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ABSTRACT
Monitoring aggregates on IP traffic data streams is a compelling
application for data stream management systems. The need for ex-
ploratory IP traffic data analysis naturally leads to posing related
aggregation queries on data streams, that differ only in the choice
of grouping attributes. In this paper, we address this problem of
efficiently computing multiple aggregations over high speed data
streams, based on a two-level LFTA/HFTA DSMS architecture, in-
spired by Gigascope.

Our first contribution is the insight that in such a scenario, ad-
ditionally computing and maintaining fine-granularity aggregation
queries (phantoms) at the LFTA has the benefit of supporting shared
computation. Our second contribution is an investigation into the
problem of identifying beneficial LFTA configurations of phantoms
and user-queries. We formulate this problem as a cost optimization
problem, which consists of two sub-optimization problems: how to
choose phantoms and how to allocate space for them in the LFTA.
We formally show the hardness of determining the optimal config-
uration, and propose cost greedy heuristics for these independent
sub-problems based on detailed analyses. Our final contribution is
a thorough experimental study, based on real IP traffic data, as well
as synthetic data, to demonstrate the effectiveness of our techniques
for identifying beneficial configurations.

1. INTRODUCTION
The phenomenon of data streams is real. In data stream appli-

cations, data arrives very fast and the rate is so high that one may
not wish to (or be able to) store all the data; yet, the need exists to
query and analyze this data.

The quintessential application seems to be the processing of IP
traffic data in the network (see, e.g., [3, 15]). Routers forward IP
packets at great speed, spending typically a few hundred nanosec-
onds per packet. Processing the IP packet data for a variety of mon-
itoring tasks, e.g., keeping track of statistics, and detecting network
attacks, at the speed at which packets are forwarded is an illustra-
tive example of data stream processing. One can see the need for
aggregation queries in this scenario: to provide simple statistical
summaries of the traffic carried by a link, to identify normal activ-
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ity vs activity under denial of service attack, etc. For example, a
common IP network analysis query is “for every source IP and 5
minute interval, report the total number of packets, provided this
number of packets is more than 100”. Thus,monitoring aggregates
on IP traffic data streamsis a compelling application.

There has been a concerted effort in recent years to build data
stream management systems (DSMSs), either for general purpose
or for a specific streaming application. Many of the DSMSs are
motivated by monitoring applications. Example DSMSs are in [1,
4, 5, 8, 19]. Of these DSMSs, Gigascope [8] appears to have been
tailored for processing high speed IP traffic data. This is, in large
measure, due to Gigascope’s two layer architecture for query pro-
cessing. The low level query nodes (or LFTAs1) perform simple
operations such as selection, projection and aggregation on a high
speed stream, greatly reducing the volume of the data that is fed to
the high level query nodes (or HFTAs). The HFTAs can then per-
form more complex processing on the reduced volume (and speed)
of data obtained from the LFTA.

The need for exploratory IP traffic data analysis naturally leads
to posing related aggregation queries on data streams, that differ
only in the choice of grouping attributes. For example, “for every
destination IP, destination port and 5 minute interval, report the av-
erage packet length”, and “for every source IP, destination IP and 5
minute interval, report the average packet length”. An extreme case
is that of the data cube, i.e., computing aggregates for every sub-
set of a given set of grouping attributes; more realistic is the case
where specified subsets of the grouping attributes (such as “source
IP, source port”, “destination IP, destination port” and “source IP,
destination IP”) are of interest. In this paper, we address this prob-
lem of efficiently computingmultiple aggregations over high speed
data streams, based on the LFTA/HFTA architecture of Gigascope,
and make the following contributions:

• Our first contribution is the insight that when computing mul-
tiple aggregation queries that differ only in their grouping
attributes, it is often beneficial to additionally compute and
maintainphantomsat the LFTA.

These are fine-granularity aggregation queries that, while not
of interest to the user, allow for shared computation between
multiple aggregation queries over a high speed data stream.

• Our second contribution is an investigation into the prob-
lem of identifying beneficial configurations of phantoms and
user-queries in Gigascope’s LFTA.

We formulate this problem as a cost optimization problem,
which consists of two sub-optimization problems: how to
choose phantoms and how to allocate space for hash tables

1FTA stands for “Filter, Transform, Aggregate”.



in the LFTA amongst a set of phantoms and user queries.
We formally show the hardness of determining the optimal
configuration, and propose cost greedy heuristics for both the
sub-optimization problems based on detailed analyses.

• Our final contribution is a thorough experimental study, based
on real IP traffic data, as well as synthetic data, to understand
the effectiveness of our techniques for identifying beneficial
configurations.

We demonstrate that the heuristics result in near optimal con-
figurations (within 15-20% most of the time) for process-
ing multiple aggregations over high speed streams. Further,
choosing a configuration is extremely fast, taking only a few
milliseconds; this permits adaptive modification of the con-
figuration to changes in the data stream distributions.

The rest of the paper is organized as follows. We first motivate
the problem and our solution techniques in Section 2. We then give
a formal definition of the problem, formulate the cost model for it,
and present algorithms for choosing phantoms in Section 3. Sec-
tion 4 presents our collision rate model at the LFTA, which is a key
component of the cost model. Section 5 analyzes space allocation
schemes. Section 6 presents our experimental study. Related work
is summarized in Section 7. We finally conclude in Section 8.

2. MOTIVATION
In this section, we describe the problem of efficiently processing

multiple aggregations over high speed data streams, based on the
architecture of Gigascope, and motivate our solution techniques, in
an example driven fashion.

2.1 Gigascope’s Two Level Architecture
Gigascope splits a (potentially complex) query over high speed

tuple data streams into two parts, (i) simple low-level queries (at
the LFTA) over high speed data streams, which serve to reduce
data volumes, and (ii) (potentially complex) high-level queries (at
the HFTA) over the low speed data streams seen at the HFTA. LF-
TAs can be processed on a Network Interface Card (NIC), which
has both processing capability and limited memory (a few MBs).
HFTAs are typically processed in a host machine’s main memory
(which can be hundreds of MB to several GB).

2.2 Processing a Single Aggregation
Let us first see how a single aggregation query is processed in

Gigascope. Consider a data stream relation R (e.g.,IP packet
headers ), with four attributes A, B, C, D (e.g.,source IP ,
source port , destination IP , destination port ), in
addition to a time attribute. Suppose the user defines the following
aggregation query:

Q0: select A, tb, count(*) as cnt
from R
group by A, time/60 as tb

Figure 1 is an abstracted model of Gigascope.ML corresponds
to the LFTA, andMH corresponds to the HFTA. Q0 is processed
in Gigascope as follows. When a data stream record in R arrives,
it is observed atML. ML maintains a hash table consisting of a
specified number of entries, and each entry is a{group, count} pair.
groupidentifies the most recently observed group that hashes to this
entry andcountkeep track of the number of times thatgroup has
been recently observed without observing other groups that hash to
the same entry.
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Figure 1: Single aggregation in Gigascope

When a new recordr hashes to entrybk, Gigascope checks ifr
belongs to the same group as the existing group inbk. If yes, the
count is incremented by 1. Otherwise, acollision is said to occur.
In this case, first the current entry inbk is evicted toMH . Then, a
new group corresponding tor is created inbk in ML and thecount
of the group corresponding tor is set to 1.

