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ABSTRACT ity vs activity under denial of service attack, etc. For example, a

Monitoring aggregates on IP traffic data streams is a compelling c°mmon IP_network analysis query is “for every source IP and S
minute interval, report the total number of packets, provided this

application for data stream management systems. The need for ex- X Y o
ploratory IP traffic data analysis naturally leads to posing related number Of_ packets is more than 100.' Thmnmto_rlng aggregates
aggregation queries on data streams, that differ only in the choice on IP traffic data streamis a Compe”'”g application. .

of grouping attributes. In this paper, we address this problem of There has been a concerted effort in re_cent years to build data
efficiently computing multiple aggregations over high speed data Si'é@m management systems (DSMSs), either for general purpose

streams, based on a two-level LFTA/HFTA DSMS architecture, in- ©" fOr @ specific streaming application. Many of the DSMSs are
spired by Gigascope. motivated by monitoring applications. Example DSMSs are in [1,

Our first contribution is the insight that in such a scenario, ad- 4,5, 8, 19]. Of these DSMSs, Gigascope [8] appears to have been

ditionally computing and maintaining fine-granularity aggregation tailored for processing high §peed|IP traﬁicthata. Thfis is, in large
gueries (phantoms) at the LFTA has the benefit of supporting sharedMeasure, d#e lto Gllgasicope S twc:j ayer arc _ikltectufre or que:y pro-
computation. Our second contribution is an investigation into the €SSing- The low level query nodes (or LFTAgerform simple

problem of identifying beneficial LFTA configurations of phantoms operations such as selectior_n projection and aggregation ona high
and user-queries. We formulate this problem as a cost optimization SPe€d stream, greatly reducing the volume of the data that is fed to

problem, which consists of two sub-optimization problems: how to the high level query nodes (_or HFTAs). The HFTAs can then per-
choose phantoms and how to allocate space for them in the LFTA. form more complex processing on the reduced volume (and speed)

We formally show the hardness of determining the optimal config- °f data obtained from the LFTA. .

uration, and propose cost greedy heuristics for these independent The_need for exploratory_ P trafﬂ(_: data analysis naturally Iea_ds
sub-problems based on detailed analyses. Our final contribution is'® POSINg related aggregation queries on data streams, that differ
a thorough experimental study, based on real IP traffic data, as well MY in the choice of grouping attributes. For example, “for every

as synthetic data, to demonstrate the effectiveness of our techniqueg(‘"snnat'on IP, destlrJatlon Port and 5 minute |nterva_l, report the av-
for identifying beneficial configurations. erage packet length”, and “for every source IP, destination IP and 5

minute interval, report the average packet length”. An extreme case
is that of the data cube, i.e., computing aggregates for every sub-
1. INTRODUCTION set of a given set of grouping attributes; more realistic is the case
The phenomenon of data streams is real. In data stream appli-where specified subsets of the grouping attributes (such as “source
cations, data arrives very fast and the rate is so high that one may!P, source port”, “destination IP, destination port” and “source IP,
not wish to (or be able to) store all the data; yet, the need exists to destination IP”) are of interest. In this paper, we address this prob-
query and analyze this data. lem of efficiently computingnultiple aggregations over high speed
The quintessential application seems to be the processing of IPdata streamshased on the LFTA/HFTA architecture of Gigascope,
traffic data in the network (see, e.g., [3, 15]). Routers forward |P and make the following contributions:
packets at great speed, spending typically a few hundred nanosec- ] o o )
onds per packet. Processing the IP packet data for a variety of mon-  ® Ouir first contribution is the insight that when computing mul-

itoring tasks, e.qg., keeping track of statistics, and detecting network tiple aggregation queries that differ only in their grouping
attacks, at the speed at which packets are forwarded is an illustra- attributes, it is often beneficial to additionally compute and
tive example of data stream processing. One can see the need for maintainphantomsat the LFTA.

aggregation queries in this scenario: to provide simple statistical These are fine-granularity aggregation queries that, while not
summaries of the traffic carried by a link, to identify normal activ- of interest to the user, allow for shared computation between

multiple aggregation queries over a high speed data stream.

e Our second contribution is an investigation into the prob-
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in the LFTA amongst a set of phantoms and user queries.
We formally show the hardness of determining the optimal
configuration, and propose cost greedy heuristics for both the

sub-optimization problems based on detailed analyses. ﬁ C2

HFTAs

e Our final contribution is a thorough experimental study, based 2,
on real IP traffic data, as well as synthetic data, to understand 24
the effectiveness of our techniques for identifying beneficial M
configurations.

C1

PN P ®w

We demonstrate that the heuristics result in near optimal con-
figurations (within 15-20% most of the time) for process-
ing multiple aggregations over high speed streams. Further,
choosing a configuration is extremely fast, taking only a few Figure 1: Single aggregation in Gigascope
milliseconds; this permits adaptive modification of the con-

figuration to changes in the data stream distributions.

LFTAs

When a new record hashes to entryk, Gigascope checks if

The rest of the paper is organized as follows. We first motivate belongs to the same group as the existing groujginlf yes, the
the problem and our solution techniques in Section 2. We then give countis incremented by 1. Otherwise callision is said to occur.
a formal definition of the problem, formulate the cost model for it, I this case, first the current entry b is evicted toMy. Then, a
and present algorithms for choosing phantoms in Section 3. Sec-New group corresponding tois created irbk in M, and thecount
tion 4 presents our collision rate model at the LFTA, which is akey Of the group corresponding tois set to 1.
component of the cost model. Section 5 analyzes space allocation Query QO is processed by Gigascope in an epoch by epoch fash-
schemes. Section 6 presents our experimental study. Related workon, for an epoch of length 1 minute (i.e., time/60). This means that

is summarized in Section 7. We finally conclude in Section 8. at the end of every minute, all the entrieslify, would be evicted to
My to compute the aggregation results for this epoch at the HFTA.
At the HFTA, multiple tuples for the same group in the same epoch

2. MOTIVATION pe grovip P

may be seen because of evictions, and these are combined to com-
In this section, we describe the problem of efficiently processing pute the desired query answer.
multiple aggregations over high speed data streams, based on the Consider an example stream with the following prefix: 2, 24,
architecture of Gigascope, and motivate our solution techniques, in2, 2. 3, 17, 3, 4. At the LFTA, suppose we use a simple hash
an example driven fashion. function which is the remainder modulo 10. The first item in the
. , . stream, 2, hashes to a certain entry. We check the entry in the
2.1 GlgaSCOpe s Two Level Architecture hash table, which is empty in the beginning, and so we add the
Gigascope splits a (potentially complex) query over high speed entry (2,1) to the hash table. Then we see 24, which hashes to
tuple data streams into two parts, (i) simple low-level queries (at a different entry of the hash table. Similarly an enfdg, 1) is
the LFTA) over high speed data streams, which serve to reduce added. The third item is 2. We check the hash table and find that
data volumes, and (i) (potentially complex) high-level queries (at the existing entry where 2 hashes to contains the same group 2, so
the HFTA) over the low speed data streams seen at the HFTA. LF- we just increment the count of the entry by 1, resultingn2).
TAs can be processed on a Network Interface Card (NIC), which The rest of the items are similarly processed one by one. After we
has both processing capability and limited memory (a few MBs). processed the'? item, which is 3, the status of the hash table is
HFTAs are typically processed in a host machine’s main memory shown in Figure 1. The next item 4 hashes to the same entry as

(which can be hundreds of MB to several GB). 24. When we check the existing entry in the hash table, we find the
. . . new group is different from the existing one. In this case, we evict
2.2 Processing a Single Aggregation the existing entry24, 1) to My and set the entry tot, 1).

