Efficiently Processing Continuous k-NN Queries on Data Streams

Christian BBhm', Beng Chin Odj, Claudia Plant, Ying Yar'
L. University of Munich, Germany, boehm@ifi.Imu.de
2: National University of Singapore, ooibc@comp.nus.edu.sg
3: UMIT, Austria, claudia.plant@umit.at
4: Fudan University, China, yingyan@fudan.edu.cn

Abstract and usually not all of them can be stored in the system. As
an application scenario, consider network monitoring. The
Efficiently processing continuouk-nearest neighbor system administrators may specify various network pack-
gueries on data streams is important in many application ages which are suspicious due to different reasons (intru-
domains, e. g. for network intrusion detection or in query- sion, rule violation, misuse etc.) Then, the stream of net-
subscriber systems. Usually not all valid data objects from work packages is constantly surveyed for packages which
the stream can be kept in main memory. Therefore, mostare similar to the suspicious objects. As a second example,
existing solutions immediately discard some of the objectstake advertisements of an arbitrary market segment. Each
and store only representative objects in an index. These so-user may specify the properties (price, color, size, weight
lutions are thus approximative. In this paper, we propose etc.) of a product he/she is interested in. The system perma-
an efficient method for exaktNN monitoring. Our method nently informs the user about those advertisements which fit
is based on three ideas, (1) selecting exactly those objectdest his/her requirements.
from the stream which are able to become the nearest neigh- We distinguish between two different types of similar-
bor of one or more continuous queries and storing themina ity queries: range queries and nearest neighbor queries.
skyline data structure, (2) indexing the queries rather than For both types, the user selects an object, dhery ob-
the streaming objects, and (3) delaying to process those obect which is the starting point of the search. For a range
jects which are not immediately nearest neighbors of any search, the user must additionally specify the query radius,
query. In an extensive experimental evaluation we demon-i.e. a threshold for the maximally allowed distance from the
strate that our method is applicable on high throughput data query object. Since similarity measures are often not very
streams requiring only very limited storage. intuitive, it may be difficult to specify such a query radius.
Therefore, in practice, thie-nearest neighbor quergNN)
is more important, because the user only has to spégify
1 Introduction the number of objects that he wants to retrieve, and the sys-
tem automatically retrieves thle mostsimilar results. In
Query processing on data streams has become very popthis paper, we focus ok-NN queries but our technique can
ular in recent years, e.g.4[5, 6, 13] to mention a few. be extended to range queries in a straightforward way.
There is is a vast number of solutions for various types of ~ We define for each object a life span in which the object
data, e.g. relational, semi-structured and time series, buts valid. In many applications such as advertisements, the
most existing approaches are approximate because of th@bjects themselves may be associated with a time of expiry.
special conditions in a streaming environment. In contrast If this is not the case, the time of validity can either be spec-
to conventional query processing, where queries are imme-ified globally for the whole system or may be individually
diately answered from a database with a large but finite andspecified for each query. By specifying a global or query-
previously known number of objects, in stream based queryspecific lifespan, the user is also enabled to control how fre-
processing the queries asebscribedo a data stream. This quently he/she wants to get a query result. E.g. if the life
means that, upon every arrival of a new object from the span is set to 1 hour, the user will get at least every hour a
stream, the set of registered queries has to be checked. If theew result (but maybe also some additional results if good
new object qualifies for one or more queries, it is reported hits arrive before the current nearest neighbor expires).
as a result of the queries. There are two main challenges: In addition to global, query-specific, and object-specific
The streaming objects arrive with a very high frequency expiry, we can also distinguish between time-based and

number-based expiry. In time-based expiry, the life span
of an object is defined in terms of e.g. seconds. In contrast,
for number-based expiry, the user defines a maximum num-
ber of objects: which is at all times simultaneously valid.
After the object number + 1 has arrived from the stream,
object number 1 automatically expires. Number based ex-
piry is also practically useful becausegives a intuitive
quality measure for the results: each resulthis best out
of n objects.Number based expiry is useful for global and
query-specific expiry, but not for object-specific.

We will also distinguish between monotonic and
non-monotonic expiry. Monotonic expiry means that
objects expire in the same order as they have arrived from
the stream. Non-monotonic expiry is only possible in
combination with object-specific expiry. In this context, the

Contributions. The key contributions of our approach can
be summarized as follows:

1. We propose a framework for exactnearest neighbor
guery processing on data streams.

2. We demonstrate how the basic idea of a skyline can
be exploited for continuous-nearest neighbor queries
to assure exact answer guarantee at very low memory

consumption.

3. We further reduce memory consumption by object de-

laying without giving up the exactness property.

4. An efficient index structure for continuous queries is
provided. This index allows highly dynamic updates
and is small enough to fit into main memory.

gueries have also a life span which starts at the time stamp
of subscriptionsubscr(q) and ends at the time stamp of Qur paper is organized as follows: The next section is ded-
unsubscriptiorunsubscr(q). icated to related work. In Sectichwe introduce our idea
for exact NN processing using a skyline data structure. In
Problem Specification. We consider a data strear Section4 we show how we can further reduce memory con-
as a sequence of obje¢ts , 02, ..). Besides its coordinates, sumption by object delaying. Sectiérgives a detailed de-
each object has a time stamp of its appearance at thescription of our index structure used for the queries. Section

stream, denoted bypp(o) and a time stamp of expiry,
denoted byexp(o). We call the time span between an
objects appearance and its expiry the life sp@n of an
objecto. In this time the object igalid.