Query Q0 is processed by Gigascope in an epoch by epoch fash-
ion, for an epoch of length 1 minute (i.e., time/60). This means that
at the end of every minute, all the entries inML would be evicted to
MH to compute the aggregation results for this epoch at the HFTA.
At the HFTA, multiple tuples for the same group in the same epoch
may be seen because of evictions, and these are combined to com-
pute the desired query answer.

Consider an example stream with the following prefix: 2, 24,
2, 2, 3, 17, 3, 4. At the LFTA, suppose we use a simple hash
function which is the remainder modulo 10. The first item in the
stream, 2, hashes to a certain entry. We check the entry in the
hash table, which is empty in the beginning, and so we add the
entry (2, 1) to the hash table. Then we see 24, which hashes to
a different entry of the hash table. Similarly an entry(24, 1) is
added. The third item is 2. We check the hash table and find that
the existing entry where 2 hashes to contains the same group 2, so
we just increment the count of the entry by 1, resulting in(2, 2).
The rest of the items are similarly processed one by one. After we
processed the 7th item, which is 3, the status of the hash table is
shown in Figure 1. The next item 4 hashes to the same entry as
24. When we check the existing entry in the hash table, we find the
new group is different from the existing one. In this case, we evict
the existing entry(24, 1) to MH and set the entry to(4, 1).

Gigascope is especially designed for processing network level
packet data. Usually this data exhibits a lot of clusteredness, that
is, all packets in a flow have the same source/destination IP/port.
Therefore, the likelihood of a collision is very low until many pack-
ets have been observed. In this fashion, the data volume fed toMH

is greatly reduced.

2.3 Cost of Processing a Single Aggregation
SinceMH has much more space and a much reduced volume of

data to process, processing atMH does not dominate the total cost.
The overall bottlenecks are:

• The cost of looking up the hash table inML, and possible
update in case of a collision. This whole operation, called a
probe, has a nearly constant costc1.

• The cost of transferring an entry fromML to MH . This op-
eration, called aneviction, has a nearly constant costc2.

Usually,c2 is much higher thanc1 because the transfer from
ML to MH is more expensive than a probe inML.
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Figure 2: Multiple aggregations using phantoms

The total cost of query processing thus depends on the number of
collisions incurred, which is determined by the number of groups
of the data and collision rate of the hash table. The number of
groups depends on the nature of the data. The collision rate de-
pends on the hash function, size of the hash table, and the data
distribution. Therefore, generally, what we can do is to devise a
good hash function and allocate more space (within space and peak
load constraints, as we will discuss more later) to the hash table in
order to minimize the total cost.

2.4 Processing Multiple Aggregations Naively
Given the method to process single aggregation queries, and its

cost model, based on the Gigascope architecture, we now examine
the problem of evaluating multiple aggregation queries. Suppose
the user is interested in the following three aggregation queries:

Q1: select A, count(*)
from R
group by A

Q2: select B, count(*)
from R
group by B

Q3: select C, count(*)
From R
group by C

A straightforward method is to process each query separately
using the above single aggregation query processing algorithm, so
we maintain, inML, three hash tables for A, B, and C separately.
For each incoming record, we need to probe each hash table, and if
there is a collision, some entry gets evicted toMH .

2.5 Processing Multiple Aggregations Using
Phantoms

Since we are processing multiple aggregation queries, we may
be able to share the computation that is common to each one and
thereby reduce the overall processing cost. For example, we can
additionally maintain a hash table for the relation ABC inML as
shown in Figure 2. If we have the counts of each group in ABC,
we can derive the counts of each group of A, B and C from it.
The intuition is that, when a new record arrives, instead of probing
three hash tables A, B and C, we only probe the hash table ABC.
We would delay the probes on A, B and C (we omit “hash tables”
when the context is clear) until the point when an entry is evicted
from ABC.

Since the aggregation queries of A, B and C are derived from
ABC, we say that ABCfeedsA, B and C. Although ABC is not of
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Figure 3: Choices of phantoms
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interest to the user, its maintenance could help reduce the overall
cost. We call such a relation as aphantom. While for A, B and
C, whose aggregate information is of user interest, we call each of
them as aquery. Bothqueriesandphantomsare calledrelations.

Now we examine Figure 2 to illustrate how the instantiation of a
phantom can benefit the total evaluation cost. To be fair, the total
space used for the hash tables should be the same with or without
the phantoms. So when we add the phantom ABC, the size of the
hash tables for A, B and C need to be reduced. Suppose the total
space allocated for the three queries isM . While we have many
choices of space allocation between the hash table instantiations,
let us allocate equal space to each instantiation, for simplicity of
exposition. Without phantoms, we allocateM/3 to each hash table.
With the phantom ABC, we allocateM/4 to each hash table. Also
assume that A, B and C have the same collision rate. Without the
phantom, their collision rate is denotedx1; with the phantom, their
collision rate is denotedx′1. Since the hash table size of A, B and C
is smaller in the presence of the phantom,x′1 should be larger than
x1. Let the collision rate of phantom ABC bex2.

Consider the cost for processingn records. Without the phan-
tom, we need to probe 3 hash tables for each incoming record, and
there arex1n evictions from each table. Therefore the total cost is:

E1 = 3nc1 + 3x1nc2 (1)

With the phantom, we probe only ABC for each incoming record
and there would bex2n evictions. For each of these evictions, we
probe A, B and C, and hence there arex′1x2n evictions from each
of them. The total cost is:

E2 = nc1 + 3x2nc1 + 3x′1x2nc2 (2)

Comparing Equations 1 and 2, we can get the difference ofE1 and
E2 as follows

E1 − E2 = [(2− 3x2)c1 + 3(x1 − x′1x2)c2]n (3)

If x2 is small enough so that both(2 − 3x2) and (x1 − x′1x2)
are larger than 0, thenE2 will be smaller thanE1, and therefore
instantiation of the phantom benefits the total cost. Ifx2 is not
small enough so that one of(2 − 3x2) and(x1 − x′1x2) is larger
than 0 but the other is less than 0, thenE1 − E2 depends on the
relationship ofc1 andc2. If x2 is so large that both(2− 3x2) and
(x1 − x′1x2) are less than 0, then the instantiation of the phantom
increases the cost and therefore we should not instantiate it.

2.6 Choice of Phantoms
In the above example, we have only considered one phantom. In

fact, we can have many phantoms and multiple levels of phantoms.



Again, consider stream relation R with four attributes A, B, C, D.
Suppose the queries are AB, BC, BD and CD. We could instantiate
phantom ABC, which feeds AB and BC as shown in Figure 3(a)
(a shaded box is a phantom and a non-shaded box is a query); or
we could instantiate phantom BCD, which feeds BC, BD and CD
as shown in Figure 3(b); or we could instantiate BCD and ABCD,
where ABCD feeds AB and BCD as shown in Figure 3(c). We only
list three choices here, although there are many other possibilities.

It is easy to prove that a phantom that feeds less than two rela-
tions is never beneficial. So by combining two or more queries, we
can obtain all possible phantoms and plot them in arelation feeding
graphas in Figure 4. Each node in the graph is a relation and each
directed edge shows afeedrelationship between two nodes, that is,
the parent feeds the child. Note that this feed relationship can be
“short circuited”, that is, a node can be directly fed by any of its
ancestors in the graph. For example, AB could be fed directly by
ABCD without having ABC or ABD instantiated.

