
Efficiently Processing Continuous k-NN Queries on Data Streams

Christian B̈ohm1, Beng Chin Ooi2, Claudia Plant3, Ying Yan4

1: University of Munich, Germany, boehm@ifi.lmu.de
2: National University of Singapore, ooibc@comp.nus.edu.sg

3: UMIT, Austria, claudia.plant@umit.at
4: Fudan University, China, yingyan@fudan.edu.cn

Abstract

Efficiently processing continuousk-nearest neighbor
queries on data streams is important in many application
domains, e. g. for network intrusion detection or in query-
subscriber systems. Usually not all valid data objects from
the stream can be kept in main memory. Therefore, most
existing solutions immediately discard some of the objects
and store only representative objects in an index. These so-
lutions are thus approximative. In this paper, we propose
an efficient method for exactk-NN monitoring. Our method
is based on three ideas, (1) selecting exactly those objects
from the stream which are able to become the nearest neigh-
bor of one or more continuous queries and storing them in a
skyline data structure, (2) indexing the queries rather than
the streaming objects, and (3) delaying to process those ob-
jects which are not immediately nearest neighbors of any
query. In an extensive experimental evaluation we demon-
strate that our method is applicable on high throughput data
streams requiring only very limited storage.

1 Introduction

Query processing on data streams has become very pop-
ular in recent years, e.g. [4, 5, 6, 13] to mention a few.
There is is a vast number of solutions for various types of
data, e.g. relational, semi-structured and time series, but
most existing approaches are approximate because of the
special conditions in a streaming environment. In contrast
to conventional query processing, where queries are imme-
diately answered from a database with a large but finite and
previously known number of objects, in stream based query
processing the queries aresubscribedto a data stream. This
means that, upon every arrival of a new object from the
stream, the set of registered queries has to be checked. If the
new object qualifies for one or more queries, it is reported
as a result of the queries. There are two main challenges:
The streaming objects arrive with a very high frequency

and usually not all of them can be stored in the system. As
an application scenario, consider network monitoring. The
system administrators may specify various network pack-
ages which are suspicious due to different reasons (intru-
sion, rule violation, misuse etc.) Then, the stream of net-
work packages is constantly surveyed for packages which
are similar to the suspicious objects. As a second example,
take advertisements of an arbitrary market segment. Each
user may specify the properties (price, color, size, weight
etc.) of a product he/she is interested in. The system perma-
nently informs the user about those advertisements which fit
best his/her requirements.

We distinguish between two different types of similar-
ity queries: range queries and nearest neighbor queries.
For both types, the user selects an object, thequery ob-
ject which is the starting point of the search. For a range
search, the user must additionally specify the query radius,
i.e. a threshold for the maximally allowed distance from the
query object. Since similarity measures are often not very
intuitive, it may be difficult to specify such a query radius.
Therefore, in practice, thek-nearest neighbor query (k-NN)
is more important, because the user only has to specifyk,
the number of objects that he wants to retrieve, and the sys-
tem automatically retrieves thek mostsimilar results. In
this paper, we focus onk-NN queries but our technique can
be extended to range queries in a straightforward way.

We define for each object a life span in which the object
is valid. In many applications such as advertisements, the
objects themselves may be associated with a time of expiry.
If this is not the case, the time of validity can either be spec-
ified globally for the whole system or may be individually
specified for each query. By specifying a global or query-
specific lifespan, the user is also enabled to control how fre-
quently he/she wants to get a query result. E.g. if the life
span is set to 1 hour, the user will get at least every hour a
new result (but maybe also some additional results if good
hits arrive before the current nearest neighbor expires).

In addition to global, query-specific, and object-specific
expiry, we can also distinguish between time-based and

number-based expiry. In time-based expiry, the life span
of an object is defined in terms of e.g. seconds. In contrast,
for number-based expiry, the user defines a maximum num-
ber of objectsn which is at all times simultaneously valid.
After the object numbern + 1 has arrived from the stream,
object number 1 automatically expires. Number based ex-
piry is also practically useful becausen gives a intuitive
quality measure for the results: each result isthe best out
of n objects.Number based expiry is useful for global and
query-specific expiry, but not for object-specific.

We will also distinguish between monotonic and
non-monotonic expiry. Monotonic expiry means that
objects expire in the same order as they have arrived from
the stream. Non-monotonic expiry is only possible in
combination with object-specific expiry. In this context, the
queries have also a life span which starts at the time stamp
of subscriptionsubscr(q) and ends at the time stamp of
unsubscriptionunsubscr(q).

Problem Specification. We consider a data streamS
as a sequence of objects(o1, o2, ..). Besides its coordinates,
each object has a time stamp of its appearance at the
stream, denoted byapp(o) and a time stamp of expiry,
denoted byexp(o). We call the time span between an
objects appearance and its expiry the life spanl(o) of an
objecto. In this time the object isvalid.

Definition 1 (Valid objects.) For a given timestampt the
set of valid objectsVt is defined as
V (t) = {o ∈ S|app(o) ≤ t ≤ exp(o)}.

Definition 2 (Valid objects w.r.t q.) For a given time
stamp t the set of objects which are valid for queryq,
denotedVq(t) corresponds to
Vq(t) = {o ∈ V (t)|subscr(q) ≤ app(o) ≤ unsubscr(q)}.

Definition 3 (KNN.) Let dist be a metric distance func-
tion. Thek-nearest neighbors of a queryq at a given time
stampt, NNk

t (q) is the minimal subset of valid objects
Vq(t) containing at leastk elements with
∀o ∈ NNk

t (q) ∧ ∀p ∈ Vq(t) \ NNk
t (q) : dist(o, q) <

dist(p, q).
We denote byNNt(q) the nearest neighbor of a queryq, i.e.
NNt(q) = NN1

t (q). Wherever non-ambiguous we write
NN.

