
Scalable Distributed Stream Join Processing

Qian Lin† Beng Chin Ooi† Zhengkui Wang† Cui Yu§

†School of Computing, National University of Singapore
§Department of Computer Science and Software Engineering, Monmouth University

†{linqian, ooibc, wangzhengkui}@comp.nus.edu.sg, §cyu@monmouth.edu

ABSTRACT

Efficient and scalable stream joins play an important role in
performing real-time analytics for many cloud applications.
However, like in conventional database processing, online
theta-joins over data streams are computationally expensive
and moreover, being memory-based processing, they impose
high memory requirement on the system. In this paper,
we propose a novel stream join model, called join-biclique,
which organizes a large cluster as a complete bipartite graph.
Join-biclique has several strengths over state-of-the-art tech-
niques, including memory-efficiency, elasticity and scalabil-
ity. These features are essential for building efficient and
scalable streaming systems. Based on join-biclique, we de-
velop a scalable distributed stream join system, BiStream,
over a large-scale commodity cluster. Specifically, BiStream
is designed to support efficient full-history joins, window-
based joins and online data aggregation. BiStream also sup-
ports adaptive resource management to dynamically scale
out and down the system according to its application work-
loads. We provide both theoretical cost analysis and ex-
tensive experimental evaluations to evaluate the efficiency,
elasticity and scalability of BiStream.

1. INTRODUCTION
In recent years, data have been rapidly generated in many

applications as data streams, such as stock trading, mobile
and networked information management systems. It is in-
creasingly challenging and critical to provide efficient real-
time analytics for such applications. Data aggregation is one
of the most important and widely used operations in analyt-
ics, e.g., online analytical processing in relational databases,
as it provides a high level view by summarizing the data
using group-by and aggregate functions such as count, sum
and avg. Most data aggregations are applied over the join
results of two data streams with respect to a given join pred-
icate; hence, efficient progressive stream join processing [15,
6] is essential and important to data stream systems.
There has been a lot of research on data stream join pro-

cessing. Existing centralized algorithms [39, 18, 17] that

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SIGMOD’15, May 31–June 4, 2015, Melbourne, Victoria, Australia.

Copyright c© 2015 ACM 978-1-4503-2758-9/15/05 ...$15.00.

http://dx.doi.org/10.1145/2723372.2746485.

were originally designed for a single server are not capable
of handling the massive data stream workload. On the other
hand, existing distributed and parallel stream join process-
ing algorithms are mainly tailored for equi-join, which would
not be efficient for high-selectivity joins such as the theta-
join. Further, these methods mostly adopt various hash tech-
niques for workload partitioning, which is sensitive to load
distribution and inflexible to scaling out the system due to
maintenance complexity.

In order to design an efficient distributed stream theta-
join processing system, the following two requirements must
be considered. First, in-memory processing is essential to
provide efficient stream join and real-time analytics. Sec-
ond, scalable stream processing is critical to support large-
scale data stream applications. That is, a distributed stream
join system has to be both memory-efficient and scalable.
Among many of the related work, Join-matrix model [34]
which was studied a decade ago has recently been revis-
ited for supporting distributed join processing such as in
MapReduce-like systems [28] and also stream applications [12].
Intuitively, it models a join operation between two input re-
lations as a matrix, where each side of which corresponds to
a relation as shown in Figure 1.a. Each processing unit (i.e.,
matrix cell) represents a potential join output result. How-
ever, the join-matrix model has three inherent weaknesses.
First, it has high memory usage as the data need to be repli-
cated and stored in an entire row or column. Second, it is
not flexible to scale out/down since it has to add/release one
entire row or column each time. Third, it does not scale well,
because when a new processing unit to one row/column is
added, the data in other units within the same column/row
have to be replicated to the new unit. These weaknesses
limit the memory-efficiency, elasticity and scalability of the
systems that employ the join-matrix model.

In this paper, we propose join-biclique, a novel stream
join model that is scalable and elastic with respect to the
network size, and efficient and effective in terms of memory
requirement and resource utilization. The core abstraction
of join-biclique is to organize all the processing units in a
cluster as a complete bipartite graph (a.k.a. biclique), where
each side corresponds to a relation. Suppose R and S are the
two input stream relations. Given m + n processing units,
m units on one side of the bipartite graph are for R and the
other n units are for S. Figure 1.b shows one join-biclique
example where m and n are 2 and 3, respectively. The
result of R ✶θ S can be obtained by evaluating each Ri ✶θ

Sj where Ri is the ith partition of R with i ∈ {1, ...,m},
and Sj is the jth partition of S with j ∈ {1, ..., n}. The

join-biclique model has two important features. First, each
relation is stored in its corresponding units without data
replicas, which enables the model to be memory-efficient.
Second, the processing units are independent of each other,
which facilitates scalability and elasticity.

We next propose a distributed stream join system, BiStream,
based on the join-biclique model. BiStream adopts a two-
level architecture, including router and joiner. The router
involves multiple shufflers and dispatchers that are in charge
of ingesting the input streams and routing them to the cor-
responding processing units. The joiner consists of all the
processing units which are responsible for data storing and
join processing. BiStream adopts a simplified topological
design of join-biclique where each processing unit only com-
municates with the router instead of among themselves to
reduce the degree of inter-unit connectivity. Based on this
design principle, the basic stream join processing flow works
as follows: when one input tuple r ∈ R (resp. s ∈ S) arrives
at the router, it is routed to one of the processing units in R
(resp. S) to store, and meanwhile it is sent to join the tuples
stored in all the processing units in S (resp. R). As a conse-
quence, r (resp. s) can be directly discarded from the units
of S (resp. R) after join processing. This greatly lowers the
memory requirement and hence improves the system capac-
ity to efficiently support in-memory real-time analytics.
In summary, we make the following contributions:

• We propose a novel memory-efficient stream join model,
join-biclique, for joining big data streams.

• Based on join-biclique, we design and develop a scalable
stream join system, BiStream, for a large-scale commodity
cluster. We also discuss how to efficiently support full-
history and window-based stream joins, and online data
aggregation.

• We propose an adaptive resource management for BiStream
to dynamically scale out or down the system based on
workload. The adaptive resource management allows the
system to automatically increase and release the compu-
tation resources to minimize the system running cost.

• We theoretically analyze the proposed techniques and also
conduct extensive experimental evaluation over a cluster
of 40 nodes. The evaluation results confirm that BiStream
is memory-efficient, elastic and scalable.

The remainder of this paper is organized as follows. We
summarize the related work of stream join processing in
Section 2. We define the join-biclique model and introduce
BiStream in Section 3, following which we analyze BiStream
in Section 4. Section 5 presents how BiStream supports
adaptive stream join processing in the cloud. Evaluation
of BiStream is demonstrated in Section 6 and finally, we
conclude the paper in Section 7.

2. RELATED WORK
A great deal of research on distributed join processing has

been conducted. However, the works [8, 35] have been pro-
posed mainly for non-streaming scenarios. They cannot be
directly applied to the streaming systems. For stream join
processing, much research has also been devoted mainly for
a stand-alone environment [39, 18, 17]. To name a few, sym-
metric hash join [39] is the earliest proposal for joining fi-
nite data streams. While reading in tuples of each relation
in turn, it progressively constructs two hash tables (one for

r1

s1

r1

s2

r1

s3

r2

s1

r2

s2

r2

s3

(a) Join-matrix

r1

s1

r2

s3s2

(b) Join-biclique

Figure 1: Stream join models.

each relation) in memory and produces join results by prob-
ing them mutually. Online nested-loops join [18] is the first
non-blocking join algorithm to progressively report the esti-
mates of the join-based aggregate query results in real-time.
Ripple join [17] and its variants [27, 20, 10] further gener-
alize such processing towards online aggregation. However,
all these algorithms rely on a centralized maintenance of the
entire join states and hence, they are not easy to scale.

Further, several stream join algorithms have been pro-
posed for the multi-core and main-memory environment [36,
14, 21, 29]. For instance, CellJoin [14] parallelizes the exe-
cution of stream joins on multi-core Cell processors, but its
efficiency highly relies on the hardware parallelism of Cell
processors. Handshake join [36, 31] organizes the processing
units as a doubly linked list. The two joining streams are
fed into the system in the opposite directions, and the join
condition for each pair of joining tuples is evaluated once
they meet in some unit. However, this model is suscepti-
ble to node failure and message loss if it is extended to the
distributed environment.

Recently, much research has been devoted to stream join
processing in a distributed environment with a cluster of
commodity machines. Photon [4] was specifically designed
for joining data streams of web search queries and user clicks
on advertisements in Google. It relies on a centralized co-
ordinator to search for the join tuples through key-value
matching, but it is not designed to support general theta-
join predicates. D-Streams [41] breaks continuous streams
into discrete units and processes them as ordered batch jobs
on Spark [40]. Such batch processing for stream joins can
only provide approximate results, as a few target tuple pairs
in separated batches may miss each other for join opera-
tion. TimeStream [30] exploits the dependencies of tuples
to perform the joins. PSP [38] transforms a macro join op-
erator into a series of smaller sub-operators by time-slicing
of the join states, and the join processing is distributed to
these sub-operators in a ring architecture. However, both
TimeStream and PSP incur high communication overhead
to maintain the dependencies or synchronize the distributed
join states. For design and optimization of distributed and
in-memory data processing, please refer to [26, 42].

