
1

BORDER: Efficient Computation of Boundary

Points

Chenyi Xia Wynne Hsu Mong Li Lee Beng Chin Ooi

July 31, 2005 DRAFT

2

Abstract

In this work, we investigate the problem of finding boundary points in multi-dimensional datasets.

Boundary points are data points that are located at the margin of densely distributed data (e.g. a cluster).

In this paper, we propose a simple yet novel approach BORDER (a BOundaRy points DEtectoR) to

detect such points. BORDER employs the state-of-the-art database technique - the Gorder kNN join and

makes use of the special property of the reversek-nearest neighbor (RkNN). Our experimental study

shows that BORDER detects boundary points effectively and efficiently on various datasets.

I. I NTRODUCTION

Advancements in information technologies have led to the continual collection and rapid

accumulation of data in repositories. Knowledge discovery in databases is a non-trivial process of

identifying valid, interesting and potentially valuable patterns in data [13]. Given the urgent need

for efficient and effective analysis tools to discover information from these data, many techniques

have been developed for knowledge discovery in databases to identify valid, interesting and

potentially valuable patterns from the data. Such techniques include data classification and mining

association rule, cluster and outlier analysis [15] as well as data cleaning and data preparation

techniques to enhance the validity of the data by removing anomalies and artifacts.

In this paper, we examine the problem ofboundary pointdetection. Boundary points are

data points that are located at the margin of densely distributed data (or cluster). Boundary

points are useful in data mining applications since they represent a subset of population that

possibly straddles two or more classes. For example, this set of points may denote a subset

of population that should have developed certain diseases, but somehow they do not. Special

attention is certainly warranted for this set of people since they may reveal some interesting

characteristics of the disease. The knowledge of these points is also useful for data mining tasks

such as classification [18] since these points can be potentially mis-classified.

Intuitively, boundary points can be defined as follows:

Definition I.1 A boundary pointp is an object that satisfies the following conditions

i) It is within a dense regionR;

ii) ∃ regionR′ near p, DenR′ À DenR or DenR′ ¿ DenR.

Note thatboundary pointsare different from outliers [1], [9], [2] or its statistical counterpart

July 31, 2005 DRAFT

3

- the change-point [24], [10], [3]. While outliers are located in the sparsely-populated areas,

boundary pointsoccurs at the margin of dense regions.

We develop a method called BORDER (a BOundaRy points DEtectoR) that utilizes the special

property of the reversek-nearest neighbor (RkNN) [22], and employs the state-of-the-art database

technique - the Gorder kNN join [30] to find boundary points in a dataset.

The reverse k-nearest neighbors (RkNN) of an objectp are points that look uponp as one

of their k-nearest neighbors. A property of reverse k-nearest neighbor is that it examines the

neighborhood of an object with the view of the entire dataset instead of the object itself. Hence,

it can capture the distribution property of the underlying data and allow the identification of

boundary points that lie between two or more distributions.

Utilizing RkNN in data mining tasks will require the execution of a RkNN query for each

point in the dataset (the set-oriented RkNN query). However, this is very expensive and the

complexity will beO(N3) since the complexity of a single RkNN query isO(N2) time using

sequential scan for non-indexed data [29], whereN is the cardinality of the dataset. In the

case where the data is indexed by some hierarchical index structure [5], the complexity can be

reduced toO(N2 · logN). However, the performance of these index structures is often worse

than sequential scan in high-dimensional space.

Instead of running multiple RkNN queries, the proposed BORDER approach utilizes Gorder

kNN join [30] (or the G-ordering kNN join method) to find the reverse k-nearest neighbors

of a set of data points. Gorder is a block nested loop join method that exploits sorting, join

scheduling and distance computation filtering and reduction to reduce both I/O and CPU costs.

It sorts input datasets into theG-order and applies thescheduled block nested loop joinon the

G-ordered data. It also employs distance computation reduction to further lower the CPU costs.

It doesn’t require an index and handles high-dimensional data efficiently.

BORDER processes a dataset in three steps. First, it executes Gorder kNN join to find the k-

nearest neighbors for each point in the dataset. Second, it counts thenumber of reverse k-nearest

neighbors(RkNN number) for each point according to the kNN-file produced in the first step.

Third, it sorts the data points according to their RkNN number and finally, the boundary points

whose RkNN number is smaller than a user predefined threshold can be incrementally output. Our

experimental study shows that the proposed BORDER method is able to detect boundary points

effectively and efficiently. Moreover, it helps the density-based clustering method DBScan [12]

July 31, 2005 DRAFT

4

to find out the correct clusters and improves the classification accuracy for various classifiers.

Yet we shall elucidate that BORDER is based on the observation that boundary points tend

to have fewer reverse k-nearest neighbors. This assumption is usually true when the dataset

contains well-clustered data. However, for some real-world dataset such that the data are not

well-clustered and the boundary is not so clear, this assumption may be invalidated and BORDER

would fail to find correct boundary points.

The remainder of the paper is organized as follows. Section 2 introduces RkNN and the kNN

join. Section 3 describes BORDER in detail. Section 4 presents the results of our performance

study. Section 5 reviews related work. Finally, Section 6 concludes the paper.

II. PRELIMINARY

In this section, we introduce the concepts of the reverse k-nearest neighbor and the k-nearest

neighbor (kNN) join.

A. Reverse k-Nearest Neighbor

The reverse k-Nearest neighbor (RkNN) has been proposed in [22] and has received consid-

erable attention in the recent years. Recent work [22], [28], [31], [27], [21] have highlighted the

importance of reverse nearest neighbor (RNN) queries in decision support systems, profile-based

marketing, document repositories and management of mobile devices. RkNN is formally defined

as follows.

Definition II.1 (Reverse k-Nearest Neighbor)Given a dataset DB, a query pointp, a positive

integer k and a distance metric̀(), reversek-nearest neighbors ofp, denoted asRkNNp(k)

is a set of pointspi that pi ∈ DB and ∀pi, p ∈ kNNpi
(k), wherekNNpi

(k) are thek-nearest

neighbors of pointpi.

