which others have shown that the mix network is secure
under Canetti’s framework [10, 60]. Security properties
of cascaded mix networks were studied in [31]. We use
these theoretical results in our design.

8 Conclusion & Future Work

In this paper, we defined a model of privacy-preserving
distributed execution of MapReduce jobs. We analyzed
various attacks channels that break data confidentiality
on a baseline system which employs both encryption
and trusted computing primitives. Our new design re-
alizes the defined level of security, with a significant step
towards lower performance overhead while requiring a
small TCB. Our experiments with M2R showed that the
system requires little effort to port legacy MapReduce
applications, and is scalable.

Systems such as M2R show evidence that specialized
designs to hide data access patterns are practical alterna-
tives to generic constructions such as ORAM. The ques-
tion of how much special-purpose constructions benefit
important practical systems compared to generic ones is
an area of future work. An somewhat more immediate
future work is to integrate our desing to other distributed
dataflow systems. Although having the similar structure
of computation, those systems are based on different sets
of computation primitives and different execution mod-
els, which presents both opportunities and challenges for
reducing the performance cost of our design. Another av-
enue for future work is to realize our model of privacy-
preserving distributed computation in the emerging in-
memory big-data platforms [64], where only very small
overheads from security mechanisms can be tolerated.

9 Acknowledgements

The first author was funded by the National Research
Foundation, Prime Minister’s Office, Singapore, under
its Competitive Research Programme (CRP Award No.
NRF-CRP8-2011-08). A special thanks to Shruti Tople
and Loi Luu for their help on their help in preparing the
manuscript. We thank the anonymous reviewers for their
insightful comments that helped us improve the discus-
sions in this work.

References

[1] Apache hadoop. http://hadoop.apache.org.

[2] Trusted computing group. www.
trustedcomputinggroup.org.

[3] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. Order pre-
serving encryption for numeric data. In SIGMOD, pages
563–574, 2004.

[4] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Pa-
tel, B. Prabhakar, S. Sengupta, and M. Sridharan. Data
center tcp (dctcp). In SIGCOMM, 2010.

[5] T. Alves and D. Felton. Trustzone: integrated hardware
and software security. AMD white paper, 2004.

[6] A. Arasu, S. Blanas, K. Eguro, M. Joglekar, R. Kaushik,
D. Kossmann, R. Ramamurthy, P. Upadhyaya, and
R. Venkatesan. Secure database-as-a-service with ci-
pherbase. In SIGMOD, pages 1033–1036, 2013.

[7] S. Bajaj and R. Sion. TrustedDB: a trusted hardware
based database with privacy and data confidentiality. In
SIGMOD, pages 205–216, 2011.

[8] A. Baumann, M. Peinado, and G. Hunt. Shielding ap-
plications from an untrusted cloud with haven. In OSDI,
2014.

[9] M. Blanton, A. Steele, and M. Alisagari. Data-oblivious
graph algorithms for secure computation and outsourcing.
In ASIACCS, pages 207–218. ACM, 2013.

[10] J. Camenisch and A. Mityagin. Mix-network with
stronger security. In Privacy Enhancing Technologies,
2006.

[11] R. Canetti. Universally composable security: A new
paradigm for cryptographic protocols. In IEEE Sympo-
sium on Foundations of Computer Science, 2001.

[12] D. Champagne and R. B. Lee. Scalable architectural sup-
port for trusted software. In HPCA, 2010.

[13] D. L. Chaum. Untraceable electronic mail, return ad-
dresses, and digital pseudonyms. Communications of the
ACM, 1981.

[14] X. Chen, T. Garfinkel, E. Lewis, P. Subrahmanyam,
C. Waldspurger, D. Boneh, J. Dwoskin, and D. Ports.
Overshadow: a virtualization-based approach to
retrofitting protection in commodity operating systems.
In ASPLOS, pages 2–13, 2008.

[15] R. Curtmola, J. A. Garay, S. Kamara, and R. Ostrovsky.
Searchable symmetric encryption: improved definitions
and efficient constructions. In ACM CCS′06, 2006.

