SpADe: On Shape-based Pattern Detection in Streaming Time Series

Yueguo Chen® Mario A. Nascimento'™

$National University of Singapore
{chenyueg, ooibc, atung} @comp.nus.edu.sg

Abstract

Monitoring predefined patterns in streaming time series
is useful to applications such as trend-related analysis, sen-
sor networks and video surveillance. Most current studies
on such monitoring employ Euclidean distance to calculate
the similarities between given query patterns and subse-
quences of streaming time series. Euclidean distance has
been shown to be ineffective in measuring distances of time
series in which shifting and scaling usually exist. Conse-
quently, warping distances such as dynamic time warping
(DTW), longest common subsequence (LCSS), have been
proposed to handle warps in temporal dimension. How-
ever, they are inadequate in handling shifting and scaling
in amplitude dimension. Moreover, they have been de-
signed mainly for full sequence matching, whereas in on-
line monitoring applications, we typically have no knowl-
edge on the positions and lengths of possible matching sub-
sequences. In this paper, we first discuss the weaknesses
of existing warping distances on detecting patterns from
streaming time series. We then propose a novel warp-
ing distance, which we name Spatial Assembling Distance
(SpADe), that is able to handle shifting and scaling in both
temporal and amplitude dimensions. We further propose
an efficient approach for continuous pattern detection us-
ing SpADe, that is fundamental for subsequence matching
on streaming data. Finally, our experimental results show
that SpADe is effective and efficient for continuous pattern
detection in streaming time series.

1 Introduction

A good way to understanding changes in streaming time
series is to detect interesting patterns from time sequences.
A pattern in time series is a set of sequential data items col-
lected in discrete time points, describing a meaningful ten-
dency of evolving data items during a period of time. Pat-
terns (e.g., trajectories of objects, signals from devices) are
very important in stream based applications as they imply

*The work was done while the author was on his sabbatical leave at the
Natl. Univ. of Singapore and partially supported by NSERC, Canada

Beng Chin Ooi® Anthony K. H. Tung®
TUniversity of Alberta
mn@cs.ualberta.ca

Figure 1. lllustration of shifting and scaling in
temporal and amplitude dimensions.

important phenomenon of the monitored objects. The prob-
lem of pattern detection in streaming time series can thus
be defined as follows. Given a set of query patterns {Q; },
a distance measure on time series, and a distance thresh-
old 4, we want to continuously monitor matching subse-
quences of streaming time series against any given query
pattern in {Q;}. A subsequence is said to be matching if
the distance between the subsequence and a query pattern is
no more than §. Without loss of generality, we assume that
the time interval between two consecutive data items in the
sequences is fixed. Otherwise, a transformation into equal
time interval sequences can be done by using interpolation.

The so-called warps in temporal and amplitude dimen-
sions of time series impose difficulties in measuring dis-
tances between time series. Figure 1 shows cases of warps
(shifting and scaling) existing between query pattern () and
data sequence D. Note that D is similar to () at semantic
level, as there is a hump followed by an ascending trend in
both of them. The first warp is time shifting, i.e., the lag
of ascending trend to the hump in @) (measured as d — ¢) is
different from that (measured as d’ —¢’) in D. The second is
amplitude shifting, e.g., the values of data items between d
and e in () are larger than those of the corresponding items
between d’ and ¢’ in D. The third is scaling, the extensions
of humps in) and D are different in both temporal dimen-
sion (from c-a and ¢’-a’) and amplitude dimension (from
Q[b]-Qla] and D[b']-Dla’}).

Euclidean distance is a simple measure for similarity be-
tween two time sequences. However, it is sensitive to the
warps mentioned earlier and similar patterns can be sepa-
rated by very large Euclidean distances if the data items are

not aligned. To reduce such effect, warping distances such
as DTW [2], LCSS [16] and edit distance on real sequence
(EDR [4]) have been proposed. Nevertheless, they remain
sensitive to shifting and scaling in the amplitude dimension
and their effectiveness degenerates quickly in such cases.
Figure 2 shows two of such examples. Intuitively, sequence
A and B are much more similar in shapes than A and C' in
the two cases. However, due to amplitude shifting (a), and
scaling (b), the warping distances of A and B in the two
cases will be much larger than those of A and C.

(a) (b)

Figure 2. Impact of shifting and scaling in am-
plitude on existing warping distances.

All the above mentioned distances are used mainly for
full sequence matching, in which distance is measured
based on the full length of sequences. However, in pat-
tern detection on streaming time series, we have no priori
knowledge on the positions and lengths of the possible
matches. We must first divide the potential subsequences
from the streaming time series, and then compare them to
query patterns based on full matching. An obvious solution
is to compare the most recent subsequences of streaming
time series to the query patterns whenever a new data item
arrives. However, such an approach is computational inten-
sive, and incurs redundant computational overhead.

Segmentation is a simple way to handle subsequence
matching, in which potential matching subsequences are ex-
tracted from streaming time series and compared to query
patterns. However, potential segments may be hard to ex-
tract as many time series patterns have no clear boundaries.
Moreover, even though some boundaries can be detected,
e.g., by local extreme points in streaming series, there is no
effective error bound on distances of the extracted potential
matching subsequences, especially when shifting or scaling
exists in the streaming time series. Segmentation on pat-
tern detection can introduce many false dismissals. Figure
3 shows an example where false dismissals may occur by
using segmentation on streaming time series. When using
warping distances such as DTW to measure the distance be-
tween () and the segmented subsequence starting at z’, the
distance d may be larger than ¢ due to the unmatched region
before y and y’. However, if the segmented subsequence
starts after 2, e.g, at a point between 2’ and ¢/, the distance
is expected to be less than d. Therefore, it is possible to
miss a matching subsequence due to pruning by segmenta-
tion. Besides identifying the starting point, the choice of the
length of the potential matching subsequences is also diffi-

cult with the existence of time shifting and scaling. This is
especially true when query patterns are complex.