Definition 1 (Valid objects.) For a given timestamp the
set of valid objectd; is defined as
V(t) = {o € Slapp(o) <t < exp(o)}.

Definition 2 (Valid objects w.r.t g.) For a given time
stampt the set of objects which are valid for quegy
denotedV, (¢) corresponds to

Vy(t) = {o € V(t)|subscr(q) < app(o) < unsubscr(q)}.

Definition 3 (KNN.) Let dist be a metric distance func-
tion. Thek-nearest neighbors of a quetyat a given time
stampt, NN[(q) is the minimal subset of valid objects
V,(t) containing at leaskt elements with

Yo € NNf(q) ANVp € V,(t) \ NNf(q) : dist(o,q) <
dist(p, q).

We denote bV N, (¢) the nearest neighbor of a quegyi.e.
NN;(g) = NN}(q). Wherever non-ambiguous we write
NN.

Conceptually at every time stamp all subscribed queries ar
evaluated. If there are changes amongitii¢N of a query,
they are reported to the user who owns the subscription. Th
result set of the system at a time stamp contains all object
that need to be reported.

Definition 4 (Result set.) For a given time stamp and a
set of queries) the result se(¢) consists of the following
objectso:

R(t) ={o3g € Q:0€ NNf(q) No ¢ NN{ ()}

[S)

6 illustrates how the result reporting is implemented and
Section?7 extends our method te-NN queries. In Section

8 we provide an extensive experimental evaluation. Section
9 concludes the paper.

2 Related work

k-NN Queries on Data Streams. k-NN queries on
static databases is a well studied problem for which many
index structures have been proposed, e.d6, 17, 1].
Most of them are not suitable in our context because of the
high throughput. In the special case streaming time series
research activities mainly focus on discovering patterns to
predict the coordinates of new objects. This information
is used to discard objects that are probably irrelevant to
the query and improve response time of the system, e.g.
[5]. Prediction-based methods are not applicable if the
objects attribute values are independent from their time
of appearance and the objects arrived before. For this
case approximate approaches have been proposed, such
as B]. The data space is partitioned into cells and &
tree together with &-curve is used to index the space.

®For each grid cell some objects are retained to guarantee

an absolute error bound fdr-NN queries. However, in

some applications exact answers are essential, e.g. in

*health monitoring. In any case exact answers are of highest

compliance to the user and give a sound base for data
analysis and interpretation. Moreoved] [and [3] focus

on answering single queries and are not designed for
continuousk-nearest neighbor monitoring.

Skylines and Query Monitoring. In this paper, we ered as unimportant, and can be discarded. Various deci-
use a skyline based object buffer associated with eachsion strategies with error bounds have been proposed but
query, which we call theuery skyline This allows us to exact answers can not be guaranteed (cf. Se@jor\We
discard most of the objects from the stream immediately develop a criterion to decide upon arrival of a new object
without giving up the exact answer guarantee (cf. Sectionfrom the stream if it may become the nearest neighbor in
3). In general the skyline of a data set contains the datafuture, or can definitely not. Among the stored potential
points which are maximal or minimal in two or more of relevant objects pruning is performed. The basic idea is
the attributes. The problem was first proposed Bl [that a new object arriving from the steam can often exclude
It attracted much attention both on static data sets, e.g.many other objects which can not become nearest neighbors
[14, 11] and streaming dat#)]. Papadias et al. introduced until the new object expires. In this section, we restrict our-
the concept ok-skyband 11] which is also related to our selvesto the case where the queries are continuous 1-nearest
work. The k-skyband of a data set contains all objects neighbor queries, continuodésnearest neighbor queries for
which are dominated by at most— 1 other objects. In k£ > 1 will be considered in Sectioi
[10] an interesting algorithm for monitoring tap-queries To decide whether or not an objeestmay become the
is proposed. Thé-skyband has geometric implications on nearest neighbor of a quegyve consider the 2-dimensional
the data space, leading to areas that are excluded to contaigpace of the query distance and the time of expiry. Note
relevant objects. In this approach all objects are indexed inthat this space is always 2-d, regardless of the dimensional-
a grid and the order of processing of the cells is determinedity of the feature space of the data and query objects. Our
by the k-skyband. However, this approach relies on the method is applicable to objects of arbitrary dimensionality,
assumption that all valid objects can be keptin memory. and can even be extended to non-vector metric objects. An
objecto may become the nearest neighbor, unless there ex-
Query Indexing. In a data stream context it is usu- ists another objegt which at the same time (1) closer
ally impossible to index all the data objects because of to the query tham and which (2)expires laterthano. If
memory limitations. Typically the number of queries both conditions hold, then cannot be the nearest neighbor
is much smaller than the number of valid objects and now (because at least one closer objeist known.) More-
naturally the system needs to have enough memory toover, it cannot become the nearest neighbor later, because
store them. The idea of indexing the queries instead of thethe objectp lives longer. A set of objects which are maxi-
data objects has been successfully applied in the conteximal (minimal) with respect to two (or more) different con-
of moving objects 18. Organizing queries in a grid ditions (such as, in this case, distance and expiry) is called
index outperforms object indexing for a large number of askyline[9]. In this context, we are considering a two di-
moving objects, because the objects are highly dynamicmensional distance-expiry skyline, which we call theery
causing a lot of index updates. In our context indexing skyline formally:
the queries instead of the objects means that we change . .. ,) i
the problem ofk-nearest neighbor search (of the objects) Definition 5 (Query_Skyllne.) Given a tme stam_pf, a
into a bi-chromatic reverse-nearest nearest neighbor queryq and two points, p 6, Vo(t). We S‘?‘yo dominates
search (of the queries), for more details see Se&ighe P If exp(o) > exp(p) anddist(o,q) < dist(p,q). The
problem of RNN has been extensively studied for static 9U€TY SKylines(g, ¢) of queryq and the set of valid points
databases. A lot of sophisticated tree based index structure%/q(t) conS|§ts O,f all points i, (t) that are not dominated
have been prosed, e. g7,[12 15 For indexing the PY Other points iV ().
queries these structures are not flexible enough to supports(‘{’t) ={o€ Vq(t),| o ‘
frequent updates and lead to a memory overhead which?®' € Va(t) : exp(o') > exp(o) Adist(o',q) < dist(o,)}
is not necessary. We propose a grid-style index, which is