Given the relation feeding graph, and a set of user queries that
are instantiated in the LFTA, one optimization problem is to iden-
tify the phantoms that we should instantiate to minimize the cost.
The exhaustive method is obvious, that is, we try all possible com-
binations of the phantoms and calculate the cost of each combina-
tion as in Section 2.5. Then we choose the one with the minimum
cost. However, the exhaustive method is too expensive, especially
for data stream systems where a fast response is essential.

In our example in Section 2.5, we assumed that each hash table
has the same size for simplicity of exposition. However, given a
set of phantoms and queries to instantiate inML, how does the
allocation of space to each hash table affect the collision rate and
hence the cost? Therefore, another optimization problem is that,
given a set of relations to instantiate, how to allocate space to them
so that the cost is minimized.

In summary, our cost optimization problem consists of two sub-
optimization problems: how to choose phantoms and how to al-
locate space. We formulate the cost model for the multiple ag-
gregation problem and propose a cost greedy algorithm to choose
phantoms. In addition, for a given set of relations to instantiate, we
analyze which space allocation gives the minimum cost; in case the
optimal space allocation cannot be calculated, we propose heuris-
tics which can approximate the optimal solution very well.

3. PROBLEM FORMULATION
In this section, we formulate our cost model, and give a for-

mal definition of our optimization problem. We present hardness
results, motivating the greedy heuristic algorithms for identifying
optimal configurations.

3.1 Notation
When we have chosen a set of phantoms to instantiate in the

LFTA, we call the set of instantiated relations (i.e., the chosen
phantoms and user queries) as aconfiguration. For example, Fig-
ure 3 shows three configurations for an example query. While the
feeding graph is a DAG, a configuration is always a tree, consistent
with the path structure of the feeding graph. If a relation in a con-
figuration is directly fed by the stream, we call it araw relation.
For example, ABC, BD, CD are raw relations in Figure 3(a); and
ABCD is the only raw relation in Figure 3(c). If a relation in a con-
figuration has no child, then it is called aleaf relationor just leaf.
User queries are always instantiated in the LFTA, therefore only
queries are leaves. For all the configurations in Figure 3, queries
AB, BC, BD and CD are the leaves. Note that raw relations and
leaf relations need not be mutually exclusive. For example, BD
and CD are both raw and leaf relations in Figure 3(a).

We next develop our cost model, which determines the total cost
incurred during data stream processing of a configuration. We then
formalize the optimization problem studied in this paper.

3.2 Cost Model
Recall that aggregation queries usually include a specification of

temporal epochs of interest. For example, in the query “for ev-
ery destination IP, destination port and 5 minute interval, report the
average packet length”, the “5 minute interval” is the epoch of in-
terest. During stream processing within an epoch (e.g., a specific
5 minute interval), the aggregation query hash tables need to be
maintained, for each record in the stream. At the end of an epoch,
all the hash tables of the user queries at the LFTA need to be evicted
to the HFTA to complete the user query computations. Thus, there
are two components to the cost: intra-epoch cost, and end-of-epoch
cost. We discuss each of these next.

3.2.1 Intra-Epoch Cost
Let Em be the maintenance cost of all the hash tables during an

epochT (themaintenance costfor short). It includes updating all
hash tables for the raw relations when a new record in the stream
is processed. If (and only if) there is collision in hash tables for the
raw relations, the hash tables of the relations they feed are updated.
This process recurses until the hash tables for the leaf level. Each
of these updates has a cost ofc1.

If there are collisions in the hash tables for the leaf (user) queries,
evictions to the HFTAs are incurred, each with the cost ofc2. There-
fore, the total maintenance cost is

Em =
X
R∈I

FRc1 +
X
R∈L

FRxRc2 (4)

whereI is a configuration,L is the set of all leaves inI, FR is the
number of tuples fed to relationR during epochT , andxR is the
collision rate of the hash table forR. FR is derived as follows.

FR =

�
nT if R ∈ W
Faxa else

(5)

whereW is the set of all raw relations,nT is the number of tuples
observed inT ,Fa is the number of tuples fed to the parent ofR in
I, andxa is the collision rate of the hash table for the parent ofR
in I. If we further defineFa = nT andxa = 1, whenR is a raw
relation, Equation 4 can be rewritten as follows.

Em =

24X
R∈I

(
Y

R′∈AR

xR′)c1 +
X
R∈L

(
Y

R′∈AR

xR′)xRc2

35nT (6)

whereAR is the set of all ancestors ofR in I.
nT is determined by the data stream and is not affected by the

configuration. Hence, the per record cost is:

em =
X
R∈I

(
Y

R′∈AR

xR′)c1 +
X
R∈L

(
Y

R′∈AR

xR′)xRc2 (7)

wherec1 andc2 are constants determined by the LFTA/HFTA ar-
chitecture of the DSMS. Therefore, the cost is only affected by the
feeding relationship and collision rates of the hash tables.

3.2.2 End-of-Epoch Cost
Denote the update cost at the end of epochT asEu (theupdate

cost for short). It includes the cost of the following operations.
From the raw level to the leaf level of the feeding graph of the
configuration, we scan each hash table and propagate each item in
the hash table to hash tables of the lower level relations they feed.
Finally, we scan the leaf level hash table and evict each item in it



to the HFTA,MH . Using an analysis similar to the one for intra-
epoch costs, taking the possibilities of collisions during this phase
into account, the update costEu can be expressed as follows.P

R∈I,R 6∈W [
P

R′∈AR
(MR′ ∗

Q
R′′∈AR′∪R′,R′′ 6∈W xR′′)]c1+P

R∈L[MR +
P

R′∈AR
(MR′ ∗

Q
R′′∈AR′∪R′,R′′ 6∈W xR′′ )]c2

(8)

whereMR is the size of the hash table of relationR, and W is the
set of all raw relations.

3.3 Our Problem
Intuitively, the lower the average per-record intra-epoch cost, the

lower is the load at the LFTA, increasing the likelihood that records
in the stream are not dropped during query processing. We also
want to ensure that the total cost of the end-of-epoch processing is
manageable. This leads to themultiple aggregation(MA) optimiza-
tion problem studied for the two-level LFTA/HFTA architecture in
this paper.

Consider a set of aggregation queries over a data stream that dif-
fer only in their grouping attributes,SQ = {Q1, Q2, ..., QnQ},
and memory limitM in ML. Determine the configurationI, of
relations in the feeding graph ofSQ to instantiate in (the LFTA)
ML and also the allocation of the available memoryM to the hash
tables or the relations so that the per-record intra-epoch cost (Equa-
tion 7) for answering all the queries is minimized, subject to the
end-of-epoch cost being less than peak load costEp.

For the MA optimization problem we can show the following:

THEOREM 1. Letn be the number of possible group-by queries
in the feeding graph ofSQ. If P 6= NP , for everyε > 0 every
polynomial time approximation algorithm for the MA problem will
have a performance ratio of at leastn1−ε.

Moreover, the same is true for the corresponding maximization
problem. Define the “benefit” of an aggregate in the feeding graph
of SQ, as the cost improvement with respect to the solution that
computes all aggregates in the LFTA. The maximization problem
aims to identify the solution with the maximum benefit. It is pos-
sible to show that there does not exist a polynomial time algo-
rithm for this problem with performance ratio better thann1−ε, if
P 6= NP .