Let us first see how a single aggregation query is processed in  Gigascope is especially designed for processing network level
Gigascope. Consider a data stream relation R (Hgpacket packet data. Usually this data exhibits a lot of clusteredness, that
headers ), with four attributes A, B, C, D (e.gsource IP is, all packets in a flow have the same source/destination IP/port.
source port ,destination IP , destination port ),in Therefore, the likelihood of a collision is very low until many pack-
addition to a time attribute. Suppose the user defines the following ets have been observed. In this fashion, the data volume fitto
aggregation query: is greatly reduced.

QO: select A, th, count(*) as cnt 2.3 Cost of Processing a Single Aggregation
from R _ SinceMy has much more space and a much reduced volume of
group by A, time/60 as tb data to process, processingld; does not dominate the total cost.

. . . The overall bottlenecks are:
Figure 1 is an abstracted model of Gigascopg, corresponds

to the LFTA, andM g corresponds to the HFTA. QO is processed e The cost of looking up the hash table M;,, and possible

in Gigascope as follows. When a data stream record in R arrives, update in case of a collision. This whole operation, called a
it is observed aiV/;. M maintains a hash table consisting of a probg has a nearly constant cast

specified number of entries, and each entry{igmup, count pair. . .
groupidentifies the most recently observed group that hashes tothis @ The cost of transferring an entry frofd;, to My;. This op-
entry andcountkeep track of the number of times thgbup has eration, called aeviction has a nearly constant cast

been recently observed without observing other groups that hash to Usually, c2 is much higher than; because the transfer from
the same entry. M, to Mg is more expensive than a probeii., .
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Figure 3: Choices of phantoms

Figure 2: Multiple aggregations using phantoms

) Figure 4: Feeding graph for the relations
The total cost of query processing thus depends on the number of

collisions incurred, which is determined by the number of groups
of the data and collision rate of the hash table. The number of interest to the user, its maintenance could help reduce the overall
groups depends on the nature of the data. The collision rate de-cost. We call such a relation asphantom While for A, B and
pends on the hash function, size of the hash table, and the dataC, whose aggregate information is of user interest, we call each of
distribution. Therefore, generally, what we can do is to devise a them as ajuery. Both queriesandphantomsare calledelations
good hash function and allocate more space (within space and peak Now we examine Figure 2 to illustrate how the instantiation of a
load constraints, as we will discuss more later) to the hash table in phantom can benefit the total evaluation cost. To be fair, the total
order to minimize the total cost. space used for the hash tables should be the same with or without
. . . . the phantoms. So when we add the phantom ABC, the size of the
2.4 Processing Multiple Aggregations Naively  ash tables for A, B and C need to be reduced. Suppose the total
Given the method to process single aggregation queries, and itsspace allocated for the three queriesiis While we have many
cost model, based on the Gigascope architecture, we now examinechoices of space allocation between the hash table instantiations,
the problem of evaluating multiple aggregation queries. Suppose let us allocate equal space to each instantiation, for simplicity of
the user is interested in the following three aggregation queries:  exposition. Without phantoms, we allocdt€/3 to each hash table.
With the phantom ABC, we allocat®//4 to each hash table. Also
assume that A, B and C have the same collision rate. Without the
phantom, their collision rate is denoted; with the phantom, their
collision rate is denoted’ . Since the hash table size of A, Band C
is smaller in the presence of the phantarh should be larger than
x1. Let the collision rate of phantom ABC he.
Consider the cost for processimgrecords. Without the phan-
tom, we need to probe 3 hash tables for each incoming record, and
there arer,n evictions from each table. Therefore the total cost is:

Q1: select A, count(*)
from R
group by A

Q2: select B, count(*)
from R
group by B

Q3: select C, count(*)
From R Eq = 3nc1 + 3zincs (2)

group by C With the phantom, we probe only ABC for each incoming record
A straightforward method is to process each query separately and there would be,n evictions. For each of these evictions, we
using the above single aggregation query processing algorithm, soprobe A, B and C, and hence there aferon evictions from each
we maintain, inMy,, three hash tables for A, B, and C separately. of them. The total cost is:
For each incoming record, we need to probe each hash table, and if ’
. L ' ; ’ FEs = 3 3 2
there is a collision, some entry gets evicted\o; . 2 = N1 STane + ST Tancy 2)

. . . . Comparing Equations 1 and 2, we can get the differendé,aind
2.5 Processing Multiple Aggregations Using g, aspfo”fwsq g

Phantoms

Since we are processing multiple aggregation queries, we may
be able to share the computation that is common to each one andf z- is small enough so that botf2 — 3z2) and (z1 — xjx2)
thereby reduce the overall processing cost. For example, we canare larger than 0, theR> will be smaller thanF,, and therefore
additionally maintain a hash table for the relation ABCAify, as instantiation of the phantom benefits the total cost.zdfis not
shown in Figure 2. If we have the counts of each group in ABC, small enough so that one (2 — 3z2) and (z1 — zz2) is larger
we can derive the counts of each group of A, B and C from it. than O but the other is less than 0, then — F> depends on the
The intuition is that, when a new record arrives, instead of probing relationship ofc; andes. If z2 is so large that botf2 — 3z2) and
three hash tables A, B and C, we only probe the hash table ABC. (z1 — x1x2) are less than 0, then the instantiation of the phantom
We would delay the probes on A, B and C (we omit “hash tables” increases the cost and therefore we should not instantiate it.
when the context is clear) until the point when an entry is evicted .
from ABC. ) P Y 2.6 Choice of Phantoms

Since the aggregation queries of A, B and C are derived from In the above example, we have only considered one phantom. In
ABC, we say that ABGeedsA, B and C. Although ABC is not of fact, we can have many phantoms and multiple levels of phantoms.