Conceptually at every time stamp all subscribed queries are
evaluated. If there are changes among thek-NN of a query,
they are reported to the user who owns the subscription. The
result set of the system at a time stamp contains all objects
that need to be reported.

Definition 4 (Result set.) For a given time stampt and a
set of queriesQ the result setR(t) consists of the following
objectso:
R(t) = {o|∃q ∈ Q : o ∈ NNk

t (q) ∧ o /∈ NNk
t−1(q)}.

Contributions. The key contributions of our approach can
be summarized as follows:

1. We propose a framework for exactk-nearest neighbor
query processing on data streams.

2. We demonstrate how the basic idea of a skyline can
be exploited for continuousk-nearest neighbor queries
to assure exact answer guarantee at very low memory
consumption.

3. We further reduce memory consumption by object de-
laying without giving up the exactness property.

4. An efficient index structure for continuous queries is
provided. This index allows highly dynamic updates
and is small enough to fit into main memory.

Our paper is organized as follows: The next section is ded-
icated to related work. In Section3 we introduce our idea
for exact NN processing using a skyline data structure. In
Section4 we show how we can further reduce memory con-
sumption by object delaying. Section5 gives a detailed de-
scription of our index structure used for the queries. Section
6 illustrates how the result reporting is implemented and
Section7 extends our method tok-NN queries. In Section
8 we provide an extensive experimental evaluation. Section
9 concludes the paper.

2 Related work

k-NN Queries on Data Streams. k-NN queries on
static databases is a well studied problem for which many
index structures have been proposed, e.g. [16, 17, 1].
Most of them are not suitable in our context because of the
high throughput. In the special case streaming time series
research activities mainly focus on discovering patterns to
predict the coordinates of new objects. This information
is used to discard objects that are probably irrelevant to
the query and improve response time of the system, e.g.
[5]. Prediction-based methods are not applicable if the
objects attribute values are independent from their time
of appearance and the objects arrived before. For this
case approximate approaches have been proposed, such
as [8]. The data space is partitioned into cells and aB+
tree together with aZ-curve is used to index the space.
For each grid cell some objects are retained to guarantee
an absolute error bound fork-NN queries. However, in
some applications exact answers are essential, e.g. in
health monitoring. In any case exact answers are of highest
compliance to the user and give a sound base for data
analysis and interpretation. Moreover [8] and [3] focus
on answering single queries and are not designed for
continuousk-nearest neighbor monitoring.

Skylines and Query Monitoring. In this paper, we
use a skyline based object buffer associated with each
query, which we call thequery skyline. This allows us to
discard most of the objects from the stream immediately
without giving up the exact answer guarantee (cf. Section
3). In general the skyline of a data set contains the data
points which are maximal or minimal in two or more of
the attributes. The problem was first proposed by [2].
It attracted much attention both on static data sets, e.g.
[14, 11] and streaming data [9]. Papadias et al. introduced
the concept ofk-skyband[11] which is also related to our
work. The k-skyband of a data set contains all objects
which are dominated by at mostk − 1 other objects. In
[10] an interesting algorithm for monitoring top-k-queries
is proposed. Thek-skyband has geometric implications on
the data space, leading to areas that are excluded to contain
relevant objects. In this approach all objects are indexed in
a grid and the order of processing of the cells is determined
by the k-skyband. However, this approach relies on the
assumption that all valid objects can be kept in memory.

Query Indexing. In a data stream context it is usu-
ally impossible to index all the data objects because of
memory limitations. Typically the number of queries
is much smaller than the number of valid objects and
naturally the system needs to have enough memory to
store them. The idea of indexing the queries instead of the
data objects has been successfully applied in the context
of moving objects [18]. Organizing queries in a grid
index outperforms object indexing for a large number of
moving objects, because the objects are highly dynamic
causing a lot of index updates. In our context indexing
the queries instead of the objects means that we change
the problem ofk-nearest neighbor search (of the objects)
into a bi-chromatic reversek-nearest nearest neighbor
search (of the queries), for more details see Section5. The
problem of RNN has been extensively studied for static
databases. A lot of sophisticated tree based index structures
have been prosed, e. g. [7, 12, 15]. For indexing the
queries these structures are not flexible enough to support
frequent updates and lead to a memory overhead which
is not necessary. We propose a grid-style index, which is
described in detail in Section5.

3 Skyline Based Object Maintenance

Usually only a very small fraction of the objects arriving
from a data stream is relevant to a query. For high through-
put streams also only a small fraction of the objects can be
stored in the system. These general conditions require a de-
cision strategy to discard irrelevant objects. Most of exist-
ing proposals focus on sophisticated filtering and load shed-
ding strategies carefully selecting objects which are consid-

ered as unimportant, and can be discarded. Various deci-
sion strategies with error bounds have been proposed but
exact answers can not be guaranteed (cf. Section2). We
develop a criterion to decide upon arrival of a new object
from the stream if it may become the nearest neighbor in
future, or can definitely not. Among the stored potential
relevant objects pruning is performed. The basic idea is
that a new object arriving from the steam can often exclude
many other objects which can not become nearest neighbors
until the new object expires. In this section, we restrict our-
selves to the case where the queries are continuous 1-nearest
neighbor queries, continuousk-nearest neighbor queries for
k > 1 will be considered in Section7.