Our cost optimization problem consists of two sub-problems:
how to choose phantoms and how to allocate space. Given the
hardness result above, we next describe cost greedy algorithms to
choose phantoms, based on the cost model presented earlier. The
cost model critically depends on the collision rate model, which we
discuss in detail in Section 4. For a given set of relations to instan-
tiate, we analyze which space allocation gives the minimum cost,
in Section 5.

3.4 Algorithmic Strategies
The multi-aggregation (MA) problem has similarities to the view

materialization (VM) problem [14]. They both have a feeding graph
consisting of nodes some of which can feed some others, and we
need to choose some of them to instantiate. So one possibility is
to adapt the greedy algorithm developed for VM to MA. However,
there are two differences between these two problems. First, in-
stantiation of any of the views in VM will add to the benefit; while
in MA, instantiation of a phantom is not always beneficial. Sec-
ond, the space needed for instantiation of a view is fixed but the
hash table size is flexible. Therefore, in order to adapt the VM
greedy algorithm, we need to have a space allocation scheme so
that the hash tables must have low collision rate and therefore each
instantiated phantom is beneficial. We discuss this next.

3.4.1 Greedy by Increasing Space
The more space that is allocated to a hash table, the lower is the

collision rate. On the other hand, the more groups a relation has
for a fixed sized hash table, the higher is the collision rate. Letg
be the number of groups in a relation. One way of allocating hash
table space to a relation is proportional to the number of groups
in the table. Thus, we can allocate spaceφg for a relation withg
groups.φ is a constant and we set it large so that the hash table is
guaranteed to have a low collision rate. We will develop a model to
estimate collision rate in Section 4. We can then have a better sense
of what value ofφ might be good according to the analysis there.

The greedy algorithm goes as follows. We calculate the benefit
of each phantom according to the cost model, i.e., the difference
between the maintenance costs without and with this phantom. Let
us denote this benefit bybR. Then we calculate the benefit per unit
space for each phantomR, bR/(φngR). We choose the phantom
with the largest benefit per unit space as the first phantom to instan-
tiate. For the other phantoms, this process is iterated. The process
ends when the benefit per unit space becomes negative, the space is
exhausted, or all phantoms are instantiated.

This approach has two drawbacks: (1)φ needs to be tuned to find
the best performance. A bad choice can result in suboptimal per-
formance. (2) By allocating space to a relation proportional to the
number of its groups, we make the collision rates of all the relations
the same. As we shall show later, this is not a good strategy.

3.4.2 Greedy by Increasing Collision Rates
Here, we present a different greedy algorithm for allocating space

to hash tables of the relations in the LFTA. Instead of allocating a
fixed amount of space to each phantom progressively, we always
allocateall available spaceto the current configuration (how to al-
locate space among relations in a configuration is analyzed in Sec-
tion 5). So as each new phantom is added to a configuration, what
changes is not the total space used, but the collision rate of each ta-
ble. Since the more the number of groups mapped to a fixed space,
the higher the collision rate, the collision rate would increase as
new phantoms are instantiated.

The greedy algorithm is as follows. At first, the configurationI
only includes all the queries. We calculate the maintenance cost if
a phantomR is added toI. By comparing with the maintenance
cost whenR is not inI, we can get the benefit. After we add this
phantom toI, we iterate with the other phantoms.

As more phantoms are added intoI, the overall collision rate
goes up and benefit decreases. We stop when the benefit becomes
negative. This algorithm depends on estimating the collision rates.
We derive a model to estimate the collision rate, in Section 4.

4. THE COLLISION RATE MODEL
In this section, we develop a model to estimate the collision rate.

We assume that the hash function randomly hashes the data, so
each hash value is equally possible for every record. We first con-
sider uniformly distributed data, and subsequently consider when
the data exhibits clusteredness.

4.1 Randomly Distributed Data
Let g be the number of groups of a relation andb the number of

buckets in the hash table. Ifk groups hash to a bucket, we say that
this bucket hask groups. LetBk be the number of buckets havingk
groups. If the records in the stream are uniformly distributed, each
group has the same expected number of records, denoted bynrg.
So nrgk records will go to a bucket havingk groups. Under the
random hash assumption, the collision rate in this bucket is(1 −
1/k). Thereforenrgk(1 − 1/k) collisions happen in this bucket.



The overall collision rate is obtained by summing all the collisions
and then dividing by the total number of records. Therefore, we
have collision rate

x =

gX
k=2

Bknrgk(1− 1/k)

gnrg
=

gX
k=2

Bk(k − 1)

g
(9)

k begins from 2 because when 0 or 1 group hashes to a bucket, no
collision happens. In order to calculate it, we still need to knowBk.
This problem belongs to a class of problems called theoccupancy
problem.

As we know, the expectation ofk for each bucket isg/b [10]. A
rough estimation ofBk based on expectation would be

Bk =

�
b k=g/b
0 k6= g/b

Substituting this forBk in Equation 9, we get

x = 1− b/g (10)

However, in a real random process, the probability of each bucket
having the same number of groups is small. In [12] (Chapter II.5),
an example wheng = b = 7 is given to calculate the probability
of different distributions of groups. It is shown that probability of
each of the 7 buckets having exactly 1 group is 0.006120, which
makes it extremely unlikely. Therefore, we need to calculateBk

based on probability. To the best of our knowledge, no study exists
on estimatingBk as we defined here.2 Our derivation ofBk is as
follows.

The probability ofk groups out ofg hashed to a given bucket is 
g

k

!
(1/b)k(1− 1/b)g−k (11)

Note this holds for any bucket, which means each bucket has the
chance of Equation 11 to havek groups. If we assume that allb
buckets are independent of each other, then statistically there are

b

 
g

k

!
(1/b)k(1− 1/b)g−k (12)

buckets each of which hask groups. Substitute Equation 12 forBk

in Equation 9 we have

x =

b

gX
k=2

�g

k

�
(1/b)k(1− 1/b)g−k(k − 1)

g
(13)

Our experiments on both synthetic and real data show that the ac-
tual distribution ofBk matches Equation 13 well, even though the
buckets are not completely independent (they satisfy the equationPb

k=1 Bk = b).

4.2 Validation of Collision Rate Model
We have measured experimentally the collision rates on both

synthetic random datasets and real datasets. The results for the real
datasets are shown in Figure 5; the results for the synthetic datasets
are very similar and omitted.
2If we useBi to denote the number of balls in thei-th bucket,Bi

are calledoccupancy numbers. This problem has been studied be-
fore and theBi’s follow the multinomial distribution [12] (Chapter
VI.9). However, our definition ofBk is different fromBi. Instead
of the probability of a certain arrangement of the “balls” in the
buckets, what we want is the distribution of the “balls”.
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Figure 5: Collision rates of real data

The real datasets are extracted from the netflow dataset as de-
scribed in Section 6.1. We have assumed random data distribution
for the above analysis, while the netflow dataset has a lot clustered-
ness of multiple packets in a flow. In order to validate our analysis
using the real data, we grouped all packets of a flow into a single
record, eliminating the effect of clusteredness. (We consider clus-
terness in a later subsection.) After eliminating clusteredness of the
data, we extracted 4 datasets which have 1, 2, 3 and 4 attributes re-
spectively. The number of groups in these datasets are 552, 1846,
2117, 2837 respectively.