described in detail in Sectidh In the following, we will formally prove that the objects of
the skyline in the distance-expiry space (and only these ob-
3 Skyline Based Object Maintenance jects) need to be stored as potential nearest neighbors. The

current nearest neighbor is also in the skyline at all times.

put streams also only a small fraction of the objects can benpgighhor ofy at time stamgt.

stored in the system. These general conditions require a de-

cision strategy to discard irrelevant objects. Most of exist- Proof 1 N N,(q) is by definition of the nearest neighbor not
ing proposals focus on sophisticated filtering and load shed-dominated by any other objeate V,(t), i. €. fo € V,(t) :
ding strategies carefully selecting objects which are consid-dist(o, q) > dist(NN(q), q).

algorithm skylineMaintenance (Object o, Query q)

Skyline s := g.associatedSkyline;
SkylineElement ¢ := s.last; // current element
SkylineElement ¢/;
if nonMonotonicExpiry
/I search for suitable position:
while ¢ # nulland exp(c) > exp(o)
c =c
c:= c.pred,
if ¢ # s.last and dist(¢’, q) < dist(o, q)
return ; // o is dominated, leave s unchanged
¢ := skylinePruning(o, g, ¢);
if ¢ =null
s.insertAsFirst(o);
reportNeighbor(o, user(q));
else
s.insertAfter(o, c);

function skylinePruning (Object o, Query ¢,
SkylineElement ¢): SkylineElement

SkylineElement ¢/;
while ¢ # nulland dist(c, q) > dist(o, q)

1)
v}

m
M

ve]
vy}

- =
= =

=4

distance
distance

>

>

time of expiry time of expiry

Figure 2. Skyline Example.

cannot exclude any of its transitive predecessors, and we're
done. Otherwise, the dominated object is removed from the
linked list, and we do the same test with the new predeces-
sor (if any). The pseudocode of the algorithm is depicted in
Figurel. An example is visualized in Figur&d where we
have a set of 6 objects, A-F. Two objects, B and D are dom-
inated, i.e. the actual skyline is stored in the linked list A-
C-E-F. As an example, object C is highlighted, along with
the space which is excluded by C (containing the object B).
When a new object G arrives it is simply appended, since

=g

¢ := c.pred; the expiry is assumed monotonic here. We have to consider

S-fielféFE(C’): the two predecessors F, and then E, and discard them. Since
return < C is not dominated by G none of the predecessors (A) must

be checked.
An interesting question is how many objects do we have
to expect to be in the skyline. It has been showrBirtifiat,

Lemma 2 (Completeness.)A valid objecto which is not under reasonable assumptions, the size of the skyline is in

in the query skylines(q,t) at time stamp, is the nearest O(logy n). In our first experiments we were able to confirm
neighbor at no time’ > ¢. a typical size of 10 elements forn = 1,000,000 valid

objects. Although this is very moderate, we will present in
Proof 2 Sinceo is not in the skyline, it is dominated by Section4 an idea to further reduce the typical skyline size
another objeci, i.e. exp(p) > exp(o) anddist(p,q) < to 2-3 objects.
dist(o, q). Thereforep is not the element having minimal Mindful readers may have noticed that in case of
distance tog for any time stamg’ € [t..exp(p)]. Since monotonic time stamps, the newest object must always be
exp(o) < exp(p), o is not valid after that time interval, appended to the skyline of every query. Therefore, one
and thusp is additionally not the nearest neighbor for any might wonder if it is really necessary to access all stored
t' € [exp(p)..c0. skylines for every new object (which would make query in-

dexing, described in Sectidobsolete). The answer is yes,
We can represent the skylines in main memory as double-pyt we will propose a simple trick in the next sectiaf) (
linked lists, ordered by time of expiry (and at the same time, which greatly reduces this effort without affecting the cor-

automatically ordered by distance, because the monotonicyectness and completeness of the result of our algorithm.
ity of the objects in the skyline can be easily proven). When

a new objecb arrives from the data stream, we first have . .
to locate the potential position of this object in the skyline. 4 Object Delaying

We start our search at the upper end, because in most ap-

plications the objects have at least approximately uniform New objects cannot be dominated by other objects in the
life spans. If the potential position is not at the end, we query skylines because they have the latest expiry. These
have to check if the new object is excluded by the object unnecessarily appended objects are discarded soon by new
immediately following the potential position. It is also a objects which are closer to the query. Therefore the size
consequence of the monotonicity that, if the immediate suc-of the query skylines stays logarithmic despite of this prob-
cessor does not exclude the new object, then none of thdem. But for efficient online stream processing it is essential
(transitive) successors can exclude the objectisfnot ex- to avoid any overhead in space and time. The skyline size
cluded, it needs to be appended and we proceed as followscan be further reduced to a few objects by a simple but ef-
We test whetheb excludes its direct predecessor. Due to fective trick. We delay every new objectfrom the stream
monotonicity, ifo does not exclude the direct predecessor, it for a certain time span before trying to insert it into the ac-

Figure 1. Skyline Maintenance.

