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ABSTRACT
To analyze user behavior over time, it is useful to group
users into cohorts, giving rise to cohort analysis. We identify
several crucial limitations of current cohort analysis, moti-
vated by the unmet need for temporal dependence discovery.
To address these limitations, we propose a generalization
that we call recurrent cohort analysis. We introduce a set
of operators for recurrent cohort analysis and design access
methods specific to these operators in both single-node and
distributed environments. Through extensive experiments,
we show that recurrent cohort analysis when implemented
using the proposed access methods is up to six orders faster
than one implemented as a layer on top of a database in a
single-node setting, and two orders faster than one imple-
mented using Spark SQL in a distributed setting.
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1. INTRODUCTION
Like temporal locality in the data access of processes,

there is a strong temporal dependence in user behavior in
many contexts. One of the most well-known examples is
stock market, where the price of a stock is widely believed
to depend highly on its recent behavior in terms of many fac-
tors, such as trading volume, price change as well as many
other technical metrics. As another example, whether a user
of an E-commerce company will be retained is often related
to her previous experience, and finding the behaviors that
can improve user experience is hence of much importance to
the business.

Such temporal dependence in user behavior has many ap-
plications. Identifying the activities that impact users’ fu-
ture behavior, in either a positive or a negative way, can
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be helpful in improving user engagement, as mentioned in
the above user retention example. It can also be used for
user behavior prediction, and hence can generate momen-
tary value in many applications such as stock trading. In
particular, with an established temporal dependence, the
current behavior of a user provides a hint as to how she
will behave in near future, which can be further fed into a
machine learning framework for user behavior prediction.

Example 1. For a stock portfolio, find the relationship be-
tween the trading volume of each week and the average price
change in the following weeks.

Example 1 aims to discover the temporal dependence be-
tween the trading volume (the causative behavior) and the
average price change (the dependent behavior) thereafter,
which represents a popular category of technical analysis in
stock market. While investors are eager to find such de-
pendences, there are no existing tools that allow them to
do so. Investors are limited to whatever they can discover
visually from a graphical plot. This example is even more
interesting if we can only consider the trading volume of
the weeks when a short-term (e.g., 5-week) moving average
crosses above a long-term (e.g., 10-week) moving average,
which is widely considered as a buy signal in technique anal-
ysis. While modern stock tools [5] can help to locate the
time of such crossovers, they cannot summarize the price
movement thereafter, not to mention how it depends on the
trading volume of the week when the crossover takes place.

Discovering and exploiting temporal dependence is highly
desired in many other applications. For one more exam-
ple, consider health care, an area in which we have ongoing
research collaborations. Analysis of temporal dependence
can be of value throughout the entire disease treatment pro-
cess, from disease prevention (by finding potential behav-
iors leading to the disease [8]) to treatment (by choosing
the treatment/medicines with the best effect or the most
cost-effectiveness, for the patient profile provided [24]).

A temporal dependence represents a causal relationship.
It contains at least two components: the causative behavior,
which is the cause that impacts users’ future behavior, and
the dependent behavior, which is the effect caused by (and
hence happening after) the causative behavior. A concept
of time window is also needed to enable the measurement
of causative and dependent behavior to be well-defined. It
should be noted that a certain behavior can be not only a
causative behavior that affects the future dependent behavior,
but also a dependent behavior caused by previous causative



behaviors. That is to say, each causative behavior corre-
sponds to multiple dependent behaviors, and vice versa.

The above framework for finding temporal dependence in
user behavior fits well into cohort analysis [1, 3, 4, 6, 19],
which was originally introduced in social science, and has
recently demonstrated value in web user behavior analysis
because of its ability to uncover user behavior patterns that
are difficult to surface with traditional OLAP (online analy-
sis processing) [19]. Typically, cohort analysis explores user
(people) behavior from two angles: social change and aging,
which have been considered as the two key factors impact-
ing user behavior [17]. To capture social change, it organizes
the total population into cohorts, each of which consists of
users that share common characteristics, e.g., time and lo-
cation, in doing a certain event (termed as the birth event),
and then measures the behavior for each cohort at different
ages (time periods after birth) to reflect the effect of aging.