RkNN has properties that are uniquely different from the conventional k-nearest neighbors

(kNN).

1) Reverse k-nearest neighbors are not localized to the neighborhood of the query point.

2) The cardinality of a point’s reverse k-nearest neighbors varies by data distribution.

Figure 1 gives an example of RkNN. Supposep2 is the query point andk=2. From the diagram,

we see thatp2 is one of the 2-nearest neighbors ofp1, p3, andp4. Hence, the reverse 2-nearest

July 31, 2005 DRAFT

5

p

7p

6p5

8

p

2p

p

1

3

p4

p

Fig. 1. Example of an RkNN Query.

neighbors ofp2 arep1, p3, andp4. Note that althoughp4 is far from the query pointp2, it is still

an R2NN ofp2. In contrast,p5 andp7 are close top2 but they are not answers of the R2NN query

of p2. Moreover,p2 has 3 reverse 2-nearest neighbors whilep4 and p8 has 0 reverse 2-nearest

neighbor.

These properties of RkNN have potential applications in the area of data mining. However, the

complexity of RkNN remains a bottleneck. The naive solution for RkNN search first computes

k-nearest neighbors for each pointp in the dataset and thereafter, retrieves points that haveq

as one of thek-nearest neighbors and outputs them as answers. The complexity of this naive

solution isO(NlogN) for data indexed by some hierarchical structure such as the R-tree[14] or

O(N2) for non-indexed data, whereN is the cardinality of the dataset.

Methods for processing RkNN queries utilize the geometry properties of RkNN to find a small

number of data points as candidates and then verify them with nearest neighbor queries or range

queries [25], [29], [27]. However, these techniques are not scalable with data dimensionality

and the valuek. In addition, data analysis utilizing RkNN usually runs a set of RkNN queries

for all points in a dataset. Therefore, methods for a single RkNN query are not efficient for

set-oriented RkNN queries.

In contrast, the proposed BORDER approach will utilize an efficient operation called kNN-join

k-nearest neighbor jointo compute RkNN queries.

July 31, 2005 DRAFT

6

B. kNN Join

The kNN-join [30], [6], [7] combines each point in a dataset R with its k-nearest neighbors

in another dataset S. R is called the outer dataset (or thequerydataset where the all points in R

are the query points), and S is called the inner dataset. When the outer and inner datasets are the

same, the kNN-join is also known as thekNN self-join[6]. With its set-a-time nature, kNN-join

can be used to efficiently support various applications where a large number kNN queries are

involved.

Definition II.2 (kNN-join) Given two data sets R and S, an integer K and the similarity metric

dist(), the kNN-join of R and S, denoted asRnkNN S, returns pairs of points(pi, qj) such that

pi is from the outer dataset R andqj from the inner dataset S, andqj is one of the k-nearest

neighbors ofpi.

(b) RkNN graph

p2

p1

p3

p4

(a) kNN graph

p2

p1

p3

p4

Fig. 2. kNN vs. RkNN

The kNN join can be used to answer the set-oriented RkNN query (the RkNN join) given the

following relationship that is inherent between the kNN join and the RkNN join.

Lemma II.1 The reverse k-nearest neighbors of all points in datasetDB can be derived from

the k-nearest neighbors of all points inDB. By reversing all pairs(pi, pj) produced by kNN-join,

we obtain the complete set of pairs (pj, pi) that pi is pj ’s reversek-nearest neighbor.

Proof: Figure 2 illustrates the kNN and RkNN relationship with an edge−−→pipj. Figure 2(a)

is the kNN graph and each edge−−→pipj denotes a kNN pair (pi, pj) such thatpj is pi’s kNN.

Figure 2(b) is the RkNN graph and each edge−−→pipj denotes a RkNN pair (pi, pj) such that

pj is pi’s RkNN. Given the kNN of all points in a dataset, we can derive the RkNN of each

July 31, 2005 DRAFT

7

point by simply reversing the direction of the edges in the kNN graph. Hence, we have the lemma.

Therefore, in BORDER, we utilize the kNN join to process the set oriented RkNN queries

efficiently.

III. BORDER

In this section, we describe the details of BORDER, a method for efficient boundary point

detection. The basic idea of BORDER is based on the observation that boundary points tend to

have fewer reverse k-nearest neighbors.

Figure 3 shows the results of our preliminary study. Given a 2-dimensional dataset as shown

in Figure 3(a), we plot the points whose reverse 50-nearest neighbors answer set contain less

than 30 points. Figure 3(b) shows that the boundaries of the clusters are clearly defined by those

points having fewer number of RkNN.

(a) (b)

Fig. 3. Preliminary Study I.

We also carry out another preliminary study to find out the relationship between the location

of a pointp and the number of its RkNN in high-dimensional spaces.

In order to determine the boundary of a densely distributed region, we use hyper-sphere

datasets1 which contain the dense regions of the shape of the high-dimensional spheres. This

is because the boundary points of spherical regions are always located at the area farthest from

the center of the sphere.

1The generation of hyper-sphere data is given in the experiment section.

July 31, 2005 DRAFT

8

(a) Uniform Distribution (Dimension = 8, Data Size = 6000)

(b) Normal Distribution (Dimension = 8, Data Size = 6000)

(c) Zipf Distribution (Dimension = 8, Data Size = 6000)

Fig. 4. Preliminary Studies.