A

< tremain > — tde|ay—» lines for whicho is also a "good” object, according to an
- arbitrary strategy. For maintenance and good performance
of our index structure described in the next section it is ben-
eficial to have some "good” objects in the approximate sky-
5 lines. In our system, the queries are stored in a grid based
A index (cf. Sectiorb). Our strategy is, therefore, to insert
Exact Skyline Approxm Skyline the new objecb to all those queries which are stored in the
grid cells which encompass Formally, the approximative
skyline consists of all non-dominated objects from a subset
Figure 3. Approximate and Exact Skyline. of the delayed objects:

[an

m

@
o

Q)

w

Definition 8 (Approximate Skyline.) Let S be an arbi-
tual query skylines. By doing so we avoid insertininto ~ trary subset of delayed) which contains all objects with
the skyline of a query; which is far away fromp (where @ distance below a cut radius: to g. The approximate
o qualifiesonly because it is new). It is likely that whike ~ Skyline ofg is the set of elements frofwhich are not dom-
is delayed, objects from the stream arrive that are closer toinated by other elements frof

the query. Naturally these new objects dominafeloserto \qte that the objects in the exact skyline need to be physi-

the query and also later expiry) so thatan be safely dis- 4y stored there. In contrast, for the approximate skyline,
carded. Very few objects need to be immediately inserted;y js’sficient to store pointers to the objects only, because

because they are really relevant, e.g. because they replacg,qy are physically stored in the delay buffer. Whenever the
the current nearest neighbor or have the potential to becomede|ay buffer is full (usually upon every new insertion of an
nearest neighbor during the delay time. In the following we object) we remove the oldest objedrom it (remove it also
explain in detail how to determine the objects requiring im- from all approximate skylines) and check, to which of the
mediate insertion. We introduce a simple ring buffer to store - ; skylines it must be appended. It must be appended
the new objects temporarily. to those exact skylines for which no object is known which

Definition 6 (Buffer.) The bufferB with size|B| stores ~ dominatep. However, in the meantime (during the delay of
the |B| newest Objects from the stream, it hold& ¢ B, p), we have seen many new Ob]eCtS with later expiry times.
Vp ¢ B: eap(o) > exp(p). We additionally denote by, the Our hope is that for each query at least one of these new ob-
earliest expiry among all elements in the buffer. The set oflects is very close, and, therefopeis indeed excluded now.

objects in the buffer at time stams denoted by delayet)(Provided we have appended any good object to the approxi-
mate skyline, we can use the top element of the approximate

In this buffer objects are processed in first-in-first-out order skyline for discarding. All elements in the approximate

if the objects have monotonic expiries (for non-monotonic skyline have later expiries than Thereforep is discarded
expiry, we either use a priority queue or we use a fifo-buffer if the top element of the approximate skyline is closer to the
as well, but in the latter case we only insert such objects query tharp. Therefore, the top element of the approximate
the life span of which is at least two times the delay time, skyline exactly defines the cut radiug which is used for

cf. Lemma3). In addition we divide the skyline of a query query indexing (c.f. Sectiof).

into two parts. We call the first part of the skyline tiveact In the last paragraph, we have seen that an object can
skyline Objects are inserted into this skyline when they be safely discarded if it is dominated by the top element of
come out of the buffer and qualify to be inserted then. the approximate skyline. In the extreme, the top element

o _ _ of the approximate skyline can dominate all elements of the
Definition 7 (Exact Skyline.) The exact skyline of a query exact skyline. The top element of the approximate skyline
¢ attime stamy contains all objects € V,(t)\ delayedf) will become the nearest neighbor of the associated query.

which are not dominated by other elemeptsc V;()\ In this case, the question is justified whether or not this top
delayedy() or by elements of the approximate skyline attime element is really the nearest neighbor, and under what con-
stampsty,..1. ditions this can be guaranteed. We will show in the follow-

ing that this is guaranteed if (1) every object is inserted into
the approximate query skyline which is closer to the query
than the current top element, and (2) the remaining time of
validity after being inserted into the exact skyling.(,qi.)

is at least as high as the delay titiyg;,,,.

The other part of the skyline is calleghproximate skyline

It consists of new objects requiring immediate insertion.
When a new object arrives then it is appended to all ap-
proximate skylines for which it could be possible that object
o could become the nearest neighbor immediately or dur-
ing the time when the object is delayed in the ring buffer. Lemma 3 Assume that the above conditions hold, and that
Additionally, itis appended to some of the approximate sky- an objecto is not appended to the approximate skyline of

queryq. Then, it is guaranteed that cannot become the 02 Uoo
nearest neighbor of queryuntil o is removed from the de-
lay buffer (and inserted into the exact skyline). CF

. _— : a2) 222 9i3
Proof 3 According to the definition of the approximate sky- (QC }Gl,Z
line, o has a distance t@ which is larger thanrq, the I, S 912
distance of the top elemeni of the approximate skyline. ' }Gm
Therefore, it cannot become the nearest neighbay oh- 011
til o, expires. The top element is still delayed ¢; € YA }G
delayed(t)) but may be extracted from the delay buffer Lo
in an arbitrarily short time. But then, it is still valid for ——

GOO GO,lg GOZ G03

tremain- The New object remains in the buffer fote;q,.
If tgeiay < tremain theno cannot become the nearest neigh-
bor of ¢ during the delay time.