A correspondence can be easily established between co-
hort analysis and the proposed framework for discovering
temporal dependence. The causative behavior corresponds
to the birth of users. The cohort is in turn defined as a group
of users that share common causative behavior. For each co-
hort (i.e., causative behavior), its dependent behaviors are
measured over each calendar time window (e.g., week) fol-
lowing the causative behavior. An age is associated with
each dependent behavior according to its chronological or-
der within all dependent behaviors of the same user. Finally,
the dependent behaviors measured for a same cohort and a
same age are merged together to reflect the collective de-
pendent behavior of that cohort at that age, and in turn
establish the dependence between each causative behavior
(i.e., cohort) and the respective dependent behaviors.

However, there exist several limitations which hinder the
cohort analysis from being directly used for the discovery
of temporal dependence. First, the birth of users is defined
with respect to a single birth event, and hence significantly
restricts the diversity of causative behavior. For instance,
the causative behavior of Example 1 cannot be mapped into
a single birth event, as it needs to be summarized over a
whole week. Second, the dependent behaviors are measured
over fixed time durations, which suffices in the standard so-
cial science context where most people go through different
life stages at roughly the same rate. However, in general, we
cannot assume such an even rate of progress across individ-
uals. For example, in some applications, users may initially
begin as trial users, then transition to loyal users and power
users. Some users may quickly grow into power users, while
others may remain occasional users forever. We may not be
able to assign meaningful average time duration for these
phases: the variance may be too great.

Finally, there exists another fundamental limitation in co-
hort analysis which is the largest obstacle to its application
to the discovery of temporal dependence. Specifically, the
birth of a user in cohort analysis corresponds to the first oc-
currence of a certain birth event, which uniquely determines
the host cohort of that user. While this specification works
well in the context of social science, where the birth event
is usually defined as the physical human birth, and hence
occurs exactly once, it can be misleading when applied to
temporal dependence discovery. As mentioned above, along
the lifetime, each user can continuously conduct causative
behaviors which often vary significantly across different time
windows, and each of them must be taken into account for

a meaningful dependence. In Example 1, the causative be-
havior, i.e., the trading volume, of each user (stock) keeps
changing across different weeks, and merely considering the
first week would disqualify most causative behaviors, leading
to a significant deviation in the discovered dependence.

1.1 Contributions
This paper presents recurrent cohort analysis, which lifts

all the aforementioned limitations of traditional cohort anal-
ysis and is hence a powerful tool for temporal dependence
discovery. The major contributions of this paper are sum-
marized below.

• Recurrent cohort analysis: We gradually give a formal
definition of recurrent cohort analysis by first introduc-
ing the core concept of time window attribute, and then
using it to construct the three components of recurrent
cohort analysis: causative behavior measurement, de-
pendent behavior measurement and age definition. The
flexible definition of time window attribute enables to
explore a huge space of temporal dependence.

• Cohort operators: We present a framework of table
transformation to address recurrent cohort analysis in
a database context, and further propose a set of cohort
operators that capture the essential table transforms
within the framework, and can hence be combined to
generate a concise query plan for evaluation.

• Operator evaluation: We present a non-intrusive strat-
egy and an intrusive strategy to evaluate the proposed
cohort operators. The non-intrusive strategy simply
translates each operator into standard SQL statements.
A materialization optimization for this strategy is also
presented. For the intrusive strategy, we natively im-
plement the cohort operators on top of the storage
layer of COHANA [19]. We also propose a system ar-
chitecture for distributed evaluation of this intrusive
strategy.

• A comprehensive performance study : We implement
the non-intrusive strategy atop two modern database
systems, and conduct a comprehensive performance
comparison study between the non-intrusive strategy
and the intrusive strategy.