Figure 3. An example of segmentation on

subsequence matching. @ and D are well

matched from y and y’. However, the starting

point of a potential matching subsequence is

obtained by segmentation at position 2’ of D.

As a subsequence matching problem, pattern detection
on streaming time series is naturally expensive. Existing
warping distances have so far not been extended for online
pattern detection in streaming time series while taking both
shifting and scaling into account.

In this paper, we introduce a novel definition of warp-
ing distance, called Spatial Assembling Distance (SpADe),
which is used to support shifting and scaling in both tem-
poral and amplitude dimensions in our interactive media
system called PIPA. SpADe can also be used to efficiently
perform continuous detection of patterns on streaming time
sequences without the need to perform sequence segmenta-
tion. Our contributions are as follow:

e We identify the weaknesses of existing warping dis-
tances, and explain why they are not suitable for pat-
tern detection on streaming time series in cases where
both shifting and scaling along amplitude and temporal
dimension exist.

e We propose a novel warping distance SpADe, which
can be applied to both full sequence and subsequence
matching. SpADe is a robust measure of distances be-
tween shape-based time series as it is not sensitive to
shifting and scaling in temporal and amplitude dimen-
sions of streaming time series.

e We propose a continuous SpADe calculation approach
which can naturally be used on pattern detection in
steaming time series. We improve the efficiency of pat-
tern detection by using a pruning approach.

e Experimental study was conducted. Results show that
SpADe is both efficient and effective as a distance
measure for subsequence matching on streaming time
series.

The rest of the paper is organized as follows. Section 2
gives an overview of warping distances and existing solu-
tions on subsequence matching. Section 3 defines SpADe,
and Section 4 introduces the approach of continuous pat-
tern detection. Section 5 shows the experimental study of
SpADe. Section 6 gives the conclusions.

2 Related Work

Existing works on pattern matching of time series are
mainly focused on full sequence matching. Those simi-
larity measures of full sequence matching can be classified
into three categories. The first is Euclidean based measures
in which Euclidean distance is used in measuring distance
between either two original time sequences or features got
from the original time sequences. It has been observed that
Euclidean measure is very sensitive to distortion and noise
[4, 9]. It only handles global time scaling by shrinking
or stretching time sequences compulsively. As a solution,
DTW [2] was employed by finding the optimal alignment
between two time sequences. It handles local time shift-
ing and scaling [3], but is still sensitive to amplitude shift-
ing and scaling as the amplitude differences of data items
will be accumulated. In addition to DTW, common sub-
sequence based distances such as LCSS [16] and EDR [4]
were proposed to further handle noise. However, they are
more sensitive to amplitude shifting and scaling than DTW
as common subsequences are found by comparing ampli-
tude values. Our proposed distance SpADe tries to handle
both shifting and scaling in temporal and amplitude dimen-
sions of time series. We compare SpADe to existing dis-
tances on time series in Table 1.

Time Time Amplitude Amplitude Noise
shifting | scaling shifting scaling
Euclidean partially
DTW v v
CommonSub | v v v
SpADe v v v v v

Table 1. The abilities of distance functions.

To our knowledge, little study on subsequence matching
has been conducted. ST-index [7], Dual Match [12] and
General Match [11] use fixed size sliding windows on se-
quences. They map each window of data items into a multi-
dimensional point and use indexing techniques to efficiently
match the subsequences in feature space. The difference be-
tween them is whether a sliding window or disjoint window
is used in query sequences and streaming sequence. The
limitation of these studies is the use of Euclidean distance
on measuring similarities in feature space. Park et al. [14]
proposed an approach for subsequence matching by apply-
ing DTW. The suffix tree is used to index possible subse-
quences of the data sequences. However, all these studies
on subsequence matching try to search the matches of short
query patterns to long sequences in a database, where index
can be built on long data sequences.

Pattern detection on streaming time series is different
from finding matching subsequences in database. It tries
to detect matching subsequences within long streaming se-
quences to any given query pattern. Wu et. al [19] proposed
an online segmentation and pruning algorithm to simplify

the data sequence as zigzag shapes. They measured simi-
larities of subsequences based on the permutation of the end
points of piecewise segments. However, the piecewise lin-
ear representation limits its application in shape based pat-
tern matching on time series. Wei et. al [18] used a wedge
to merge multiple candidate sequences, and compared the
set of wedges against the subsequences in the coming data
stream. The limitation of their work is that it does not con-
sider how to partition the steaming time series and how to
efficiently find matching subsequences.

Euclidean distance or its variation (e.g., correlations)
was used in matching patterns in some recent works on
streaming time series such as BRAID [15], SPIRIT [13].
Gao et. al [8] also studied continuous pattern queries on
streaming time series. They attempted to detect the nearest
neighbor pattern when new data value arrives. Fast Fourier
Transform was used to efficiently find the cross correlations
of time series, which yields a batch processing model. As
mentioned earlier, the use of simple Euclidean distance or
correlation in these studies affects the effectiveness of pat-
tern matching where shifting and scaling exist.

3 Spatial Assembling Distance

We have a hypothesis that in human intuition, the match
between two shape-based sequences always comes from
multiple sequential matches of a set of subsequences. Based
on this hypothesis, we propose a novel warping distance,
Spatial Assembling Distance (SpADe), which can be ap-
plied to measure distances between shape-based time series
under both full and partial sequence matching. We first in-
troduce SpADe for full sequence matching.