o)) Figure 4. Query Indexing.
Note that, after the delay time s considered to be inserted
into the exact query skyline. To perform this tests com-

pared to thexewtop element of the approximate skyline. If - 5o might recognize that this resembles to the definition of
ois dominated by the new top element, it is guaranteed thaty,e reyerse nearest neighbor problem. More exactly, the ob-

o will become never the nearest neighborof jecto searches for theichromaticreverse nearest neighbor
An example of a pair of exact and approximate qUery among the queries, as defined, e.g.1if]]
skylines is shown in Figur8d. The exact skyline consists of

the objects A and D and the approximate skyline of the ob-
jects G and J. B and C are dominated by D. E would actually
belong to the exact skyline but is dominated by the top el-
ement of the approximate skyline G which also defines the
cut radiusr¢. H should actually belong to the approximate
skyline. But according to the definition of the approximate
skyline, it is possible to discard H as it is above the cut ra-
dius. According to Lemma, H cannot become the nearest
neighbor before G expires which takes at least, ;.. time.
Before the expiry of G the object H is taken out of the buffer
and is tested for insertion into the exact skyline. The same
holds for J, but it is inserted anyhow because it is in the
same grid cell as the query.

For the efficient evaluation of a bichromatic reverse near-
est neighbor query, usually the following consideration is
applied: o is the nearest neighbor of thogez @ to which
it is closer than the current nearest neighbog.oT his can
be easily decided if the radiugq) of the current nearest
neighbor is stored with every quegye . For continuous
N N-queries which are supported by a delay buffer we need
a cut radius ¢ which is guaranteed to be an upper bound of
the nearest neighbor radius fQr.,,,4i, time. As discussed
in Section4, - corresponds to the distance betweend
the top element of the approximate skyline. Instead of con-
sidering the queries as points of a metric or vector space,
we consider them as spheres with a radigsg).

For indexing, we merely need a structure which allows
) us to efficiently determine all spheres in which the paeint
5 Query Indexing is contained. We apply a very simple, grid based method
for vector objects which is described in the following. Note
Due to object delaying (cf. Sectiof) the number of that this is used for storing the queries only. Therefore, it
objects of the stream that need to be stored in the querymight fit into main memory for a moderately high num-
skyline is very small. In addition, the streaming objects are ber of queries and regardless of the overall size of the data
highly dynamic, so it would not be beneficial to use an index stream and regardless of the number of valid objects. Our
structure for the objects. In this section we propose to indexdata structure is visualized in Figude Each of thed di-
the queries in a grid-style index, which is highly flexible mensions is independently partitioned into a numbep of

w.r.t. updates and can be held in main memory. guantiles according to a sample of the set of queries. If ini-
According to Definition3, at each time stampthe an- tially no sample of the queries is known, then the quantiles
swer of a continuous nearest neighbor quetig that ob- can be uniformly distributed in the data space. These quan-

ject which has the smallest distancegtamong all objects tiles are depicted in Figuré in dashed lines and marked
o0; € Vi(¢) which are valid at time. We are now interested with g; ; wherei € 0,...,d — 1 is the dimension of the
in the question, given a new (and by definition, valid) object grid line andj € 0, ..., p is a sequential number which is
o at timestamg, to which queries; € @ is o the nearest strictly monotonic (i.e.g; ;, < ¢ij, < 71 < j2). The
neighbor among all valid objectse V,(q)? We can write set of all quantiles constitutesdadimensionalp x ... x p
this formally in the following wayyg € Q : NN;:(q) = {o}. grid. The rows and columns are marked wiif); wherei

is again the dimension ande 0, ..., p — 1 is the sequence
number. Initially the lower limit ofG; ; is g; ; and the up-
per limit is g; j+1. The cells of the grid are marked with
Cao,...aq_, Wherea,; corresponds to some grid row or col-
umnG, ,,. The queries are associated to the grid cells ac-
cording to the coordinateg, i = 0, ...,d — 1 of the center,
i.e.q € Cay,...a0_1 = U € Gia;» Gi,a;+1)- NoOte that, until
now, this structure resembles the well-known VA-fil&].

We now extend this structure to index spheres rather than
points. Additionally to the original quantile lineg ; we
determine for each row and colund ; the lower and up-
per boundaries; ;,u; ; of all query spheres (the spheres
centered by; having the current cut radiugq)) which are
stored in any of the cells:

{g: —rc(q)}

li; = min
q€Q|qi€[gi,5:9:,j+1]

Ui j = {g;i +rc(a)}

= max
9€QI19i€[gi,5:9i,5+1]

Hereq; denotes attribute numbém the query vectog. As

algorithm processNewObject (Object o)

if buffer.isFull()
Object o’ :=buffer.getAndRemoveMinimumExpiry();
process(o’, false);

buffer.insert(o);

process(o, true);

algorithm process (Object o, boolean isApproximate)

for all g € gridCells
if o € g.occupiedSpace
for all g € g.associatedQueries
maintenance(o, ¢, isApproximate);

algorithm maintenance (Object o, Query g, boolean isApproximate)

/I monotonic expiry only due to space limitations
Skyline e := g.associatedExactSkyline;
Skyline a := g.associatedApproximateSkyline;
SkylineElement c, ¢’;
if isApproximate

¢ := skylinePruning (o, ¢, a.last); // cf. Figure 1
if not isApproximate or a.iSEmpty()