To decide whether or not an objecto may become the
nearest neighbor of a queryq we consider the 2-dimensional
space of the query distance and the time of expiry. Note
that this space is always 2-d, regardless of the dimensional-
ity of the feature space of the data and query objects. Our
method is applicable to objects of arbitrary dimensionality,
and can even be extended to non-vector metric objects. An
objecto may become the nearest neighbor, unless there ex-
ists another objectp which at the same time (1) iscloser
to the query thano and which (2)expires laterthano. If
both conditions hold, theno cannot be the nearest neighbor
now (because at least one closer objectp is known.) More-
over, it cannot become the nearest neighbor later, because
the objectp lives longer. A set of objects which are maxi-
mal (minimal) with respect to two (or more) different con-
ditions (such as, in this case, distance and expiry) is called
a skyline[9]. In this context, we are considering a two di-
mensional distance-expiry skyline, which we call thequery
skyline, formally:

Definition 5 (Query Skyline.) Given a time stampt, a
queryq and two pointso, p ∈ Vq(t). We sayo dominates
p if exp(o) > exp(p) and dist(o, q) < dist(p, q). The
query skylines(q, t) of queryq and the set of valid points
Vq(t) consists of all points inVq(t) that are not dominated
by other points inVq(t).
s(q, t) = {o ∈ Vq(t)|
@o′ ∈ Vq(t) : exp(o′) > exp(o)∧dist(o′, q) < dist(o, q)}.

In the following, we will formally prove that the objects of
the skyline in the distance-expiry space (and only these ob-
jects) need to be stored as potential nearest neighbors. The
current nearest neighbor is also in the skyline at all times.

Lemma 1 (Correctness.)At each time stampt the query
skylines(q, t) of each query containsNNt(q) the nearest
neighbor ofq at time stampt.

Proof 1 NNt(q) is by definition of the nearest neighbor not
dominated by any other objecto ∈ Vq(t), i. e. @o ∈ Vq(t) :
dist(o, q) > dist(NN(q), q).

algorithm skylineMaintenance (Object o, Query q)

Skyline s := q.associatedSkyline;
SkylineElement c := s.last; // current element
SkylineElement c′;
if nonMonotonicExpiry

// search for suitable position:
while c 6= null and exp(c) > exp(o)

c′ := c;
c := c.pred;

if c 6= s.last and dist(c′, q) < dist(o, q)
return ; // o is dominated, leave s unchanged

c := skylinePruning(o, q, c);
if c = null

s.insertAsFirst(o);
reportNeighbor(o, user(q));

else
s.insertAfter(o, c);

function skylinePruning (Object o, Query q,
SkylineElement c): SkylineElement

SkylineElement c′;
while c 6= null and dist(c, q) > dist(o, q)

c′ := c;
c := c.pred;
s.delete(c′);

return c;

Figure 1. Skyline Maintenance.

Lemma 2 (Completeness.)A valid objecto which is not
in the query skylines(q, t) at time stampt, is the nearest
neighbor at no timet′ ≥ t.

Proof 2 Sinceo is not in the skyline, it is dominated by
another objectp, i.e. exp(p) > exp(o) and dist(p, q) <
dist(o, q). Therefore,o is not the element having minimal
distance toq for any time stampt′ ∈ [t..exp(p)]. Since
exp(o) < exp(p), o is not valid after that time interval,
and thus,o is additionally not the nearest neighbor for any
t′ ∈ [exp(p)..∞[.

We can represent the skylines in main memory as double-
linked lists, ordered by time of expiry (and at the same time,
automatically ordered by distance, because the monotonic-
ity of the objects in the skyline can be easily proven). When
a new objecto arrives from the data stream, we first have
to locate the potential position of this object in the skyline.
We start our search at the upper end, because in most ap-
plications the objects have at least approximately uniform
life spans. If the potential position is not at the end, we
have to check if the new object is excluded by the object
immediately following the potential position. It is also a
consequence of the monotonicity that, if the immediate suc-
cessor does not exclude the new object, then none of the
(transitive) successors can exclude the object. Ifo is not ex-
cluded, it needs to be appended and we proceed as follows:
We test whethero excludes its direct predecessor. Due to
monotonicity, ifo does not exclude the direct predecessor, it

A C

B E

D F

di
st

an
ce

time of expiry
A C

B E

D F

G

di
st

an
ce

time of expiry

Figure 2. Skyline Example.

cannot exclude any of its transitive predecessors, and we’re
done. Otherwise, the dominated object is removed from the
linked list, and we do the same test with the new predeces-
sor (if any). The pseudocode of the algorithm is depicted in
Figure1. An example is visualized in Figure2, where we
have a set of 6 objects, A-F. Two objects, B and D are dom-
inated, i.e. the actual skyline is stored in the linked list A-
C-E-F. As an example, object C is highlighted, along with
the space which is excluded by C (containing the object B).
When a new object G arrives it is simply appended, since
the expiry is assumed monotonic here. We have to consider
the two predecessors F, and then E, and discard them. Since
C is not dominated by G none of the predecessors (A) must
be checked.

An interesting question is how many objects do we have
to expect to be in the skyline. It has been shown in [9] that,
under reasonable assumptions, the size of the skyline is in
O(log2 n). In our first experiments we were able to confirm
a typical size of 10 elements forn = 1, 000, 000 valid
objects. Although this is very moderate, we will present in
Section4 an idea to further reduce the typical skyline size
to 2-3 objects.

Mindful readers may have noticed that in case of
monotonic time stamps, the newest object must always be
appended to the skyline of every query. Therefore, one
might wonder if it is really necessary to access all stored
skylines for every new object (which would make query in-
dexing, described in Section5 obsolete). The answer is yes,
but we will propose a simple trick in the next section (4)
which greatly reduces this effort without affecting the cor-
rectness and completeness of the result of our algorithm.