E1 — E2 = [(2 — 3I2)C1 + 3(I1 — I&IQ)CQ}’IL (3)



Again, consider stream relation R with four attributes A, B, C, D. We next develop our cost model, which determines the total cost
Suppose the queries are AB, BC, BD and CD. We could instantiate incurred during data stream processing of a configuration. We then
phantom ABC, which feeds AB and BC as shown in Figure 3(a) formalize the optimization problem studied in this paper.
(a shaded box is a phantom and a non-shaded box is a query); or,
we could instantiate phantom BCD, which feeds BC, BD and CD 3.2 Cost Model
as shown in Figure 3(b); or we could instantiate BCD and ABCD,  Recall that aggregation queries usually include a specification of
where ABCD feeds AB and BCD as shown in Figure 3(c). We only temporal epochs of interest. For example, in the query “for ev-
list three choices here, although there are many other possibilities. ery destination IP, destination port and 5 minute interval, report the

It is easy to prove that a phantom that feeds less than two rela- average packet length”, the “5 minute interval” is the epoch of in-
tions is never beneficial. So by combining two or more queries, we terest. During stream processing within an epoch (e.g., a specific
can obtain all possible phantoms and plot themirielation feeding 5 minute interval), the aggregation query hash tables need to be
graphas in Figure 4. Each node in the graph is a relation and each maintained, for each record in the stream. At the end of an epoch,
directed edge showsfaedrelationship between two nodes, thatis, all the hash tables of the user queries at the LFTA need to be evicted
the parent feeds the child. Note that this feed relationship can beto the HFTA to complete the user query computations. Thus, there
“short circuited”, that is, a node can be directly fed by any of its are two components to the cost: intra-epoch cost, and end-of-epoch
ancestors in the graph. For example, AB could be fed directly by cost. We discuss each of these next.
ABCD without having ABC or ABD instantiated.

Given the relation feeding graph, and a set of user queries that 3-2.1  Intra-Epoch Cost
are instantiated in the LFTA, one optimization problem is to iden-  Let E,, be the maintenance cost of all the hash tables during an
tify the phantoms that we should instantiate to minimize the cost. epochT (the maintenance codor short). It includes updating all
The exhaustive method is obvious, that is, we try all possible com- hash tables for the raw relations when a new record in the stream
binations of the phantoms and calculate the cost of each combina-is processed. If (and only if) there is collision in hash tables for the
tion as in Section 2.5. Then we choose the one with the minimum raw relations, the hash tables of the relations they feed are updated.
cost. However, the exhaustive method is too expensive, especiallyThis process recurses until the hash tables for the leaf level. Each
for data stream systems where a fast response is essential. of these updates has a costcof

In our example in Section 2.5, we assumed that each hash table If there are collisions in the hash tables for the leaf (user) queries,
has the same size for simplicity of exposition. However, given a evictions to the HFTAs are incurred, each with the cogtofThere-
set of phantoms and queries to instantiatelin, how does the fore, the total maintenance cost is
allocation of space to each hash table affect the collision rate and

hence the cost? Therefore, another optimization problem is that, Em = Z Fre1 + Z FRTRC @
given a set of relations to instantiate, how to allocate space to them Rel Rel
so that the cost is minimized. whereT is a configuration/ is the set of all leaves if, Fr is the

In summary, our cost optimization problem consists of two sub- number of tuples fed to relatioR during epochl’, andzr is the
optimization problems: how to choose phantoms and how to al- collision rate of the hash table f@t. Fx is derived as follows.

locate space. We formulate the cost model for the multiple ag- fReW
gregation problem and propose a cost greedy algorithm to choose Fr = { ;Tw else (5)

phantoms. In addition, for a given set of relations to instantiate, we
analyze which space allocation gives the minimum cost; in case thewherelV is the set of all raw relations,r is the number of tuples
optimal space allocation cannot be calculated, we propose heuris-observed ifil, F, is the number of tuples fed to the parent/in
tics which can approximate the optimal solution very well. 1, andz, is the collision rate of the hash table for the parenRof
in I. If we further define, = nr andx, = 1, whenR is a raw

3. PROBLEM FORMULATION relation, Equation 4 can be rewritten as follows.

In this section, we formulate our cost model, and give a for- [ '|
mal definition of our optimization problem. We present hardness g, — Z( H Tr)el + Z( H zp)xrea| nr (6)
results, motivating the greedy heuristic algorithms for identifying [RE, RicAp REL RIEAR J

optimal configurations. ] )
whereAr, is the set of all ancestors @& in 1.

3.1 Notation nr is determined by the data stream and is not affected by the
. . . y
When we have chosen a set of phantoms to instantiate in the configuration. Hence, the per record cost is:
LFTA, we call the set of instantiated relations (i.e., the chosen _
phantoms and user queries) asamfiguration For example, Fig- em = Z( H vr)er+ Z( H v )erez (7

) A ; eI R/ L R/
ure 3 shows three configurations for an example query. While the REl R'eAr REL R'€AR

feeding graph is a DAG, a configuration is always a tree, consistent wherec; andcs are constants determined by the LFTA/HFTA ar-
with the path structure of the feeding graph. If a relation in a con- chitecture of the DSMS. Therefore, the cost is only affected by the
figuration is directly fed by the stream, we call itaw relation feeding relationship and collision rates of the hash tables.

For example, ABC, BD, CD are raw relations in Figure 3(a); and

ABCD is the only raw relation in Figure 3(c). Ifarelationinacon- 3-2.2 End-of-Epoch Cost

figuration has no child, then it is calledeaf relationor justleaf. Denote the update cost at the end of epécas F,, (the update
User queries are always instantiated in the LFTA, therefore only costfor short). It includes the cost of the following operations.
queries are leaves. For all the configurations in Figure 3, queries From the raw level to the leaf level of the feeding graph of the
AB, BC, BD and CD are the leaves. Note that raw relations and configuration, we scan each hash table and propagate each item in
leaf relations need not be mutually exclusive. For example, BD the hash table to hash tables of the lower level relations they feed.
and CD are both raw and leaf relations in Figure 3(a). Finally, we scan the leaf level hash table and evict each item in it



to the HFTA, My. Using an analysis similar to the one for intra-  3.4.1 Greedy by Increasing Space
epoch costs, taking the possibilities of collisions during this phase  The more space that is allocated to a hash table, the lower is the

into account, the update cat, can be expressed as follows. collision rate. On the other hand, the more groups a relation has
for a fixed sized hash table, the higher is the collision rate. gL et
> rer,rgw o rreay Mr * Ilrveay, ur rrgw Tr)lert be the number of groups in a relation. One way of allocating hash
Y rer MR+ X prean (Mg * HR”EAR/UR’,R”QW zRr)]ez table space to a relation is proportional to the number of groups
(8) in the table. Thus, we can allocate spagefor a relation withg
groups. ¢ is a constant and we set it large so that the hash table is
whereMp is the size of the hash table of relatidh and W is the guaranteed to have a low collision rate. We will develop a model to
set of all raw relations. estimate collision rate in Section 4. We can then have a better sense
3.3 Our Problem of what value ofp might be good according to the analysis there.