[16] G. Danezis and C. Diaz. A survey of anonymous com-
munication channels. Technical report, Technical Report
MSR-TR-2008-35, Microsoft Research, 2008.

[17] J. Dean and S. Ghemawat. Mapreduce: simplified data
processing on large clusters. In OSDI, 2014.

[18] J. Demme, R. Martin, A. Waksman, and S. Sethumadha-
van. Side-channel vulnerability factor: a metric for mea-
suring information leakage. In ISCA, 2012.

14

[19] R. Dingledine. Anonymity bibliography.
http://freehaven.net/anonbib/.

[20] T. T. A. Dinh, P. Saxena, E.-C. Chang, B. C. Ooi, and
C. Zhang. M2R: enabling stronger privacy in mapreduce
computation. Technical report, National University of
Singapore, 2015.

[21] C. Gentry. Fully homomorphic encryption using ideal lat-
tices. In ACM Symposium on Theory of Computing, May-
June 2009.

[22] C. Gentry and S. Halevi. A working implementation of
fully homomorphic encryption. In EUROCRYPT, 2010.

[23] O. Goldreich and R. Ostrovsky. Software protection and
simulation on oblivious rams. Journal of the ACM, 1996.

[24] M. T. Goodrich and M. Mitzenmacher. Privacy-
preserving access of outsourced data via oblivious ram
simulation. In ICALP, 2011.

[25] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clark-
son, W. Paul, J. A. Calandrino, A. J. Feldman, J. Appel-
baum, and E. W. Felten. Lest we remember: cold-boot
attacks on encryption keys. Communications of the ACM,
52(5):91–98, 2009.

[26] S. Huang, J. Huang, Y. Liu, L. Yi, and J. Dai. Hibench:
a representative and comprehensive hadoop benchmark
suite. In ICDE workshops, 2010.

[27] M. Isard, M. Budiu, Y. Y. andAndrew Birrell, and D. Fet-
terly. Dryad: Distributed data-parallel programs from se-
quential building blocks. In Eurosys, 2007.

[28] D. Jiang, G. Chen, B. C. Ooi, K.-L. Tan, and S. Wu. epic:
an extensible and scalable system for processing big data.
In VLDB, 2014.

[29] J. Katz and Y. Lindell. Introduction to modern cryptogra-
phy. CRC Press, 2014.

[30] T. Kim, M. Peinado, and G. Mainar-Ruiz. Stealthmem:
system-level protection against cache-based side channel
attacks in the cloud. In USENIX Security, 2012.

[31] M. Klonowski and M. Kutyłowski. Provable anonymity
for networks of mixes. In Information Hiding, pages 26–
38. Springer, 2005.

[32] F. Li, B. C. Ooi, M. T. Ozsu, and S. Wu. Distributed data
management using mapreduce. ACM Computing Survey,
46(6), 2014.

[33] Y. Li, J. McCune, J. Newsome, A. Perrig, B. Baker, and
W. Drewry. Minbox: a two-way sandbox for x86 native
code. In USENIX ATC, 2014.

[34] C. Liu, M. Hicks, A. Harris, M. Tiwari, M. Maas, and
E. Shi. Ghostrider: A hardware-software system for
memory trace oblivious computation, 2015.

[35] C. Liu, M. Hicks, and E. Shi. Memory trace oblivious
program execution. In IEEE CSF, pages 51–65. IEEE,
2013.

[36] C. Liu, Y. Huang, E. Shi, J. Katz, and M. Hicks. Automat-
ing efficient ram-model secure computation. In Security
and Privacy (SP), 2014 IEEE Symposium on, pages 623–
638. IEEE, 2014.

[37] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin,
and J. M. Hellerstein. Distributed graphlab: A framework
for machine learning and data mining in the cloud. In
VLDB, 2012.

[38] L. Luu, S. Shinde, P. Saxena, and B. Demsky. A model
counter for constraints over unbounded strings. In PLDI,
page 57, 2014.