Figure 4 summarizes the results of the experiments on the hyper-sphere datasets of different

distributions. We compute the number of reverse k-nearest neighbors of each point in the dataset

and the distance of each point to the center of the cluster that the point belongs to. We then sort

the data points according to the distance of each point to the center of the cluster that the point

July 31, 2005 DRAFT

9

Gorder

kNN

Join

RkNN

Number

Counting

Input
Dataset Processing Procedure of BORDER

Sorting &

Incremental

output

Fig. 5. Overview of BORDER

belongs to and plot the distance to cluster center and the number of reverse k-nearest neighbors

of each point as in Figure 4. Each vertical line in the graphs in Figure 4 is corresponding to

one data point. The height of the lines in the upper sub-graphs represents the distance to cluster

center and the height of the lines in the lower sub-graphs is corresponding to the number of

reverse k-nearest neighbors of each point. The study shows clearly that the number of RkNN

decreases as the distance of a point from the center increases. This result confirms that for

well-clustered datasets in high-dimensional spaces, the boundary points which lie at the margin

of the clusters tend to have fewer reverse k-nearest neighbors.

Figure 5 gives an overview of BORDER. It comprises of three main steps:

1) A kNN-join operation with Gorder to find the k-nearest neighbors for each point in the

dataset.

2) An RkNN counter to obtain each point’s RkNN number (the cardinality of each point’s

RkNN answer set).

3) Points are sorted according to their RkNN number. Points that its RkNN number is smaller

than a user defined threshold are output incrementally as boundary points.

In the following sections, we will give the details of each step.

A. kNN Join

The core of BORDER is the efficient kNN join algorithm - Gorder [30], which is an optimized

block nested loop join with efficient data scheduling and distance computation filtering.

Algorithm 1 presents the kNN self-join with Gorder. It has two phases.

1) G-ordering (line 1)

July 31, 2005 DRAFT

10

Algorithm 1 Gorder(R)
Input:

R is a dataset.
Output:

kNN-file
Description:

1: G Ordering (R);
2: for each block Br ∈ R do
3: ReadBlock(Br);
4: Sort Blocks ofB′

r in R according to MinDist(B′
r, Br);

5: for each B′
r ∈ R and MinDist(Br, B

′
r)≤ PrunDist(Br) do

6: ReadBlock(B′
r);

7: Divide Br andB′
r into sub-blocksbr and b′r;

8: for each sub-blockbr ∈ Br do
9: SortBlocks(br, b

′
r);

10: for each sub-blockb′r ∈ B′
r and MinDist(br, b

′
r)≤ PrunDist(br) do

11: for each point pr ∈ br and MinDist(br, b
′
r) ≤ PrunDist(pr) do

12: for each point p′r ∈ b′r, ComputeDist(pr, p
′
r);

13: OutputkNN(kNN-file);

2) Scheduled block nested loop join(line 2-13)

TheG-orderingperforms a PCA (principal component analysis) transformation of R and then

sorts R into theGrid Order. The Grid Order is defined as below [30].

Definition III.1 (Grid order ≺g) Given a grid which partitions thed-dimensional data space

into ld rectangular cells, pointspm ≺g pn if and onlyνm ≺ νn, wherel is the number of segments

per dimension andνm (or νn) is the identification vectorof the cell surrounding pointpm (or

pn). ν = < s1, ..., sd >, wheresi is the segment number to which the cell belongs on theith

dimension.

νm ≺ νn if and only if a dimensionk exists that,νm.sk < νn.sk andνm.sj = νn.sj, for ∀j < k.

Essentially, the grid order sorts the data points according to the cell surrounding the point

lexicographically as illustrated in Figure 6.

The G-ordered data exhibit two interestingproperties:

1) Most of the information in the original space is condensed into the first few dimensions

along which the variances in the data distribution are the largest [11].

2) Given two blocks of G-ordered dataB and B′, minimum distance betweenB and B′

July 31, 2005 DRAFT

11

principal
component 2

component 1
principal

(a) Original Data Space (b) Principal Component Space

di
m

en
si

on
 2

dimension 1
2 3 4 5 71 6

1
2

3
4

5
6

7

Segment
ID

ID
cell identification

<3, 7>
Segment

(c) Grid Order

Fig. 6. Illustration of G-ordering.

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������

0 1 2 3

0

 1

 2

 3

dimension 1

di
m

en
si

on
 2

dimensioin 3

MinDist

0
1

2
3

bounding box

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

Fig. 7. Illustration of MinDist.

July 31, 2005 DRAFT

12

MinDist(B,B′) can be calculated according to thebounding boxof B andB′ (see Figure 7).

The bounding boxof B andB′ can be computed by examining the first pointp1 and last

point pm of the G-ordered data as described in [30].

These properties of the G-ordered data are used in Gorder for join scheduling and distance

computation reduction.

Next, let us examine thescheduled block nested loop joinin lines 2-13 of Algorithm 1. The

join stage of Gorder employs thetwo-tier partitioning strategyto optimize the I/O time and

CPU time separately.

1) First tier (line 2-6): The first tier of Gorder partitions the G-ordered input dataset into

blocks consisting of several physical pages. Blocks ofR Br are loaded into memory

sequentially. We callBr the query blockas all points isBr are regarded as query points.

For eachBr in memory, blocks ofR B′
r are sorted in the ascending order of the MinDist

betweenBr andB′
r. Each blockB′

r that cannot be pruned by thepruning distanceof Br

are loaded into memory to join withBr in the second tier processing.

The pruning distanceof Br is the maximalkNN-distance (the distance between a point

and its kth-nearest neighbor) of all points in it. After all blocks ofR are either joined with

Br or pruned, the kNN of all points inBr are output into a kNN-file which records the

each kNN pairs (line 13).

2) Second tier (line 7-12): The second tier processing of Gorder joins two blocksBr and

B′
r in memory in the similar way as the first tier. The blocks in memory are divided

into sub-blocks. For each sub-blockbr, the sub-blocksb′r in B′
r are sorted according to

their minimum distance tobr. Those unpruned sub-blocksb′r participate in the join with

sub-blockbr one by one.

To join two sub-blockbr andb′r, for each pointpr in br, we examine whether MinDist(br, b
′
r)

is greater than the pruning distance ofpr. The pruning distance ofpr is its kNN-distance.