. ) The greedy algorithm goes as follows. We calculate the benefit
Intuitively, the lower the average per-record intra-epoch cost, the of each phantom according to the cost model, i.e., the difference

lower is the load at the LFTA, increasing the likelihood that records between the maintenance costs without and with this phantom. Let

in the stream are not dropped during query processing. We also,g denote this benefit by;. Then we calculate the benefit per unit
want to ensure that the total cost of the end-of-epoch processing iSspace for each phantoi br/(éng,). We choose the phantom

manageable. This leads to tmeiltiple aggregatiofMA) optimiza- it the largest benefit per unit space as the first phantom to instan-

tlo_n problem studied for the two-level LFTA/HFTA architecture in  tiate. For the other phantoms, this process is iterated. The process

this paper. . ) __ends when the benefit per unit space becomes negative, the space is
Consider a set of aggregation queries over a data stream that dif-oyhausted. or all phantoms are instantiated.

fer only in their grouping attributesS = {Q1, Q2, -, Quq }, This approach has two drawbacks: {leeds to be tuned to find

and memory limit)M in M. Determine the configuration, of the best performance. A bad choice can result in suboptimal per-

relations in the feeding graph ¢fg to instantiate in (the LFTA)  tgrmance. (2) By allocating space to a relation proportional to the

M;, and also the allocation of the available mema#yto the hash  mper of its groups, we make the collision rates of all the relations
tables or the relations so that the per-record intra-epoch cost (Equahe same. As we shall show later, this is not a good strategy.
tion 7) for answering all the queries is minimized, subject to the

end-of-epoch cost being less than peak load st 3.4.2 Greedy by Increasing Collision Rates
For the MA optimization problem we can show the following: Here, we present a different greedy algorithm for allocating space
THEOREM 1. Letn be the number of possible group-by queries to hash tables of the relations in the LFTA. Instead of allocating a
in the feeding graph ofg. If P # NP, for everye > 0 every fixed amount of space to each phantom progressively, we always
polynomial time approximation algorithm for the MA problem will ~ allocateall available spaceo the current configuration (how to al-
have a performance ratio of at least —©. locate space among relations in a configuration is analyzed in Sec-

tion 5). So as each new phantom is added to a configuration, what
changes is not the total space used, but the collision rate of each ta-
ble. Since the more the number of groups mapped to a fixed space,
the higher the collision rate, the collision rate would increase as
new phantoms are instantiated.

Moreover, the same is true for the corresponding maximization
problem. Define the “benefit” of an aggregate in the feeding graph
of Sg, as the cost improvement with respect to the solution that
computes all aggregates in the LFTA. The maximization problem

aims to identify the solution with the maximum benefit. It is pos- Th dv alqorithm i foll At fi h fi tio
sible to show that there does not exist a polynomial time algo- e greedy algorithm Is as follows. At first, the configuration

rithm for this problem with performance ratio better thalt <, if only includes all the queries. We calculate the maintenance cost if
P+NP ' a phantomR is added tol. By comparing with the maintenance

cost whenR is not in I, we can get the benefit. After we add this

Our cost optimization problem consists of two sub-problems: . -
P P P phantom tal, we iterate with the other phantoms.

how to choose phantoms and how to allocate space. Given the . -
hardness result above, we next describe cost greedy algorithms to As more phamoms are added infpthe overall CO"'S'On. rate
choose phantoms, based on the cost model presented earlier. Thd0€s up and_beneflt_ decreases. We stop Wh_en the ben_ef_lt becomes
cost model critically depends on the collision rate model, which we negative. This algorithm _depends on estimating Fhe CO”.'S'On rates.
discuss in detail in Section 4. For a given set of relations to instan- We derive a model to estimate the collision rate, in Section 4.

tiate, we analyze which space allocation gives the minimum cost,

in Section 5. 4, THE COLLISION RATE MODEL
34 Al ithmic S . In this section, we develop a model to estimate the collision rate.
. gorithmic Strategies We assume that the hash function randomly hashes the data, so

The multi-aggregation (MA) problem has similarities to the view each hash value is equally possible for every record. We first con-
materialization (VM) problem [14]. They both have a feeding graph sider uniformly distributed data, and subsequently consider when
consisting of nodes some of which can feed some others, and wethe data exhibits clusteredness.
need to choose some of them to instantiate. So one possibility is _
to adapt the greedy algorithm developed for VM to MA. However, 4.1 ~Randomly Distributed Data
there are two differences between these two problems. First, in- Let g be the number of groups of a relation anthe number of
stantiation of any of the views in VM will add to the benefit; while  buckets in the hash table. Afgroups hash to a bucket, we say that
in MA, instantiation of a phantom is not always beneficial. Sec- this bucket hag groups. LetBy, be the number of buckets havikg
ond, the space needed for instantiation of a view is fixed but the groups. If the records in the stream are uniformly distributed, each
hash table size is flexible. Therefore, in order to adapt the VM group has the same expected number of records, denoteg,by
greedy algorithm, we need to have a space allocation scheme sdSon,4k records will go to a bucket having groups. Under the
that the hash tables must have low collision rate and therefore eachrandom hash assumption, the collision rate in this buckét is
instantiated phantom is beneficial. We discuss this next. 1/k). Thereforen,4k(1 — 1/k) collisions happen in this bucket.



The overall collision rate is obtained by summing all the collisions oot
and then dividing by the total number of records. Therefore, we
have collision rate

rough model
precise model -+~
real data, 1 attribute -

collision rate
o
o

9 9 el sae 2
> Bynngh(L—1/k) S Bk —1) i
r = k=2 _ k=2 (9) 02—/
gnirg g D; ¥ ‘
k begins from 2 because when 0 or 1 group hashes to a bucket, no o
collision happens. In order to calculate it, we still need to kg Figure 5: Collision rates of real data
This problem belongs to a class of problems calledab&upancy
problem
As we know, the expectation éffor each bucket ig/b [10]. A
rough estimation o, based on expectation would be The real datasets are extracted from the netflow dataset as de-
_ scribed in Section 6.1. We have assumed random data distribution
By, = { 8 t;g/t;b for the above analysis, while the netflow dataset has a lot clustered-
9 ness of multiple packets in a flow. In order to validate our analysis
Substituting this fotB,, in Equation 9, we get using the real data, we grouped all packets of a flow into a single
record, eliminating the effect of clusteredness. (We consider clus-
z=1-b/g (10) terness in a later subsection.) After eliminating clusteredness of the

However, in a real random process, the probability of each bucket 9ata, we extracted 4 datasets which have 1, 2, 3 and 4 attributes re-
having the same number of groups is small. In [12] (Chapter I1.5), spectively. The number of groups in these datasets are 552, 1846,

an example wheg = b = 7 is given to calculate the probability =~ 2117, %837 respecti}’/ely. ] ) ]
of different distributions of groups. It is shown that probability of ~_ 1he ‘rough model” curve is plotted according to Equation 10 and

each of the 7 buckets having exactly 1 group is 0.006120, which the “precise model” curve is plotted according to Equation 13. Col-

makes it extremely unlikely. Therefore, we need to calcuBte lision rates of the re_al_ data match the precise model very vyell. In
based on probability. To the best of our knowledge, no study exists all the observed collision ratgs, more than 95% of th_e experimental
on estimatingB;, as we defined here Our derivation ofB;, is as results have less than 5% difference from the precise model. The
follows. rough model differs greatly from the precise model whgh is