The join-matrix model was adopted in a recently proposed
distributed join processing [12]. It organizes the processing
units as a matrix, each side of which corresponds to the
partitions of one relation. Each matrix cell represents a
potential join output result. Figure 1.a shows an example
of join-matrix model with 2 and 3 partitions for relations R
and S respectively. For instance, when r1 ∈ R arrives, it is
shuffled to one partition of R (e.g., R1) and replicated to all
units in the row R1; meanwhile, it joins with the tuples of S
stored in these units. This model is able to handle theta-join
in a parallel and decentralized manner. However, it suffers
from high memory consumption as it has to replicate each

Table 1: List of notations.
Notations Description

R, S Stream relation
r, s Stream tuple

Ri, Sj i-th and j-th partition of R and S
GR, GS Universal set of partitions of R (S)
m, n Number of partitions of R (S)

GR,k, GS,l Subgroup of partitions of R (S)
d, e Number of subgroups of R (S)
̟ Size of the sliding window
P Archive period of the chained in-memory index
D Maximum network latency

input tuple to multiple units. Moreover, it is not easy to
scale out or down as it has to maintain the matrix structure.
To address these issues, our join-biclique model is designed
to be memory-efficient and amenable to scaling.
In addition, prior work on stream partitioning [13, 7] was

focused on designing approaches to partition a large amount
of skewed input streams into different units in order to achieve
a balanced load in the unit or a minimized stream redirection
cost. They are mainly designed for unary operations such
as selection, projection and aggregate functions, not trivially
applicable to binary stateful operators like join. Differently,
our work is primarily focused on designing a scalable stream
join processing model that is effective in both stream parti-
tioning and join operation.

3. THE JOIN-BICLIQUE MODEL

3.1 Definition
Table 1 lists the notations used throughout the rest of

the paper. Join-biclique model is developed with the main
objectives of reducing memory consumption and facilitating
scalability. The formal definition of join-biclique is presented
as follows:

Definition 1 (Join-Biclique Model). Given a cluster
with m + n processing units (or units when there is no am-
biguity), join-biclique organizes all of these units as a com-
plete bipartite graph (a.k.a. biclique). Suppose there are
two relations R and S. Each side of the bipartite graph
corresponds to one relation for storage. Specifically, data of
relation R are partitioned and stored into one side of the
bipartite graph with m units without replicas (i.e., GR =
{R1, ..., Rm}). Similarly, data of relation S is partitioned
into the other side with n units (i.e., GS = {S1, ..., Sn}).
In the bipartite graph, there exists an edge (Ri, Sj) between
units Ri and Sj where i ∈ {1, ...,m} and j ∈ {1, ..., n}. Each
edge (Ri, Sj) represents a potential join result produced by
Ri ✶θ Sj .

Each edge in the join-biclique represents the join operation
between two units of the opposite relations and the join-
biclique is able to generate the Cartesian product of the
join participants. As a result, the join-biclique model can
support any join predicate. In a typical real deployment,
one physical machine may host multiple processing units
according to the machine configuration. That is, the units
of R and S may only be logically separated.

3.2 BiStream System Design
Next, we present a distributed stream join system, BiStream,

based on the join-biclique model. For the ease of explana-
tion, we focus on the full-history joins (i.e., joining all tuples

Stream R

Stream S

Router Joiner

DispatcherShuffler

...

...

Figure 2: Overall architecture of BiStream.

entered so far) to illustrate how the system works. Discus-
sion on supporting the window-based joins is deferred to
Section 3.3.

3.2.1 System Architecture

BiStream is built on top of Storm [1], a distributed real-
time computation platform. In order to appreciate BiStream,
we shall first briefly introduce Storm terminologies. A Storm
topology is a graph of spouts and bolts. Each spout acts as
a stream source adapter, and each bolt consumes the input
streams and possibly emits new streams. Spouts and bolts
are connected with various stream groupings which define
how streams’ tuples are distributed among bolt tasks. To-
wards data stream system development on Storm, the sys-
tem logic is decomposed into functionalities which are fur-
ther implemented as spouts and bolts, and the dataflows are
defined through stream grouping.

Figure 2 depicts the architecture of BiStream. BiStream
consists of two functional components: router and joiner.
The router is designed to ingest and route the input streams
to the corresponding units for further processing, and the
joiner is in charge of data storing and join processing for the
data received from the router.

The BiStream topology follows the join-biclique model but
reduces the degree of inter-unit connectivity. Conceptually,
in a join-biclique, each unit needs to connect with all units
of the other relation. Fortunately, this is not necessary, and
BiStream avoids the communication among the units by sep-
arating the router and the joiner since the data routing is
independent from the data store and join processing. That
is, each unit only communicates with the router to receive
the data to store or join without communicating among each
other. Specifically, an incoming tuple (e.g., r ∈ R) is sent
to one of the units Ri to store, and at the same time it is
sent to all the units of S for join processing. After the join
processing, r can be discarded from the units in S.

Router. Figure 2 illustrates a two-tier architecture of
the router, consisting of shuffler and dispatcher. The shuf-
fler, implemented as a spout, ingests the input streams and
forwards every incoming tuple to the dispatcher. The dis-
patcher, implemented as a bolt, forwards every received tu-
ple from the shuffler to the corresponding units in the joiner
to store and join. Meanwhile, the dispatcher is in charge
of maintaining the statistics about how the data is stored
among the units.

The main aim of separating shuffler and dispatcher in the
router topology is to isolate the ingestion of incoming tuples
and the maintenance of storage statistics. To trace the or-
der and time of each incoming event, BiStream assigns one
timestamp to each stream input event. This enables the sys-
tem to always process and join the input events in the right
order, especially for the time-based sliding-window joins (i.e.,

Algorithm 1: Control of ContRand routing.

Input: tuple t
1: Procedure Route(t):
2: group← GetSubgroup(key(t), t.rel)

3: p← a unit randomly chosen from group
4: forward(t, p) /* to store */
5: group← GetSubgroup(key(t), opposite(t.rel))
6: foreach unit q ∈ group do

7: forward(t, q) /* to join */

Input: value v, relation rel
8: Function GetSubgroup(v, rel): /* for equi-join */
9: rel match

10: R: return GR,i s.t. v ∈ ValueRangeOf(GR,i)

11: S: return GS,j s.t. v ∈ ValueRangeOf(GS,j)

joining the tuples with a time constraint). A timestamp is
assigned to each tuple based on the time when the tuple ar-
rives at the shuffler in the system. It is important that the
tuples arriving at the same time get the same timestamp.
To guarantee that, we need to synchronize the timers in the
router which is a costly process since the number of timers
may be large. There is however a clear demarcation of roles
and tasks; the shuffler is in charge of timestamp assignment
while the dispatcher handling statistics collection and other
routing decision tasks. With this design, the number of shuf-
fler tasks can be greatly reduced, and it will effectively ease
the synchronization among the timers.
Joiner. The joiner component consists of all the process-

ing units. It is designed to process the streams from the
router. Each unit runs a stateful bolt task that consumes
the tuples from the router. Each task has two execution
branches – data storing and join processing, whose runtime
depends on whether the tuple belongs to the corresponding
relation of the unit or from the other joining relation. To
be specific, the data storing operation is triggered when one
input tuple r ∈ R arrives at its corresponding unit Ri ∈ GR,
where r will be stored. If one unit Ri ∈ GR receives a tu-
ple s ∈ S from the other relation, the join processing is
conducted by joining s with all the tuples stored in Ri.
To support efficient join processing, BiStream adopts a

variety of in-memory indexes to index the data, such as hash
maps for equi-joins and balanced binary search trees for non
equi-joins. More details of the indexing and join processing
are described in Section 3.3.

3.2.2 Dataflow Control

The main objective of dataflow control is to balance the
load in the system to improve the degree of processing par-
allelism. To facilitate load balancing, we design BiStream
dataflow, which is illustrated in Figure 2. It is a two-stage
process: (1) from the shuffler to the dispatcher, and (2)
from the dispatcher to the joiner. For dataflow control in
the first stage (1), BiStream adopts a random routing strat-
egy, where tuples emitted by the shuffler are randomly dis-
tributed across dispatcher tasks such that each dispatcher
task receives an equal number of tuples. The stream for ran-
dom routing is implemented using the shuffle stream group-
ing in Storm. Being content-insensitive, the random routing
strategy should be effective in automatically balancing the
workload among the dispatcher tasks.

The second stage (2) involves two streams: the store stream
and the join stream. The store stream is for routing each

Router

r1

r1

r1

r1

r1

Figure 3: An example of ContRand routing.

tuple to a unit for storing, and the join stream is for sending
the tuples to the proper units for join processing. Different
routing strategies in these two streams can be implemented
for different joins based on join selectivity.

For high-selectivity joins such as inequality joins, the ran-
dom routing strategy should be adopted. High-selectivity
joins may generate a large number of join results in most,
if not all, of the units, while the random routing strategy
helps to automatically balance the load among all the units
of a relation and makes the system resilient to data skew.
With the random routing strategy, r ∈ R (resp. s ∈ S) is
randomly shuffled to one unit Ri (resp. Sj) to store in a
content-insensitive manner (i.e., regardless of the content of
tuples) via the store stream. Meanwhile, it is sent to all the
units belonging to S (resp. R) for join operation via the join
stream. We note that r (resp. s) will be only stored in one
R (resp. S) unit whereas it can be discarded after the join
operation in each S (resp. R) unit.

For low-selectivity joins such as equi-join, a content-sensi-
tive routing strategy may be preferred, e.g. hash-partitioning.
Hash-partitioning is able to partition the tuples with the
same hash values into the same unit. It guarantees the data
locality which facilities efficient join processing. However,
hash-partitioning may incur load imbalance when the data
is skew. The load imbalance of hashing can be alleviated
by pre-computing the data distribution (e.g., histogram) as
in traditional DBMS. However, this approach does not work
well in the stream system, since it is difficult to obtain such
information in advance.

To tackle the problem of load imbalance in content-sensi-
tive routing, we adopt a hybrid routing strategy, ContRand,
to make use of both the content-sensitive and random rout-
ing strategies. Algorithm 1 shows the control flow of Con-
tRand routing, whose basic idea is as follows:

1) Suppose there are m units for relation R (i.e., GR =
{R1, ..., Rm}) and n units for relation S (i.e., GS = {S1, ..., Sn}).
GR is logically divided into d disjoint subgroups (i.e., {GR,1, ...,
GR,d}) where each GR,i includes one or more units and⋃d

k=1
GR,k = GR. Similarly, GS is divided into e subgroups

(i.e., {GS,1, ..., GS,e}). For instance, Figure 3 indicates four
units of relation R which are logically divided into two sub-
groups GR,1 = {R1, R2} and GR,2 = {R3, R4}.