4 Object Delaying

New objects cannot be dominated by other objects in the
query skylines because they have the latest expiry. These
unnecessarily appended objects are discarded soon by new
objects which are closer to the query. Therefore the size
of the query skylines stays logarithmic despite of this prob-
lem. But for efficient online stream processing it is essential
to avoid any overhead in space and time. The skyline size
can be further reduced to a few objects by a simple but ef-
fective trick. We delay every new objecto from the stream
for a certain time span before trying to insert it into the ac-

A
Exact Skyline Approximate Skyline

B C
D

E

F
H J

G rC

tdelaytremain

Figure 3. Approximate and Exact Skyline.

tual query skylines. By doing so we avoid insertingo into
the skyline of a queryq which is far away fromo (where
o qualifiesonly because it is new). It is likely that whileo
is delayed, objects from the stream arrive that are closer to
the query. Naturally these new objects dominateo (closer to
the query and also later expiry) so thato can be safely dis-
carded. Very few objects need to be immediately inserted
because they are really relevant, e.g. because they replace
the current nearest neighbor or have the potential to become
nearest neighbor during the delay time. In the following we
explain in detail how to determine the objects requiring im-
mediate insertion. We introduce a simple ring buffer to store
the new objects temporarily.

Definition 6 (Buffer.) The bufferB with size|B| stores
the |B| newest objects from the stream, it holds:∀o ∈ B,
∀p /∈ B: exp(o) > exp(p). We additionally denote bytb the
earliest expiry among all elements in the buffer. The set of
objects in the buffer at time stampt is denoted by delayed(t).

In this buffer objects are processed in first-in-first-out order
if the objects have monotonic expiries (for non-monotonic
expiry, we either use a priority queue or we use a fifo-buffer
as well, but in the latter case we only insert such objects
the life span of which is at least two times the delay time,
cf. Lemma3). In addition we divide the skyline of a query
into two parts. We call the first part of the skyline theexact
skyline. Objects are inserted into this skyline when they
come out of the buffer and qualify to be inserted then.

Definition 7 (Exact Skyline.) The exact skyline of a query
q at time stampt contains all objectso ∈ Vq(t)\ delayed(t)
which are not dominated by other elementsp ∈ Vq(t)\
delayed(t) or by elements of the approximate skyline at time
stampstb..t.

The other part of the skyline is calledapproximate skyline.
It consists of new objects requiring immediate insertion.
When a new objecto arrives then it is appended to all ap-
proximate skylines for which it could be possible that object
o could become the nearest neighbor immediately or dur-
ing the time when the object is delayed in the ring buffer.
Additionally, it is appended to some of the approximate sky-

lines for whicho is also a ”good” object, according to an
arbitrary strategy. For maintenance and good performance
of our index structure described in the next section it is ben-
eficial to have some ”good” objects in the approximate sky-
lines. In our system, the queries are stored in a grid based
index (cf. Section5). Our strategy is, therefore, to insert
the new objecto to all those queries which are stored in the
grid cells which encompasso. Formally, the approximative
skyline consists of all non-dominated objects from a subset
of the delayed objects:

Definition 8 (Approximate Skyline.) Let S be an arbi-
trary subset of delayed(t) which contains all objects with
a distance below a cut radiusrC to q. The approximate
skyline ofq is the set of elements fromS which are not dom-
inated by other elements fromS.

Note that the objects in the exact skyline need to be physi-
cally stored there. In contrast, for the approximate skyline,
it is sufficient to store pointers to the objects only, because
they are physically stored in the delay buffer. Whenever the
delay buffer is full (usually upon every new insertion of an
object) we remove the oldest objectp from it (remove it also
from all approximate skylines) and check, to which of the
exact skylines it must be appended. It must be appended
to those exact skylines for which no object is known which
dominatesp. However, in the meantime (during the delay of
p), we have seen many new objects with later expiry times.
Our hope is that for each query at least one of these new ob-
jects is very close, and, therefore,p is indeed excluded now.
Provided we have appended any good object to the approxi-
mate skyline, we can use the top element of the approximate
skyline for discardingp. All elements in the approximate
skyline have later expiries thanp. Therefore,p is discarded
if the top element of the approximate skyline is closer to the
query thanp. Therefore, the top element of the approximate
skyline exactly defines the cut radiusrC which is used for
query indexing (c.f. Section5).

In the last paragraph, we have seen that an object can
be safely discarded if it is dominated by the top element of
the approximate skyline. In the extreme, the top element
of the approximate skyline can dominate all elements of the
exact skyline. The top element of the approximate skyline
will become the nearest neighbor of the associated query.
In this case, the question is justified whether or not this top
element is really the nearest neighbor, and under what con-
ditions this can be guaranteed. We will show in the follow-
ing that this is guaranteed if (1) every object is inserted into
the approximate query skyline which is closer to the query
than the current top element, and (2) the remaining time of
validity after being inserted into the exact skyline (tremain)
is at least as high as the delay timetdelay.

Lemma 3 Assume that the above conditions hold, and that
an objecto is not appended to the approximate skyline of

queryq. Then, it is guaranteed thato cannot become the
nearest neighbor of queryq until o is removed from the de-
lay buffer (and inserted into the exact skyline).

Proof 3 According to the definition of the approximate sky-
line, o has a distance toq which is larger thanrC , the
distance of the top elementot of the approximate skyline.
Therefore, it cannot become the nearest neighbor ofq un-
til ot expires. The top elementot is still delayed (ot ∈
delayed(t)) but may be extracted from the delay buffer
in an arbitrarily short time. But then, it is still valid for
tremain. The new objecto remains in the buffer fortdelay.
If tdelay ≤ tremain theno cannot become the nearest neigh-
bor of q during the delay time.

Note that, after the delay time,o is considered to be inserted
into the exact query skyline. To perform this test,o is com-
pared to thenewtop element of the approximate skyline. If
o is dominated by the new top element, it is guaranteed that
o will become never the nearest neighbor ofq.