If true, b′r cannot contain any points that are k-nearest neighbors ofpr and so can be

skipped. Otherwise, functionComputeDist is called to compute the distance between

pr and each data pointp′r in b′r. ComputeDist employs distance computation reduction

technique utilizing property 1 of the G-ordered data to reduce CPU time [30].

At the end of Gorder, the k-nearest neighbors of all points inR are found and saved in the

July 31, 2005 DRAFT

13

Algorithm 2 RkNN Counter(R, kNN-file)
Input:

R: the input dataset; kNN-file: a file records k-nearest neighbors of each points inR.
Description:

1: for each point p ∈ R do
2: Read its k-nearest neighborskNNp(k) from kNN-file;
3: for each point pi ∈ kNNp(k) do
4: increasernumpi

by 1;

Algorithm 3 Sort andOutput(R, kthreshold)
Input:

R: the input dataset;
Description:

1: Sort points in R in ascending order according to their RkNN number;
2: for Pointspi in R do
3: if rnumpi

< kthreshold then
4: Outputpi;

kNN-file.

B. RkNN Counter

In this step, BORDER counts the number of reverse k-nearest neighbors (RkNN number) for

each pointp (denoted asrnump) utilizing the kNN information saved in the kNN-file. According

to the reversal-ship between kNN and RkNN which we have discussed in Lemma II.1, the number

of each point’s k-nearest neighbor can be obtained by a scanning of the kNN-file and for each

point pi in the kNN set of a pointp, increasingrnumpi
by 1.

Algorithm 2 depicts the count procedure.

C. Sorting

Data points then can be sorted according to their RkNN number so that they can be output

incrementally. We letkthreshold be a user defined threshold which is tunable. For all pointp, if

its RkNN numberrnump < kthreshold, they are output as detected boundary points. Algorithm 3

shows the details.

July 31, 2005 DRAFT

14

D. Cost Analysis

Next, we analyze the I/O and CPU cost of BORDER.

The major cost of BORDER lies in the kNN join procedure. The number of I/Os incurred

during the kNN join procedure in terms of the number of page is [30]:

3Nr + 2Nr

(⌈
logB−1

Nr

B

⌉
+ 1

)
+ Nr

nr
·Nr · γ1

whereNr is the total number of R data pages,nr is the allocated buffer pages for query data,

andB is the total buffer pages available in memory.

The number of page writes isNknn which is incurred in the kNN join procedure to output the

k-nearest neighbors.Nknn is the total number of pages for the k-nearest neighbors information.

The number of page reads in the RkNN counter procedure isNknn for scanning the kNN file.

Hence, the total I/O time is:
(

3Nr + 2Nr

(⌈
logB−1

Nr

B

⌉
+ 1

)
+

Nr

nr

·Nr · γ1 + Nknn

)
· Tio read + Nknn · Tio write

whereTio read (Tio write) is the time for reading (writing) one page.

The major CPU cost of BORDER is the distance computation in the kNN join phase. The

number of distance computations is:

P 2
r · γ2

wherePr is the number of objects in the dataset,γ2 is the selectivity of distance computation.

Hence, the total CPU time is:

P 2
r · γ2 · Tdist

whereTdist is the time for one distance computation.

The selectivity ratioγ1 andγ2 are estimated as following [30]:

γ =
d∑

k=0

 d

k

(
2 · d

√
M

Pr

)k

· V d−k
sphere(ε) (1)

where

V d−k
sphere(ε) =

√
πd−k

Γ
(

d−k
2

+ 1
) · εd−k (2)

July 31, 2005 DRAFT

15

ε = d

√
K · Γ(d/2 + 1)

Pr

· 1√
π

(3)

Γ(x + 1) = xΓ(x), Γ(1) = 1, Γ(1/2) =
√

π (4)

WhereM is the block size, that is, the number of data points in one block. If we replaceM

with the size of block (M1) in the first tier of the kNN join procedure, we obtainγ1. And if we

replaceM with the size of sub-block (M2) in the second tier of the kNN join procedure, we

obtainγ2.

IV. PERFORMANCESTUDY

We conducted extensive experimental study to evaluate the performance of BORDER and

present the results in this section. We implemented BORDER in C++ and studied its efficiency

and effectiveness as follows:

1) Effectiveness: We apply BORDER to 3 types of datasets: I) a set of high-dimensional

hyper-sphere datasets with various data distributions and sizes; II) a set of 2-dimensional

clustered dataset of arbitrary cluster shapes; III) clustered dataset with mixed clusters IV)

the labelled datasets for classification.

a) Dataset I: The hyper-sphere datasets are used to demonstrate the ability of BORDER

in detecting boundary points in high-dimensional spaces. The hyper-sphere datasets

are generated as follows: Given the distribution, the number and the centers and

the radii of the hyper-spheres, data points are generated according to the specified

distribution. Points that are within the defined hyper-spheres are inserted into the

dataset, whereas points that are outside of the hyper-spheres are discarded. To show

the location of the found boundary points, we present the distribution of the`(p, c),

wherep is a detected point,c is the center of the hyper-sphere whichp belongs to,

and `(p, c) is the distance betweenp andc.

b) Dataset II: This set of datasets are to exhibit the ability of BORDER to find out

boundary points located at the border ofarbitrary-shapedclustersvisually. Therefore,

we use the 2-dimensional datasets so that we can plot the detected boundary points

in a plane to show the effectiveness of BORDER.

July 31, 2005 DRAFT

16

(a) Dimension 1 (b) Dimension 2 (c) Dimension 3

(d) Dimension 4 (e) Dimension 5

Fig. 8. Data distribution of Dataset IV on each dimension.

c) Dataset III: In this dataset, the dense clusters mix with some less dense clusters.