The probability ofk groups out of; hashed to a given bucket is small but becomes similar @gb gets large. The reason is that the_
rough model only captures the expected case, which occurs with

g & gk low probability. Wheng becomes larger, the behavior gets closer
k (1/6)7(1 = 1/b) a1 to the average case, therefore the rough model gets close to the
precise model.
Note this holds for any bucket, which means each bucket has the For the rough model, the collision rate is only dependent on the
chance of Equation 11 to havegroups. If we assume that il ratio of g to b as we can see from Equation 10. We will show in
buckets are independent of each other, then statistically there are Section 4.4 that the precise model is also dependegf brthough
the function is different.

b(i) (/b (1= 1/p) (12)
. . . 4.3 Clustered Data
buckets each of which hasgroups. Substitute Equation 12 6, The above analysis was for randomly distributed data. However,
in Equation 9 we have real data streams, especially the packets in netflow data (which have
g exactly the same values for attributes such as source/destination
by (9) 1)k —1/p)97*k -1) IP/port), are clustered. Although packets from different flows are
oo k=2 k (13) interleaved with each other in the stream, the likelihood of these in-
g terleaved flows hashing to the same bucket is very small. Therefore

) ) we can think of the packets in a flow going through a bucket with-
Our experiments on both synthetic and real data show that the ac-g,¢ any collision until the end of the flow. To analyze collision rate

tual distribution of B, matches Equation 13 well, even though the = ¢4 5,ch clustered distributions, we should consider what happens
buckets are not completely independent (they satisfy the equation 5¢ e per flow level. If we think of each flow as one record, then we

b
> k=1 Br = b). can use the same formula as in the random distribution (Equation 9)

4.2 Validation of Collision Rate Model to calculate the total number of collisions as follows.
We have measured experimentally the collision rates on both

synthetic random datasets and real datasets. The results for the real ! B
PR . = k(1—1/k 14
datasets are shown in Figure 5; the results for the synthetic datasets " kz::z knpgk( /¥) (14
are very similar and omitted.
2 . .
If we useB; to denote the number of balls in tieh bucket,5; wheren, is the number of flows in each group; is still calcu-

are calledoccupancy numbersThis problem has been studied be- . - - -
fore and theB;'s follow the multinomial distribution [12] (Chapter lated by Equation 12. To obtain the coIhsm_n rate, we divideby
V1.9). However, our definition oy, is different fromB;. Instead the total number of recordgy s4l., wherel, is the average length
of the probability of a certain arrangement of the “balls” in the of all the flows. Then we have the collision rate for the data with a

buckets, what we want is the distribution of the “balls”. clustered distribution as follows.
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hundred to thousands, therefdre- 1/b is almost 1 and the sum is

We can see that the difference of the collision rate on data with e€ssentially determined hy/b.
clusteredness from that of the random data is a linear relationship AS our sum is not exactly a Gaussian distribution, some errors
over average flow length,. We can view the collision rate of the ~ are expected. In the following, we experimentally evaluate how
random data as a special case of clustered datalwith 1. The much the errors are. \We lg¥/b be certain constants and compute
average flow length can be computed by maintaining the number of the collision rates according to Equation 13, foraried from 300

times hash table bucket entries are updated before being evicted. to 3000. Note that oncé is choseng is also determined for a
giveng/b. The resulting collision rate, fay/b varied from 0.25 to

4.4 On Computing Collision Rates 32, is almost constant for the samgb. The maximum relative

To calculate the collision according to Equations 13 and 15, we Variations of collision rates ag/b varies are listed in Table 1. We
need to compute a sum of abapitems, which can be hundreds to observe that all the variations are less than 1.5%. Therefore the col-
thousands of items. This computation is expensive. In this section, lision rate only depends ogyb and we can pre-compute collision
we show that actually we only need to sum up to a much smaller raté and use regression to model the function. o
number of items. Further, the collision rate is almost solely de- ~ The collision rate curve as a function gfb is plotted in Fig-
pendent ory/b, therefore we can pre-compute the collision rates Ure 7. We divided the whole curve into 6 intervals and used two-
and store them as a function @fb. In this way, the computational ~ dimensional regression to simulate the curve so as to achieve a
effort of collision rates is greatly reduced. maximum relative error of 5% in each interval. The average rel-

We computed the probability of collision of differekis accord- ative error is actually much lower, which is less than 1%.
ing to Equation 13 to see how much each component contributes According to our previous analysis, the hash table must have
to the overall collision rate. Figure 6 shows the probability of col- & low collision rate if we want to benefit from maintaining phan-
lision as a function ok wheng = 3000 andb = 1000. We can toms. Therefore, we examine the low collision rate part of this
see that the contributions become almost 0 whéecomes larger curve closely. A zoom in of the collision rate curve when collision
than 11 and the shape of the curve looks like a bell. It looks like the rate is smaller than 0.4 as well as a linear regression of this part is
PDF of the Gaussian distribution. Examining Equation 13, we find Shown in Figure 8. We observe that this part of the curve is almost
that except th¢k — 1) part andb/g which is a constant, the restare @ straight ]lne and thg linear regression achieves an average error of
the same as the PDF of the binomial distribution. And the binomial 5% The linear function for this partis
distribution can be approximated by the Gaussian distribution. So
the plots of the collision probability of differet components can
be viewed as a Gaussian distribution with an amplitudé ef 1.
That's why the plot mimics the Gaussian distribution. Given its Expressing this part of the collision rate linearly is important for
similarity, we can understand many features of the plots accord- the space allocation analysis as we will see in Section 5. In addi-
ing to characteristics of the Gaussian distribution. The peak of the tion, since we now know how the collision rate is determined, we
plot appears at approximately the mean, whiclxis= g/b = 3 can suggest values gfto use in the adapted greedy algorithm (by
(the actual maximum in Figure 6 appearstat 4 due to the ef- increasing space) of Section 3.4. For examples 1 could be a
fect of the amplitudet — 1). Also we know that the probability =~ good choice, since it corresponds to a collision rate of about 0.37.
in the interval(—oo, 1 + 30] is 99.7%. So when we calculate the
collision rate, we do not need to sum over all valueg diut up to

z = 0.0267 + 0.354 - (g/b) (16)

1+ 3o is enough, where = /g(1 — 1/b)/b. In case of Figure 6, 003: |
w+ 30 =3+3-+2.997 = 8.2. In Figure 6, the component at sl

k = 8 is as small as 0.02 already. It is not O yet due to the ampli-
tudek — 1, so we can calculate up to several mereayu + 5o,
which is 12 in our case. The components after 12 are almost 0, and
12 is much smaller than 3000 (the number of groups).