An example of a pair of exact and approximate query
skylines is shown in Figure3. The exact skyline consists of
the objects A and D and the approximate skyline of the ob-
jects G and J. B and C are dominated by D. E would actually
belong to the exact skyline but is dominated by the top el-
ement of the approximate skyline G which also defines the
cut radiusrC . H should actually belong to the approximate
skyline. But according to the definition of the approximate
skyline, it is possible to discard H as it is above the cut ra-
dius. According to Lemma3, H cannot become the nearest
neighbor before G expires which takes at leasttremain time.
Before the expiry of G the object H is taken out of the buffer
and is tested for insertion into the exact skyline. The same
holds forJ , but it is inserted anyhow because it is in the
same grid cell as the query.

5 Query Indexing

Due to object delaying (cf. Section4) the number of
objects of the stream that need to be stored in the query
skyline is very small. In addition, the streaming objects are
highly dynamic, so it would not be beneficial to use an index
structure for the objects. In this section we propose to index
the queries in a grid-style index, which is highly flexible
w.r.t. updates and can be held in main memory.

According to Definition3, at each time stampt the an-
swer of a continuous nearest neighbor queryq is that ob-
ject which has the smallest distance toq among all objects
oj ∈ Vt(q) which are valid at timet. We are now interested
in the question, given a new (and by definition, valid) object
o at timestampt, to which queriesq ∈ Q is o the nearest
neighbor among all valid objectso ∈ Vt(q)? We can write
this formally in the following way:q ∈ Q : NNt(q) = {o}.

g0,1 g0,2 g0,3

g1,3

g1,2

g1,1

G0,0 G0,1 G0,2 G0,3

G1,0

G1,1

G1,2

G1,3

l0,2 u0,2

C2,2

l1,2

u1,2

Figure 4. Query Indexing.

One might recognize that this resembles to the definition of
the reverse nearest neighbor problem. More exactly, the ob-
jecto searches for thebichromaticreverse nearest neighbor
among the queries, as defined, e.g. in [12].

For the efficient evaluation of a bichromatic reverse near-
est neighbor query, usually the following consideration is
applied:o is the nearest neighbor of thoseq ∈ Q to which
it is closer than the current nearest neighbor ofq. This can
be easily decided if the radiusr(q) of the current nearest
neighbor is stored with every queryq ∈ Q. For continuous
NN -queries which are supported by a delay buffer we need
a cut radiusrC which is guaranteed to be an upper bound of
the nearest neighbor radius fortremain time. As discussed
in Section4, rC corresponds to the distance betweenq and
the top element of the approximate skyline. Instead of con-
sidering the queries as points of a metric or vector space,
we consider them as spheres with a radiusrC(q).

For indexing, we merely need a structure which allows
us to efficiently determine all spheres in which the pointo
is contained. We apply a very simple, grid based method
for vector objects which is described in the following. Note
that this is used for storing the queries only. Therefore, it
might fit into main memory for a moderately high num-
ber of queries and regardless of the overall size of the data
stream and regardless of the number of valid objects. Our
data structure is visualized in Figure4. Each of thed di-
mensions is independently partitioned into a number ofρ
quantiles according to a sample of the set of queries. If ini-
tially no sample of the queries is known, then the quantiles
can be uniformly distributed in the data space. These quan-
tiles are depicted in Figure4 in dashed lines and marked
with gi,j where i ∈ 0, ..., d− 1 is the dimension of the
grid line andj ∈ 0, ..., ρ is a sequential number which is
strictly monotonic (i.e. gi,j1 < gi,j2 ⇔ j1 < j2). The
set of all quantiles constitutes ad-dimensionalρ × ... × ρ
grid. The rows and columns are marked withGi,j wherei

is again the dimension andj ∈ 0, ..., ρ− 1 is the sequence
number. Initially the lower limit ofGi,j is gi,j and the up-
per limit is gi,j+1. The cells of the grid are marked with
Ca0,...ad−1 whereai corresponds to some grid row or col-
umnGi,ai

. The queries are associated to the grid cells ac-
cording to the coordinatesqi, i = 0, ..., d − 1 of the center,
i.e. q ∈ Ca0,...,ad−1 ⇔ qi ∈ [gi,ai , gi,ai+1]. Note that, until
now, this structure resembles the well-known VA-file [16].

We now extend this structure to index spheres rather than
points. Additionally to the original quantile linesgi,j we
determine for each row and columnGi,j the lower and up-
per boundariesli,j , ui,j of all query spheres (the spheres
centered byq having the current cut radiusr(q)) which are
stored in any of the cells:

li,j = min
q∈Q|qi∈[gi,j ,gi,j+1]

{qi − rC(q)}

ui,j = max
q∈Q|qi∈[gi,j ,gi,j+1]

{qi + rC(q)}

Hereqi denotes attribute numberi in the query vectorq. As
depicted in Figure4, these limits usually extend each line
and column a little bit to the left and to the right. Therefore,
these modified grid cells are now allowed to overlap. But
if the radii of the stored spheres are small, it is also possi-
ble that some grid cells do not grow but shrink instead, and
the neighboring grid cells become disjoint. During query
processing, the queries may frequently change their asso-
ciated cut radiusrC(q): As a consequence of the arrival
of a new object, the cut radius of a query may decrease.
Likewise, the cut radius may increase if the current near-
est neighbor of a query expires. We handle the increase
of a radius by immediately checking the lower and upper
boundaries of the cell to whichq is associated, and updat-
ing them if necessary. From time to time, the boundaries are
also checked if they are able to be contracted. By this sim-
ple method it is guaranteed that each grid cell is always a
conservative approximation of the contained query sphere.
Thus, it is possible to safely decide according to the cell
boundaries that a cell cannot contain any queries to which
a given object could be the nearest neighbor. Figure5 sum-
marizes the required steps for processing a new object in
pseudocode.