In such case, the traditional density-based clustering method (e.g, DBScan) cannot

identify the clusters properly. We show that removing the boundary points helps

DBScan to find the clusters correctly. The removed boundary points can be inserted

back into the identified clusters with a post-processing procedure by checking their

connectivity and density.

d) Dataset IV: This synthetic dataset contains 7 classes with 5 attributes. The dataset

is generated as the following: We divide the first dimension into 7 segments. Each

segment is corresponding to one class. We assign points within each segment to its

corresponding class and those points lying at the adjacent region of each segment

to different classes. Thus, the 7 classes do not have a distinct separable boundaries.

Along other dimensions, data points are distributed randomly. Figure 8 shows the data

distribution of the dataset on each dimension. Note that along dimension 1, points

July 31, 2005 DRAFT

17

Distribution Cluster Number Size Radius Dimension k Processing Time (Sec)
Normal 1 6000 0.3 8 50 6.547
Normal 5 6000 0.3 10 50 4.313

Zipf 3 6000 0.2 6 50 4.625
Zipf 2 6000 0.5 4 50 2.89

Uniform 2 6000 0.2 8 50 3.938
Uniform 2 6000 0.1 12 50 5.875

TABLE I

HYPER-SPHERE DATASETS AND PROCESSING TIME.

Distribution Dimension Radius Mean Standard Deviation
Normal 8 0.3 0.2868 0.0141
Normal 10 0.3 0.2868 0.0133

Zipf 6 0.2 0.1955 0.0043
Zipf 4 0.5 0.49 0.0092

Uniform 8 0.2 0.1959 0.0037
Uniform 12 0.1 0.0981 0.0019

TABLE II

MEAN AND STANDARD DEVIATION OF THE DISTANCE OF DETECTED BOUNDARY POINTS TO THE HYPER-SPHERE CENTER.

that are located at the boundary region of two adjacent classes are belong to different

classes. We use this dataset to show as an example that by removing the boundary

points which straddle two classes of difference density can improve the accuracy of

the classifier.

2) Efficiency: We compare the response time of BORDER using the Gorder [30] with other

kNN query methods such as the nested loop join and the MuX (an R-tree like structure

which has better performance than the R-tree) [8], [6]. The datasets used here are the

synthetic cluster datasets generated using the method described in [19].

A. Evaluation of Effectiveness

1) On Hyper-sphere Datasets:We first study the effectiveness of BORDER on the hyper-

sphere datasets of various distributions, different numbers of dimension and containing different

July 31, 2005 DRAFT

18

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

10

20

30

40

50

60

70

80

F
re

qu
en

cy

Distance to Center

(a) Normal distribution, dimension=8, number of clus-
ters=1, radius=0.3

(b) Normal distribution, dimension=10, number of clus-
ters=5, radius=0.3

(c) Zipf distribution, dimension=4, number of clusters=2,
radius=0.5

(d) Zipf distribution, dimension=6, number of clusters=3,
radius=0.2

(e) Uniform distribution, dimension=8, number of clus-
ters=2, radius=0.3

(f) Uniform distribution, dimension=12, number of clus-
ters=2, radius=0.1

Fig. 9. Study on hyper-sphere datasets.

July 31, 2005 DRAFT

19

Size Dimension k Processing Time (Sec)
dataset 1 40000 2 50 9.985
dataset 2 10680 2 50 2.781
dataset 3 9050 2 50 2.562
dataset 4 12950 2 50 3.469

TABLE III

DATASETS (WITH CLUSTERS) AND PROCESSING TIME.

number of clusters. Figure 9 summarizes the experiment results. We incrementally output 300

points with lowest RkNN number of as boundary points. For each graph, the x-axis is the point

p’s distance to the center of the hyper-sphere thatp belongs to (̀(p, c)) and the y-axis is the

frequency. We observe that for all datasets,`(p, c) of the output points by BORDER is equal

or close to the radii of the hyper-spheres. Table II summarizes the mean and standard deviation

of the distance of detected boundary points to the hyper-sphere center. Both the plotting and

statistic information of the output of BORDER indicate those points are indeed boundary points

of the hyper-spherical-shaped clusters. The properties and the processing time of BORDER on

the hyper-sphere datasets are presented in Table I. BORDER processes them efficiently.

2) On Arbitrary-shaped Clustered Datasets:Next, we study the effectiveness of BORDER

on the datasets containing arbitrary-shaped dense regions. We select 2-dimensional datasets in

order to visualize the results. BORDER is also applicable to high-dimensional spaces.

This set of experiments are carried on the two dimensional cluster dataset. Figure 10 demon-

strates the incremental output of BORDER executed on dataset 1. The thresholds are set as 30,

33 and 35. The graphs in Figure 10 shows that the plotted points outline the boundaries of

the clusters in dataset clearly. In addition, note that with the incremental output, we can stop

whenever we are satisfied with the quality of detected boundary points. Figure 11 shows the

results of boundary point detection on datasets 2, 3, 4. It is clear that BORDER can find the

boundary points effectively. The processing time of BORDER is summarized in Table III. It

shows that BORDER is very efficient for processing these datasets.

3) On Mixed Clustered Dataset:In the second set of experiments, we mix the dense clusters

with less dense clusters and study the ability of using BORDER for preprocessing data for

July 31, 2005 DRAFT

20

clustering. Figure 12 [12] shows that on such a dataset, it is difficult for DBScan to identify

the correct clusters. In Figure 12 (b), (c) and (d), we plot the clusters detected by DBScan with

different colors. We observe that if we set the density requirement of DBScan high, that is,

Eps=0.00967926, MinPts=10, points in the sparse cluster are all regarded as outliers (Figure 12

(b)). If we set the density requirement of DBScan low, that is, Eps=0.0223533 and MinPts=10

(Figure 12 (c)) or Eps=0.0469042, MinPts=10 (Figure 12 (d)), DBScan returns clusters mixing

dense and sparse regions.