3.1. Local Pattern Match

In full sequence matching, the distance between two time
sequences Q[0 : m] and D[0 : n] are measured based on the
full length of two sequences. We borrow the idea from Gen-
eral Match [11], and extract a set of small patterns from time
series by using a fixed size of sliding window. These small
patterns of the same length are called local patterns. By us-
ing the fixed size sliding window on two time sequences,
we get two sets of local patterns.

A local pattern Ip from a time sequence () can be de-
scribed as Ip = (Opos, Oamps Oshps Otscis Bascr), Which are
the position of lp in (), the mean amplitude of data items in
lp, the shape signature of Ip, and the temporal and ampli-
tude scales (equal to 1 if @ is not scaled) of Ip respectively.
They should be easily computed from (). The distance of
two local patterns Ip in Q and Ip’ in D, can be measured as
Di(lp',1p) = f(19mp — Oampl, [05p, — Osnpl), which is a
weighted sum of the differences in amplitude and shape fea-
tures of two local patterns. The weights in f is application-
specific, depending on the tolerance of the amplitude differ-
ence and that of the shape difference.

A local pattern match (LPM) p is formed from Ip and Ip’
if D1(Ip',lp) < e, which means that there is a match be-
tween local pattern [p and [p’. We label the positions of Ip
in Q and Ip’ in D as p.x and p.y respectively. A matching
matrix of m X n is shown in Figure 4 to describe the match
of local patterns in @ and D. The relative positions of Ip
and [p’ are obtained by projecting p horizontally and ver-
tically. p can be described by the following features: p =
(p~$7p'y7 wla ¢2; s, '(/)4> = (eposa ;7037 ;)os _9p087 émp_
eampa Héscl - otsclv 0;561 - 9&801)7 where wla ¢2’ w?’ and ¢4
represent the shifting and scaling of p in temporal and am-
plitude dimensions respectively.

Figure 4. An example of a LPM and its corre-
sponding local patterns in matching matrix.

Note that there may be a number of local patterns ex-
tracted from time sequences) and D. A large number
of LPMs will be formed if () and D are similar in shapes.
Their distribution can be visualized in the matching matrix
formed from the two sequences.

3.2. Definition of SpADe

We measure the SpADe of two time sequences based on
the distribution of LPMs in the matching matrix. For full
sequence matching, we try to find the best combination of
LPMs, such that they can maximize the matches of) and
D. The quality of pattern combination is determined by the
following two criteria: 1), the projections (vertical and hor-
izontal) of LPMs should cover large regions of @ and D.
The larger the covered regions, the more data items in)
and D are matched; 2), the difference of features of two
LPMs should be as small as possible, which means that two
LPMs can be obtained by a similar transformation from lo-
cal patterns in () to local patterns in D.

3.2.1 Distance between two LPMs

We define the gap between two LPMs p; and p; on () as
ED(p2,p1) = maz(pa.xc—p1.x—w,0) if pg.x > p1.z; else
ED(pa,p1) = +o00. w is the length of the local patterns.
Similarly, the gap between p, to p; on D is measured as
ED'(pa, p1) = maz(pe.y — p1.y — w,0) if p2.y > p1.y;
else ED’'(p2,p1) = +0o. The gaps are used to handle the
noise and local unmatched regions within time series.

Definition 1. The distance of ps to p1 is Da(p2,p1) =
9(ED(p2,p1)) + g(ED'(p2,p1)) + h(|p2.¢ — p1.9]).

Function g(x) is a penalty on the gaps between two
LPMs, which can be defined by users, but should satisfy the
following properties: 1) g(0) = 0; 2) be monotonic. Func-
tion h(z) is a weighted penalty of difference of features:
time shifting, amplitude shifting, time scale and amplitude
scale. Therefore, h(|ps.v) —p1.9|) = w1 - |p2.y1 —p1.Y1]+
wa - |p2.32 — p1.Ye| + w3 - [p2.Yh3 — p1-Y3| +wa - [p2.ha —
p1-¥4|. In our study, g(x) > wy - should be satisfied,
which provides an elegant pruning approach shown later.

We also define the distance between a LPM p and a point
at the top or bottom of the matching matrix according to
the gaps between p and the point. For a point P(0,ys)
satisfying ys < p.y — %, the distance from Ps to p is
Ds(p, Ps) = g(p-x — %) +9(p-y —ys — 5). Similarly, for a
point P (m, y.) satisfying y. > p.y + ¥, the distance from

pto Pois Dy(P.,p) = gim—p.x—5) +9(ye —py—%5).
3.2.2 SpADe in full sequence matching
Definition 2. Given a path r = P; — p1 — ... —

pt — P. formed by Ps(0,ys), P.(m,y.), and a number
of LPMs p1, . .., py, the length of v is defined as Cost(r) =

Ds(p1, Ps) + Zf;i Dy(pit1,pi) + Da(Pe, pr).

Given two sequences Q[0 : m] and DI0 : n], a matching
matrix can be built based on all the LPMs between () and
D. Given two corner points Ps(0,0) and P.(m,n) in the
matching matrix, {r;} include all the paths derived from
the LPMs, and linking Ps; and P.. The SpADe of Q) to D
under full sequence matching is defined as:

Definition 3. SD(D, Q) = min; Cost(ry),r € {r;}.

In other words, the SpADe of two given time sequences
is the length of shortest path from left-up corner to the
right-bottom corner in the matching matrix of these two se-
quences. It is determined by the spatial distribution of the
derived LPMs. We find the best combination of LPMs us-
ing the shortest path connecting two end points. That is why
we call the distance as spatial assembling distance. Finding
shortest paths has been well studied and the classic Dijk-
stra’s algorithm [6] can be applied.

4 SpADe on Subsequence Matching

SpADe is useful not only for full sequence matching, but
for subsequence matching as well. In this section, we show
how SpADe can be continuously calculated in subsequence
matching. We achieve the efficiency of continuous SpADe
calculation in two ways: efficient LPM detection and con-
tinuous shortest path calculation.