2) Based on the partition above, ContRand decides which
unit to store a tuple r by hashing r to a subgroup (content-
sensitive manner) and randomly choosing a unit in that sub-
group (content-insensitive manner). A composite function
over r is used, such as (rand ◦ hR)(r), where rand and hR

are random and hashing functions for relation R, respec-
tively. For the example given in Figure 3, according to the
hashing value of r1, r1 is assigned to a unit in the first sub-
groupGR,1. Similarly, ContRand uses (rand◦hS)(s) to store
tuple s inGS . This approach is expected to work better than
the pure content-sensitive routing strategy, especially when
the data is skewed.

3) For join processing, ContRand routes r to all the units

......

......

......

......

storestore

join

join

join

join

......

......

join

store

join

......

......

store

join

join

(a) (b)

(c) (d)

Figure 4: All cases of store-and-join processing.

in a subgroup calculated using hS(r). This guarantees that
r is sent to all the units in one subgroup storing s which has
the same hash value as r.
In the implementation of ContRand, we have two extreme

cases to handle. First, when each group has only one unit
(i.e., d = m and e = n), ContRand becomes pure content-
sensitive. Second, when there is only one group in each re-
lation (i.e., d = e = 1), ContRand falls back to the content-
insensitive one. The corresponding quantitative analysis will
be presented in Section 4. In the implementation of Con-
tRand, we extend the field stream grouping in Storm to sup-
port local random routing inside a hash-defined subgroup
for the store stream and adopt the direct stream grouping
for the join stream.

3.2.3 Protocol Design

To ensure the completeness of join results, the join proto-
col must be carefully designed to handle the situation that
the tuples may arrive at the processing unit in different or-
ders. Recall that BiStream does not store the tuples that are
sent to the units of the other joining relation for join process-
ing. However, the timing of discarding these tuples needs to
be carefully considered. Naively discarding each tuple im-
mediately after the join operation would lead to anomalies
due to the out-of-order issue of tuples in the streams.
Suppose there are two input tuples r ∈ R and s ∈ S that

satisfy the join condition of R ✶ S. Figure 4 illustrates all
the possible orders in which they may reach the two units
Ri and Sj , where the closer a tuple is drawn to a unit, the
earlier it arrives at the unit. Among all the possible cases,
Figure 4.a and Figure 4.b work well to generate exactly one
join result. For instance, in Figure 4.a, for the Ri side, r ar-
rives earlier than s and is stored into Ri; the later arriving
s joins with the stored r and produces the join result. For
the Sj side, r which arrives earlier does not join with the
later arriving s and is discarded before the arrival of s. As
a consequence, only one join result is produced between r
and s in Figure 4.a. The symmetric situation is applied to
Figure 4.b as well. These two cases share the property that
r and s arrive at Ri and Sj in consistent orders. Unfortu-
nately, anomalies arise when the order of arriving r and s
conflicts with the order that Ri and Sj are supposed to main-
tain during the join operation. In Figure 4.c, no join result
is produced in the Ri side because s which arrives earlier is

discarded before the arrival of r. Similarly, no join result
is produced in the Sj side because r is discarded before the
arrival of s. As a result, no join result is produced between
r and s though they satisfy the join condition. We term this
as a missed-join problem. On the other hand, in Figure 4.d,
the result of r ✶ s is produced twice because the later arriv-
ing s joins with the stored r in Ri and the later arriving r
joins with the stored s in Sj . We call this a duplicated-join
problem.

To avoid the aforementioned anomalies, one solution is to
perform a temporal-relational join processing based on the
application timestamps [11]. For instance, by assigning each
tuple one timestamp based on the application time, we can
define constraints on the timestamp ordering of the joining
tuples. Let Tr and Ts be the timestamps for r and s re-
spectively. Each unit Ri (resp. Sj) does not evaluate the
relational join condition on two joining tuples r and s unless
they satisfy the temporal constraint Tr ≤ Ts (resp. Ts < Tr).
By doing so, the expected join behavior can be enforced re-
gardless of the physical timing of tuple arrival. The straight-
forward implementation of this approach, however, requires
each unit to keep the tuples from both relations in memory,
which incurs high memory consumption. Hence, we further
design a protocol to discard the tuples in a proper way to
reduce the memory usage, yet guarantee the correctness of
the join results.

As mentioned earlier, if two tuples are processed at the
units with a consistent order, the join result is produced cor-
rectly. To guarantee such a consistent order, we introduce a
protocol to ensure that the relative order for any two join-
ing tuples r and s only depends on one global order, and is
consistent over all the units.

Definition 2 (Order-Consistent Protocol). Given a set
of dispatcher tasks Y and a set of processing units U , each
task yi ∈ Y sends a set of tuples Xi = {xi1 , ..., xik , ...} as a
stream. Each tuple is broadcast to a set of processing units.
A network protocol is called order-consistent if and only if:
There exists a global tuple sequence Z = (xz1 , xz2 , ...), where
Z contains each tuple exactly once. For each unit uj ∈
U , it receives all the tuples assigned to it (i.e., no loss in
the network), and the sequence of tuples it processes is a
subsequence of the global tuple sequence Z.

First, we need the message passing and processing be-
tween every pair of dispatcher task and processing unit is
first-in-first-out (FIFO). Otherwise, the unit cannot deter-
mine whether a received tuple is delayed in the network. For
example, suppose r and s are sent by the same dispatcher
task. Ri receives r and then s, however, r is delayed in Sj .
It is impossible to determine how long Sj should wait for
r before processing the early arriving s, unless there exists
some kind of communication between Ri and Sj . To this
end, we design a pairwise FIFO protocol to guarantee that
for every pair of dispatcher task and processing unit, the
in-between message passing and processing is FIFO.

Definition 3 (Pairwise FIFO Protocol). Given a dis-
patcher task y and a processing unit u, y sends a set of
tuples X = {x1, ..., xk, ...} to u as a stream. A network pro-
tocol is called pairwise FIFO if and only if: For any two
tuples xa and xb, if xa is sent by y before xb, then xa is
processed at u before xb.

This protocol is widely used in the design of communica-
tion networks [24]. The basic idea is to give each tuple an

id which is incremented by one after every sent tuple (dis-
patcher side) or received tuple (processing unit side). The
receiver u only processes those tuples with the correct tuple
id. Thus, when a tuple is delayed or lost, the tuple id to
be received will be held and other tuples cannot be received.
However, they can be buffered to make the overhead of this
protocol lightweight, and this depends on the implementa-
tion of this protocol.
Now we can design the order-consistent protocol based on

the above pairwise FIFO protocol. The key component of
the protocol is the logical clock [25]. Each dispatcher task
maintains a logical clock (i.e., a monotonically increasing
counter) which is incremented by one per tuple from the
shuffler. Every time before emitting a tuple, the dispatcher
task appends a logical timestamp to the tuple. Each process-
ing unit sorts the received tuples based on the timestamp.
In this case, the global sequence is just based on the order
of timestamp. However, in the context of stream process-
ing, we cannot wait till the last tuple before sorting tuples
and output. For this reason, the protocol must know the
current status of each dispatcher task, and which part of
tuples can be to sort and process (i.e., no more incoming
tuples containing such timestamp). Here, we use an idea
similar to stream punctuation [37] to solve it. For each dis-
patcher task, it broadcasts a signal tuple with timestamp
to all the units periodically (e.g., every 10ms). Since mes-
sage passing and processing within every pair of dispatcher
task and processing unit are FIFO, such a signal indicates
that all tuples (from this dispatcher task) before this times-
tamp have been received by the units. Each processing unit
maintains a table of the latest signal timestamp from each
dispatcher task. If all the dispatcher tasks’ logical clocks
reach a certain timestamp, the processing unit must have
received all the tuples before this timestamp. Thus, we use
a priority queue in each processing unit to buffer every re-
ceive tuple, and process (i.e., store or join) those tuples that
have a smaller timestamp than the smallest current latest
signal timestamp.
For this protocol, each dispatcher task needs to generate

timestamp for its tuple based on its own knowledge. An
ideal case is that all the dispatchers have a same global time,
which is usually not easy to obtain. However, if we can re-
lax the constraint of timer synchronization among different
dispatcher tasks (e.g., within 100ms difference), it would be-
come easier to achieve. Such time difference will not affect
the correctness of the protocol. Instead, we only need to
buffer more since the difference of the latest signals times-
tamp from dispatchers may become larger.
By using the order-consistent protocol to send tuples from

multiple dispatcher tasks to multiple processing units, the
order of tuple processing will be consistent in all process-
ing units. Therefore, the missed-join and duplicated-join
problems due to the inconsistent processing order can be
definitely avoided.

3.3 Window-Based Stream Joins
Unlike a full-history stream join, a window-based stream

join evaluates the join condition only for tuples within the
designated window [6]. The most widely used window-based
stream join is to apply the time-based sliding window [16,
33]. Typically, given a time window size ̟, for any input
stream tuple r ∈ R (resp. s ∈ S), it is joined only with the

sub

index

sub

index

sub

index

...

sub

index

explore/expire archive

Figure 5: Chained in-memory index.

tuple s ∈ S (resp. r ∈ R) such that 0 ≤ r.time−s.time ≤ ̟
(resp. 0 ≤ s.time− r.time ≤ ̟).

Two operations are essential for the maintenance of a slid-
ing window. One operation is to verify the window con-
straint, which determines the tuples that should participate
in the join operation. To do this, it requires the system to
assign a synchronized timestamp to each incoming tuple. In
BiStream, the timestamp is assigned at the shuffler. The
other essential operation is to invalidate and discard the ex-
pired tuples from memory. This operation is important for
releasing the memory and performing efficient join. The-
orem 1 provides the criterion when a tuple can be safely
removed from memory.

Theorem 1. Given the maximum network delay D, the
stored tuples r ∈ Ri can be safely discarded from memory,
when Ri receives an incoming tuple s ∈ S iff s.time−r.time >
̟ + D. Likewise, s ∈ S can be discarded from Sj once Sj

receives one tuple such that r.time− s.time > ̟ +D.