The “rough model” curve is plotted according to Equation 10 and
the “precise model” curve is plotted according to Equation 13. Col-
lision rates of the real data match the precise model very well. In
all the observed collision rates, more than 95% of the experimental
results have less than 5% difference from the precise model. The
rough model differs greatly from the precise model wheng/b is
small but becomes similar asg/b gets large. The reason is that the
rough model only captures the expected case, which occurs with
low probability. Wheng becomes larger, the behavior gets closer
to the average case, therefore the rough model gets close to the
precise model.

For the rough model, the collision rate is only dependent on the
ratio of g to b as we can see from Equation 10. We will show in
Section 4.4 that the precise model is also dependent ong/b, though
the function is different.

4.3 Clustered Data
The above analysis was for randomly distributed data. However,

real data streams, especially the packets in netflow data (which have
exactly the same values for attributes such as source/destination
IP/port), are clustered. Although packets from different flows are
interleaved with each other in the stream, the likelihood of these in-
terleaved flows hashing to the same bucket is very small. Therefore
we can think of the packets in a flow going through a bucket with-
out any collision until the end of the flow. To analyze collision rate
for such clustered distributions, we should consider what happens
at the per flow level. If we think of each flow as one record, then we
can use the same formula as in the random distribution (Equation 9)
to calculate the total number of collisions as follows.

nc =

gX
k=2

Bknfgk(1− 1/k) (14)

wherenfg is the number of flows in each group;Bk is still calcu-
lated by Equation 12. To obtain the collision rate, we dividenc by
the total number of records,gnfgla, wherela is the average length
of all the flows. Then we have the collision rate for the data with a
clustered distribution as follows.
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x =

b

gX
k=2

�g

k

�
(1/b)k(1− 1/b)g−k(k − 1)

gla
(15)

We can see that the difference of the collision rate on data with
clusteredness from that of the random data is a linear relationship
over average flow lengthla. We can view the collision rate of the
random data as a special case of clustered data withla = 1. The
average flow length can be computed by maintaining the number of
times hash table bucket entries are updated before being evicted.

4.4 On Computing Collision Rates
To calculate the collision according to Equations 13 and 15, we

need to compute a sum of aboutg items, which can be hundreds to
thousands of items. This computation is expensive. In this section,
we show that actually we only need to sum up to a much smaller
number of items. Further, the collision rate is almost solely de-
pendent ong/b, therefore we can pre-compute the collision rates
and store them as a function ofg/b. In this way, the computational
effort of collision rates is greatly reduced.

We computed the probability of collision of differentk’s accord-
ing to Equation 13 to see how much each component contributes
to the overall collision rate. Figure 6 shows the probability of col-
lision as a function ofk wheng = 3000 andb = 1000. We can
see that the contributions become almost 0 whenk becomes larger
than 11 and the shape of the curve looks like a bell. It looks like the
PDF of the Gaussian distribution. Examining Equation 13, we find
that except the(k−1) part andb/g which is a constant, the rest are
the same as the PDF of the binomial distribution. And the binomial
distribution can be approximated by the Gaussian distribution. So
the plots of the collision probability of differentk components can
be viewed as a Gaussian distribution with an amplitude ofk − 1.
That’s why the plot mimics the Gaussian distribution. Given its
similarity, we can understand many features of the plots accord-
ing to characteristics of the Gaussian distribution. The peak of the
plot appears at approximately the mean, which isµ = g/b = 3
(the actual maximum in Figure 6 appears atk = 4 due to the ef-
fect of the amplitudek − 1). Also we know that the probability
in the interval(−∞, µ + 3σ] is 99.7%. So when we calculate the
collision rate, we do not need to sum over all values ofk but up to
µ+3σ is enough, whereσ =

p
g(1− 1/b)/b. In case of Figure 6,

µ + 3σ = 3 + 3 · √2.997 = 8.2. In Figure 6, the component at
k = 8 is as small as 0.02 already. It is not 0 yet due to the ampli-
tudek − 1, so we can calculate up to several moreσ sayµ + 5σ,
which is 12 in our case. The components after 12 are almost 0, and
12 is much smaller than 3000 (the number of groups).

The cost of computing collision rates can be further reduced. A
Gaussian distribution is determined byµ andσ2. Here we just want
the sum, so we don’t care aboutµ (the mean) but onlyσ2, which
equalsg(1 − 1/b)/b. b in the data stream case is usually several

g/b 0.25 0.5 1 2 4 8 16 32
variation(%) 1.4 0.43 0.15 0.03 0.004 0 0 0

Table 1: Variations of the collision rate
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Figure 7: The collision rate curve

hundred to thousands, therefore1− 1/b is almost 1 and the sum is
essentially determined byg/b.

As our sum is not exactly a Gaussian distribution, some errors
are expected. In the following, we experimentally evaluate how
much the errors are. We letg/b be certain constants and compute
the collision rates according to Equation 13, forb varied from 300
to 3000. Note that onceb is chosen,g is also determined for a
giveng/b. The resulting collision rate, forg/b varied from 0.25 to
32, is almost constant for the sameg/b. The maximum relative
variations of collision rates asg/b varies are listed in Table 1. We
observe that all the variations are less than 1.5%. Therefore the col-
lision rate only depends ong/b and we can pre-compute collision
rate and use regression to model the function.

The collision rate curve as a function ofg/b is plotted in Fig-
ure 7. We divided the whole curve into 6 intervals and used two-
dimensional regression to simulate the curve so as to achieve a
maximum relative error of 5% in each interval. The average rel-
ative error is actually much lower, which is less than 1%.

According to our previous analysis, the hash table must have
a low collision rate if we want to benefit from maintaining phan-
toms. Therefore, we examine the low collision rate part of this
curve closely. A zoom in of the collision rate curve when collision
rate is smaller than 0.4 as well as a linear regression of this part is
shown in Figure 8. We observe that this part of the curve is almost
a straight line and the linear regression achieves an average error of
5%. The linear function for this part is

x = 0.0267 + 0.354 · (g/b) (16)

Expressing this part of the collision rate linearly is important for
the space allocation analysis as we will see in Section 5. In addi-
tion, since we now know how the collision rate is determined, we
can suggest values ofφ to use in the adapted greedy algorithm (by
increasing space) of Section 3.4. For example,φ = 1 could be a
good choice, since it corresponds to a collision rate of about 0.37.
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5. SPACE ALLOCATION
In this section, we consider the problem of space allocation, that

is, given a configuration of certain relations (phantoms and queries)
to be instantiated, how to allocate the available spaceM to their
hash tables so that the overall cost is minimized. We start with
a simple two-level configuration in Section 5.1, and identify the
difficulties in analyzing more complex configurations. Heuristics
for space allocation are discussed in Section 5.2.

5.1 A Case of Two Levels
We first study the case when there is only one phantomR0 and

it feeds allf queries,R1, R2, . . . ,Rf . Let x0 be the collision rate
of the phantom,x1, x2, . . . ,xf be the collision rate of the queries.
In order to benefit from maintaining a phantom, its collision rate
must be low, therefore we only care about the low collision rate
part of the collision rate curve. According to Section 4.4, this part
of the curve can be expressed as a linear functionx = α + µg/b,
whereα=0.0267 andµ=0.354.3 Sinceα is small, here we make
a further approximation to letx = µg/b. We will discuss later
how the results are affected when we considerα. Given the ap-
proximation,xi = µgi/bi, i = 0, 1, ..., f . The total size isM , so
M =

Pf
i=0 bi. The cost of this configuration is

e = c1 + fx0c1 + x0

fX
i=1

xic2

= fµ
g0

b0
c1 + µ

g0

b0

fX
i=1

µ
gi

bi
c2 + c1

= µ
g0

b0
(fc1 + µc2

fX
i=1

gi

bi
) + c1

=
µg0

M −
fX

i=1

bi

(fc1 + µc2

fX
i=1

gi

bi
) + c1

(17)

e is a function of multiple variables,b1, b2, ..., bf . To find out the
minimum, we equate the partial derivatives ofe to 0. In the follow-
ing, we calculate the partial derivative ofe overbi, i = 1, 2, ...f .