¢ := skylinePruning (o, g, e.last);

if e.isEmpty()

reportNeighbor(o, user(q)));

if isApproximate

a.append(o);
else

e.append(o);

depicted in Figurel, these limits usually extend each line
and column a little bit to the left and to the right. Therefore,
these modified grid cells are now allowed to overlap. But
if the radii of the stored spheres are small, it is also possi-
ble that some grid cells do not grow but shrink instead, and
the neighboring grid cells become disjoint. During query

Figure 5. Processing of a New Object o.

more complicated because, in principle, the query skyline
of every query must be continuously monitored for the ex-

processing, the queries may frequently change their assopiry of its first element.

ciated cut radius'¢(¢q): As a consequence of the arrival
of a new object, the cut radius of a query may decrease.
Likewise, the cut radius may increase if the current near-

To do this in a very efficient way, we store pointers to the
queries in a priority queue (heap) which we call #wdion-
gueue We need only one global action queue in the system

est neighbor of a query expires. We handle the increaseyth g size of|@|, the number of subscribed queries. The

of a radius by immediately checking the lower and upper
boundaries of the cell to whichis associated, and updat-
ing them if necessary. From time to time, the boundaries are

elements of the action queue are ordered by the time stamp
of the expiry of the top element of the query skyline. This
allows an efficient access (in constant time) to the element

also checked if they are able to be contracted. By this Sim-\ynich will expire next in any query. This access can be

ple method it is guaranteed that each grid cell is always a
conservative approximation of the contained query sphere.
Thus, it is possible to safely decide according to the cell
boundaries that a cell cannot contain any queries to which
a given object could be the nearest neighbor. Figusam-
marizes the required steps for processing a new object in
pseudocode.

6 Result Reporting

done periodically upon every arrival of a new object. As an
alternative, the next relevant expiry (the top element of the
action queue) can be triggered by a timer.

Whenever an element is dequeued from the action queue,
and whenever a newly arrived object takes over the top po-
sition of a queryy, the action queue must be updated which
requiresO(log, |Q|) time where|Q)| is the number of sub-
scribed queries (note that we have to register every query
exactly once in the action queue with the expiry of the top
element of the query skyline). This reorganization upon the

Our system has to report every change of the nearestarrival of new objects can even be avoided in the case of

neighbor of any subscribed quegye @ immediately to

monotonic object expiry: In this case, we know that the ex-

the user who owns the subscription. There are two possiblepiry t,,.., of the new top element afis later than of the old

causes of a nearest neighbor change, (1) the arrival of a nevone ¢,;4). We can leave the element in the action queue as
object from the data stream which takes over immediately it is, wait for ¢,;; and then state that a top element has ex-
the top position of the query skyline, and (2) the expiry of pired which has actually been outdated already. Therefore
the current nearest neighbor @f Case (1) is immediately the new expiryt,..., can then be registered without notify-
detected during processing of the new object. Case (2) ising the user about any change.

7 k-Nearest Neighbor Queries this context for an object a life span of e.gl(0) = 20, 000
means thab expires after 20,000 new objects from the

In this section, we shortly describe the generalization of Sstream have arrived. We uséd = 1,000, 000 2-d stream-

our technique for-nearest neighbor queries with> 1. ing objects with a lifespan df(o) = 20,000, |Q| = 500

The three ideas of our technique, query indexing, skyline queries, a buffer size 43| = 2000, and a resolution of

based object maintenance and delay buffering can also b = 20 when not otherwise specified. We further assume

applied in the general case. Particularly the concept ofthat at each time stamp a new object from the stream

query-skylines needs some modifications. We start againarrives. We randomly separated objects from the stream

with a simple variant without distinction between exact and and used them as continuous queries. Experiments were

approximate query skyline: run on a PC with a 2.4 GH pentium processor and 512 MB
An object can now be safely discarded from memory if main memory under Java.

it is guaranteed that it will become at no future point-of-

time one of thek nearest neighbors of any quegye Q. Query Indexing. Figure 6(a) shows the number of
Translating this into the language of skylines, an object candistance calculations with varying resolution of the query
be discarded if it is dominated by at ledgsbther objects, ~ index on uniform and clustered gaussian data. For uni-

where the dominance is exactly the same as in Definlion formly distributed datap = 20 grid lines per dimension
We can then define &-skyline as the set of objects which show the best trade-off between number of cells and queries
is dominated by less thain objects, which corresponds to Per cell. For clustered gaussian data a higher resolution of
the concept of thé-skyband L1]. In addition we store for ~ 35 is better, since queries are densely populated in some
each object a counter with the information by how many regions of the data space. In Figé®) the scalability w.r.t.
other objects it is dominated. the number of subscribed querié€g| for our algorithm and
When we use a delay buffer, we have again to distin- @ variant without indexing is depicted. Upon arrival of a
guish between approximate and exact skylines. Our notionne€w objecto, this variant simply checks all queries df
of dominance can be naturally extended to this case (objectg1€€ds to be inserted. In this experiment we used uniformly
of the approximate skyline can also dominate objects from distributed data. Hence our index structure is simple and
the exact skyline, and, thus, increase their counter). To as€fficient in maintenance, query indexing pays off already
sociate a query with a cut radius we need to guarantee thafor Q| = 100. For|Q| = 1600 the index leads to a speed
no object exceeding the cut radius can become the nearedtp factor of 80. Figure(c) and6(d) show the performance
neighbor during the delay time or during its remaining life in the case of new dynamic queries arriving during the
time. This requires that we have to store the objects of theruntime of the system on netflow data. In Figi) in
approximatek-skyline in a way which allows efficient ac- addition to 400 static queries 100 dynamic queries have
cess to the element with distance-rankA linked list can been inserted. Despite of the inserted queries, the runtime
be used for the management of the elements with rank 1 toscales linearly withV. Figure6(d) shows the performance
k. A priority queue (heap) can be used for the remaining W.I.t. the number of dynamic queries. New queries can
elements with ranks k. be very efficiently inserted in our index. This leads to a
sublinear increase in runtime. During the runtime the grid
cells are expanded as explained in SecBorTo maintain
a high performance of the grid index it is beneficial to
adjust the upper and lower bounds in fixed time intervals.
For uniform and clustered gaussian data we achieve good
performance if we do this upon arrival of every 1,000 new
objects as Figuré(e) shows.