Proof. Given a tuple r ∈ Ri, it needs to join s ∈ S whose
timestamp is within [r.time, r.time + ̟]. With D, the last
tuple s′ within r’s window arrives at Ri at the moment of
r.time + ̟ + D such that s′.time = r.time + ̟. Thus, if
s ∈ S arrives later than s′, then s.time > r.time+̟ which
is outside [r.time, r.time+̟]. In other words, r will not be
in any window of s after s′ and thus can be safely discarded
from memory.

Indexes are required to support efficient stream join pro-
cessing. However, the existing approaches of organizing the
entire stream data with one single index incur high overhead
for re-adjusting the index when expired tuples are discarded.
To facilitate low-overhead data discarding and index explo-
ration, we propose the chained in-memory index to over-
come the high overhead incurred in using a single index.

Figure 5 illustrates the structure of the chained in-memory
index. The basic idea is to partition the streaming tuples
with respect to the discrete time intervals and construct a
subindex per interval. The span of the time interval is re-
ferred as the archive period P. Each subindex is associated
with the minimum and maximum timestamps of the tuples
it contains. All subindexes are chained as a linked list by
the order of their construction time. According to the win-
dow constraint, expired data are discarded from memory
in the granularity of subindex-level rather than tuple-level.
This reduces the overhead of data discarding since the valid
subindexes are not affected when the obsolete subindexes
are discarded. We summarize the main procedures of index-
ing data, discarding data, and join processing in the chained
in-memory index as follows.

Data Indexing: When each input tuple (say r ∈ Ri) is
inserted into an active subindex, it first updates the mini-
mum and maximum timestamps. It then calculates whether
the difference between the minimum and maximum times-
tamps has exceeded P. If this is true, the active subindex

becomes inactive and is archived into the chain, and a new
empty active subindex is created. Otherwise, the current
active subindex remains active. Only one active subindex is
used to index an input tuple.
Data Discarding: An expired subindex can be safely re-

moved from memory. Checking for the expired subindexes
is triggered when a tuple reaches the unit belonging to the
other relation (e.g., s reaches Ri where s ∈ S). The crite-
rion to discard one subindex from the chain is the difference
between the timestamp of s and the maximum timestamp
of the subindex being large than ̟ +D according to Theo-
rem 1. Theorem 1 ensures that the removal of the subindex
from memory does not affect the integrity of join results.
This coarse-grained level data discarding improves the dis-
carding efficiency by avoiding pairwise comparisons inside
each subindex.
Join Processing: After data discarding, s needs to join

with all the tuples in the remaining in-memory subindexes.
Recall that, for sliding-window joins, the window verifica-
tion is necessary to identify whether each tuple falls in the
window. One optimization we adopted to speed up this win-
dow verification is to identify which subindex is partially
or completely expired in the window, by comparing the dif-
ference between s.time and the minimum timestamp of the
subindex. If the minimum timestamp is in the window that
s may interact with, then the entire subindex does not need
to conduct the window verification and can directly perform
join processing. Otherwise, the pairwise window verifica-
tion is needed during join processing in the partially expired
subindex.

3.4 Supporting Other Operators
Besides the join operator, a typical stream query may also

involve other operations such as selection, projection and ag-
gregation. Such a query is typically referred to as a stream
select-project-join-aggregation (SPJA) query [3]. An exam-
ple stream SPJA query is shown below.

SELECT ONLINE R.a2, sum(S.b2)

FROM R, S

WHERE R.a1 > S.b1 WITHIN 10 minutes

GROUP BY R.a2;

where the WITHIN clause indicates that it is a sliding-window
query. If the WITHIN clause is omitted, the aggregation of
the query would be based on the full-history join results.
A complex stream SPJA query may need to join more than

two streams. For such a complex query, a binary tree-like
(e.g., right-deep tree [9]) execution plan is constructed ac-
cordingly, which comprises a sequence of binary stream join
operators. All the join operators are executed in a pipeline
manner: each operator joins two streams, each of which is
either an input stream or from another join operation, and
produces the join result that is potentially fed to another op-
erator implemented using shuffle stream grouping in storm.
Focusing on the join processing, we further describe how se-
lection, projection and aggregation are supported for stream
SPJA queries in BiStream.

3.4.1 Selection and Projection

The selection and projection operations could be either
duplicate-preserving or duplicate-eliminating. Duplicate-pre-
serving selection and projection allow the existence of dupli-
cated results. They are stateless and thus can be easily con-
ducted by filtering the streams in a tuple-at-a-time manner
without using any extra memory for storing the intermediate

state [5]. BiStream can naturally support these operations
at the router side over the input streams and at the joiner
side over the stream join results according to the query plan.

However, duplicate-eliminating selection and projection
need to remove the duplicated results, which typically re-
quires the stream system to add an additional bolt (referred
as the deduplicator) to filter out the duplicates. Many ex-
isting duplicate-eliminating techniques (such as hash prob-
ing [22]) can be used in the implementation of the dedu-
plicator. Due to the potentially unbound memory usage
for keeping track of the distinct values over the full-history
data [5], in practice, these operators are always applied with
windowed constraints. In BiStream, they can be supported
by integrating the deduplicator into either the router or the
joiner to enable duplicate elimination.

3.4.2 Online Data Aggregation

In order to facilitate real-time decision making, BiStream
also supports online data aggregation over the stream join
outputs. Performing online data aggregation comprises two
tasks: join and aggregation. The join processing can be per-
formed by directly exploiting the proposed join approach
(e.g., using the join predicate R ✶R.a1>S.b1 S). The aggre-
gation computation is to aggregate the join results based
on group-by and aggregate functions (e.g., in the example
query, group by R.a2 and perform sum over S.b2). To sup-
port efficient distributed aggregation processing, we adopt a
two-phase approach [32]. The first phase is to pre-aggregate
a partial local view in each unit in the joiner. As each unit
contains part of the join outputs independently, the local
view computation can be directly performed. The second
phase is to shuffle the local views to a coordinating compo-
nent (referred as the merger) and merge them into a global
view from time to time. The merger is implemented as a
bolt receiving the data stream from the joiner. The merger
may involve multiple processing units to parallelize the pro-
cessing of constructing the global view.

In a stream environment, frequent view updates may in-
cur high communication and computation overhead between
the joiner and the merger. One improvement is to adopt
the lazy-update or batch-update strategy. Instead of push-
ing the local aggregation results to the merger immediately
when every tuple arrives, we compute the updated views
by batching the updated tuples based on a time period. In
this way, multiple local aggregate updates can be batched
together so that the overhead can be reduced.

3.5 Fault Tolerance
Two types of failures that typically occur in a stream sys-

tem are data loss and message loss. Data loss happens when
there is power failure or node corruption, which results in
the loss of data stored in memory, and hence, loss of the
join states. Message loss is often due to network partition
or hiccup, which results in the loss of on-the-fly data during
message passing, and hence, incomplete dataflow processing.

To handle data loss, BiStream adopts data replication to
prevent data loss for the unit failure in the joiner. BiStream
maintains one in-memory data as the primary copy and sev-
eral other copies as backups for failure recovery purposes.
As we have discussed above, during the join processing, ev-
ery tuple r of R (resp. s of S) is stored into one unit of R
(resp. S) that is considered as the primary copy to support
the join processing. The other copies are stored in the units

of S (resp. R) where r (resp. s) is sent for join processing.
Intuitively, when r is sent to the units of S for join, BiStream
enforces some units to store r into their persistent storage
(e.g., hard disk) as replicas after the join operation. When
the system detects a unit failure, the failed partition can be
restored from other archived replicas in the system.
To handle message loss, since the topology of the router

and joiner is a directed acyclic graph (DAG), BiStream adopts
the upstream backup technique [19]. Specifically, the up-
stream nodes act as backups for their downstream neigh-
bors by preserving tuples in their output queues while their
downstream neighbors process them. If the message in the
downstream fails, its upstream nodes replay the logged tu-
ples on the recovery node.

4. COMPARATIVE ANALYSIS
In this section we provide the comparative analysis be-

tween join-biclique and join-matrix models in terms of mem-
ory consumption, scalability and communication cost. Ta-
ble 2 lists the notations used throughout this section. In
addition, we use the subscripts bi and mat to distinguish
join-biclique and join-matrix.
Assume that there are m and n partitions for relations R

and S respectively, and the join keys over R ✶θ S are of
uniform distribution. With this setup, join-biclique requires
m + n units while join-matrix requires m × n units. In ad-
dition, as the random routing strategy is an extreme case of
the ContRand routing strategy, our discussion will be based
on ContRand routing for join-biclique where m and n par-
titions are divided into d (≤ m) and e (≤ n) subgroups,
respectively.

4.1 Memory Consumption
We quantify the memory consumption for the full-history

join. As the full-history join can be viewed as an extreme
case of the window-based join where the size of window is
infinite, the following analysis also applies to the window-
based join in the context of the worst case analysis.
The data stored in join-biclique consist of the stored tuples

of both joining relations and the buffered tuples within a
time window (say D) required by the join protocol. Thus,
the total amount of memory consumption is as follows:

Wbi = χR · (|R|+ n ·
ϕR

e
· D) + χS · (|S|+m ·

ϕS

d
· D)

where |R| and |S| quantify the stored tuples, and n ·
ϕR

e
· D

and m ·
ϕS

d
· D quantify the buffered tuples. Typically, the

number of stored tuples is much larger than the temporarily

buffered ones, inferring n ·
ϕR

e
· D ≪ |R| and m ·

ϕS

d
· D ≪

|S|. By ignoring the memory usage of buffering tuples, the
memory consumption of join-biclique can be approximated
as

Wbi ≈ χR · |R|+ χS · |S| (1)

Different from join-biclique, join-matrix replicates each in-
put tuple over an entire row or column. As a consequence,
the memory consumption of join-matrix is as follows:

Wmat = χR · n · |R|+ χS ·m · |S| (2)

Equation 2 shows the memory consumption for join-matrix
is sensitive to the matrix configuration. This infers that join-
matrix suffers from high memory consumption when m and

Table 2: Terms used in the analytical model.
Terms Description

Rk,i The i-th partition of the k-th subgroup of R
Sl,j The j-th partition of the l-th subgroup of S
mk Number of partitions in the k-th subgroup of R
nl Number of partitions in the l-th subgroup of S

|R|, |S| Number of arrived tuples of relation R (S)
χR, χS Size of a tuple of relation R (S)

W Cluster memory consumption
ϕR, ϕS Average incoming rate of stream R (S)
In(·) Input bandwidth of a node
B Intermediate stream bandwidth

n are large. Differently, Equation 1 shows the memory con-
sumption of join-biclique is independent on the partitioning
scheme and only proportional to the amount of inputs. This
indicates that join-biclique is much more memory-efficient.