4.1. Efficient detection of LPMs

Detecting LPMs in streaming time series against a set
of query patterns is the foundation of SpADe calculation.
To improve the accuracy and efficiency of pattern match-
ing, some preprocessing such as sampling and normaliza-
tion can be conducted on time sequences.

Short local patterns are preferred to describe the fine
grained shapes of time series. This is because long local
patterns generate more false positive LPMs, as large ¢ is
needed when patterns are long to guarantee no false dis-
missal of LPMs. Haar wavelet [5] is a good candidate for
extracting 6q.mp and 0, features from local patterns, as
low band wavelet coefficients elegantly describe the mean
amplitude and the general shape of local patterns. More-
over, it is computationally efficient.

Sliding window of width w is used to extract local pat-
terns at every sliding step of the time series. To handle the
possible scale difference between time series, query pat-
terns are transformed into various scales in temporal and
amplitude dimensions. Local patterns are extracted from
those scaled query patterns. Considering 6,y and 05, fea-
tures are in low dimensions (e.g., 4), an R-tree can be used
to index these local patterns so that the LPMs of Ip can be
efficiently detected.

To handle the variations in shifting and scaling, given a
local pattern [p extracted from the streaming series, a large
number of local patterns from queries will match p. There-
fore, many branches in R-tree are involved during the query,
which incur much computational overhead. Inspired by VA-
File [17], we partition the feature space into cells, and ap-
proximate the distance between local patterns according to
the cells they fall in. As the number of dimensions is small
and adequate variation should be allowed, the total number
of cells will be much less than the number of local patterns.
Therefore, efficiency on detecting LPMs can be achieved.

4.2. Continuous SpADe calculation

We have mentioned that there is a challenge on efficient
measure of distances between subsequences in streaming
data and queries. Our proposed SpADe is a good candidate
to continuously monitor matching subsequences. To illus-
trate this, we first give some definitions.

4.2.1 Variance of SpADe in subsequence matching

Given a query Q[0 : m] and a window size of most recent
data items D[t : t.] in the streaming time series, the local
SpADe of D at time point ¢ (ts < t < t,) is defined as:

Definition 4. SD;(D,, Q) = min;,, SD(D[t : 7], Q).

SD;(D;, Q) measures the distance of the best matching
subsequence (to ()) starting at time point ¢ of D. As shown
in Figure 5, SD;(D;, Q) can be explained as the shortest

path from point Ps(0,¢) to points P.(m,t') (t < t' < t¢).
Let ¢, = argminyg SD(D[t : '], Q). SDy(D, Q) is actu-
ally the full sequence matching SpADe of D[t : t,] to Q.

0
Q
m shrinking - | expanding

t match tr lt+#m match t,

Figure 5. An example of local SpADe.

Pattern detection problem tries to find subsequences of
D whose SpADe to query @ is less than some threshold
0. This can be achieved by continuously calculating lo-
cal SpADe, i.e., finding matching subsequences satisfying
SD;(Dy, Q) < ¢ atevery point of D. However, it is not ef-
ficient enough because each calculation of SpADe requires
finding the shortest path of LPMs within some window size,
which consumes much computation. To improve the ef-
ficiency of continuous SpADe calculation, we propose an
incremental way of calculating SpADe.

In pattern detection applications, the probability of hav-
ing matching subsequence grows as the number of LPMs
increases. Much computation will be saved if SpADe dis-
tance is updated only when new LPMs are detected.

Definition 5. The cumulating SpADe of a detected LPM p
to query @, noted as SD.(p), is the shortest path starting
from points at the top edge of matching matrix to p.

Definition 6. The potential SpADe of a LPM p to query Q
is defined as SD,(p) = SD.(p) + g(m — p.x — ¥).

SD.(p) is a lower bound on the length of paths pass-
ing through p and linking the top and bottom edges of the
matching matrix. Once SD.(p) > 4, p will not emerge
in the path of any qualified matching subsequence for Q.
On the other hand, if SD.(p) < ¢, p is a promising LPM.
Meanwhile, SD,(p) is an upper bound of local SpADe.
Therefore, Once SD,(p) < 4, a qualified matching sub-
sequence to the given region query on () is found.

4.2.2 Incremental calculation of SpADe

On pattern detection in streaming time series, we actu-
ally detect LPMs by cutting the most recent local pattern
from streaming data sequence, extracting feature from the
chopped local pattern, and retrieving LPMs of the local pat-
tern. On detecting a LPM p, it will be perfect if SD.(p) and
SD,(p) can be calculated on the fly. The following lemma
supports this incremental way of SpADe calculation.

Lemma 1. The LPMs detected behind a LPM p on stream-
ing time series will not change SD..(p).

Proof: Suppose py is detected behind p. Therefore,
p1y > py. If p1 change SD.(p), it should be in the
shortest path of SD.(p). Let py — .. — py — pis
a path from p1 to p in shortest path. Then we must be
able to find two consecutive LPMs p;, and py, in the path,
such that, py, is detected behind py,, i.e., Dy, .Y > Dt,-Y,
and ED(pt,,pt,) = —+oo. According to Definition 1,
Ds(pt,,pt,) = +oo. Therefore, SD.(p) = 400, which
is impossible because we can at least find a path from
Py (0,p.y — §) to p whose cost is only g(p.x — 5). Conse-
quently, p1 cannot change the value of SD.(p). |

Lemma 1 guarantees that SD.(p) can be immediately
calculated when p is detected from the streaming time se-
ries. The calculation of SD.(p) is to find the previous
LPM of p, noted as p’, from which the shortest path from
top edge of the matching matrix to p is found, i.e., p’ =
argming, (SD.(p1) + D2(p, p1)). According to Definition
1, p’ should be in the top-left corner of p. Figure 6 shows
the searching region ABOC of p’. This is because for those
LPMs whose reference point is beyond ABOC, one of the
gaps of p to them will be +o0.