Figure 12 (e) illustrates the dataset after we remove the boundary points (kthreshold = 40).

Figure 12 (f) shows the result of DBScan working on the dataset after the boundary points

are removed. DBScan with parameters Eps=0.0469042 and MinPts=10 can easily identify the

dense clusters as well as the sparse clusters correctly because they are now well separated. The

removed the boundary points can be inserted into the clusters with a post-processing procedure

which examines the density of the points and their connectivity with the clusters.

4) On the Labelled Dataset for Classification:Finally, we conduct experiments on the labelled

dataset for classification. We test various classification methods provided by Weka [17] and

compare the classification accuracy before and after we remove some detected boundary points.

The test accuracy is evaluated by 10-folders cross validation. The results show that removing

the boundary points reduces the ratio of misclassified data points and improves the classification

accuracy effectively.

Table IV and Table V summarizes the results when we define different thresholds for the

RkNN number. When we set thekthreshold 25 or 30, the average improvement ratios in terms

of incorrectly classified ratio are 20.03% and 43.51% respectively and the average improvement

ratios in terms of incorrectly classified instance are 22.07% and 46.60% respectively.

B. Evaluation of Efficiency

We now study the efficiency of BORDER on the synthetic datasets of high dimensionality

and variable sizes. The most expensive step of BORDER lies in the kNN join procedure. In the

following, we compare the performance of the Gorder based BORDER with the performance of

BORDER using other methods (NLJ and MuX) for kNN computation.

1) Effect of Dimensionality:We first evaluate BORDER on datasets of dimensionality from

8 to 64. Figure 13 presents the results on the 100K clustered datasets. The graph shows that

July 31, 2005 DRAFT

21

Before After (kthreshold=25) improvement
Classification
Method

Incorrectly
Classified
Ratio

Incorrectly
Classified
Instances

Incorrectly
Classified
Ratio

Incorrectly
Classified
Instances

Incorrectly
Classified
Ratio

Incorrectly
Classified
Instances

Decision Ta-
ble

3.20% 391 2.57% 306 19.69% 21.74%

OneR 3.26% 398 2.21% 263 32.21% 33.92%
Nnge 3.25% 397 2.12% 252 34.77% 36.52%
Jrip 3.43% 418 2.36% 280 31.20% 33.01%
AdaBoost
M1

19.14% 2335 18.13% 2156 5.28% 7.67%

MultiBoost
AB

19.14% 2335 18.13% 2156 5.28% 7.67%

Raced Incre-
mental Logit
Boost

3.20% 391 2.53% 301 20.94% 23.02%

IB1 15.48% 1888 14.02% 1667 9.43% 11.71%
Naive Bayes
Simple

3.48% 425 2.57% 306 26.15% 28.00%

SMO 5.93% 723 5.02% 597 15.35% 17.43%
Average 7.95% 970.1 6.97% 828.4 20.03% 22.07%

TABLE IV

COMPARISON OF CLASSIFICATION ACCURACY(kthreshold=25).

BORDER using NLJ is very expensive and the response time increases quickly when data

dimensionality increases. BORDER with Gorder is shown to be the most efficient method

and scalable to high-dimensional data. The response time increases moderately while data

dimensionality increase. The speed-up factor of BORDER with Gorder over BORDER with MuX

increases from 0.68 at dimensionality of 8 to 2.9 at dimensionality of 64. The study demonstrates

that Gorder is the best choice for BORDER and works efficiently for high dimensional data.

2) Effect of Data Size:Next, we study the performance of BORDER with varying dataset

size. The clustered datasets are in the 16-dimensional space and their sizes vary from 10,000 to

1,000,000 objects. The results are summarized in Figure 14.

We observe that BORDER with NLJ (Nested Loop Join) performs the worst choice for all

the datasets. Its response time increases exponentially with the data size. Comparing BORDER

with Gorder [30] and MuX [6], we find that Gorder is the more efficient method for datasets of

July 31, 2005 DRAFT

22

Before After (kthreshold=30) improvement
Classification
Method

Incorrectly
Classified
Ratio

Incorrectly
Classified
Instances

Incorrectly
Classified
Ratio

Incorrectly
Classified
Instances

Incorrectly
Classified
Ratio

Incorrectly
Classified
Instances

Decision Ta-
ble

3.20% 391 1.37% 158 57.19% 59.59%

OneR 3.26% 398 1.34% 155 58.90% 61.06%
Nnge 3.25% 397 1.26% 145 61.23% 63.48%
Jrip 3.43% 418 1.40% 162 59.18% 61.24%
AdaBoost
M1

19.14% 2335 16.90% 1950 11.70% 16.49%

MultiBoost
AB

19.14% 2335 16.90% 1950 11.70% 16.49%

Raced Incre-
mental Logit
Boost

3.20% 391 1.39% 160 56.56% 59.08%

IB1 15.48% 1888 12.44% 1435 19.64% 23.99%
Naive Bayes
Simple

3.48% 425 1.36% 157 60.92% 63.06%

SMO 5.93% 723 3.67% 423 38.11% 41.49%
Average 7.95% 970.1 5.80% 669.5 43.51% 46.60%

TABLE V

COMPARISON OF CLASSIFICATION ACCURACY(kthreshold=30).

variable sizes and the speed-up factor of Gorder over MuX ranges from 0.51 to 2.6. The study

shows that BORDER with Gorder kNN join is scalable to large data size.

V. RELATED WORK

BORDER is the first work proposed for boundary points detecting. It utilizes advanced

database operation kNN-join and bases on the property of reverse k-nearest neighbor. In this

section, we review some related works about reverse k-nearest neighbor and kNN join.

A. Reverse k-Nearest Neighbor

The reverse k-nearest neighbor (RkNN) problem has been first proposed in [22] and has been

paid increasing attention to in the recent years [22], [28], [31], [27], [21], [23], [16].