4.2 Scalability
We consider two important properties with respect to sys-

tem scalability. The first is on the flexibility of adding or
removing the units into or from the system. This can be
measured by the system scaling granularity in terms of the
number of units being added or removed. The second is
on the effectiveness of utilizing the memory of newly added
units. This can be measured by the scaling gain ratio (SGR).

Definition 4 (Scaling Gain Ratio). In system scaling,
the scaling gain ratio (SGR) is the percentage of newly
added memory that can be used for processing new inputs.
Higher SGR indicates better scalability.

In the join-matrix model, since the system needs to main-
tain the matrix structure, it can only add or remove one
entire row or column during system scaling out or down.
It does not support single unit increment per scaling op-
eration, as this violates the matrix structure. Especially,
when there is a big matrix, adding one row or column may
increase many more machines which may not be actually
needed. This therefore limits the flexibility of the system.
On the contrary, join-biclique does not need to maintain a
rigid partitioning scheme, enabling it to be more flexible in
scaling. In join-biclique, each unit is independent to each
other, and any number of units (even single unit) can be
easily added or removed from the system for either relation.
In other words, join-biclique supports a more fine-grained
units change which provides the flexibility in scaling.

For the effectiveness of resource utilization, in join-matrix,
when a new unit is added (corresponding either a row or
column increases), part of its memory is used to store the
replicas of the in-memory data in other units and only the
remainders can be used to increase the system storage ca-
pacity. As shown in Figure 1.a, when a row is added for R,
tuples of relation S have to be replicated to the new unit in
the same column to guarantee the correctness of join process-
ing. The space required for storing the replicas is therefore
χS · (|S|/n), where n is the number of columns. Thus, the
SGR of adding a new partition for relation R is

SGRmat,R =
C − χS · (|S|/n)

C
= 1−

χS

C
·
|S|

n
(3)

where C is the memory capacity of a unit. Similarly, when
adding a partition for relation S, we can calculate SGR as

SGRmat,S =
C − χR · (|R|/m)

C
= 1−

χR

C
·
|R|

m
(4)

As can be seen from Equation 3 and Equation 4, for join-
matrix, the SGR of expanding relation R (resp. S) is af-
fected by the number of tuples stored in S (resp. R) and
the number of partitions of S (resp. R). Consequently, the
SGR will be very small when the number of stored tuples
becomes large. This indicates the effectiveness of system
scaling out tends to be marginal with the growth of system
storage capacity.
For join-biclique, as no data replication is needed, the

whole memory of the new unit can be utilized to increase
the capacity of system storage. For instance, when one unit
is added to relation R, no data from other units are repli-
cated to the new unit. In this case, the SGR remains 1
whenever the system scales out, as 100% of the memory can
be utilized to share the workload.

4.3 Communication Cost
We further provide the comparative analysis on the com-

munication cost of intermediate streams in different models.
In join-biclique, the bandwidth usage for each unit Rk,i

or Sl,j is provided as follows:

In(Rk,i) = χR ·
ϕR

d
·

1

mk

+ χS ·
ϕS

d

In(Sl,j) = χS ·
ϕS

e
·
1

nl

+ χR ·
ϕR

e

Let ΣR = χR · ϕR and ΣS = χS · ϕS . Then the bandwidth
of intermediate streams required by join-biclique is:

Bbi =
d∑

k=1

mk∑

i=1

In(Rk,i) +
e∑

l=1

nl∑

j=1

In(Sl,j)

= (
n

e
+ 1) · ΣR + (

m

d
+ 1) · ΣS

(5)

In join-matrix, the bandwidth of intermediate streams is:

Bmat = n · ΣR +m · ΣS (6)

As can be seen from Equation 5 and Equation 6, join-biclique
is superior to join-matrix in bandwidth usage to support
the same number of partitions in most cases. Only when a
random routing is adopted (i.e., d = e = 1), it is inferior to
join-matrix with an extra ΣR +ΣS for the entire cluster.

5. ADAPTIVE RESOURCE MANAGEMENT
The goal of adaptive resource management is to achieve

dynamic recalibration, reacting to frequent changes in data
and statistics. Adaptive solutions can supplement regular
execution with an adaptive resource manager that monitors
the unit load and triggers changes. Considering the Con-
tRand routing strategy, each subgroup is independent to
each other. In BiStream, the resource manager monitors the
load situation of the units in each subgroup and performs
scaling out/down operations within each subgroup. We use
the memory load volume (MLV) as a metric to calculate the
memory consumption in each unit.
BiStream adopts a two-phase scaling (2PS) protocol – a

requesting phase and a scaling phase – to adaptively adjust
the resource management. For the ease of illustration, we
assume all the units are homogeneous with the same memory
capacity C. However, the protocol can be easily extended to
the heterogeneous scenarios. Next we introduce the basic
idea of 2PS protocol. The detailed algorithm is omitted
here due to space constraint.

1.) In the requesting phase, the resource manager broad-
casts a request to all the units to collect the load status.
Each unit acknowledges the request by reporting its MLV
to the resource manager. After receiving all the responses,
the resource manager summarizes the load status and de-
termines whether a scaling operation is necessary. Once a
scaling decision of either scaling out or down is made, the
system goes to the scaling phase.

2.) In the scaling phase, the resource manager conducts
the scaling operation based on the decision. For scaling out
operation, the resource manager allocates new units and per-
forms necessary data migration to rebalance the load among
the units in the current subgroup. For scaling down opera-
tion, the resource manager first distributes the data in the
units that will be removed to other units in the same current
subgroup, and then releases these units.

Since BiStream conducts the adjustment in each subgroup
independently, we illustrate the control flow based on one
subgroup (e.g., subgroup G with k units). The resource
manager periodically sends the request messages q1, ..., qk
to all the k units in G. Every i-th unit acknowledges the
request qi through a response message pi with its current
MLV, denoted as MLV (pi), where i ∈ {1, 2, ..., k}.

After the resource manager has received all the responses
{p1, ..., pk}, it calculates the percentage τ of the memory
usage in the subgroup as

τ =
Σk

i=1MLV (pi)

k · C

τ is used as an indicator to make the decision. Intuitively, if
τ exceeds a stated threshold Th, the system is considered to
be overloaded. In contrast, if τ is below a stated threshold
Tl, the system is considered to be underloaded. There are
two important issues we need to address during the system
adjustment. The first one is how to avoid false positive
scaling due to the fluctuation of inputs; the second one is
how to determine the number of units to adjust.

To address the first issue, the resource manager period-
ically collects the load status of units and justifies the de-
mand of system adjustment. The adjustment is confirmed
only when the resource manager makes the same adjustment
decisions for consecutive iterations. This is implemented by
maintaining a counter. The counter is incremented by one if
the decision is the same as in the precious iteration. Other-
wise, the counter is reset to zero. Once the counter reaches
the stated threshold, the adjustment is confirmed. In this
way, the protocol can tolerate the fluctuation of instant load
and avoid making the false positive scaling decision.

The number of units required for adjustment of resources
can be quantified as follows:

∆ =
Σk

i=1MLV (pi)

Ψ · C
− k = (

τ

Ψ
− 1) · k (7)

where Ψ (Ψ ∈ (Tl, Th)) is the expected value that indicates
the overall load status after adjustment. Equation 7 is ap-
plicable to both scaling out and down operations. When ∆
is positive, it indicates the system should add units to the
subgroup. When ∆ is negative, |∆| units should be removed
from the subgroup.

6. EVALUATION
BiStream is built on Storm [1] and uses Kafka [23] as the

input stream adapter. The ripple join is used as the local

join algorithm at each joiner task. We compare BiStream
with the stream join system developed over join-matrix 1.

6.1 Experimental Setup
Environment. We conduct all the experiments on a clus-

ter of 40 servers, each of which is equipped with an Intel
Xeon X3430 @ 2.4GHz CPU and runs CentOS 5.11. Each
server is logically partitioned into two processing units, each
of which has 2GB RAM. Overall, there are 80 processing
units available exclusively for our experiments.
Data sets. We focus on our study using the existing

benchmark TPC-H [2]. We generate the TPC-H data sets
using the dbgen tool shipped with TPC-H benchmark. All
the input data sets are pre-generated before feeding to the
stream system. In addition, the benchmark tables are pro-
jected before feeding into the join system with the attributes
only needed in the queries. Different numbers of data are
generated to support different data volume requirement dur-
ing the evaluation. We run all the experiments with asym-
metric input rates of two join streams in which case the data
volume per second in each stream remains almost the same.

Queries. We consider three join queries including two
equi-joins from the TPC-H benchmark and one synthetic
band-join which are also used in [12]. The two equi-joins,
namely Q5 and Q7, represent the most expensive join oper-
ations in the queries Q5 and Q7 from the benchmark. The
synthetic band-join (Band) is as follows:

SELECT * FROM LINEITEM L1, LINEITEM L2

WHERE ABS(L1.orderkey-L2.orderkey) <=1

AND (L1.shipmode=‘TRUCK’ AND L2.shipinstruct=‘NONE’)

AND L1.Quantity > 48

We have also evaluated the performance with online ag-
gregation queries. Due to space constraint, please refer to
Appendix B for the results.