8 Experiments

Data Sets and MethodologyFor a systematic analysis
of the properties of our method we generated synthetic
data sets of various dimensionality. In particular, we used
uniformly distributed and clustered gaussian data. The
clugtered gaussiqn data sets contain ten clusters (standarg ¢er size. The size of the buffer can be chosen de-
deviation 0.1) which are randomly distributed on the data pending on available memory. As shown in Sectibaur

space. We also show the_performance on two netflo_w method works correctly with an arbitrarily small buffer
data sets. We used a two dimensional data set containing,; o According to Lemma& an upper limit for the buffer

records extracted from netflow IP data logs, c8]. [We
additionally used a three dimensional netflow data set
containing records (source port, destination port, packet

size) extracted fr_om the_ LBL'TC.P 3 data set, available at uniformly distributed data. Here we increased the live span
the Internet Traffic Archivel(ttp://ita.ee.lbl.goy. The IDs of the objects td(0) = 500,000. The memory usage for

of the source_ and destination hosts have been left OL_Jt herethe buffer, for the query skylines and the overall memory
For all experiments we assume number based expiry. In

size |B| is then half of the live span of the streaming
objects. Figures(f) shows the overall memory usage for
varying buffer size$B| = 20...4,000 for two dimensional

http://ita.ee.lbl.gov/

70000000
60000000 —&— clustered gaussian
—— uniform

120 | == 2D netflow 60

—&—our algorithm ~— 3D netflow

= without index

@
3

50000000
40000000
30000000
20000000
10000000

0 T T T T T T 1
5 10 15 20 25 30 35 40

runtimein s
s
8

W
3

runtimein s

N
S

—&—2D netflow

distance calculations

.
1)

~#—3D netflow

o

0 200000 400000 600000 800000 1E+06 200 400 600 800 1000

b 1Ql N 1Ql
(a) Resolution (b) |Q| (c) Dynamic Queries N (d) Dynamic Queries |Q|
40000000 600 800

—&—memory usage
—-— buffer
—&— skylines

35000000 1 == clustered gaussian
30000000 -
25000000 4
20000000
15000000
10000000 4
5000000
0

500 1' 700 —&—our algorithm
600 = without index
0.78% 2 500, —A—without buffer

g 400

200 € 300

1.1% e

~—#— uniform

runtimein s
W
S
3

200

distance calculations

o o & 100

! E e o . o ‘
100 1000 10000 100000 0 1000 2000 3000 4000 0 1000 2000 3000 4000 5000 6000 O 200000 400000 600000 B0OOCO 100000C
shrink after objects 1Bl 1Bl N
(f) Memory Usage (9) 1B| (h) Indexing and Delaying

(e) Index Maintenance
25
20 | G—————————9
15 +

500 -
—&— clustered gaussian

400 T = uniform

300

3

100 4 == 3D netflow
2D netflow

)
S
runumein s

runtimein s
@
o

runtime in s
n
S

200 10+

runume in s

—&— clustered gaussian

i
5]

100 5 :
~&—uniform 20
o 0 f : : : ! 0 , } , , . : ‘ ‘ ‘
123 456 7 8 910 0 200000 400000 600000 800000 1E+06 0 20000 40000 60000 80000 100000 0 200000 400000 600000 800000 1E+06
« N I(0) N
@) k () d () 1(0) (I) Netflow Data N

Figure 6. Experimental Evaluation.

usage is depicted. Even for this relatively long life span of per second. The combination of query indexing and object
the objects, memory usage is very low. For all examined delaying leads to impressive performance gains over both
buffer sizes we needed to store in total less than 2% of theaspects when used alone. One million stream objects
valid objects. As a minimun.78% of the valid objects are processed in 11.58 seconds, this corresponds to a
need to be stored for a buffer size |d@| = 500 objects. throughput of 86,356 objects per second. The throughput is
Figure 6(g) gives the runtimes in seconds for the previous 55 times higher than for the version without query indexing
experiment. Although the configuration minimizing mem- and even 63 times higher than for the version without object
ory usage allows a throughput of 14,085 objects per seconddelaying. Figures(i) shows the scalability our method for
a much higher throughput of 93,110 objects per second cank-nearest neighbor processing as described in Segtion
be achieved with a buffer size @B| = 3000, which means on two dimensional uniform and clustered gaussian data.
storing 1.1% of the valid objects. Larger buffer sizes do not Starting with|B| = 2000, we increased the buffer size
considerably further improve runtime. linearly with k. It can be assumed that for a largealso
more memory is available, at least for storing the query
Scalability. Figure 6(h) demonstrates the benefits of results. With this configuration, fot = 10 we store 5%
query indexing and object delaying. The runtime in of the valid objects in the buffer. For both data sets, the
seconds on uniformly distributed two dimensional data runtime scales linear witk. Figure6(j) demonstrates the
is reported for our technique and versions without query scalability with the dimensionality on clustered gaussian
indexing and without object delaying for various numbers data of dimensionality 3, 4, and 5. For this experiment, the
of objectsN. The version without buffer performs worst. resolution was set tp = 10. All curves scale linearly with
This demonstrates the effectiveness of object delaying. Forthe number of objectd/. There is only a small increase in
N = 1,000,000 this version attains a throughput of 1,372 runtime from 4 to 5 dimensional data. Figug) displays
objects per second. The version without query indexing runtime for various life span&o) = 5,000..1,000,000
is slightly better and attains a throughput of 1,570 objects on uniform and clustered gaussian data. The runtime

remains almost constant with increasit{g), even if all
objects are valid at all time stamps.