6 Result Reporting

Our system has to report every change of the nearest
neighbor of any subscribed queryq ∈ Q immediately to
the user who owns the subscription. There are two possible
causes of a nearest neighbor change, (1) the arrival of a new
object from the data stream which takes over immediately
the top position of the query skyline, and (2) the expiry of
the current nearest neighbor ofq. Case (1) is immediately
detected during processing of the new object. Case (2) is

algorithm processNewObject (Object o)

if buffer.isFull()
Object o′ :=buffer.getAndRemoveMinimumExpiry();
process(o′, false);

buffer.insert(o);
process(o, true);

algorithm process (Object o, boolean isApproximate)

for all g ∈ gridCells
if o ∈ g.occupiedSpace

for all q ∈ g.associatedQueries
maintenance(o, q, isApproximate);

algorithm maintenance (Object o, Query q, boolean isApproximate)

// monotonic expiry only due to space limitations
Skyline e := q.associatedExactSkyline;
Skyline a := q.associatedApproximateSkyline;
SkylineElement c, c′;
if isApproximate

c := skylinePruning (o, q, a.last); // cf. Figure 1
if not isApproximate or a.isEmpty()

c := skylinePruning (o, q, e.last);
if e.isEmpty()

reportNeighbor(o, user(q)));
if isApproximate

a.append(o);
else

e.append(o);

Figure 5. Processing of a New Object o.

more complicated because, in principle, the query skyline
of every query must be continuously monitored for the ex-
piry of its first element.

To do this in a very efficient way, we store pointers to the
queries in a priority queue (heap) which we call theaction-
queue. We need only one global action queue in the system
with a size of|Q|, the number of subscribed queries. The
elements of the action queue are ordered by the time stamp
of the expiry of the top element of the query skyline. This
allows an efficient access (in constant time) to the element
which will expire next in any query. This access can be
done periodically upon every arrival of a new object. As an
alternative, the next relevant expiry (the top element of the
action queue) can be triggered by a timer.

Whenever an element is dequeued from the action queue,
and whenever a newly arrived object takes over the top po-
sition of a queryq, the action queue must be updated which
requiresO(log2 |Q|) time where|Q| is the number of sub-
scribed queries (note that we have to register every query
exactly once in the action queue with the expiry of the top
element of the query skyline). This reorganization upon the
arrival of new objects can even be avoided in the case of
monotonic object expiry: In this case, we know that the ex-
piry tnew of the new top element ofq is later than of the old
one (told). We can leave the element in the action queue as
it is, wait for told and then state that a top element has ex-
pired which has actually been outdated already. Therefore
the new expirytnew can then be registered without notify-
ing the user about any change.

7 k-Nearest Neighbor Queries

In this section, we shortly describe the generalization of
our technique fork-nearest neighbor queries withk > 1.
The three ideas of our technique, query indexing, skyline
based object maintenance and delay buffering can also be
applied in the general case. Particularly the concept of
query-skylines needs some modifications. We start again
with a simple variant without distinction between exact and
approximate query skyline:

An object can now be safely discarded from memory if
it is guaranteed that it will become at no future point-of-
time one of thek nearest neighbors of any queryq ∈ Q.
Translating this into the language of skylines, an object can
be discarded if it is dominated by at leastk other objects,
where the dominance is exactly the same as in Definition5.
We can then define ak-skyline as the set of objects which
is dominated by less thank objects, which corresponds to
the concept of thek-skyband [11]. In addition we store for
each object a counter with the information by how many
other objects it is dominated.

When we use a delay buffer, we have again to distin-
guish between approximate and exact skylines. Our notion
of dominance can be naturally extended to this case (objects
of the approximate skyline can also dominate objects from
the exact skyline, and, thus, increase their counter). To as-
sociate a query with a cut radius we need to guarantee that
no object exceeding the cut radius can become the nearest
neighbor during the delay time or during its remaining life
time. This requires that we have to store the objects of the
approximatek-skyline in a way which allows efficient ac-
cess to the element with distance-rankk. A linked list can
be used for the management of the elements with rank 1 to
k. A priority queue (heap) can be used for the remaining
elements with rank> k.

8 Experiments

Data Sets and Methodology.For a systematic analysis
of the properties of our method we generated synthetic
data sets of various dimensionality. In particular, we used
uniformly distributed and clustered gaussian data. The
clustered gaussian data sets contain ten clusters (standard
deviation 0.1) which are randomly distributed on the data
space. We also show the performance on two netflow
data sets. We used a two dimensional data set containing
records extracted from netflow IP data logs, cf. [8]. We
additionally used a three dimensional netflow data set
containing records (source port, destination port, packet
size) extracted from the LBL-TCP 3 data set, available at
the Internet Traffic Archive (http://ita.ee.lbl.gov/). The IDs
of the source and destination hosts have been left out here.
For all experiments we assume number based expiry. In

this context for an objecto a life span of e.g.l(o) = 20, 000
means thato expires after 20,000 new objects from the
stream have arrived. We usedN = 1, 000, 000 2-d stream-
ing objects with a lifespan ofl(o) = 20, 000, |Q| = 500
queries, a buffer size of|B| = 2000, and a resolution of
ρ = 20 when not otherwise specified. We further assume
that at each time stamp a new object from the stream
arrives. We randomly separated objects from the stream
and used them as continuous queries. Experiments were
run on a PC with a 2.4 GH pentium processor and 512 MB
main memory under Java.