The rest of this paper is structured as follows. Section 2
introduces the concept of time window which unifies the
measurement of user behavior. The recurrent cohort analy-
sis is presented in Section 3. To address it, we propose a set
of database operators in Section 4, and discuss their eval-
uation in Section 5. A system architecture for distributed
operator evaluation is presented in Section 6. Section 7 gives
a performance study on different evaluation strategies. We
present the related work in Section 8, and conclude this pa-
per in Section 9.

2. TIME WINDOW
At the core of recurrent cohort analysis is the measure-

ment of causative behaviors and dependent behaviors. In
order to make it well-defined, we first introduce a concept
of time slice, which is the minimum time unit over which
user behavior can be measured. For flexibility, we further
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Figure 1: Sliding time windows in the measurement of
causative behaviors (the upper line) and dependent behav-
iors (the lower line)

introduce another concept of time window, which consists
of several consecutive time slices for user behavior measure-
ment and is allowed to slide such that both the range and
the number of the constituent time slices can vary during
sliding. We use a similar data model to that of [19], which
is also a relational table, eventT, that records all the in-
formation about each activity of each user. The schema of
this table can be found in Table 1. It has two mandatory
columns: user and time, which record who performed the
activity at what time. Unlike the model of [19], eventT
does not necessarily contain the event column.

2.1 Time slice
Both the causative and dependent behaviors are required

to be measured along time dynamically. A common and nat-
ural way to do so is to partition the lifetime of each user into
fixed-length time intervals, e.g., day/week/month, such that
user behavior can be measured for each interval [20]. We also
take this approach except that, instead of only based on cal-
endar, user lifetime can be partitioned in multiple ways, as
shown below.

Definition 1 (Lifetime partition). The partition of user
lifetime, P, is defined as

P ,

 (A, C), if A = event

(A, U), if A = time

(A), otherwise

where A is an attribute of the user activity relation eventT,
C is an optional propositional formula on eventT, and U is
a calendar time unit (e.g., day/week/month).

Definition 2 (Time slice). Given a partition P, the lifetime
of a user u is divided into the following time slices:

Su = {[ti, ti+1)|i ≥ 0∧ti ∈ D∧ti+1 ← min{t|t ∈ D∧t > ti}}

where D, as given below, is the delimiter set that partitions
the lifetime of u,

D =

{du,i[time]|i = 1 ∨ P.C(du,i) = true}, if P.A = event

{du,i[time]|i = 1 ∨ du,i[P.A] 6= du,i−1[P.A]},
if P.A 6∈ {event, time}

where du,i represents the i-th activity that user u performed
in chronological order, and du,i[A] is the value that the col-
umn A takes in du,i.

1 For the sake of expression, the i-th
time slice of Su, i.e., [ti−1, ti), is denoted by Su,i.
1We omit the definition of delimiters for the case of P.A =
time, as it is trivial to understand but cumbersome to ex-
press.

Roughly speaking, when the attribute of P is time, the
user lifetime is partitioned such that each time slice corre-
sponds to a time interval of P.U . When the attribute of P is
event, each delimiter corresponds to a time point at which
the activity performed is qualified with respect to P.C. Oth-
erwise, the delimiter set contains the time points at which
the value of the attribute P.A changes as compared to that
of the previous activity. An example of time slices is shown
in Figure 1, where two different P are used to partition the
lifetime of a same user, ti and t′i are the delimiters defined
by the two partitions, and Si and S′i are the time slices de-
termined by the delimiters.