The cost of computing collision rates can be further reduced. A . ‘ ‘ ‘ ‘
Gaussian distribution is determined pyands?. Here we just want ooz 04 " 06 08 !
the sum, so we don't care abqui(the mean) but only2, which
equalsg(1 — 1/b)/b. b in the data stream case is usually several Figure 8: The low collision rate part
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5. SPACE ALLOCATION fori =1,2,..., f.

In this section, we consider the problem of space allocation, that  Observe that left hand side of the equation is the same fof.any
is, given a configuration of certain relations (phantoms and queries) SO we have
to be instantiated, how to allocate the available sp&céo their g g2 gy
hash tables so that the overall cost is minimized. We start with [T
a simple two-level configuration in Section 5.1, and identify the !
difficulties in analyzing more complex configurations. Heuristics tnat is,b, is proportional t0,/7,.
for space allocation are discussed in Section 5.2. NG ¢

Letb, = —*, ¢ = 1,2,...f. Substituting this fob, in Equa-
5.1 A Case of Two Levels :
] ) tion 18, we have
We first study the case when there is only one phankyand

it feeds allf queries,R1, Ra, ..., Ry. Letxo be the collision rate ) f
of the phantomg1, z2, ...,z be the collision rate of the queries. pea My~ — 2#022 giv — fe1 =0 (19)
In order to benefit from maintaining a phantom, its collision rate i=1

must be low, therefore we only care about the low collision rate  Thjs is a quadratic equation over Solving it we have
part of the collision rate curve. According to Section 4.4, this part

of the curve can be expressed as a linear functiea « + 1g/b, f f
wherea=0.0267 andu=0.354° Sincea is small, here we make ucQZ Vai £ ;ﬂcg(z Vi)% + fucicaM
a further approximation to let = pg/b. We will discuss later - i=1 i=1
how the results are affected when we considerGiven the ap- pco M

proximation,z; = ug;/b;, i = 0,1, ..., f. The total size iV, so

. . L , So only the one with 4" before the square root on the
M =S b;. The cost of this configuration is v >0 y * g

numerator is the solution. So

f

i=1

v

f f
pe2d g5+ | #2303 VG5)? + fucicaM
=1 j=1
f
90 gi 17) M
= p (fer tuesy ) +a =

i=1 "

!
0 0 i
= f;L‘Z—Ocl + ;[Z—O E /L%CQ +c
i=1

2

! f
! g, > _VE > Vi
= Lof(fcl +u62z%)+61 =1 N =1 feaM
M=>Tb; = Vi NG pe2gi
1=1
e is a function of multiple variables , b, ..., bs. To find out the (20)
minimum, we equate the partial derivativesedd 0. In the follow- )
ing, we calculate the partial derivative ebverb;, i = 1,2, ...f. wherei = 1,2, ..., f.
¥ bo =M — Zile b;
Oe _ Kgo gi Kgo L1 f
b, = T (fer + pea L:Zl o) T 7 Heasi(—p) My g5
(M = bi)? M=) bi M- 1 (21)
=1 i=1 f f f M
: -2 ‘
Let 2= = 0, then ;‘/‘(Z—F (j:Zl‘/E) + ey
LI .
fe1 + uczz gi A key consequence of our analysis is that we should aIIc_)cate
190 i=1 i peagi [ 0 space proportional to thequare rootof the number of groups in
! ! b2 n order to achieve the minimum cost. Another interesting point is
M — Zbi M—> b thatb (the space allocated to the hash table of the phantom) always
i=1 i=1 takes more than half the available space.
1499 s non-zero, so While the 2-level case results in a quadratic equation (that is,
M=30i1 bi Equation 19), a similar analysis on the simplest 3-level case results
f g in an equation of order 8. According to Abel’'s impossibility theo-
far+ MC2Z b ' rem, equations of order higher than 4 cannot be solved algebraically
i=1 * “6229’ (18) in terms of a finite number of additions, subtractions, multiplica-
M éb- b; tions, divisions, and root extractions (in the sequel, we simply say
—~ ¢ “unsolvable”). More general multi-level configurations generate

SActually, even if the collision rate for the optimal allocation is a equations of even higher order which are unsolvable, therefore we
little highérthan 0.4, we can still use linear regression for that part. would use heuristics to decide space aIIo_catlon for th(_e these un-
The values ofx andx would be a little different, but experiments ~ Solvable cases based on the analysis available. Experiments show

show that small variation in their values does not affect the result that our proposed heuristics based on the analysis are very close to
much. optimal and better than other heuristics.



5.2 Heuristics The space allocation schemes are independent of the phantom
For unsolvable configurations, we propose heuristics to allocate Choosing strategies, that s, given a configuration, a space allocation
space based on the analysis of the solvable cases and partial resulgcheme will produce a space allocation no matter in what order
we can get from the unsolvable cases. We observe that while the relations in the configuration are chosen. Therefore we wiII_
(b; is a leaf relation) is proportional tac.g;, which is affected by evaluate space allocation schemes and phantom choosing strategies
its own number of groups, according to our analysis on the three independently.
level cassb% (b1 is a non-leaf relation) is proportional ti;uglc_l + 53 Revisiting Simplifications
pgica yi_ x1; (note thatug /b = x), wherexy; are the collision o ) )
rates of tables for the children éf. b, is affected not only by its From the beginning of the analysis on space allocation, we have
own number of groups, but also its children’s. The intuition is that Made an approximation on the linear expression of the collision
we should care more about a relation when it has children in the "ate, thatis, we let equalug/b instead ofr + 1g/b. We also did
feeding graph of the configuration. Therefore we will consider the the analysis when we let= a+1g/b. The result of the case with
following space allocation schemes which add some weights to a "0 Phantom is the same. The case with one phantom feeding all

relation when it has children to feed. queries results in a quartic equation which can be solved, so we can
still get an optimal solution for this case. However, because solving
Heuristic 1: Supernode with Linear Combination (SL). We a quartic equation is much more complex than a quadratic equation

start from the leaf level of the configuration. Each phantom at the and it's more involved to decide which solution of the quartic equa-
record level together with all its children are viewed as a supernode. tion is the one we want, we use the approximated linear expression,
The number of groups of this supernode is the sum of the number that is,xz = ug/b for space allocation in our experiments. The re-
of groups of the phantom and all its children. Then we view the su- sults of the experiments show that they have good accuracy.
pernode as a query and do the above compaction recursively untii  We have made another simplification on the size of each hash
the configuration become all queries. For the all query configura- table bucket entry in the analysis for ease of exposition. By using
tion, we can allocate space optimally. After this allocation, each M = Y b;, we have assumed that a hash table entry has the same
guery (some may be supernodes) has some space. We decomposesize for all relations in the LFTA. Actually, the size of a hash table
supernode to a two-level structure and allocate space according toentry for different relations can vary a lot. Suppose we use an int
the analysis of Section 5.1, that is, allocate space proportional to the(4 byte) to represent each attribute or a counter. Then a bucket for
square root of the number of groups. If there are still supernodes inrelation A takes 8 bytes and a bucket for ABCD takes 20 bytes.
the structure, we do the decomposition recursively. If we denote the bucket entry size of relatibmas h;, thenM =