[39] J. M. McCun, B. Parno, A. Perrig, M. K. Reiter, and
H. Isozaki. Flicker: An execution infrastructure for tcb
minimization. In EuroSys, 2008.

[40] J. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. Gligor,
and A. Perrig. Trustvisor: Efficient tcb reduction and at-
testation. In IEEE Symposium on Security and Privacy,
pages 143–158, 2010.

[41] F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas,
H. Shafi, V. Shanbhogue, and U. R. Savagaonkar. Inno-
vative instructions and software model for isolated execu-
tion. In HASP, 2013.

[42] D. Molnar, M. Piotrowski, D. Schultz, and D. Wagner.
The program counter security model: Automatic detec-
tion and removal of control-flow side channel attacks. In
Information Security and Cryptology-ICISC 2005, pages
156–168. Springer, 2006.

[43] K. Nayak, X. S. Wang, S. Ioannidis, U. Weinsberg,
N. Taft, and E. Shi. GraphSC: parallel secure compu-
tation made easy. In IEEE Symposium on Security and
Privacy, 2015.

[44] L. Page, S. Brin, R. Motwani, and T. Winograd. The
pagerank citation ranking: bringing order to the web.
Technical report, Stanford InfoLab, 1999.

[45] P. Paillier. Public-key cryptosystems based on composite
degree residuosity classes. In EUROCRYPT, May 1999.

[46] R. A. Popa, F. H. Li, and N. Zeldovich. An ideal-security
protocol for order-preserving encoding. In IEEE Sympo-
sium on Security and Privacy, pages 463–477, 2013.

[47] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and H. Bal-
akrishnan. Cryptdb: Protecting confidentiality with en-
crypted query processing. In SOSP, 2011.

[48] I. Roy, S. T. V. Setty, A. Kilzer, V. Shmatikov, and
E. Witchel. Airavat: Security and privacy for mapreduce.
In NSDI, 2010.

[49] F. Schuster, M. Costa, C. Fournet, C. Gkantsidis,
M. Peinado, G. Mainar-Ruiz, and M. Russinovich. Vc3:
Trustworthy data analytics in the cloud. Technical report,
Microsoft Research, 2014.

[50] A. Seshadri, M. Luk, N. Qu, and A. Perrig. Secvisor: a
tiny hypervisor to provide lifetime kernel code integrity
for commodity oses. In SOSP, pages 335–50, 2007.

[51] S. Shinde, Z. L. Chua, V. Narayanan, and P. Saxena. Pre-
venting your faults from telling your secrets: Defenses
against pigeonhole attacks. CoRR, abs/1506.04832, 2015.

[52] S. Shinde, S. Tople, D. Kathayat, and P. Saxena. Podarch:
Protecting legacy applications with a purely hardware tcb.
Technical report, National University of Singapore, 2015.

15

[53] V. Shmatikov and M.-H. Wang. Measuring relationship
anonymity in mix networks. In ACM workshop on Pri-
vacy in electronic society, pages 59–62. ACM, 2006.

[54] D. X. Song, D. Wagner, and A. Perrig. Practical tech-
niques for searches on encrypted data. In IEEE Sympo-
sium on Security and Privacy, May 2000.

[55] E. Stefanov, M. van Dijk, E. Shi, C. Fletcher, L. Ren,
X. Yu, and S. Devadas. Path oram: an extremely simple
oblivious ram protocol. In CCS, 2013.

[56] U. Steinberg and B. Kauer. Nova: a microhypervisor-
based secure virtualization architecture. In Eurosys, 2010.

[57] J. Szefer and R. B. Lee. Architectural support for
hypervisor-secure virtualization. In ASPLOS, 2012.

[58] S. Tople, S. Shinde, Z. Chen, and P. Saxena. AU-
TOCRYPT: enabling homomorphic computation on
servers to protect sensitive web content. In ACM CCS,
pages 1297–1310, 2013.