Settings. For both join-biclique (JB) and join-matrix
(JM), we use the static partitioning schemes that are opti-
mal to the input streams. Specially, to offer the best per-
formance for JM, we consider the square matrix data par-
titioning scheme for joining equivalent volume streams [12].
For JB, we also assign the same number of units to each rela-
tion. Throughout the discussion, we use three different types
of join processing settings under JM and JB: JMx, JBx and
JBx-CRy. The details of these settings are listed in Table 3.

In addition, we define the processing volume as the number
of input tuples processed by the system. The maximum pro-
cessing volume is the point when the unit reaches its memory
saturation threshold (i.e., the capacity of in-memory process-
ing). Meanwhile, we use the memory load volume (MLV) to
measure the memory consumption in each unit.

6.2 Memory Consumption
We first show the memory consumption comparison be-

tween JB and JM. Figure 6.a provides the average MLV
changes of these two models when the processing volume
varies from 1M (million) to 19M. It is conducted over the
full-history joins for queries Q5, Q7 and Band. In this
experiment, both JB and JM use 16 units, i.e., JB16 and
JM16. The memory saturation threshold for each unit is
set to 1.5GB. As expected, we can see that JM always con-
sumes memory faster than JB for all the three queries. For
example, for query Q7, JM reaches the maximum processing
volume at 5.8M tuples, whereas JB is at 19M tuples. Sim-

1
https://github.com/epfldata/squall

Table 3: List of model settings.
Name Description

JMx
The join-matrix over

√
x×√x matrix, where

each partition corresponds to
√
x units.

JBx
The join-biclique over x/2 + x/2 units with
random routing, where each relation
corresponds to x/2 units.

JBx-CRy
The join-biclique over x/2 + x/2 units with
ContRand routing, where each relation has
x/2 units partitioned into y subgroups.

ilarly, JM reaches the maximum processing volume much
earlier than JB for Q5 and Band. This is because JM needs
to store many replications in the joining model, while JB
does not. The experimental result confirms that JB is much
more memory-efficient and can benefit more in-memory pro-
cessing than JM over a fixed size of cluster.

Unlike full-history joins, sliding-window joins can bound
the memory usage to the size of the workload within the
time window, since expired tuples can be discarded from
memory. To illustrate the effectiveness of the chained in-
memory index, Figure 6.b shows the memory consumption
of JB16 for query Q5 with sliding windows of 3, 5 and 8
minutes. In this experiment, the average input rate is set
to 15K tuples per second and the archive period P of the
chained in-memory index is set to one-tenth of the window
size. The experiment results show that after one window
time, the memory usage is bounded via data discarding. The
ripples in the MLV curve indicates the memory consuming
decreases quickly when the data is discarded. This benefits
from the data discarding strategy in JB because the dis-
carding is based on the granularity of subindex other than
individual tuple.

Furthermore, Figure 6.b also indicates that a longer win-
dow (or a bigger processing volume) causes a higher MLV.
For example, the 8-minute window uses more memory than
the 3-minute and 5-minute windows. In other words, the
maximum size of processing volume that a system can sup-
port reflects the size of the time window it can achieve for
in-memory join processing. As shown in Figure 6.a, JB can
support a much bigger processing volume than JM. This
provides us another insight: given a cluster, JB is able to
support a much bigger window size in supporting in-memory
sliding-window joins than JM. More experimental evalua-
tions about the derived maximum sizes of sliding windows
with respect to different settings can be found in Appendix C.

6.3 Throughput and Latency
Next, we study the throughput comparison among the

different models. To provide a comprehensive study, we test
five different settings, where JB8 has the same number of
partitions (4 partitions for each relation) with JM16, and
the remaining three settings with JB16 use the same number
of units (16 units in total) as JM16. Figure 8 presents the
throughput comparisons for queries Q5, Q7 and Band when
the system is fed in 10GB, 80GB and 320GB data sets.

As shown in Figure 8.a, for Q5, all different settings pro-
vide comparative throughput when the system is fed with
10GB data. This is because the memory is sufficient to
hold all the 10GB data in memory in all settings. We ob-
serve that the throughput of JB16 (with random routing)
is smaller than JM16 in the 10GB case. This is because,
under random routing, all the units of one relation are in-
volved in the join processing of every input tuple of the other

https://github.com/epfldata/squall

 0

 500

 1000

 1500

 2000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

M
e
m

o
ry

 L
o
a
d
 V

o
lu

m
e
 (

M
B

)

Processing Volume (# of Tuples (M))

JB(Q7)
JM(Q7)

JB(Q5)
JM(Q5)

JB(Band)
JM(Band)

(a) Full-history joins.

 0

 100

 200

 300

 400

 0 10 20 30 40 50 60

8-min Window

5-min Window

3-min Window

M
e
m

o
ry

 L
o
a
d
 V

o
lu

m
e
 (

M
B

)

Time (Second X 10)

(b) Sliding-window joins.

Figure 6: Memory usage.

 1000

 10000

 100000

 1x10
6

 1x10
7

4 8 16 28 32 44 52 60 72 104 108 112 120 124 132

T
h

ro
u

g
h

p
u

t
in

 L
o

g
 S

c
a

le
 (

#
 o

f
T

u
p

le
s
/S

e
c
o

n
d

)

of Tuples (M)

JM16
JB8

JB16
JB16-CR4
JB16-CR8

Figure 7: Real-time throughput.

 100

 1000

 10000

 100000

 1x10
6

 1x10
7

 1x10
8

10GB 80GB 320GB

T
h
ro

u
g
h
p
u
t
in

 L
o
g
 S

c
a
le

 (
#
 o

f
T

u
p
le

s
/S

e
c
o
n
d
)

Data Volume

JM16
JB8

JB16
JB16-CR4
JB16-CR8

(a) Throughput for query Q5.

 100

 1000

 10000

 100000

 1x10
6

 1x10
7

 1x10
8

10GB 80GB 320GB

T
h
ro

u
g
h
p
u
t
in

 L
o
g
 S

c
a
le

 (
#
 o

f
T

u
p
le

s
/S

e
c
o
n
d
)

Data Volume

JM16
JB8

JB16
JB16-CR4
JB16-CR8

(b) Throughput for query Q7.

 100

 1000

 10000

 100000

 1x10
6

 1x10
7

 1x10
8

10GB 80GB 320GB

T
h
ro

u
g
h
p
u
t
in

 L
o
g
 S

c
a
le

 (
#
 o

f
T

u
p
le

s
/S

e
c
o
n
d
)

Data Volume

JM16
JB8

JB16
JB16-CR4
JB16-CR8

(c) Throughput for query Band.

Figure 8: Average throughput with different processing volume.

relation. This causes each unit to process more tuples in
JB16 than in JM16, resulting in the throughput decrease
of JB16. As shown in the 10GB case, once JB adopts the
ContRand routing strategy, its throughput becomes simi-
lar or even higher than JM. When the system is fed with
80GB data, the throughput of JM16 decreases sharply and
performs far behind JB. For example, JB16-CR8 performs
better than JM16 for almost two orders of magnitude. In-
terestingly, JM16 with 16 units performs even worse than
JB8 with 8 units for one order of magnitude. This is be-
cause 80GB has exceeded the maximum processing volume
of JM16, resulting in frequent disk I/Os, thereby reducing
the throughput. With 80GB data, the processing in other
JB settings remains in-memory. As shown in Figure 8.a,
the throughput of JB8 decreases as well after JB8 reach-
ing its maximum processing volume for 320GB. This further
confirms that in-memory processing is the key to efficient
stream join processing.
For queries Q7 and Band, we observe similar trends of

throughput change with different settings as query Q5. Note
that the throughput of Q5 is around 1.5X bigger than Q7
on average where the difference is unclear after using the log
scale in the results. Figure 8 shows that the throughput of
processing Q5 and Q7 is much higher than that of processing
Band. This is within expectation, as query Band involves
inequality join and incurs higher computation overhead than
equi-join queries Q5 and Q7.
Figure 7 illustrates the throughput change along the in-

crease of tuples ingested for query Q5. Consistently, JB16-
CR8 provides the highest throughput than all the other set-
tings. In addition, JM is the first one to reach its system
memory capacity when 28M tuples are fed. Interestingly,
the maximum processing volume of JB8 is around 52M tu-
ples, which is much larger than that of JM16. Furthermore,
the JB settings with 16 units yield high throughput and
provide much larger memory capacity than JM for efficient
in-memory join processing. Another insight we obtain is
that the content-sensitive routing strategy can increase the

throughput of JB. Figure 8 and Figure 7 confirm that JB16-
CR8 (resp. JB16-CR4) outperforms JB16-CR4 (resp. JB16)
in terms of the throughput. This is because the content-
sensitive routing strategy renders each input tuple sent to
some specific units instead of all units for join processing.

We also examine the latency of different models. The la-
tency is measured by capturing the difference between the
time producing a join result and the time of a more re-
cent tuple participated in the join entering the join system.
Figure 9 provides the latency of JM and JB under different
settings for queries Q5, Q7 and Band. The box in each
series encloses the 25/75 percentile of the distribution with
median shown as a horizontal line within each box. The
top and bottom horizontal lines outside the box show the
worst and best cases respectively. The statistical results are
collected after the system is running at maximum through-
put with in-memory processing. The results indicate that
JB and JM achieve a similar average latency (within 10ms
difference) within each query. We observe that the latency
is dominated by the network transfer (due to the routing
architecture) and the queuing of massive tuple processing
in each unit. It is not surprising that JB16 setting gener-
ates a slightly larger latency than the others due to more
data shuffling and join processing. It also shows that the la-
tency of JB decreases when the ContRand routing strategy
is adopted. For instance, the JB16-CR8 achieves a lower la-
tency than JM for all the queries. This further confirms that
the content-sensitive routing is able to prune the unrelated
join tuples and further reduce latency.