> bsh;. Inthis case, the results of the analysis are similar. Instead

his heuristic is th S h lculati fih of allocating space proportional tgg, we should allocate space
This heuristic is the Same as L except the calculation of the group roportional to\/g;h;. We have used such variable sized buckets
of the supernode. Since in the two level case we see that the spac$

. n our implementation, and experimental study, discussed next.
should be proportional to the square root of the number of groups, For clustered data, collision rates should be divided by the aver-
we can also let the square root of the number of groups of the su- ' : L :
pernode be the sum (c)]f the square roots of all its rglatio%s aﬁe flow lengttt,.. To con5|dier thlz |nlspa(if]e alllocatlti)in, we should

. ; : allocate space proportional t/g:h;/l;, wherel; is the average
Note that both SL and SR give the optimal result for the case of P prop gihi/ 9

8 ? X - flow length of relatior.
one phantom feeding all queries. We will also try two other simple
heuristics which are not based on our analysis as a comparison to,
the above two more well-founded heuristics. . EXPERIMENTAL STUDY

Heuristic 3: Linear Proportional Allocation (PL) . Thisheuris- 6.1  Experimental Setup and Datasets

tic simply allocates space to each relation proportional to the num- e prototyped this framework in C in order to evaluate the dif-
ber of groups of that relation. ferent techniques we developed. We use 4 bytes as our unit of space
C . . . allocation. Each attribute value and counter we instantiate has this
st alocates space to each relaton proporionally b the squar)2S: 1 2CC0rdance to operational streaming data managers s, e
P prop y QUaronsider) between 20,000 and 100,000 units of space (4 bytes
root of the number of groups of that relation.

each). The ratio of eviction cost to probe cestc; is is modeled

Although we cannot compute the optimal solution for space al- as 50 in our experiments, which is also a ratio measured in opera-
location of some cases, there does exist a space allocation whichiional data stream management systems [8].
gives the minimum cost for each configuration. One way to find We used both synthetic and real datasets in our evaluation. The
this optimal space allocation is to try all possibilities of allocation real dataset is obtained tigpdumpon a network server. We ex-
of space at certain granu|arity_ For examp|e, if the Conﬁguration is tracted TCP headers Obtaining 860,000 records with attributes source
AB feeds A and B, and total space is 10, we can first allocate 1 to IP. destination IP, source port and destination port, each of size 4
AB,1toA,and8toB. Thenwetry 1to AB, 2to A, and 7 to B, and bytes. The duration of all these packets is 62 seconds. There are
so on. By comparing the cost of all these space allocation choices2837 groups in this 4-attribute relation. For other relations we ex-
we will find the optimal one. We call this method tezhaustive tracted in this way, the number of groups varies from 552 to 2836.
space allocation (ES)Obviously this strategy is too expensive to  For the synthetic datasets, we generated 1,000,000 3 and 4 dimen-
be practical, but we use it in our experiments to compare with the Sional tuples uniformly at random with the same number of groups
four space allocation schemes and see how much the heuristics dif-2s those encountered in real data. All the experiments are run on a
fer from the optimal choice. The results of ES are affected by the desktop with Pentium4 2.6GHz CPU and 1GB RAM.
granularity of varying the space allocation. In our experiments, we  We adopt the following way to specify a configuration. "AB(A

found that using a granularity of 1% @f is small enough to pro- ~ B)”is used to denote a phantom AB feeding A and B. We use this
vide accurate results. notation recursively. For example, the configuration in Figure 3(c)

can be expressed as (ABCD(AB BCD(BC BD CD))).

Heuristic 2: Supernode with Square Root Combination (SR)
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. . . M (thousand)| 20 40 60 80 | 100
6.2 Evaluation of Space Allocation Strategies SL (%) 60 | 30 | 22 | 32 | 2.3
Our first experiment aims to evaluate the performance of vari- SR (%) 6.2 | 53 | 53 | 9.0 | 94
ous space allocation strategies. In these experiments we derive our :::i(o/;) ig'i ﬁ'i ig'g %"71 2:2“71
parameters from the real data set. Our observations were consis- ) - - - - :

tent across a large range of real and synthetic datasets. We vary Table 2: Average error for the four heuristics

M from 20,000 to 100,000 at steps of 20,000 and the granularity

for increasing space while executing ES is set at 1%/0ofIn all

experiments we compute the cost using Equation 7 with a suitable figurations tested how frequently SL is the heuristic yielding the

model for collision rate, as described below. minimum error. We preset the percentage of configurations tested
i i in which SL yields minimum error, as well as for the cases that SL
6.2.1 Solvable Configurations does not yield the minimum error, how far its error is from the error

We first experimentally validate the results of our analysis for the 0f the best heuristic, on the average.
case of configurations for which we can analytically reason about ~ These results (which are representative of a large set of exper-
the goodness of space allocation strategies. iments conducted) attest that SL behaves very well across a wide

For the case with no phantoms, (assuming= ug/b as colli- range of configurations. Even in the cases that it's not the best it re-
sion rate) we compared the cost of the exhaustive space allocationmains highly competitive to the best solution. Therefore we would
(ES) with a scheme that allocates space according to our analyticalchoose SL for space allocation in our algorithms.
expectations, namely, allocating space proportional to the square . .
root of number of groups. For the case of real data, we tested all 6:3 ~ Evaluation of the Greedy Algorithms
possible configurations with no phantoms. The cost obtained by We now turn to the evaluation of algorithms to determine ben-
the scheme performing space allocation as dictated by our analyti-eficial configurations of phantoms. We will evaluate the greedy
cal derivations incurred an error less than 1% compared to ES. Thealgorithm GS and our proposed greedy algorithm GC. GC makes
small error comes from our approximation to the collision rate, es- use of the SL space allocation strategy; we refer to this combina-
pecially the value ofs, which can be different from the value the tion as GCSL (algorithm GC using SL space allocation). For GS,
optimal solution assumes. we would add space afg each time a phantom is added in the