The first two cases, i.e., P.A = time and P.A = event, are
adapted from traditional cohort analysis where an event-
based partition is implicitly specified by the birth event,
and a calendar partition is involved in the cohort behavior
measurement. The last case where user lifetime is parti-
tioned by an attribute other than time and event (termed
as dimensional partition hereafter), is motivated by the fact
that many attributes are step functions of time such that
the value remains constant for an indeterminate time dura-
tion followed by a sudden jump. Representatives of such at-
tributes can be E-commerce session, discretized stock price
and roles of a game. This flexible definition of time slice
significantly diversifies the measurement of causative and
dependent behaviors, and hence enables to explore a large
space of temporal dependence in user behavior.

2.2 Time window
Summarizing the behavior for each time slice enables us

to measure user behavior dynamically along user lifetime.
In addition, time slices can also differentiate the dependent
behavior from causative behavior, since the chronological or-
der between behaviors can be easily deduced from the time
slice set defined in Definition 2. Therefore, in the simplest
case, we can use time slices to specify the measurement of
both causative behaviors and dependent behaviors. How-
ever, this restricts user behavior to be measured over a sin-
gle time slice each time, and is insufficient in many cases.
Consider Example 1 with the trading volume of each single
week as the causative behavior. If we want to find how the
recent 5-week volume affects future price, then time slice
based specification no longer works.

A natural way to handle the above problem is to define a
time window which contains a configurable length in terms
of the number of consecutive time slices, and is allowed to
slide over slices such that a time window with length l will
consist of slices (Su,i−l+1, . . . , Su,i) when it slides to slice
Su,i. However, there still exists limitation with this defini-
tion of time window: we cannot construct a time window
that consists of time slices earlier than the one that it cur-
rently slides to, which, however, is very useful in many cases.
Consider again Example 1. If we want to study the impact
of trading volumes of those weeks that have a higher clos-
ing price than their previous weeks, then time windows with
only a length field will not suffice.

Definition 3 (Time window). A time window W is defined
as follows:

W , (P, wl, wh)

where P is given in Definition 1, and for a time slice Su,i

this time window slides to, wl and wh are two integers de-
termining the set of the respective constituent time slices,



Tu,i, which is given by

Tu,i = {Su,j |f(i, wl) ≤ j ≤ f(i, wh)} (1)

where the function f is given by

f(i, w) =

{
w if w > 0

i + w otherwise
(2)

and we term Su,i as the current position of this time win-
dow.

To address this limitation, we adopt the above definition
of time windows, which allows us to configure both the num-
ber and position of the constituent time slices. The intro-
duction of wl and wh significantly increases the flexibility
in specifying time windows and hence also in user behavior
measurement. Basically, each of them can be specified in ei-
ther an absolute way by assigning it with a positive integer,
or a relative way by assigning it with a non-positive inte-
ger. Consider wl, which determines the earliest time slice
for each position of the time window. As can be observed
from Equation 2, if wl is assigned with a positive value, then
for user u, the earliest time slice composing the time window
is always Su,wl , regardless of the position. In the other case,

the referenced time slice of wl keeps changing as the time
window slides.

Figure 1 demonstrates the sliding traces of two time win-
dows W1 and W2, which are respectively surrounded by blue
and red curves. They share a same partition P, but differ in
the specification of wl and wh such that W1.w

l = W1.w
h =

W2.w
l = −1 and W2.w

h = 0. The initial position of both
time windows is S2, and the corresponding constituent time
slices are {S1} and {S1, S2}, as surrounded by the two dot-
ted lines. When 1 and W2 slide to S3, their constituent time
slices become {S2} and {S2, S3}, respectively. Therefore,
we are now able to specify a time window whose constituent
time slices locate away from its current position.

2.3 Time window attribute
A time window defined in Definition 3 enables us to dy-

namically measure behavior of a user over its lifetime by
summarizing the activities over the constituent time slices
for each position in the sliding path of this time window.
This process can be modeled as the evaluation of a time
window attribute, which is defined below.

Definition 4 (Time window attribute). A time window at-
tribute A is defined as follows:

A , (f,A,W) (3)

where f is an aggregate function, A is an attribute of user
activity table eventT, and W is a time window.