6.4 Scalability and Elasticity
We further study the scalability by observing how the max-

imum processing volume changes when the system scales out.
Figure 10 shows the results of processing query Q7 on the
number of units varying from 4 to 64. As studied in [12],
a square matrix is able to achieve a good performance for
JM-based processing. So, we only show the results on the
perfect squares of units for JB and JM. Interested readers

 0

 20

 40

 60

 80

 100

JM
16

JB16
JB16-CR4

JB16-CR8

JM
16

JB16
JB16-CR4

JB16-CR8

JM
16

JB16
JB16-CR4

JB16-CR8

Q5 Q7 Band
L

a
te

n
c
y
 (

m
s
)

Figure 9: Latency.

 0

 50

 100

 150

 200

 250

 300

4 9 16 25 36 49 64

M
a
x
.
P

ro
c
e
s
s
in

g
 V

o
lu

m
e

 (
#
 o

f
T

u
p
le

s
 (

M
))

of Units

JB
JM

Figure 10: Scalability.

 0

 10

 20

 30

 40

 50

 60

 70

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60(K)

B
a
n
d
w

id
th

 (
M

b
p
s
)

Input Rate (# of Tuples/Second)

JM16
JB8

JB8-CR2
JB8-CR4

Figure 11: Bandwidth consumption.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 5 10 15 20 25 30 35 40

In
p
u
t
R

a
te

 (

T
u
p
le

s
/S

e
c
o
n
d
)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 5 10 15 20 25 30 35 40
 4

 6

 8

 10

 12

 14

 16

M
e
m

o
ry

 L
o
a
d
 V

o
lu

m
e

 (
M

B
)

#
 o

f
U

n
it
s

Time (Minute)

MLV
of Units

Figure 12: Dynamic resource management.

may refer to Appendix D for more results on other combina-
tions of units. Experimental results indicate that JM does
not scale well as the number of units increases. For exam-
ple, it supports 19M and 37M tuples over 16 and 64 units,
respectively. This is reasonable as JM has to store more
data replicas with the increased size of matrix. This thereby
limits the scalability of JM. As expected, we observe that
JB achieves almost linear scalability. The maximum pro-
cessing volume of JB increases in double when the number
of units doubles. For example, JB supports 76M tuples of
maximum processing volume with 16 units, while the tuples
number increases to 290M with 64 units. This benefits from
the unit independence such that the newly added units do
not replicate any data from other units.
We next evaluate the capability of BiStream to dynami-

cally adjust the number of resources according to the stream
input rate changes. The experiment is conducted using Q7
for a 5-minute window join with JB8 as the initial setting.
The top of Figure 12 presents the varying stream input rates
during the 50 minutes of evaluation. As the input stream
rate changes, the MLV changes as well. The overload and
underload thresholds are set as Th = 0.8 and Tl = 0.3 respec-
tively, and the target load status after adjustment is set as
Ψ = 0.6. In this experiment, we allow the resource manager
to check the MLV in each processing unit with a 1-minute
period. The scaling out/down operation is triggered once
it receives the same scaling requests for 3 consecutive times.
The bottom of Figure 12 shows how the processing units are
dynamically added/released from the system while the MLV
changes. From the result, we can see that the system is able
to dynamically add/release the processing units once the
memory is over/under loaded. For instance, 4 and 6 process-
ing units are effectively added and removed from the system
when the MLV reaches above 1.2GB and falls below 450MB
respectively. During the system scaling, for sliding-window
join, data migration is avoided since the system discards the
expired tuples and controls the storage distribution of the

new incoming tuples to equivalently achieve load balancing
among the units. This favors no system downtime and no
impact on the average latency. Another observation is that
BiStream is able to handle the fluctuation of the workload
to avoid the false adjustment. BiStream does not trigger
any scaling out/down operation when the input stream is
shortly increased and deceased between the 22nd and 31st

minutes.

6.5 Communication Cost
Finally, we evaluate the network bandwidth usage within

the join processing. Figure 11 provides the bandwidth con-
sumption for processing queryQ5, when the input rate varies
from 4K to 60K tuples per second. For the ease of com-
parison, we measure the bandwidth usage for JM16, JB8,
JB8-CR2 and JB8-CR4, where each relation has 4 parti-
tions. Note that under this setting, JB can support dou-
ble storage capacity than JM. The results of JB8 and JM16
in Figure 11 indicate that JB consumes higher bandwidth
than JM, which is due to random routing. Once ContRand
routing is adopted, JB8-CR2 and JB8-CR4 consume less
bandwidth than JB8. From the experimental results, we
can draw two insights: First, ContRand routing strategy
can greatly reduce the bandwidth consumption in JB; Sec-
ond, JB has competitive bandwidth requirement as JM but
offers a larger maximum processing volume. Appendix E
provides more experimental results on the bandwidth con-
sumption over different settings.

In summary, our experiments show that JB is superior
to JM in terms of memory-efficiency, elasticity and scalabil-
ity, and is comparable in terms of latency. Integration of
the content-sensitive routing strategy enables the system to
further achieve a lower network consumption and latency.

7. CONCLUSION
In this paper, we proposed a novel stream join model,

called join-biclique, for online stream joins with general pred-
icates. Join-biclique logically models all the processing units
as a bipartite graph for stream joins with no data replica-
tion, flexible partition scheme and processing units indepen-
dence designs. On the basis of join-biclique, we designed
and developed a distributed stream join processing system,
BiStream with a large-scale commodity cluster. Specifically,
it is designed to support efficient full-history joins, window-
based joins and other operations including selection, projec-
tion and online data aggregation. BiStream also supports
an adaptive resource management where the system can dy-
namically scale out or down. We theoretically analyzed the
proposed techniques and also conducted extensive experi-
mental evaluation. The evaluation results demonstrate that
BiStream is memory-efficient, elastic and scalable.

Acknowledgments

This research is funded by the National Research Foundation
(NRF), Prime Minister’s Office, Singapore under its Campus
for Research Excellence and Technological Enterprise (CRE-
ATE) programme (“SP-2: Database Support for Research on
Megacities” R-252-000-496-281), and the A*STAR project
1321202073. We would like to thank the anonymous review-
ers for their insightful feedback.

APPENDIX

A. REFERENCES

[1] Apache storm. http://storm.apache.org.

[2] The tpc-h benchmark. http://www.tpc.org/tpch.

[3] S. Agarwal, A. P. Iyer, A. Panda, S. Madden,
B. Mozafari, and I. Stoica. Blink and it’s done:
Interactive queries on very large data. Proceedings of
the VLDB Endowment, 5(12):1902–1905, 2012.

[4] R. Ananthanarayanan, V. Basker, S. Das, A. Gupta,
H. Jiang, T. Qiu, A. Reznichenko, D. Ryabkov,
M. Singh, and S. Venkataraman. Photon:
fault-tolerant and scalable joining of continuous data
streams. In Proc. of SIGMOD, pages 577–588, 2013.

[5] A. Arasu, B. Babcock, S. Babu, J. McAlister, and
J. Widom. Characterizing memory requirements for
queries over continuous data streams. ACM
Transactions on Database Systems, 29(1):162–194,
2004.

[6] B. Babcock, S. Babu, M. Datar, R. Motwani, and
J. Widom. Models and issues in data stream systems.
In Proc. of PODS, pages 1–16, 2002.

[7] C. Balkesen, N. Tatbul, and M. T. Özsu. Adaptive
input admission and management for parallel stream
processing. In Proc. of DEBS, pages 15–26, 2013.

[8] S. Blanas, Y. Li, and J. M. Patel. Design and
evaluation of main memory hash join algorithms for
multi-core cpus. In Proc. of SIGMOD, pages 37–48,
2011.

[9] M.-S. Chen, M.-L. Lo, P. S. Yu, and H. C. Young.
Using segmented right-deep trees for the execution of
pipelined hash joins. In Proc. of VLDB, pages 15–26,
1992.

[10] S. Chen, P. B. Gibbons, and S. Nath. Pr-join: a
non-blocking join achieving higher early result rate
with statistical guarantees. In Proc. of SIGMOD,
pages 147–158, 2010.

[11] D. Dey, T. M. Barron, and V. C. Storey. A complete
temporal relational algebra. The VLDB Journal,
5(3):167–180, 1996.

[12] M. Elseidy, A. Elguindy, A. Vitorovic, and C. Koch.
Scalable and adaptive online joins. In Proc. of VLDB,
pages 441–452, 2014.

[13] B. Gedik. Partitioning functions for stateful data
parallelism in stream processing. The VLDB Journal,
23(4):517–539, 2014.

[14] B. Gedik, P. S. Yu, and R. R. Bordawekar. Executing
stream joins on the cell processor. In Proc. of VLDB,
pages 363–374, 2007.

[15] J. Gehrke, F. Korn, and D. Srivastava. On computing
correlated aggregates over continual data streams. In
Proc. of SIGMOD, pages 13–24, 2001.

[16] L. Golab and M. T. Özsu. Processing sliding window
multi-joins in continuous queries over data streams. In
Proc. of VLDB, pages 500–511, 2003.

[17] P. J. Haas and J. M. Hellerstein. Ripple joins for
online aggregation. In Proc. of SIGMOD, pages
287–298, 1999.

[18] J. M. Hellerstein, P. J. Haas, and H. J. Wang. Online
aggregation. In Proc. of SIGMOD, pages 171–182,
1997.

[19] J.-H. Hwang, M. Balazinska, A. Rasin, U. Cetintemel,
M. Stonebraker, and S. Zdonik. High-availability
algorithms for distributed stream processing. In Proc.
of ICDE, pages 779–790, 2005.

[20] C. Jermaine, A. Dobra, S. Arumugam, S. Joshi, and
A. Pol. The sort-merge-shrink join. ACM Transactions
on Database Systems, 31(4):1382–1416, 2006.

[21] T. Karnagel, D. Habich, B. Schlegel, and W. Lehner.
The hells-join: A heterogeneous stream join for
extremely large windows. In Proc. of DaMoN, 2013.

[22] M. Kitsuregawa, H. Tanaka, and T. Moto-Oka.
Application of hash to data base machine and its
architecture. New Generation Computing, 1(1):63–74,
1983.