Figure 6. Searching region of previous LPM.

However, it is not necessary to search p’ in the large
region of ABOC, as large gaps are usually not allowed
in practice. Therefore, the searching region of p’ can be
reduced by constraining the gaps between two consecu-
tive LPMs. Figure 6 shows the constraint searching region
A’B'OC’ with gap bound of £. The efficiency of calcu-
lating SD.(p) will be improved significantly, as small £ is
used in practice. The cumulating SpADe obtained from the
constraint searching region is noted as SD.¢(p). On de-
tecting p’, we get SD.¢(p) = SD.¢(p') + D(p,p’). For
range query, if SD.¢(p) > J, we simply drop p as it will
not appear as a LPM in a qualified matching subsequence.

To find p’ of p, we need maintain those LPMs in the
searching region of p/, and test all the LPMs within this re-
gion row by row. To reduce the number of detected LPMs,
we actually use a sliding step which equals to the length
of local patterns. That means, we chop the streaming time
series into disjoint local patterns, and detect the LPMs for
every chopped local pattern. This technique is also used in
ST-index [7]. It helps to reduce the number of LPMs could

appear in the searching region of p’. As shown in Figure 6,
for each row in A’B’O’O”, the maximum of LPMs is L%J
Therefore, the memory cost of continuous SpADe calcula-
tion will be bounded as the maximal number of LPMs need
to maintained, O(%), where N is the number of query
patterns and m is the average length of query patterns. The
complexity of whole pattern detection will be O(%)
where ¢ is the average number of L P M s detected from one
chopped local pattern of streaming time series. In the re-
gions where no matching subsequences appear, the number
of LPMs will be very small, close to zero. Therefore, the
calculation of SD. ¢(p) will be very efficient.

Along with the calculation of SD, ¢(p), we record the
starting point of the shortest path to p. SD,, ¢(p) is calcu-
lated following the calculation of SD. ¢(p). As we have de-
clared, once SD),, ¢(p) is found to be less than ¢, a qualified
matching subsequence is detected. The position of match-
ing subsequence is actually the vertical projections from the
starting point of the shortest path of p to the end point of
p. Considering that the potential SpADe of some LPMs
around p may also satisfy the range query, the LPM who
has the smallest SD,, ¢(p) within a local region is returned
as the matching subsequence in this region.

b}

4.2.3 Pruning approach in SpADe calculation

The major computation cost of range query on stream-
ing time series comes from the calculation of cumulating
SpADe of detected LPMs. Query processing will be effi-
cient if some LPMs can be pruned without the calculation
of cumulating SpADe. In the following, we introduce the
concepts of post-bound and estimate-bound, and show that
how such a pruning approach is achieved.

Definition 7. The post-bound of a LPM p is the lowest po-
sition of the potential posteriors of p, which can be located
in the next column of p.

A LPM ps, is a potential posterior of p1 if SD.¢(p1) +
Do(p2,p1) < 6. Suppose the post-bound of p; is by,
according to the definition, for any ps satisfying ps.y =
p1-y +w and p3.x > by, p3 will not be a potential posterior
of p;. Based on this, we have the following lemma.

Lemma 2. For any LPM p4 satisfying that p4.y > p1.y+w
and py.x > by which is the post-bound of p1, p4 will not be
a potential posterior of p1.

Proof: We simplify p;.x and p;.y as x; and y;. For a
P4 satisfying the conditions in Lemma 2, a virtual LPM ps
can be found such that y3 = y1 + w, r3 = x4 > by, and
P3.Ya_gq = pg.Ya_y. Therefore, ps is not a potential poste-
rior of p1. To show that py4 is also not a potential posterior
of p1, we only need prove that Do(ps4,p1) > Da(ps3,p1)-
The relationship of p1, ps and p4 is shown in Figure 7.

D2(p37p1)
Do(pa,p1) = gas—x1 —w)+g(ys —y1 — w)
Fwr (w4 — 1) — (ya — y1)| + A9

4
Ap = Y wilpaahi — prail

1=2
“AD = Dy(ps,p1) — D2(p3,p1)
= gy —y1 —w) +wi|(xs —21) -

(y4—y1)\—w1(x3—x1—w)
wi(ya —y1 —w) —wi(vg — 21 — W)
Fwif(zs — 21) = (ya — y1)|
> wi|(za —21) — (Y2 — Y1)

—wi((z4 — 1) — (Y2 — ¥1))
> 0

Y

. Do(pa,p1) > Da(ps3,p1), and py is not a a potential
posterior of p1. O

Figure 7. Pruning in SpADe calculation.

We have mentioned that disjoint sliding window is used
to chop local patterns from streaming time series. There-
fore, a column of LPMs will be got for every chopped
local pattern. The post-bound of a LPM p; in column
A is b;. The post-bound of column A can be defined as
ba = maxp, y—a.y b;, i.e., the lowest post-bound of p; in
column A. According to Lemma 2, any LPM below b4 and
behind column A will not be a potential posterior of any
LPM in column A.

Definition 8. The estimate-bound of a column A can be de-
fined as By = maxa y_¢<x.y<a.ybx, where X is a col-
umn before A.