for varying N on netflow data. Here we spt = 15 for

This demonstrates
that our method is applicable high throughput data streams
ranging from relatively short object live spans to scenarios
without expiry. Figure6(l) shows the runtime in seconds

both, 2-d and 3-d data sets. For both data sets, the runtime

scales linearly with the data size.

9 Conclusions

In this paper, we have proposed an efficient technigque for

processing a large number of continuddsearest neighbor

gueries on data streams of feature vectors which are impor-

tant e.g. in multimedia and marketing applications. In con-

trast to previous methods for query processing on streams,

the result of our method is not approximative but exact and

complete. Our method is based on three major ideas:

1. Thequery skyline enables us to carefully select those
objects from the stream which have the potential of
becoming answers to any of the subscribed queries.

2. A delay buffer is used to retard processing of those [10]

objects which are not immediate answers to the queries
and thus greatly improves the efficiency of processing.

3. A query index is used to organize the subscribed [11]

queries in a simple, grid based way.

Our extensive experimental evaluation demonstrates that
our technique scales well with the size of the stream, thel

number of queries, the numbkiof answers per subscribed
queries, the dimensionality, and the available buffer size
for artificial and real-world stream data. In particular, we [13]

demonstrate that the combination of our 3 major ideas leads

to a very low memory consumption: Only between 0.78%
and 1.1% of the valid stream objects must be retained in

[5] L. Gao and X. S. Wang.

[4] A. Das, J. Gehrke, and M. Riedewald. Approximate

join processing over data streams.SiGMOD, pages
40-51, 20083.

Continually evaluating
similarity-based pattern queries on a streaming time
series. INSIGMOD, pages 370-381, 2002.

[6] L. Golab and M. TOzsu. Processing sliding window

multi-joins in continuous queries over data streams. In
VLDB, pages 500-511, 2003.

F. Kornand S. Muthukrishnan. Influence sets based on
reverse nearest neighbor queries.SIGMOD pages
201-212. ACM Press, 2000.

[8] N. Koudas, B. C. Ooi, K.-L. Tan, and R. Z. 0003. Ap-

proximate nn queries on streams with guaranteed er-
ror/performance bounds. MLDB, pages 804-815,
2004.

[9] X. Lin, Y. Yuan, W. Wang, and H. Lu. Stabbing the

sky: Efficient skyline computation over sliding win-
dows. InICDE, pages 502-513, 2005.

K. Mouratidis, S. Bakiras, and D. Papadias. Continu-
ous monitoring of top-k queries over sliding windows.
In SIGMOD, pages 635—-646, 2006.

D. Papadias, Y. Tao, G. Fu, and B. Seeger. Progressive
skyline computation in database syste®€M Trans.
Database Syst30(1):41-82, 2005.

12] I. Stanoi, M. Riedewald, D. Agrawal, and A. E. Ab-

badi. Discovery of influence sets in frequently updated
databases. INLDB, pages 99-108, 2001.

H. Su, E. A. Rundensteiner, and M. Mani. Semantic
query optimization for xquery over xml streams. In
VLDB, pages 277-288, 2005.

memory to guarantee completeness and correctness of thBl4] K.-L. Tan, P.-K. Eng, and B. C. Ooi. Efficient progres-

result of our technique. In addition, we demonstrate that the

sive skyline computation. IWLDB, pages 301-310.

combination of our 3 major ideas improves the throughput [15] v, Tao, D. Papadias, and X. Lian. Reverse knn search

by a large factor of about 60.

References

[1] S. Berchtold, D. A. Keim, and H.-P. Kriegel. The x-
tree : Anindex structure for high-dimensional data. In

VLDB, pages 28-39, 1996.

[2] S. Borzsonyi, D. Kossmann, and K. Stocker. The s
line operator. INCDE, pages 421-430, 2001.

[3] R. Cheng, B. Kao, S. Prabhakar, A. Kwan, and Y.-C.
Tu. Adaptive stream filters for entity-based queries

with non-value tolerance.
2005.

IVLDB, pages 37-48,

[16]

[18

in arbitrary dimensionality. IVLDB, pages 744—755,
2004.

R. Weber, H.-J. Schek, and S. Blott. A quantitative
analysis and performance study for similarity-search
methods in high-dimensional spacesMiDB, pages
194-205, 1998.

ky- [17] C.Yu,B.C.Ooi, K.-L. Tan, and H. V. Jagadish. Index-

ing the distance: An efficient method to knn process-
ing. InVLDB, pages 421-430, 2001.

] X. Yu, K. Q. Pu, and N. Koudas. Monitoring k-nearest
neighbor queries over moving objects.IGDE, pages
631-642, 2005.

	1 Introduction
	2 Related work
	3 Skyline Based Object Maintenance
	4 Object Delaying
	5 Query Indexing
	6 Result Reporting
	7 k-Nearest Neighbor Queries
	8 Experiments
	9 Conclusions