∂e

∂bi
=

µg0

(M −
fX

i=1

bi)2

(fc1 + µc2

fX
i=1

gi

bi
) +

µg0

M −
fX

i=1

bi

µc2gi(− 1

b2i
)

Let ∂e
∂bi

= 0, then

µg0

M −
fX

i=1

bi

0BBBBB@
fc1 + µc2

fX
i=1

gi

bi

M −
fX

i=1

bi

− µc2gi

b2i

1CCCCCA = 0

µg0

M−Pf
i=1 bi

is non-zero, so

fc1 + µc2

fX
i=1

gi

bi

M −
fX

i=1

bi

=
µc2gi

b2i
(18)

3Actually, even if the collision rate for the optimal allocation is a
little higher than 0.4, we can still use linear regression for that part.
The values ofα andµ would be a little different, but experiments
show that small variation in their values does not affect the result
much.

for i = 1, 2, ..., f .
Observe that left hand side of the equation is the same for anyi.

So we have

g1

b21
=

g2

b22
= ... =

gf

b2f

that is,bi is proportional to
√

g
i
.

Let bi =

√
g

i

ν
, i = 1, 2, ...f . Substituting this forbi in Equa-

tion 18, we have

µc2Mν2 − 2µc2

fX
i=1

√
giν − fc1 = 0 (19)

This is a quadratic equation overν. Solving it we have

ν =

µc2

fX
i=1

√
gi ±

vuutµ2c22(

fX
i=1

√
gi)2 + fµc1c2M

µc2M

ν > 0, so only the one with “+” before the square root on the
numerator is the solution. So

bi =

√
gi

ν
=

µc2M
√

gi

µc2

fX
j=1

√
gj +

vuuutµ2c22(

fX
j=1

√
gj)2 + fµc1c2M

=
M

fX
j=1

√
gj

√
gi

+

vuuuuuuuut
0BBBBB@

fX
j=1

√
gj

√
gi

1CCCCCA
2

+
fc1M

µc2gi

(20)

wherei = 1, 2, ..., f .

b0 = M −Pf
i=1 bi

= M −
M

fX
j=1

√
gj

fX
j=1

√
gj +

vuuut(

fX
j=1

√
gj)2 +

fc1M

µc2

(21)

A key consequence of our analysis is that we should allocate
space proportional to thesquare rootof the number of groups in
order to achieve the minimum cost. Another interesting point is
thatb0 (the space allocated to the hash table of the phantom) always
takes more than half the available space.

While the 2-level case results in a quadratic equation (that is,
Equation 19), a similar analysis on the simplest 3-level case results
in an equation of order 8. According to Abel’s impossibility theo-
rem, equations of order higher than 4 cannot be solved algebraically
in terms of a finite number of additions, subtractions, multiplica-
tions, divisions, and root extractions (in the sequel, we simply say
“unsolvable”). More general multi-level configurations generate
equations of even higher order which are unsolvable, therefore we
would use heuristics to decide space allocation for the these un-
solvable cases based on the analysis available. Experiments show
that our proposed heuristics based on the analysis are very close to
optimal and better than other heuristics.



5.2 Heuristics
For unsolvable configurations, we propose heuristics to allocate

space based on the analysis of the solvable cases and partial results
we can get from the unsolvable cases. We observe that whileb2

i

(bi is a leaf relation) is proportional toµc2gi, which is affected by
its own number of groups, according to our analysis on the three
level case,b2

1 (b1 is a non-leaf relation) is proportional todµg1c1 +
µg1c2

Pd
i=1 x1i (note thatµg/b = x), wherex1i are the collision

rates of tables for the children ofb1. b1 is affected not only by its
own number of groups, but also its children’s. The intuition is that
we should care more about a relation when it has children in the
feeding graph of the configuration. Therefore we will consider the
following space allocation schemes which add some weights to a
relation when it has children to feed.

Heuristic 1: Supernode with Linear Combination (SL). We
start from the leaf level of the configuration. Each phantom at the
record level together with all its children are viewed as a supernode.
The number of groups of this supernode is the sum of the number
of groups of the phantom and all its children. Then we view the su-
pernode as a query and do the above compaction recursively until
the configuration become all queries. For the all query configura-
tion, we can allocate space optimally. After this allocation, each
query (some may be supernodes) has some space. We decompose a
supernode to a two-level structure and allocate space according to
the analysis of Section 5.1, that is, allocate space proportional to the
square root of the number of groups. If there are still supernodes in
the structure, we do the decomposition recursively.

Heuristic 2: Supernode with Square Root Combination (SR).
This heuristic is the same as SL except the calculation of the group
of the supernode. Since in the two level case we see that the space
should be proportional to the square root of the number of groups,
we can also let the square root of the number of groups of the su-
pernode be the sum of the square roots of all its relations.

Note that both SL and SR give the optimal result for the case of
one phantom feeding all queries. We will also try two other simple
heuristics which are not based on our analysis as a comparison to
the above two more well-founded heuristics.

Heuristic 3: Linear Proportional Allocation (PL) . This heuris-
tic simply allocates space to each relation proportional to the num-
ber of groups of that relation.

Heuristic 4: Square Root Proportional Allocation (PR). This
heuristic allocates space to each relation proportionally to the square
root of the number of groups of that relation.

Although we cannot compute the optimal solution for space al-
location of some cases, there does exist a space allocation which
gives the minimum cost for each configuration. One way to find
this optimal space allocation is to try all possibilities of allocation
of space at certain granularity. For example, if the configuration is
AB feeds A and B, and total space is 10, we can first allocate 1 to
AB, 1 to A, and 8 to B. Then we try 1 to AB, 2 to A, and 7 to B, and
so on. By comparing the cost of all these space allocation choices
we will find the optimal one. We call this method theexhaustive
space allocation (ES). Obviously this strategy is too expensive to
be practical, but we use it in our experiments to compare with the
four space allocation schemes and see how much the heuristics dif-
fer from the optimal choice. The results of ES are affected by the
granularity of varying the space allocation. In our experiments, we
found that using a granularity of 1% ofM is small enough to pro-
vide accurate results.

The space allocation schemes are independent of the phantom
choosing strategies, that is, given a configuration, a space allocation
scheme will produce a space allocation no matter in what order
the relations in the configuration are chosen. Therefore we will
evaluate space allocation schemes and phantom choosing strategies
independently.

5.3 Revisiting Simplifications
From the beginning of the analysis on space allocation, we have

made an approximation on the linear expression of the collision
rate, that is, we letx equalµg/b instead ofα + µg/b. We also did
the analysis when we letx = α+µg/b. The result of the case with
no phantom is the same. The case with one phantom feeding all
queries results in a quartic equation which can be solved, so we can
still get an optimal solution for this case. However, because solving
a quartic equation is much more complex than a quadratic equation
and it’s more involved to decide which solution of the quartic equa-
tion is the one we want, we use the approximated linear expression,
that is,x = µg/b for space allocation in our experiments. The re-
sults of the experiments show that they have good accuracy.