[59] S. Tu, M. F. Kaashoek, S. Madden, and N. Zeldovich.
Processing analytical queries over encrypted data. In
VLDB, 2013.

[60] D. Wikström. A universally composable mix-net. In The-
ory of Cryptography. 2004.

[61] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowtron.
Better never than late: meeting deadlines in datacenter
networks. In SIGCOMM, 2011.

[62] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,
M. McCauley, M. J. Franklin, S. Shenker, and I. Stoica.
Resilient distributed dataset: A fault-tolerant abstraction
for in-memory cluster computing. In NSDI, 2012.

[63] F. Zhang, J. Chen, H. Chen, and B. Zang. Cloudvisor:
retrofitting protection of virtual machines in multi-tenant
cloud with nested virtualization. In SOSP, pages 203–
216, 2011.

[64] H. Zhang, G. Chen, B. C. Ooi, K.-L. Tan, and M. Zhang.
In-memory big data management and processing: a sur-
vey. TKDE, 27(7):1920–1948, 2015.

[65] Z. Zhou, J. Han, Y.-H. Lin, A. Perrig, and V. Gligor. Kiss:
”key it simple and secure” corporate key management. In
TRUST, 2013.

Appendix A Security Analysis

Proof (Lemma 1):
Consider the “ideal mixer” that takes as input a se-

quence 〈x1, . . . ,xN〉 where each xi ∈ [1,N], picks a per-
mutation p : [1,N]→ [1,N] randomly and then output the
sequence 〈xp(1),xp(2), . . . ,xp(N)〉. Klonowski et al. [31]
investigated the effectiveness of the cascaded network of
mixing, and showed that O(log N

T) steps are suffice to

bring the distribution of the mixed sequence statistically
close to the output of the ideal mixer, where T is the
number of items an instance can process in memory. Our
proof relies on the above-mentioned result.

Let us assume that κ , the number of steps carried out
by cascaded-mix, is sufficiently large such that the distri-
bution of the mixed sequence is statistically close to the
ideal mixer.

Consider an adversary S that executes the cascaded-
mix. Let us construct an adversary A who simulates S
but only has access to Ω. To fill in the tuple values not
present in Ω, the simulation simply fills in random tuples.
Note that the number of tuples can be derived from Ω.

Now, suppose that on input x1, . . . ,xN , the output of
A and S can be distinguished by D . We want to
show that this contradicts the semantic security of the
underlying encryption scheme, by constructing a distin-
guisher D̃ who can distinguish multiple ciphertexts from
random with polynomial-time sampling (i.e. the distin-
guisher sends the challenger multiple messages, and re-
ceive more than one sample).

Let z = 〈z1,z2, . . . ,zN〉 be the output of the mixer on
input x1, . . . ,xN . The distinguisher D̃ asks the challenger
for a sequence of ciphertexts of z. Let ci, j’s be the ci-
phertexts returned by the challenger, where ci, j is the i-th
ciphertexts of z j. To emulate S , likewise, D̃ needs to
feed the simulation with the intermediate data generated
by mixT. Let yi, j be the i-th intermediate ciphertext in
round j the distinguisher D̃ generated for the emulation.
The yi, j’s are generated as follow:

1. D̃ simulates the cascaded-mix by randomly pick-
ing a permutation for every mixT. Let p j : [1,N]→
[1,N] be the overall permutation for round j. Let
p̂ j be the permutation that moves the i-th ciphertext
in the input, to its location after j rounds. That is,
p̂ j(i) = p j(p̂ j−1(i)), and p̂0(i) = i.

2. Set yi, j = cp̂ j(i), j for each i, j.

Let v be the output of D’s simulation. Note that if
xi, j’s are random ciphertexts, then the distribution of v is
the same as the output distribution of A . On the other
hand, if xi, j’s are ciphertexts of z, then the input to the
emulation is statistically close to the input of S , and
thus distribution of v is statistically close to the output
distribution of S.

Since D can distinguish output of S from A ’s, D̃
can distinguish the ciphertexts of z from random. �

16