July 31, 2005 DRAFT

23

Existing studies all focus on the single RkNN query. Various methods have been proposed

for its efficient processing and can be divided into two categories:pre-computationmethods and

space pruningmethods.

Pre-computationmethods [22], [31] pre-compute and store the nearest neighbors of each point

in a dataset in index structures, i.e., the RNN-tree [22] and the Rdnn-tree[31]. With the saved

pre-computed nearest neighbor information, an RNN query is answered by apoint enclosure

query [22] that retrieves pointsp which have the query point fall within the sphere centered

at p and of the radiusdnn. A shortcoming ofpre-computationmethods is that they cannot

answer an RkNN query unless the corresponding k-nearest neighbor information is available.

The preprocessing of k-nearest neighbor information is actually a kNN join.

Space pruningmethods [25], [29], [27] utilize the geometry properties of RNN to find a

small number of data points as candidates and then verifies them with NN queries or range

queries. Existing proposed algorithms are all based on the R-tree [4]. SAA [27] makes use of

the bounded outputproperty, e.g. for an RNN query in the 2-dimensional space, a query point

q has at most 6 RNN [26]. SFT [25] is based on the assumption that RkNN and KNN are

correlated, that is, an RkNN ofq is expected to be one KNN ofq, whereK is a value bigger

thank. The most recent work TPL [29] makes use of thehalf-planespruning strategy, that is,

if we divide the data space into two half-planes by the perpendicular bisector betweenq and an

arbitrary data pointp, any point in the half plane ofp cannot be an RNN ofq. Space pruning

methods are flexible because they do not need to pre-compute the nearest neighbors information.

However, they are very expensive when data dimensionality is high or the valuek is big.

There are other RkNN related works include the bi-chromatic RNN query [28], the reverse

nearest neighbor aggregates over data streams [23] and reverse nearest neighbor queries of

moving objects [21]. Our work is the first that applying RkNN into data mining tasks.

B. kNN Join

k-nearest neighbor join(kNN-join) is a new operation proposed recently [6]. The operation

combines each point of one dataset with its k-nearest neighbors in another dataset. It is identified

that many standard algorithms in almost all stages of knowledge discovery process can be

accelerated by including kNN-join as a primitive operation [30]. For examples, the each iteration

of the well-known k-means clustering process, the first step of LOF [9] (a density-based outlier

July 31, 2005 DRAFT

24

detection method), the kNN-graph (a graph linking each point of a dataset to its k-nearest

neighbors) construction of the hierarchical clustering method chameleon [20].

Compared to the traditional point-at-a-time approach that computes the k-nearest neighbors for

all data points one by one, the set oriented kNN-join can accelerate the computation dramatically[7].

The MuX kNN-join [6], [7] and the Gorder kNN-join are two up-to-date methods specifically

designed for kNN-join of high-dimensional data. MuX [8] is essentially an R-tree based method

designed to satisfy the conflicting optimization requirements of CPU and I/O cost. It employs

large-sized pages (the hosting page) to optimize I/O time and uses the secondary structure, the

buckets which are MBRs (minimum bounding boxes) of much smaller size, to partition the data

with finer granularity so that CPU cost can be reduced. MuX iterates over theR pages, and for

R page in the memory, potential kNN-joinable pages inS are retrieved through MuX index on

S and searched for k-nearest neighbors. Since MuX makes use of an index to reduce the number

of data pages retrieved, it suffers as an R-tree based algorithm and its performance degrades

rapidly when the data dimensionality increases.

Gorder kNN-join [30] is a non-index approach. It optimizes the block nested loop join with

efficient data scheduling and distance computation filtering by sorting data into the G-order.

The dataset is then partitioned into blocks that are amenable for efficient scheduling for join

processing and thescheduled block nested loop joinis applied to find the k-nearest neighbors

for each block of R data points. Gorder is efficient due to the following factors: (1) It inherits

the strength of the block nested loop join in being able to reduce random reads. (2) It prunes

away unpromising data blocks from probing to save both I/O and similarity computation costs

by exploiting the property of the G-ordered data. (3) It utilizes atwo-tiers partitioning strategy

to optimize I/O and CPU time separately. (4) It reduces distance computational cost by pruning

redundant computation based the distance of fewer dimensions. Study in [30] shows that Gorder

is efficient and scalable with regard to both data dimensionality and size, and outperforms MuX

by a significant margin. Hence, we utilize Gorder in the kNN join procedure of BORDER.

VI. CONCLUSION

In this paper, we introduce the problem of boundary point detection. The knowledge of

boundary points can help with data mining tasks such as data preparation for clustering and

classification. We propose a novel method BORDER (a BOundaRy points DEtectoR) which

July 31, 2005 DRAFT

25

employs the state-of-the-art kNN join technique and makes use of the property of the RkNN.

Experimental study demonstrates BORDER detects boundary points efficiently and effectively.

VII. A CKNOWLEDGMENTS

This work was supported by AStar-University grant R-252-000-195-305.

REFERENCES

[1] C. C. Aggarwal and P. S. Yu. Outlier detection for high dimensional data. InProc. of SIGMOD, 2001.

[2] V. Barnett and T. Lewis.Outliers in Statistical Data. John Wiley and Sons, 1994.

[3] M. Basseville and I.V. Nikiforov.Detection of abrupt changes. P T R Prenstice Hall, 1993.

[4] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The R∗-tree: An efficient and robust access method for points

and rectangles. InProc. of ACM SIGMOD, pages 322–331. 1990.

[5] C. Böhm, S. Berchtold, and D.A. Keim. Searching in high dimensional spaces: index structures for improving the

performance of multimedia databases.ACM Computing Surveys, 33(3):322–373, 2001.

[6] C. Böhm and F. Krebs. The k-nearest neighbor join: Turbo charging the kdd process.Knowledge and Information Systems

(KAIS).

[7] C. Bohm and F. Krebs. Supporting kdd applications by the k-nearest neighbor join. InProc. of DEXA, pages 504–516,

2003.