Figure 7 shows an example of estimate-bound Bz of col-
umn Z. It is obvious that for a LPM p5 below By in col-
umn Z, it is not a potential posterior of any LPM in column
W, X, Y. In other words, the previous LPM of ps will not
be found in the searching region of p}. Therefore, p5 can be
pruned without the calculation of SD. ¢(ps).

glxs —x1 —w) +wi(xs — 1 —w) + A

The estimate-bound of a column can be continuously
calculated based on the post-bound of previous columns.
On getting a promising LPM in a new column, we update
the post-bound of that column, so that it can be used to cal-
culate the estimate-bound of following columns.

5 Performance Evaluation
5.1. Datasets

In our performance evaluation, we compare SpADe with
Euclidean distance, DTW and EDR in terms of accuracy
and efficiency. Our test platform is a PC with Pentium4
3.0G CPU and 1G RAM. To test the accuracy of SpADe
for full sequence matching, we use UCR Time Series Clas-
sification/Clustering datasets [1]. Streaming time series
datasets are needed to measure the performance of SpADe
on continuous pattern detection. Unfortunately, we cannot
find such a labelled streaming time series dataset. We ob-
serve that the sequential tandem of samples in the Motor-
Current(MC) dataset [1] is just a smooth streaming time se-
ries. The MC dataset contains 21 classes of signals with 20
samples of each signal class for a total of 420 signals. We
do a fixed step sampling over the MC dataset, and achieve
a length of 300 for each sample sequence. Then, a syn-
thetic labelled streaming time series is generated by simply
connecting these samples. To ensure that there are shift-
ing and scaling along both time and amplitude dimensions
of the streaming MC dataset, we randomly perform some
shifting and scaling in random positions of the streaming
dataset. On average, one shifting (or scaling) is introduced
for half the length of each query pattern. We test the perfor-
mance of distance measures under various degree of shifting
and scaling along temporal and amplitude dimensions in the
synthetic streaming time series.

5.2. Setting of parameters

Abstract functions (f(z) in D;(z), and g(x), h(z) in
Definition 1) are used in SpADe to detect LPMs and pe-
nalize differences between LPMs. Users can specify these
functions according to the variation factors they want to
handle. To simplify the calculation, L; norm function is
used in f(z). The parameter ¢ determines the number of
LPMs detected during query processing. Large € generates
more false LPMs and reduces the efficiency. While small ¢
may cause the dismissal of some positive LPMs. The choice
of € can be based on the tolerance of the differences between
local patterns of LPMs learned from training data.

We set g(x) = x as which satisfies the requirements
on g(x). One parameter related to g(z) is the largest al-
lowed gap &, which is dependant on the applications. In MC
dataset, we set & = bw, which should be large enough in
most applications. Coefficients in h(x) are set based on the
percentage of penalty users want to put on various features

of LPMs. They can be approximately set as long as they are
comparable to g(z). Note that all the above parameters on
SpADe are not optimized. We simply use reasonable val-
ues, and we will show that such a way of setting parameters
is already sufficient for SpADe to have better performance
than the other distance measures in most cases.

5.3. Accuracy of SpADe

5.3.1 Accuracy in full sequence matching

Like in many other studies [10, 4], one nearest neighbor
classification (1NN) is used to test the accuracy of distances
under full sequence matching. In 1NN classification, for
each sequence in the testing dataset, we predict its label
from its nearest neighbor in the training dataset. If the de-
rived label is the same as the original label of the testing se-
quence, we get a hit; Otherwise, we get a miss. As shown in
Table 2, error rates of three distance measures are measured
on all datasets. We compare the accuracy of the distance
measures based on these error rates. For each distance mea-
sure, we allow the adjustment of important parameters (e.g.,
warping width of DTW, matching threshold of EDR, pattern
length of SpADe), and the best classification error rates are
recorded. From Table 2, we see that in many datasets with
smooth shapes, SpADe achieves lower error rates than the
other distance measures.

Dataset Euclidean | DTW EDR SpADe | Performance
Syn. con. 0.12 0.017 0.04 0.08 normal
Gun point 0.087 0.087 0.02 0.007 good

CBF 0.148 0.004 | 0.0111 0.02 normal

FaceAll 0.286 0.192 0.194 0.214 normal
OSULeaf 0.483 0.384 0.215 0.132 good
Swed. leaf 0.213 0.157 0.096 0.125 normal
50words 0.369 0.242 0.198 0.215 normal

Trace 0.24 0.01 0.04 0 good
Two Pat. 0.09 0.002 0.002 0.005 normal
Wafer 0.005 0.005 0.007 0.012 bad
FaceFour 0.216 0.114 0.034 0.034 good

Lighting2 0.246 0.131 0.148 0.278 bad

Lighting7 0.425 0.288 0.301 0.315 normal

ECG200 0.12 0.12 0.1 0.13 bad
Adiac 0.389 0.391 0.384 0.319 good
Yoga 0.17 0.155 0.194 0.123 good
FISH 0.217 0.16 0.08 0.017 good

Table 2. Error rates of 1NN classification in
full sequence matching.

The length of local patterns w is an important parame-
ter affecting the efficacy of SpADe. It should be chosen
according to the sampling rates of time series. Figure 8
shows two examples of the impact of pattern length on the
accuracy of INN classification in full sequence matching.
Longer local patterns require larger ¢, therefore, generate
more false LPMs. On the other hand, shorter patterns are
more ambiguous which will also generate more false LPMs
when amplitude shifting and scaling need to be handled.
Moreover, the computation cost of SpADe will be increased
when the pattern is short.

o
@

14
N
a

OSULeaf —+—
FISH —%—

4
)

Error rates
o
o

o

o
°
&
X
X
X

o

4 8 12 16 20 24 28 32
Pattern length w

Figure 8. Impact of pattern length on accu-
racy in 1NN classification.