We have made another simplification on the size of each hash
table bucket entry in the analysis for ease of exposition. By using
M =

P
bi, we have assumed that a hash table entry has the same

size for all relations in the LFTA. Actually, the size of a hash table
entry for different relations can vary a lot. Suppose we use an int
(4 byte) to represent each attribute or a counter. Then a bucket for
relation A takes 8 bytes and a bucket for ABCD takes 20 bytes.
If we denote the bucket entry size of relationi ashi, thenM =P

bihi. In this case, the results of the analysis are similar. Instead
of allocating space proportional to

√
g, we should allocate space

proportional to
√

gihi. We have used such variable sized buckets
in our implementation, and experimental study, discussed next.

For clustered data, collision rates should be divided by the aver-
age flow lengthla. To consider this in space allocation, we should
allocate space proportional to

p
gihi/li, whereli is the average

flow length of relationi.

6. EXPERIMENTAL STUDY

6.1 Experimental Setup and Datasets
We prototyped this framework in C in order to evaluate the dif-

ferent techniques we developed. We use 4 bytes as our unit of space
allocation. Each attribute value and counter we instantiate has this
size. In accordance to operational streaming data managers [8], we
considerM between 20,000 and 100,000 units of space (4 bytes
each). The ratio of eviction cost to probe costc2/c1 is is modeled
as 50 in our experiments, which is also a ratio measured in opera-
tional data stream management systems [8].

We used both synthetic and real datasets in our evaluation. The
real dataset is obtained bytcpdumpon a network server. We ex-
tracted TCP headers obtaining 860,000 records with attributes source
IP, destination IP, source port and destination port, each of size 4
bytes. The duration of all these packets is 62 seconds. There are
2837 groups in this 4-attribute relation. For other relations we ex-
tracted in this way, the number of groups varies from 552 to 2836.
For the synthetic datasets, we generated 1,000,000 3 and 4 dimen-
sional tuples uniformly at random with the same number of groups
as those encountered in real data. All the experiments are run on a
desktop with Pentium4 2.6GHz CPU and 1GB RAM.

We adopt the following way to specify a configuration. “AB(A
B)” is used to denote a phantom AB feeding A and B. We use this
notation recursively. For example, the configuration in Figure 3(c)
can be expressed as (ABCD(AB BCD(BC BD CD))).
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Figure 9: Comparison of space allocation schemes

6.2 Evaluation of Space Allocation Strategies
Our first experiment aims to evaluate the performance of vari-

ous space allocation strategies. In these experiments we derive our
parameters from the real data set. Our observations were consis-
tent across a large range of real and synthetic datasets. We vary
M from 20,000 to 100,000 at steps of 20,000 and the granularity
for increasing space while executing ES is set at 1% ofM . In all
experiments we compute the cost using Equation 7 with a suitable
model for collision rate, as described below.

6.2.1 Solvable Configurations
We first experimentally validate the results of our analysis for the

case of configurations for which we can analytically reason about
the goodness of space allocation strategies.

For the case with no phantoms, (assumingx = µg/b as colli-
sion rate) we compared the cost of the exhaustive space allocation
(ES) with a scheme that allocates space according to our analytical
expectations, namely, allocating space proportional to the square
root of number of groups. For the case of real data, we tested all
possible configurations with no phantoms. The cost obtained by
the scheme performing space allocation as dictated by our analyti-
cal derivations incurred an error less than 1% compared to ES. The
small error comes from our approximation to the collision rate, es-
pecially the value ofµ, which can be different from the value the
optimal solution assumes.

For the case with only one phantom feeding all queries, we use
our optimal space allocation scheme derived based on the approxi-
mation of collision ratex by µg/b. We again compare the accuracy
of the space allocation scheme allocating space according to our
analysis, to that of ES and test all possible configurations for the
case of the real data set. The average cost error (compared to ES)
of our scheme is usually less than 1% and the maximum observed
was 2%. Therefore even with this approximation (x = µg/b) to
the collision rate, the results are still quite accurate.

6.2.2 Unsolvable Configurations
For unsolvable configurations, we evaluated several heuristics.

We compared SL, SR, PL, PR as described in Section 5.2 and ES.
We evaluated all possible configurations for the case of the real data
set (four attributes). The relative errors of the heuristics compared
to the cost of ES are shown in Figures 9 and 10 for 4 representative
configurations. Related results were obtained for other configura-
tions; all those are summarized in Table 2.

We observe that generally SL and SR are better than PL and PR.
Thus, heuristics inspired by our analytical results appear beneficial.
Except one case in Figure 10(a) whenM = 20, 000, SL is always
the best. PL and PR can have errors as large as 35% and although
SR has smaller error, it is always less accurate than SL. In Table 2,
we show the average relative error of the four different heuristics
compared to ES. SL is the best for all values ofM .

In Table 3, we accumulate statistics in order to show in all con-
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Figure 10: Comparison of space allocation schemes

M (thousand) 20 40 60 80 100
SL (%) 6.0 3.0 2.2 3.2 2.3
SR (%) 6.2 5.3 5.3 9.0 9.4
PL (%) 15.8 14.2 14.6 21.4 23.4
PR (%) 10.1 11.4 12.4 19.7 22.7

Table 2: Average error for the four heuristics

figurations tested how frequently SL is the heuristic yielding the
minimum error. We preset the percentage of configurations tested
in which SL yields minimum error, as well as for the cases that SL
does not yield the minimum error, how far its error is from the error
of the best heuristic, on the average.

These results (which are representative of a large set of exper-
iments conducted) attest that SL behaves very well across a wide
range of configurations. Even in the cases that it’s not the best it re-
mains highly competitive to the best solution. Therefore we would
choose SL for space allocation in our algorithms.

6.3 Evaluation of the Greedy Algorithms
We now turn to the evaluation of algorithms to determine ben-

eficial configurations of phantoms. We will evaluate the greedy
algorithm GS and our proposed greedy algorithm GC. GC makes
use of the SL space allocation strategy; we refer to this combina-
tion as GCSL (algorithm GC using SL space allocation). For GS,
we would add space ofφg each time a phantom is added in the
current configuration under consideration until there is not enough
space for any additional phantom to be considered. At this point
we allocate the remaining space to relations already in the config-
uration proportional to their number of groups. We also consider
the following method to obtain the optimal configuration cost. We
explore all possible combinations of phantoms and for each con-
figuration we use exhaustive space (ES) allocation to calculate the
cost, choosing the configuration with the minimum overall cost. We
will refer to this method as EPES in the sequel. Costs are computed
using Equation 7 and our approximation to the collision rate.