[8] C. Böhm and H.-P. Kriegel. A cost model and index architecture for the similarity join. InProc. of ICDE, pages 411–420,

2001.

[9] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander. Lof: identifying density-based local outliers. InProc. of ACM

SIGMOD, pages 93–104. 2000.

[10] B.E. Brodsky and B.S. Darkhovsky.Nonparametric methods in change-point problems. Kluwer Academic Publishers,

1993.

[11] K. Chakrabarti and S. Mehrotra. Local dimensionality reduction: A new approach to indexing high dimensional spaces.

In Proc. of VLDB, pages 89–100, 2000.

[12] Martin Ester, Hans-Peter Kriegel, Jorg Sander, and Xiaowei Xu. A density-based algorithm for discovering clusters in

large spatial databases with noise. InSIGKDD, pages 226–231, 1996.

[13] U. M. Fayyad, G. Piatetsky-Shapiro, and P. Smyth.Advances in Knowledge Discovery and Data Mining. AAAI Press,

1996.

[14] A. Guttman. R-trees: A dynamic index structure for spatial searching. InProc. of ACM SIGMOD, pages 47–57, 1984.

[15] J. Han and M. Kamber.Data Mining Concepts and Techniques. Morgan Kaufmann Publishers, 2000.

[16] W. Hsu, M.-L. Lee, B. C. Ooi, P. K. Mohanty, K. L. Teo, and C. Xia. Advanced database technologies in a diabetic

healthcare system. InProc. of VLDB, pages 1059–1062, 2002.

[17] Data Mining Software in Java.http://www.cs.waikato.ac.nz/ml/weka/.

[18] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: A review.ACM Computing Surveys, 31(3):264–323, 1999.

[19] H. Jin, B. C. Ooi, H. T. Shen, C. Yu, and A. Y. Zhou. An adaptive and efficient dimensionality reduction algorithm for

high-dimensional indexing. InProc. of ICDE, pages 87–98, 2003.

July 31, 2005 DRAFT

26

[20] G. Karypis, E.-H. Han, and V. Kumar. Chameleon: Hierarchical clustering using dynamic modeling.Computer, 32(8):68–

75, 1999.

[21] G. Kollios, D. Gunopulos, and V. J. Tsotras. Nearest neighbor queries in a mobile environment. InSpatio-Temporal

Database Management, pages 119–134, 1999.

[22] F. Korn and S. Muthukrishnan. Influence sets based on reverse nearest neighbor queries. InProc. of ACM SIGMOD, pages

201–212, 2000.

[23] F. Korn, S. Muthukrishnan, and D. Srivastava. Reverse nearest neighbor aggregates over data streams. InProc. of VLDB,

2002.

[24] Lajos Horv́ath M. Cs̈orgö. Limit Theorems in Change-Point Analysis. Wiley, 1997.

[25] A. Singh, H. Ferhatosmanoglu, and A. Ş. Tosun. High dimensional reverse nearest neighbor queries. InProc. of CIKM,

pages 91–98, 2003.

[26] M. Smid. Closest point problems in computational geometry. InHandbook on Computational Geometry. Elsevier Science

Publishing, 1997.

[27] I. Stanoi, D. Agrawal, and A. E. Abbadi. Reverse nearest neighbor queries for dynamic databases. InProc. of ACM

SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery, pages 44–53, 2000.

[28] I. Stanoi, M. Riedewald, D. Agrawal, and A. El Abbadi. Discovery of influence sets in frequently updated databases. In

Proc. of VLDB, pages 99–108, 2001.

[29] Y. Tao, D. Papadias, and X. Lian. Reverse knn search in arbitrary dimensionality. InProc. of VLDB, pages 744–755,

2004.

[30] C. Xia, H. Lu, B. C. Ooi, and J. Hu. Gorder: An efficient method for knn join processing. InProc. of VLDB, 2004.

[31] C. Yang and K.-I. Lin. An index structure for efficient reverse nearest neighbor queries. InProc. of ICDE, pages 485–492,

2001.

July 31, 2005 DRAFT

27

(a) Original Dataset (b) Detected Boundary Points (kthreshold=30)

(c) Detected Boundary Points (kthreshold=33) (d) Detected Boundary Points (kthreshold=35)

Fig. 10. Incremental output of detected boundary points of dataset 1.

July 31, 2005 DRAFT

28

(a) Dataset 2 (b) Detected Boundary Points of Dataset 2
(kthreshold=35)

(c) Dataset 3 (d) Detected Boundary Points of Dataset 3
(kthreshold=38)

(e) Dataset 4 (f) Detected Boundary Points of Dataset 4
(kthreshold=35)

Fig. 11. Study on other datasets.

July 31, 2005 DRAFT

29

(a) Original Dataset (b) Clusters detected by DBScan (high density require-
ment, Eps=0.00967926, MinPts=10)

(c) Clusters detected by DBScan (low density require-
ment, Eps=0.0223533, MinPts=10)

(d) Clusters detected by DBScan (low density require-
ment, Eps=0.0469042, MinPts=10)

(e) After boundary points are removed (f) Clusters detected by DBScan after boundary points are
removed(Eps=0.0469042, MinPts=10)

Fig. 12. Study on mixed clustered datasets.

July 31, 2005 DRAFT

30

10 20 30 40 50 60
0

1000

2000

3000

4000

5000

6000

7000

8000

E
la

ps
ed

 T
im

e(
S

ec
)

Number of Dimensions

MuX
Gorder
NLJ

Fig. 13. Effect of dimensionality (100k clustered dataset)

200 400 600 800 1000
0

2000

4000

6000

8000

E
la

ps
ed

 T
im

e(
S

ec
)

Number of Points(K)

MuX
Gorder
NLJ

Fig. 14. Effect of data size (16-dimensional clustered datasets)

July 31, 2005 DRAFT