Query Indexing. Figure 6(a) shows the number of
distance calculations with varying resolution of the query
index on uniform and clustered gaussian data. For uni-
formly distributed data,ρ = 20 grid lines per dimension
show the best trade-off between number of cells and queries
per cell. For clustered gaussian data a higher resolution of
35 is better, since queries are densely populated in some
regions of the data space. In Figure6(b) the scalability w.r.t.
the number of subscribed queries|Q| for our algorithm and
a variant without indexing is depicted. Upon arrival of a
new objecto, this variant simply checks all queries ifo
needs to be inserted. In this experiment we used uniformly
distributed data. Hence our index structure is simple and
efficient in maintenance, query indexing pays off already
for |Q| = 100. For |Q| = 1600 the index leads to a speed
up factor of 80. Figures6(c) and6(d) show the performance
in the case of new dynamic queries arriving during the
runtime of the system on netflow data. In Figure6(c) in
addition to 400 static queries 100 dynamic queries have
been inserted. Despite of the inserted queries, the runtime
scales linearly withN . Figure6(d) shows the performance
w.r.t. the number of dynamic queries. New queries can
be very efficiently inserted in our index. This leads to a
sublinear increase in runtime. During the runtime the grid
cells are expanded as explained in Section5. To maintain
a high performance of the grid index it is beneficial to
adjust the upper and lower bounds in fixed time intervals.
For uniform and clustered gaussian data we achieve good
performance if we do this upon arrival of every 1,000 new
objects as Figure6(e) shows.

Buffer Size. The size of the buffer can be chosen de-
pending on available memory. As shown in Section4 our
method works correctly with an arbitrarily small buffer
size. According to Lemma3 an upper limit for the buffer
size |B| is then half of the live span of the streaming
objects. Figure6(f) shows the overall memory usage for
varying buffer sizes|B| = 20...4, 000 for two dimensional
uniformly distributed data. Here we increased the live span
of the objects tol(o) = 500, 000. The memory usage for
the buffer, for the query skylines and the overall memory

http://ita.ee.lbl.gov/

0
20

40
60
80

100

120
140

0 200000 400000 600000 800000 1E+06

N

ru
nt

im
e

in
 s

2D netflow
3D netflow

0

10

20

30

40

50

60

70

200 400 600 800 1000

|Q|

ru
nt

im
e

in
 s

2D netflow
3D netflow

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

0 1000 2000 3000 4000

|B|

m
em

or
y

us
ag

e
in

 %
memory usage
buffer
skylines

0

500

1000

1500

2000

2500

3000

3500

100 600 1100 1600

|Q|

ru
nt

im
e

in
 s

our algorithm
without index

0
5000000

10000000
15000000
20000000
25000000
30000000
35000000
40000000

100 1000 10000 100000

shrink after objects

di
st

an
ce

 c
al

cu
la

tio
ns clustered gaussian

uniform

0

100

200

300

400

500

600

700

800

0 200000 400000 600000 800000 1000000

N

ru
nt

im
e

in
 s

our algorithm
without index
without buffer

0

100

200

300

400

500

1 2 3 4 5 6 7 8 9 10

K

ru
nt

im
e

in
 s

clustered gaussian
uniform

(a) Resolution (b) |Q| (c) Dynamic Queries N (d) Dynamic Queries |Q|

(e) Index Maintenance (f) Memory Usage (g) |B| (h) Indexing and Delaying

(i) k

0

10

20

30

40

50

0 200000 400000 600000 800000 1E+06

N

ru
nt

im
e

in
 s

3D
4D
5D

(j) d

0

5

10

15

20

25

0 20000 40000 60000 80000 100000

l(o)

ru
nt

im
e

in
 s

clustered gaussian
uniform

(k) l(o)

0

20

40

60

80

100

120

0 200000 400000 600000 800000 1E+06

N

ru
nt

im
e

in
 s

3D netflow
2D netflow

(l) Netflow Data N

0

100

200

300

400

500

600

0 1000 2000 3000 4000 5000 6000

|B|

ru
nt

im
e

in
 s

0.78%

1.1 %

0
10000000
20000000
30000000
40000000
50000000
60000000
70000000

5 10 15 20 25 30 35 40

ρ

di
st

an
ce

 c
al

cu
la

tio
ns clustered gaussian

uniform

Figure 6. Experimental Evaluation.

usage is depicted. Even for this relatively long life span of
the objects, memory usage is very low. For all examined
buffer sizes we needed to store in total less than 2% of the
valid objects. As a minimum0.78% of the valid objects
need to be stored for a buffer size of|B| = 500 objects.
Figure6(g) gives the runtimes in seconds for the previous
experiment. Although the configuration minimizing mem-
ory usage allows a throughput of 14,085 objects per second,
a much higher throughput of 93,110 objects per second can
be achieved with a buffer size of|B| = 3000, which means
storing 1.1% of the valid objects. Larger buffer sizes do not
considerably further improve runtime.