5.3.2 Accuracy in subsequence matching

We next test the accuracy of SpADe on streaming time se-
ries, which is based on subsequence matching. For each
class of signals from the MC dataset, we generate a rep-
resentative pattern as a query pattern. Therefore, there are
a total of 21 query patterns. To test the accuracy of dis-
tance measures on pattern detection, we use KNN query
to retrieve the 10 nearest neighbors of each query pattern
(each class has 10-11 repetitive patterns in the dataset).
Hits or misses of detected matching subsequences are de-
termined by the positions of subsequences. Distances of
subsequences are continuously measured and a small win-
dow size is used to retrieve the best matching subsequence
in a local region. The accuracy is evaluated based on the
average error rate of the KNN queries.

In the first test, we evaluate the accuracy of distance mea-
sures under various degree of time shifting. We introduce
time shifting by moving some random partitions of time se-
ries forward or backward by a random step, so that items
between two consecutive partitions is no more aligned. The
warping window size of DTW and EDR is set to be the max
shifting width in each test. As shown in Figure 9(a), the
error rates of all distances are very low on the original time
series (shifting width is 0). However, the error rates of DTW
and Euclidean distance increase quickly when time shifting
is enlarged. It is obvious that SpADe is much more accurate
than the others.

In Figure 9(b) and 9(c), we compare the accuracy of the
four distance measures under various degree of amplitude
shifting and amplitude scaling. No artificial time shifting is
involved in these tests. To handle the intrinsic time shifting,
the warping width of DTW and EDR is set as 2% of the
query pattern length. The results clearly show that SpADe
outperforms the other three in handling amplitude shifting
and scaling. EDR performs better than DTW and Euclidean
when the amplitude shifting and scaling are small because
the matching threshold in EDR partially handle a small de-
gree of amplitude variation.

Time scaling is the most difficult factor for distance mea-
sures since various time scales need to be tested to guarantee

T T 1
Euclidean —+—
DTW —— t
08 SpADe e 2 08t _] 08 f _
EDR e Euclidean —+— Euclidean —+—
L DTW - DTW -
o L X) L SpADe % @ L SpADe %
2 o6 2 os AT 2 o6 R x
g g g
w 04| wm 04| i
02t o 02} 4
X =] e 3 f
a a
0> g * B . 1 ol 9 ool o ¥ % #
0 1 2 3 4 5 6 0 8 16 24 32 40 0 5 10 15 20 25
Max time shifting width(% of query length) Max amplitude shifting width(% of variance) Max amplitude scaling (1+/-x%)
(a) Accuracy in time shifting (b) Accuracy in amplitude shifting (c) Accuracy in amplitude scaling
1 200 T 300 T T
o a Euclidean —+—
DTW -
08 N 250 ¢ SpADe - L
= 150 ¢ o o _ EDR —& B
o 8 & Euclidean —+— g 200 Eusliding ---m - A
L 06 Euclidean —+— S DTW 5 g
g m DTW -~ 8 8
s SpADe ¥ 3 3 150 ¢
w 04 EDR &} o >
- £ £ 100y
02 T o
~ s * % g
o R R X « ™ : Y - O> ,,,,,,,,, s s, |
0 10 20 30 40 50 0 1 2 3 4 5 6 0 10 20 30 40 50
Max time scaling (1+/-x%) Max time shifting width (% of query length) Max time scaling (1+/-x%)
(d) Accuracy in time scaling (e) Efficiency in time shifting (f) Efficiency in time scaling

Figure 9. Performance comparisons under various factors.

no false dismissals. Note that DTW and EDR naturally han-
dle some time scaling by the best warping paths in distance
matrix. However, we do not enlarge the scope of warping
paths of EDR to handle time scaling as it incurs huge com-
putational cost due to the lack of pruning techniques such as
Keogh lower bound [9] used in DTW. We compare the dis-
tance measures with various time scales. As shown in Fig-
ure 9(d), SpADe is still the best. In this case, the Euclidean
distance is not comparable to the others due to its inability to
handle scaling without forced stretching and shrinking. The
straight forward way to stretch or shrink of query patterns
to various scales of subsequence incurs huge computation,
and it is limited to handling global scaling.

5.4. Efficiency of SpADe

In our efficiency test, the Keogh lower bound [9] is used
to accelerate the calculation of DTW. To ensure accuracy,
we can measure the distances at every position when a new
data item arrives. However, it is not efficient. We find that
using a proper sliding step (i.e., computing distances for ev-
ery batch of data items) only affects the accuracy slightly,
but achieves efficiency significantly. For DTW and EDR,
we choose the sliding step as the same width of warping
window. This is because the warping window guarantees
no dismissal of warping paths of matching subsequences.
For SpADe, the best accuracy is achieved when sliding step
equals to the length of local patterns. This is because small
sliding step generates more LPMs and incurs some patho-

logical paths. For Euclidean distance, we use two sliding
steps to test the efficiency. One (Euclidean) is of length 1,
which is used in testing accuracy, and the other (Eu-sliding)
is sliding step with the same length as SpADe.

Figure 9(e) shows the efficiency of distance measures in
various scales of time shifting, corresponding to the accu-
racy measurements in Figure 9(a). We see that SpADe is
much better than the others. EDR is expensive due to the
lack of pruning supports. Figure 9(f) shows the efficiency
of distance measures in various degree of time scaling. The
efficiency of SpADe is similar to that of Eu-sliding, while
much better than that of the others. We also find that the
efficiency of DTW deteriorates drastically due to the en-
largement of warping region in distance matrix to handle
large time scaling. The corresponding accuracy of these dis-
tances (except Eu-sliding) in this test group is shown in Fig-
ure 9(d). We do not compare the efficiency of distance mea-
sures under amplitude shifting and scaling, as DTW and Eu-
clidean distance did nothing to cater to them, while SpADe
pay some additional cost on handling these factors.