6.3.1 Phantom Choosing Process
We first look at the query set{A, B, C, D} on a 4-dimensional

uniform random dataset withM set as 40,000. Since a good value
of φ is not known a priori, we vary it and observe the trends. Fig-
ure 11 presents the cost of the different algorithms. The costs are
normalized by the cost of EPES (the optimal cost). The cost of GS
first decreases and then increases, asφ increases. Ifφ is too small,
each phantom is allocated a small amount of space, at the expense
of high collision rate. On the other hand, ifφ is too large, each

M (thousand) 20 40 60 80 100
SL being best (%) 44 89 89 89 100

Relative error from the best (%) 2.2 0.006 0.15 0.6 0

Table 3: Statistics on SL
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Figure 12: Phantom choosing process

phantom has low collision rate, but each phantom takes too much
space and prohibits addition of further phantoms, which could be
beneficial. This alludes to a knee in the cost curve signifying the ex-
istence of an optimum value. For the GCSL algorithm, cost is lower
than the cost of GS for anyφ, because when we adjust the space
allocation and calculate the cost each time a phantom is added, we
are essentially adaptingφ to a better value. The gap between the
minimum point of the GS curve and GCSL is due to the space allo-
cation scheme. Using GC in conjunction with PL space allocation,
yields a curve which precisely lower bounds GS. Thus, GCSL ben-
efits from both the way we choose phantoms and the way space is
allocated in these phantoms.

Figure 12 presents the change in the overall cost in the above
scenario as each phantom is chosen. We observe that the first phan-
tom introduces the largest decrease in cost. The benefit decreases
as more phantoms are added and for GS withφ = 0.6, the cost
goes up when adding the third phantom. Note that the third phan-
tom added by GS withφ = 0.6 is different from the third phantom
added by GCSL due to the differences in space allocation. For GS
with φ = 1.2, 1.3 there is no space to add more than one phantom.

6.3.2 Validating Cost Estimation Framework
With our next experiment we wish to validate our cost estima-

tion framework against the real measured errors. We implemented
the hash tables and we let a uniform random dataset pass through
the phantoms and queries computing the desired aggregates. The
phantoms are chosen and the corresponding space allocation is con-
ducted, using our heuristics. We count the collisions in the hash ta-
bles and calculate the true cost of this configuration. We normalize
the actual cost of GCSL and GS by the actual cost of the optimal
(according to our cost model) configuration obtained by EPES; the
relative actual costs are shown in Figure 13(a). For GS, we tried
different φ values, and only the one with the lowest cost at each
value of M is presented in the figure.

We can see that the actual cost of GCSL is always much lower
than that of GS, even we could always choose the bestφ for GS
(which is impossible in practice). WhenM=60,000, the cost of
GCSL is as low as 26% of the cost of GS. While GS can have cost
as high as 6 times the optimal cost, GCSL is always within 3 times
the optimal cost.
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Figure 13: Comparison on synthetic dataset
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Figure 14: Comparison on real dataset

We conducted a large set of experiments quantifying the accu-
racy of our estimation framework against actual measurements. In
general, difference between the predictions of the cost model and
the actual cost becomes large asM increases. The relative cost
difference of GCSL compared to the optimal cost also increases as
M increases. This is due to two factors: first whenM is very large
then collision rates are very small and become increasingly difficult
to capture analytically. Second, for largeM there are many phan-
tom levels and as a result errors accumulate across multiple levels.
However, despite certain inaccuracy, our technique results in a rea-
sonable low cost compared to the optimal cost and outperforms GS
considerably, for a variety of data sets, especially for low values of
M (which is the common case in practice).

In order to validate the effectiveness of phantoms for computing
multiple aggregates, we conducted the following experiment. We
run the same queries without maintaining any phantoms and we
compare the cost with the cost of GCSL. The results are presented
in Figure 13(b). It is evident that maintaining phantoms does re-
duce the cost greatly (more than an order of magnitude).

6.3.3 Experiments with Real Data
We repeated our validation experiment using real data this time

and the query set{AB, BC, BD, CD}. Again we let the real data
set stream by the configuration we have obtained using our algo-
rithms and report the resulting actual costs incurred. Once again
actual costs are normalized by the actual cost incurred by the EPES
strategy. Flow length is derived temporally.

Figure 14(a) presents the results. It is evident that GCSL out-
performs GS. Once again we compare the cost of GCSL and the
cost incurred without the maintenance of any phantoms. GCSL of-
fers an improvement up to about 100 compared to the cost incurred
without the use of phantoms.

6.3.4 Peak Load Constraint
The update cost at the end of epoch as described in Section 3.2.2

can be calculated according to Equation 8. This update cost must
be within the peak load constraintEp. If the update costEu ex-
ceedsEp, we can use two methods to resolve it:shrinkandshift.
The shrink method shrinks the space of all hash tables proportion-
ally. The shift method shifts some space from queries to phantoms
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sincec2 is much larger thanc1 and a major part of the update cost
is incurred by queries. For the real dataset and the query set{AB,
BC, BD, CD}, given a space allocation, we calculate itsEu; then
we setEp to a percentage ofEu and use the two methods to re-
allocate space. After the reallocation, we run the data through the
configuration and we compute the cost whenM = 40, 000. The
results are in Figure 15. WhenEp is not much smaller thanEu, the
shift method performs better; while whenEu is much larger than
Ep, the shrink method performs better. The reason is that when
Eu is close toEp, a small shift to reduceEu suffices. WhenEu

andEp differ by much, a major shift in space results in non opti-
mal space allocation and thus shrink is better. Similar behavior is
observed when M is set as other values.

In terms of the performance of our algorithms, the running time
of GCSL in all configurations we tried was sub-millisecond; we
don’t expand further due to space limitations.

7. RELATED WORK
Our problem is closely related to the problem of multi-query op-

timization, i.e., optimizing multiple queries for concurrent evalu-
ation. This problem has been around for a long time, and several
techniques for this problem have been proposed in the context of
a conventional DBMS (see, e.g., [18]). The basic idea of all these
techniques is the identification of common query sub-expressions,
whose evaluation can be shared among the query execution plans
produced. This is also the basis for sharing of filters in pub-sub
systems (see, e.g., [11]). Our technique of sharing computation
common to multiple aggregation queries is based on the same idea.

Our problem also has similarities to the view maintenance prob-
lem, which has been studied extensively in the literature (see, e.g.,
[13]). In this context, Ross et al. [17] have studied the problem of
identifying, in a cost-based manner, what additional views to mate-
rialize, in order to reduce the total cost of view maintenance. Our
idea of additionally maintaining phantoms, and choosing which
phantoms to maintain, to efficiently process multiple aggregations
is based on the same conceptual idea.

Many papers (see, e.g., [7, 4, 5]) have highlighted the importance
of resource sharing in continuous queries. [7, 16] use variants of
predicate indexes for resource sharing in filters in continuous query
processing systems. In the context of query processing over data
streams, Dobra et al. [9] consider the problem of sharing sketches
for approximate join-based processing. [6, 2] consider the prob-
lem of resource sharing when processing large numbers of sliding
window aggregates over data streams. However, none of these pa-
pers proposed the maintenance of additional queries to improve the
feasibility of resource sharing.

8. CONCLUSIONS
Monitoring aggregates on IP traffic data streams is a compelling

application for data stream management systems. Evaluating mul-

tiple aggregations in a two level DSMS architecture is an important
practical problem. We introduced the notion of phantoms (fine-
granularity aggregation queries) that has the benefit of supporting
shared computation. We formulated the MA optimization problem,
analyzed its components and proposed greedy heuristics which we
subsequently evaluated using real and synthetic data sets to demon-
strate the effectiveness of our techniques.

We are currently considering deploying this framework in a real
DSMS system. This raises important research questions at the sys-
tem level, in terms of interaction of such algorithms with the cur-
rent system, studying issues related to adaptivity and frequency of
execution, etc. We hope to report such results in the near future.
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