Scalability. Figure 6(h) demonstrates the benefits of
query indexing and object delaying. The runtime in
seconds on uniformly distributed two dimensional data
is reported for our technique and versions without query
indexing and without object delaying for various numbers
of objectsN . The version without buffer performs worst.
This demonstrates the effectiveness of object delaying. For
N = 1, 000, 000 this version attains a throughput of 1,372
objects per second. The version without query indexing
is slightly better and attains a throughput of 1,570 objects

per second. The combination of query indexing and object
delaying leads to impressive performance gains over both
aspects when used alone. One million stream objects
are processed in 11.58 seconds, this corresponds to a
throughput of 86,356 objects per second. The throughput is
55 times higher than for the version without query indexing
and even 63 times higher than for the version without object
delaying. Figure6(i) shows the scalability our method for
k-nearest neighbor processing as described in Section7
on two dimensional uniform and clustered gaussian data.
Starting with |B| = 2000, we increased the buffer size
linearly with k. It can be assumed that for a largerk also
more memory is available, at least for storing the query
results. With this configuration, fork = 10 we store 5%
of the valid objects in the buffer. For both data sets, the
runtime scales linear withk. Figure6(j) demonstrates the
scalability with the dimensionality on clustered gaussian
data of dimensionality 3, 4, and 5. For this experiment, the
resolution was set toρ = 10. All curves scale linearly with
the number of objectsN . There is only a small increase in
runtime from 4 to 5 dimensional data. Figure6(k) displays
runtime for various life spansl(o) = 5, 000..1, 000, 000
on uniform and clustered gaussian data. The runtime

remains almost constant with increasingl(o), even if all
objects are valid at all time stamps. This demonstrates
that our method is applicable high throughput data streams
ranging from relatively short object live spans to scenarios
without expiry. Figure6(l) shows the runtime in seconds
for varying N on netflow data. Here we setρ = 15 for
both, 2-d and 3-d data sets. For both data sets, the runtime
scales linearly with the data size.

9 Conclusions

In this paper, we have proposed an efficient technique for
processing a large number of continuousk-nearest neighbor
queries on data streams of feature vectors which are impor-
tant e.g. in multimedia and marketing applications. In con-
trast to previous methods for query processing on streams,
the result of our method is not approximative but exact and
complete. Our method is based on three major ideas:

1. Thequery skyline enables us to carefully select those
objects from the stream which have the potential of
becoming answers to any of the subscribed queries.

2. A delay buffer is used to retard processing of those
objects which are not immediate answers to the queries
and thus greatly improves the efficiency of processing.

3. A query index is used to organize the subscribed
queries in a simple, grid based way.

Our extensive experimental evaluation demonstrates that
our technique scales well with the size of the stream, the
number of queries, the numberk of answers per subscribed
queries, the dimensionality, and the available buffer size
for artificial and real-world stream data. In particular, we
demonstrate that the combination of our 3 major ideas leads
to a very low memory consumption: Only between 0.78%
and 1.1% of the valid stream objects must be retained in
memory to guarantee completeness and correctness of the
result of our technique. In addition, we demonstrate that the
combination of our 3 major ideas improves the throughput
by a large factor of about 60.

References

[1] S. Berchtold, D. A. Keim, and H.-P. Kriegel. The x-
tree : An index structure for high-dimensional data. In
VLDB, pages 28–39, 1996.

[2] S. Borzsonyi, D. Kossmann, and K. Stocker. The sky-
line operator. InICDE, pages 421–430, 2001.

[3] R. Cheng, B. Kao, S. Prabhakar, A. Kwan, and Y.-C.
Tu. Adaptive stream filters for entity-based queries
with non-value tolerance. InVLDB, pages 37–48,
2005.

[4] A. Das, J. Gehrke, and M. Riedewald. Approximate
join processing over data streams. InSIGMOD, pages
40–51, 2003.

[5] L. Gao and X. S. Wang. Continually evaluating
similarity-based pattern queries on a streaming time
series. InSIGMOD, pages 370–381, 2002.

[6] L. Golab and M. T.Özsu. Processing sliding window
multi-joins in continuous queries over data streams. In
VLDB, pages 500–511, 2003.

[7] F. Korn and S. Muthukrishnan. Influence sets based on
reverse nearest neighbor queries. InSIGMOD, pages
201–212. ACM Press, 2000.

[8] N. Koudas, B. C. Ooi, K.-L. Tan, and R. Z. 0003. Ap-
proximate nn queries on streams with guaranteed er-
ror/performance bounds. InVLDB, pages 804–815,
2004.

[9] X. Lin, Y. Yuan, W. Wang, and H. Lu. Stabbing the
sky: Efficient skyline computation over sliding win-
dows. InICDE, pages 502–513, 2005.

[10] K. Mouratidis, S. Bakiras, and D. Papadias. Continu-
ous monitoring of top-k queries over sliding windows.
In SIGMOD, pages 635–646, 2006.

[11] D. Papadias, Y. Tao, G. Fu, and B. Seeger. Progressive
skyline computation in database systems.ACM Trans.
Database Syst., 30(1):41–82, 2005.

[12] I. Stanoi, M. Riedewald, D. Agrawal, and A. E. Ab-
badi. Discovery of influence sets in frequently updated
databases. InVLDB, pages 99–108, 2001.

[13] H. Su, E. A. Rundensteiner, and M. Mani. Semantic
query optimization for xquery over xml streams. In
VLDB, pages 277–288, 2005.

[14] K.-L. Tan, P.-K. Eng, and B. C. Ooi. Efficient progres-
sive skyline computation. InVLDB, pages 301–310.

[15] Y. Tao, D. Papadias, and X. Lian. Reverse knn search
in arbitrary dimensionality. InVLDB, pages 744–755,
2004.

[16] R. Weber, H.-J. Schek, and S. Blott. A quantitative
analysis and performance study for similarity-search
methods in high-dimensional spaces. InVLDB, pages
194–205, 1998.

[17] C. Yu, B. C. Ooi, K.-L. Tan, and H. V. Jagadish. Index-
ing the distance: An efficient method to knn process-
ing. In VLDB, pages 421–430, 2001.

[18] X. Yu, K. Q. Pu, and N. Koudas. Monitoring k-nearest
neighbor queries over moving objects. InICDE, pages
631–642, 2005.

	1 Introduction
	2 Related work
	3 Skyline Based Object Maintenance
	4 Object Delaying
	5 Query Indexing
	6 Result Reporting
	7 k-Nearest Neighbor Queries
	8 Experiments
	9 Conclusions