However, a time window attribute may not be able to cap-
ture user behavior in many cases. One such example can be
found in Example 1, where for each trading volume, we need
to measure the price change in each week thereafter. This
requires us to compute the price change in each week, which
is the difference between the closing price of the current week
and that of the previous week. Hence, we need two time win-
dow attributes A1 and A2 which respectively compute the
closing price for the current week and the previous week, and
hence need be configured as A1.W.wl = A1.W.wh = 0 and
A2.W.wl = A2.W.wh = −1. Given A1 and A2, we can now
express the price change simply as A1 − A2. In addition, as

we shall see in Section 3.3, for each trading volume, the price
changes of multiple weeks have to be averaged in order to
measure the dependent behavior of stocks of a same cohort.
In order to support such cases, we further define the com-
posite time window attribute and the compound time window
attribute.

Definition 5 (Composite time window attribute). A com-
posite time window attribute is an arithmetic expression in-
cluding one or more time window attributes which share
same underlying lifetime partition.

Definition 6 (Compound time window attribute). A com-
pound time window attribute is defined in the same way as
in Equation 3, except that A is no longer an attribute of
eventT, but a time window attribute with the same lifetime
partition as W.

It should be noted that each time window attribute in-
volved in Definition 5 and 6 is not restricted to be the one
given in Definition 4, but can itself be a composite or a com-
pound time window attribute. In the rest of paper, when we
mention a time window attribute, unless explicitly specified,
its definition can be any one of Definition 4, 5 and 6.

As we shall see, time window attribute plays a central role
in recurrent cohort analysis. It presents an elegant abstract
for dynamic user behavior measurement, and hence enables
a concise definition of recurrent cohort analysis where user
behavior need be measured variously.

3. RECURRENT COHORT ANALYSIS
In this section, we first give a definition of user behavior

measurement, and then show how it can be used to compose
recurrent cohort analysis. As before, we assume eventT as
our data model.

3.1 User behavior measurement
In the simplest case, a single time window attribute de-

fined in Definition 4 suffices for the purpose of defining user
behavior measurement, as it provides a clear specification on
how to measure the behavior of each user along its lifetime,
which is to aggregate the given attribute over the constituent
time slices for each time window position of each user.

There are two problems with this form of user behavior
measurement. First, it does not support the selection of user
activities for behavior measurement. This support is analo-
gous to the selection predicate that precedes the aggregation
in conventional database analytics, and is indispensable in
the cases where not all user activities are of interest. Con-
sider Example 1. It is often the case that we are only inter-
ested in the stocks of a certain sector, or that we want to
exclude the prices earlier than a certain date. The second
problem is that this form lacks a mechanism to prune un-
interesting positions in the sliding path of the time window
A.W. As we have mentioned in Section 1, for Example 1,
we might be only interested in the weeks when the 5-week
moving average crosses above the 10-week moving average.

Definition 7 (User behavior measurement). User behavior
measurement M is defined as

M , (Ce, Cw,A)

where Ce is a propositional formula on the user activity re-
lation eventT, Cw is a propositional formula on a set of



time window attributes, and A is a time window attribute
representing the user behavior. The time window attributes
involved in Cw share the same lifetime partition as A.

The above definition gives a precise description on how
to measure user behavior. The time window slides over the
entire lifetime of each user. For each position during the
sliding, if Cw evaluates to true, then the behavior will be
measured by aggregating A.f over the attribute A.A of the
activities that are qualified with respect to Ce.

3.2 Recurrent cohort analysis

Definition 8 (Recurrent cohort analysis). Recurrent cohort
analysis is defined as

(Mc,Md, [Ag])

where Mc and Md, as defined in Definition 7, respectively
represent the measurement of causative behavior and depen-
dent behavior, and Ag is an optional time window attribute
which shares the underlying partition with Md.A, and deter-
mines the age of each dependent behavior relative to a given
causative behavior.