For the case with only one phantom feeding all queries, we use current configuration under consideration until there is not enough
our optimal space allocation scheme derived based on the approxi-space for any additional phantom to be considered. At this point
mation of collision rater by ug/b. We again compare the accuracy we allocate the remaining space to relations already in the config-
of the space allocation scheme allocating space according to oururation proportional to their number of groups. We also consider
analysis, to that of ES and test all possible configurations for the the following method to obtain the optimal configuration cost. We
case of the real data set. The average cost error (compared to ESgxplore all possible combinations of phantoms and for each con-
of our scheme is usually less than 1% and the maximum observedfiguration we use exhaustive space (ES) allocation to calculate the
was 2%. Therefore even with this approximatian-£ pg/b) to cost, choosing the configuration with the minimum overall cost. We
the collision rate, the results are still quite accurate. will refer to this method as EPES in the sequel. Costs are computed
. . using Equation 7 and our approximation to the collision rate.
6.2.2 Unsolvable Configurations

For unsolvable configurations, we evaluated several heuristics. 6.3.1 Phantom Choosing Process
We compared SL, SR, PL, PR as described in Section 5.2 and ES. We first look at the query sdtA, B, C, D} on a 4-dimensional
We evaluated all possible configurations for the case of the real datauniform random dataset with/ set as 40,000. Since a good value
set (four attributes). The relative errors of the heuristics compared of ¢ is not known a priori, we vary it and observe the trends. Fig-
to the cost of ES are shown in Figures 9 and 10 for 4 representativeure 11 presents the cost of the different algorithms. The costs are
configurations. Related results were obtained for other configura- normalized by the cost of EPES (the optimal cost). The cost of GS
tions; all those are summarized in Table 2. first decreases and then increases) axreases. If is too small,

We observe that generally SL and SR are better than PL and PR.each phantom is allocated a small amount of space, at the expense

Thus, heuristics inspired by our analytical results appear beneficial. of high collision rate. On the other hand, dfis too large, each
Except one case in Figure 10(a) wh&h= 20, 000, SL is always

the best. PL and PR can have errors as large as 35% and although

SR has smaller error, it is always less accurate than SL. In Table 2, Slf\/é(t'houbsar;%/) ig gg gg gg 183
we show the average relative error of the four different heuristics €ing best (o

g_ Relative error from the best (%) 2.2 | 0.006 | 0.15| 0.6 | O
compared to ES. SL is the best for all values\éf

In Table 3, we accumulate statistics in order to show in all con- Table 3: Statistics on SL
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phantom has low collision rate, but each phantom takes too much We conducted a large set of experiments quantifying the accu-
space and prohibits addition of further phantoms, which could be racy of our estimation framework against actual measurements. In
beneficial. This alludes to a knee in the cost curve signifying the ex- general, difference between the predictions of the cost model and
istence of an optimum value. For the GCSL algorithm, costis lower the actual cost becomes large &5 increases. The relative cost
than the cost of GS for any, because when we adjust the space difference of GCSL compared to the optimal cost also increases as
allocation and calculate the cost each time a phantom is added, welM increases. This is due to two factors: first whehis very large
are essentially adapting to a better value. The gap between the then collision rates are very small and become increasingly difficult
minimum point of the GS curve and GCSL is due to the space allo- to capture analytically. Second, for largé there are many phan-
cation scheme. Using GC in conjunction with PL space allocation, tom levels and as a result errors accumulate across multiple levels.
yields a curve which precisely lower bounds GS. Thus, GCSL ben- However, despite certain inaccuracy, our technique results in a rea-
efits from both the way we choose phantoms and the way space issonable low cost compared to the optimal cost and outperforms GS
allocated in these phantoms. considerably, for a variety of data sets, especially for low values of
Figure 12 presents the change in the overall cost in the above M (which is the common case in practice).
scenario as each phantom is chosen. We observe that the first phan- In order to validate the effectiveness of phantoms for computing
tom introduces the largest decrease in cost. The benefit decreasemultiple aggregates, we conducted the following experiment. We
as more phantoms are added and for GS witk= 0.6, the cost run the same queries without maintaining any phantoms and we
goes up when adding the third phantom. Note that the third phan- compare the cost with the cost of GCSL. The results are presented
tom added by GS witlp = 0.6 is different from the third phantom in Figure 13(b). It is evident that maintaining phantoms does re-
added by GCSL due to the differences in space allocation. For GS duce the cost greatly (more than an order of magnitude).

with ¢ = 1.2, 1.3 there is no space to add more than one phantom. . .
6.3.3 Experiments with Real Data

6.3.2 Validating Cost Estimation Framework We repeated our validation experiment using real data this time

With our next experiment we wish to validate our cost estima- and the query sefAB, BC, BD, CD}. Again we let the real data
tion framework against the real measured errors. We implementedset stream by the configuration we have obtained using our algo-
the hash tables and we let a uniform random dataset pass throughithms and report the resulting actual costs incurred. Once again
the phantoms and queries computing the desired aggregates. Thactual costs are normalized by the actual cost incurred by the EPES
phantoms are chosen and the corresponding space allocation is constrategy. Flow length is derived temporally.
ducted, using our heuristics. We count the collisions in the hashta-  Figure 14(a) presents the results. It is evident that GCSL out-
bles and calculate the true cost of this configuration. We normalize performs GS. Once again we compare the cost of GCSL and the
the actual cost of GCSL and GS by the actual cost of the optimal cost incurred without the maintenance of any phantoms. GCSL of-
(according to our cost model) configuration obtained by EPES; the fers an improvement up to about 100 compared to the cost incurred
relative actual costs are shown in Figure 13(a). For GS, we tried without the use of phantoms.
different ¢ values, and only the one with the lowest cost at each

value of M is presented in the figure. 6.3.4 Peak Load Constraint
We can see that the actual cost of GCSL is always much lower The update cost at the end of epoch as described in Section 3.2.2
than that of GS, even we could always choose the bdst GS can be calculated according to Equation 8. This update cost must

(which is impossible in practice). Whek/=60,000, the cost of be within the peak load constraift,. If the update cosE, ex-
GCSL is as low as 26% of the cost of GS. While GS can have cost ceedsE,,, we can use two methods to resolvestrink andshift
as high as 6 times the optimal cost, GCSL is always within 3 times The shrink method shrinks the space of all hash tables proportion-
the optimal cost. ally. The shift method shifts some space from queries to phantoms



S I S e e tiple aggregations in a two level DSMS architecture is an important
shift - practical problem. We introduced the notion of phantoms (fine-
X granularity aggregation queries) that has the benefit of supporting
a A shared computation. We formulated the MA optimization problem,
analyzed its components and proposed greedy heuristics which we
1 subsequently evaluated using real and synthetic data sets to demon-
strate the effectiveness of our techniques.

relative cost

1 ! ! ! ! ! ! !

62 B4 86 8 % % 94 % 95 We are currently considering deploying this framework in a real
peak load constraint (%) DSMS system. This raises important research questions at the sys-
Figure 15: Peak load constraint tem level, in terms of interaction of such algorithms with the cur-

rent system, studying issues related to adaptivity and frequency of
execution, etc. We hope to report such results in the near future.
sincec, is much larger tham; and a major part of the update cost
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