Note that the above tests treat the variation factors in-
dependently. We also conduct a comparison on distance
measures in a case where 2% of max time shifting, 10% of
max amplitude shifting and scaling, and 20% of max time
scaling are introduced. The results are shown in Table 3.
We see that SpADe is much more accurate than the other
distances. The efficiency of SpADe is only worse than Eu-
sliding slightly, while much better than the other three.

Euclidean | DTW Eu-sliding | EDR SpADe
Error rates | 0.867 0.376 0.871 0.567 0.019
Time cost 64.767 141.440 | 8.047 217.788 16.609

Table 3. Performance comparison on a case
of compositive variations.

5.5. Pruning effect of SpADe

The pruning approach of SpADe reduces the number of
cumulating SpADe need to be calculated in query process-
ing. We test the effect of the proposed pruning approach
under various scales of time shifting and scaling. As shown
in Figure 10, 2-3 times of efficiency is achieved by the prun-
ing approach in these tests.

1.4

12 M

0.8 Without pruning —+—

Without pruning —+—
06 Pruning -

Time (seconds)
Time (seconds)
&

0.4 T e

02 [

[1 2 3 4 5 6 0 10 20 30 40 50
Max time shifting width (% of query length) Max time scaling (1+/-x%)

(a) Time shifting (b) Time scaling
Figure 10. Pruning effect of SpADe.

6 Conclusion

We argue that the existing distances do not work well in
detecting shape based patterns. Our experiments show that
Euclidean distance, DTW and EDR have poor accuracy on
pattern detection in streaming time series, when shifting and
scaling exist in temporal or amplitude dimensions.

We propose a novel distance, SpADe, which can be used
to measure distance between shape based time series. The
measure of SpADe is based on detection of the best combi-
nation of LPMs by calculating the shortest path in matching
matrix. It is a good mapping of high level human intuition
to low level distance. Therefore, good accuracy is achieved
by SpADe in the conditions of shifting and scaling in both
temporal and amplitude dimensions. We apply SpADe on
pattern detection in streaming time series.

To speed up the calculation of SpADe, we propose to
use wavelets to retrieve the important shape coefficients of
local patterns. We use the R-tree/cells to index these multi-
dimensional local patterns. To further speed up the continu-
ous query processing on SpADe, we propose an incremen-
tal calculation of SpADe, which is very suitable for pattern
detection on streaming time series. We also propose a prun-
ing approach to limit the searching region of previous LPM
and prune the calculation of cumulating SpADe. Extensive
performance study was conducted and the results show that
SpADe is both efficient and effective as a distance measure
for subsequence matching on streaming time series.

Acknowledgements: We would like to thank Dr. Eamonn
Keogh for providing us the datasets and the valuable com-
ments on the paper.

References
[1] UCR Time Series Data Mining Archive.
http://www.cs.ucr.edu/ eamonn/time_series_data/.
[2] D.J. Bemdt and J. Clifford. Using dynamic time warping to
find patterns in time series. In KDD Workshop, pages 229—

248, 1994.
[3] A.W.chee Fu, E. Keogh, L. Y. H. Lau, and C. A. Ratanama-

hatana. Scaling and time warping in time series querying. In

VLDB, pages 649-660, 2005.
[4] L. Chen, M. T. Ozsu, and V. Oria. Robust and fast similarity

search for moving object trajectories. In SIGMOD, pages

491-502, 2005.
[5] C. K. Chui. An Introduction to Wavelets. Academic Press,

San Diego, 1992.
[6] E. W. Dijkstra. A note on two problems in connexion with

graphs. Numerische Mathematik, (1):269-271, 1959.
[7] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos. Fast

subsequence matching in time-series databases. In SIG-

MOD, pages 419-429, 1994.
[8] L. Gao and X. S. Wang. Continually evaluating similarity-

based pattern queries on a streaming time series. In SIG-

MOD, pages 370-381, 2002.
[9] E. Keogh. Exact indexing of dynamic time warping. In

VLDB, pages 406417, 2002.
[10] E. Keogh and S. Kasetty. On the need for time series data

mining benchmarks: A survey and empirical demonstration.

In SIGKDD, pages 102-111, 2002.
[11] Y.-S. Moon, K.-Y. Whang, and W.-S. Han. General match:

a subsequence matching method in time-series databases
based on generalized windows. In SIGMOD, pages 382—
393, 2002.

[12] Y.-S. Moon, K.-Y. Whang, and W.-K. Loh. Duality-based
subsequence matching in time-series databases. In /ICDE,

pages 263-272, 2001.
[13] S. Papadimitriou, J. Sun, and C. Faloutsos. Streaming pat-

tern discovery in multiple time-series. In VLDB, pages 697—
708, 2005.

[14] S. Park, W. W. Chu, J. Yoon, and C. Hsu. Efficient searches
for similar subsequences of different lengths in sequence
databases. In ICDE, pages 23-32, 2000.

[15] Y. Sakurai, S. Papadimitriou, and C. Faloutsos. Braid:
Stream mining through group lag correlations. In SIGMOD,
pages 599-610, 2005.

[16] M. Vlachos, G. Kollios, and D. Gunopulos. Discovering
similar multidimensional trajectories. In ICDE, pages 673—
684, 2002.

[17] R. Weber, H.-J. Schek, and S. Blott. A quantitative analy-
sis and performance study for similarity-search methods in
high-dimensional spaces. In VLDB, pages 194-205, 1998.

[18] L. Wei, E. Keogh, H. Van, and H. A. Mafra-Neto. Atomic
wedgie: Efficient query filtering for streaming time series.
In ICDM, pages 490-497, 2005.

[19] H. Wu, B. Salzberg, and D. Zhang. Online event-driven sub-
sequence matching over finacial data stream. In SIGMOD,
pages 23-34, 2004.