[23] J. Kreps, N. Narkhede, and J. Rao. Kafka: A
distributed messaging system for log processing. In
Proc. of NetDB, 2011.

[24] J. F. Kurose and K. W. Ross. Computer networking: a
top-down approach (6th edition). Pearson Education,
2012.

[25] L. Lamport. Time, clocks, and the ordering of events
in a distributed system. Communications of the ACM,
21(7):558–565, 1978.

[26] F. Li, B. C. Ooi, M. T. Özsu, and S. Wu. Distributed
data management using mapreduce. ACM Computing
Surveys, 46(3):31:1–31:42, 2014.

[27] G. Luo, C. J. Ellmann, P. J. Haas, and J. F.
Naughton. A scalable hash ripple join algorithm. In
Proc. of SIGMOD, pages 252–262, 2002.

[28] A. Okcan and M. Riedewald. Processing theta-joins
using mapreduce. In Proc. of SIGMOD, pages
949–960, 2011.

[29] J. Qian, Y. Li, Y. Wang, H. Chen, and Y. Dong. An
embedded co-processor for accelerating window joins
over uncertain data streams. Microprocessors and
Microsystems, 36(6):489–504, 2012.

[30] Z. Qian, Y. He, C. Su, Z. Wu, H. Zhu, T. Zhang,
L. Zhou, Y. Yu, and Z. Zhang. Timestream: reliable
stream computation in the cloud. In Proc. of EuroSys,
pages 1–14, 2013.

[31] P. Roy, J. Teubner, and R. Gemulla. Low-latency
handshake join. In Proc. of VLDB, pages 709–720,
2014.

[32] A. Shatdal and J. F. Naughton. Adaptive parallel
aggregation algorithms. In Proc. of SIGMOD, pages
104–114, 1995.

[33] U. Srivastava and J. Widom. Memory-limited
execution of windowed stream joins. In Proc. of
VLDB, pages 324–335, 2004.

[34] J. W. Stamos and H. C. Young. A symmetric
fragment and replicate algorithm for distributed joins.

http://storm.apache.org
http://www.tpc.org/tpch

IEEE Transactions on Parallel and Distributed
Systems, 4(12):1345–1354, 1993.

[35] J. Teubner, G. Alonso, C. Balkesen, and M. T. Ozsu.
Main-memory hash joins on multi-core cpus: Tuning
to the underlying hardware. In Proc. of ICDE, pages
362–373, 2013.

[36] J. Teubner and R. Mueller. How soccer players would
do stream joins. In Proc. of SIGMOD, pages 625–636,
2011.

[37] P. A. Tucker, D. Maier, T. Sheard, and L. Fegaras.
Exploiting punctuation semantics in continuous data
streams. IEEE Transactions on Knowledge and Data
Engineering, 15(3):555–568, 2003.

[38] S. Wang and E. Rundensteiner. Scalable stream join
processing with expensive predicates: workload
distribution and adaptation by time-slicing. In Proc.
of EDBT, pages 299–310, 2009.

[39] A. Wilschut and P. M. G. Apers. Dataflow query
execution in a parallel main-memory environment. In
Proc. of PDIS, pages 68–77, 1991.

[40] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,
M. McCauley, M. J. Franklin, S. Shenker, and
I. Stoica. Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster
computing. In Proc. of NSDI, pages 2–2, 2012.

[41] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and
I. Stoica. Discretized streams: fault-tolerant streaming
computation at scale. In Proc. of SOSP, pages
423–438, 2013.

[42] H. Zhang, G. Chen, B. C. Ooi, K.-L. Tan, and
M. Zhang. In-memory big data management and
processing: A survey. IEEE Transactions on
Knowledge and Data Engineering, 2015.

B. EVALUATION FOR ONLINE DATA AG-

GREGATION
We modify the three queries used in Section 6 to add

aggregation functions for the online aggregation evaluation.
For queries Q5 and Q7, we apply the sum aggregate function
to the join results with the corresponding group-by opera-
tions as defined in the TPC-H specification [2]. For query
Band, we add three different aggregate functions count, min
and max simultaneously based on the group-by attribute of
nation name n name. BiStream adopts the two-phase ag-
gregation approach as described in Section 3.4.2 to support
online data aggregation. Figure 13 shows the throughput
comparison between the three queries with and without the
aggregation functions over the JB16 and JB16-CR4 settings.
It can be seen that the aggregation operation exerts negligi-
ble impact on the throughput. This is reasonable, as each
joiner task directly aggregates its join results in a pipeline
fashion and thus is efficient.
Figure 14 shows the network bandwidth usage, when dif-

ferent aggregation strategies are adopted. Recall that BiStream
adopts one batch optimization to pre-aggregate the join re-
sults in each joiner before generating the global view. This
experiment is conducted over a JB16-CR4 setting using queries
Q5, Q7 andBand with the input rates of 450K, 270K and 9K
tuples per second respectively. From the results, we can see
that the batch local view update approach greatly reduces
the bandwidth usage for aggregation operation.

 0

 2

 4

 6

 8

 10

 12

 14

Q5 Q7 Band

x10
5

x10
5

x10
3

T
h
ro

u
g
h
p
u
t
(#

 o
f
T

u
p
le

s
/S

e
c
o
n
d
)

Query

JB16(Agg)
JB16

JB16-CR4(Agg)
JB16-CR4

Figure 13: Throughput with and without aggrega-
tion.

 0.001

 0.01

 0.1

 1

 10

 100

 1000

Q5 Q7 Band
B

a
n
d
w

id
th

 i
n
 L

o
g
 S

c
a
le

 (
M

b
p
s
)

Query

No Batch
100ms-Batch

1s-Batch

Figure 14: Bandwidth usage with aggregation.

C. MAXIMUM SIZE OF SLIDING WINDOW
Table 4 demonstrates the maximum window size that join-

biclique and join-matrix can support in-memory sliding-window
join processing. It includes the results for both queries Q5
and Q7 running on five different settings JB8, JB16, JB36,
JM16 and JM36. For query Q5, all settings are evaluated
under two different input rates of 50K and 80K tuples per
second. For query Q7, all settings are evaluated with the
input rates of 30K and 50K tuples per second. The results
confirm that JB can support a larger window for in-memory
processing than JM.

Table 4: Maximum size of sliding window.
Query Rate JB8 JB16 JB36 JM16 JM36

Q5 50K/s 278 549 1262 140 207
80K/s 171 351 785 88 136

Q7 30K/s 572 1167 2636 292 439
50K/s 341 697 1543 173 262

(Unit: Second)

D. RESULTS ON SCALABILITY
Figure 15 and Figure 16 provide maximum processing vol-

ume comparison between join-biclique and join-matrix when
the number of units varies from 4 to 64 for queries Q5 and
Band respectively. Similarly to the result for query Q7 pro-
vided in Section 6, JB shows better scalability than JM for
Q5 and Band.

Figure 17 illustrates the maximum processing volume changes
when the number of units varies from 4 to 64 with more par-
titioning schemes. As shown in the results, the maximum
processing volume exhibits linear increment with the increas-
ing number of units in JB.

 0

 50

 100

 150

 200

 250

4 9 16 25 36 49 64

M
a

x
.

P
ro

c
e

s
s
in

g
 V

o
lu

m
e

 (

#
 o

f
T

u
p

le
s
 (

M
))

of Units

JB
JM

Figure 15: Scalability comparison on query Q5.

 0

 20

 40

 60

 80

 100

 120

 140

4 9 16 25 36 49 64

M
a

x
.

P
ro

c
e

s
s
in

g
 V

o
lu

m
e

 (

#
 o

f
T

u
p

le
s
 (

M
))

of Units

JB
JM

Figure 16: Scalability comparison on query Band.

E. RESULTS ON COMMUNICATION COST
Figure 18 and Figure 19 provide more experimental re-

sults of bandwidth usage for queries Q7 and Band respec-
tively. For query Q7, the bandwidth usage is evaluated by
changing the input rates from 10K to 50K tuples per second.
For query Band, the bandwidth usage is evaluated when the
input rates vary from 200 to 1600 tuples per second. The
results confirm that the ContRand routing strategy is able
to reduce the bandwidth usage in JB, and JB offers a larger
maximum processing volume while using competitive band-
width as JM.

 0

 50

 100

 150

 200

 250

 300

4 8 16 20 24 28 32 36 40 44 48 52 56 60 64

M
a

x
.

P
ro

c
e

s
s
in

g
 V

o
lu

m
e

 #

 o
f

T
u

p
le

s
 (

M
)

of Units

Q7
Q5

Band

Figure 17: Scalability of join-biclique.

 0

 10

 20

 30

 40

 50

 60

 70

5 10 15 20 25 30 35 40 45 50(K)

B
a
n
d
w

id
th

 (
M

b
p
s
)

Input Rate (# of Tuples/Second)

JB16-CR8
JB36-CR3
JB64-CR8

JM16
JM36
JM64

Figure 18: Bandwidth on query Q7.

 0

 2

 4

 6

 8

 10

 12

200 400 600 800 1000 1200 1400 1600

B
a
n
d
w

id
th

 (
M

b
p
s
)

Input Rate (# of Tuples/Second)

JB16-CR2
JB36-CR9
JB64-CR4

JM16
JM36
JM64

Figure 19: Bandwidth on query Band.

	Introduction
	Related Work
	The Join-Biclique Model
	Definition
	BiStream System Design
	System Architecture
	Dataflow Control
	Protocol Design

	Window-Based Stream Joins
	Supporting Other Operators
	Selection and Projection
	Online Data Aggregation

	Fault Tolerance

	Comparative Analysis
	Memory Consumption
	Scalability
	Communication Cost

	Adaptive Resource Management
	Evaluation
	Experimental Setup
	Memory Consumption
	Throughput and Latency
	Scalability and Elasticity
	Communication Cost

	Conclusion
	References
	Evaluation for Online Data Aggregation
	Maximum Size of Sliding Window
	Results on Scalability
	Results on Communication Cost