In the above definition of recurrent cohort analysis, the
causative behavior measurement Mc determines the cohorts
that each user entered during its lifetime: at each time win-
dow position where Mc.Cw evaluates to true, this user enters
a cohort represented by the causative behavior measured
over respective time slices.

The dependent behavior measurement Md does slightly
differently from Mc in that it measures the collective behav-
ior of users belonging to a same cohort for each age that
those users experienced after entering the cohort. Specifi-
cally, for each cohort c that a user enters, the time window
M.A.W slides from the first position that locates after the
cohort entrance. Thereafter, for each position p in the slid-
ing path where Md.Cw evaluates to true, the activities within
the constituent time slices of p, which can be derived from
Equation 1, are considered to take place at an age to which
Ag evaluates for p, and hence will be taken into considera-
tion during measuring the cohort c’s behavior at that age.
By default, Ag is the number of positions that the time win-
dow has already slid until p (inclusive), which is consistent
with the age definition in traditional cohort analysis [19].

Consider Figure 1, which gives the lifetime of a single user.
Suppose the time windows for measuring causative behav-
ior and dependent behavior, i.e., Mc.A.W and Md.A.W, are
W2 and W3, respectively, where W2.w

l = −1 and W2.w
h =

W3.w
l = W3.w

h = 0. For simplicity, we assume the age Ag

is set by default, and both of Mc.Cw and Md.Cw are empty
and hence always evaluate to true. In this case, initially W2

is positioned at S2, and the first causative behavior of this
user, denoted by c1, is thus aggregated over the activities
within time slices {S1, S2}. When W2 slides to S3, the re-
spective causative behavior c2 is then summarized over the
activities within {S2, S3}. Since each causative behavior also
represents a cohort, after performing the two causative be-
haviors, this user enters cohort c1 and c2 at time t1 and t2,
respectively.

Now we consider the dependent behavior measurement of
this example. After entering cohort c1, the time window W3

starts to slide from slice S′3, which is the first time slice after
t1. For this cohort, the age of the user is 1 when W3 is at the

initial position S′3, and is incremented by 1 each time W3

slides to the next slice. Similarly, for cohort c2, this user is
at age 1 when W3 is initially positioned at S′4, and grows up
as W3 moves forward. As a result, to measure the behavior
of cohort c1 at age 1 and 2, the activities within S′3 and S′4
should be taken into consideration, respectively; for cohort
c2, the activities within S′4 and S′5 should be respectively
included in order to measure the behavior of age 1 and 2.

3.3 Examples
We consider the refined version of Example 1 which only

considers the trading volume of the weeks when the 5-week
moving average crosses above the 10-week moving average.
Hence, we need to express the propositional formula Cw of
the causative behavior measurement. To that end, we need
to construct two time window attributes, denoted by A1

and A2, which calculate the average closing price for the
most recent 5 weeks and for the most recent 10 weeks, and
hence need be specified as A1.w

h = A2.w
h = 0, A1.w

l = −4
and A2.w

h = −9. In addition, we need another two time
window attributes A3 and A4 which calculate the previ-
ous 5-week and 10-week average closing prices, and hence
are specified as A3.w

h = A4.w
h = −1, A3.w

l = −5 and
A4.w

h = −10. Then, we can formulate the crossover con-
dition as A1 > A2 ∧ A3 ≤ A4, and define the causative
behavior measurement Mc as (∅,A1 > A2 ∧ A3 ≤ A4,Ac),
where Ac computes the trading volume for the current week,
and hence has a time window W with wl = wh = 0.

For the dependent behavior measurement Md, we need
to average, for each cohort, the price changes over weeks
of a same age. Therefore, a compound time window at-
tribute is required, since as mentioned in Section 2.3, the
price change is itself a composite time window attribute:
A5 − A6, where A5 and A6 respectively compute the clos-
ing prices of the current week and the previous week, and
hence are configured with A5.W.wl = A5.W.wh = 0 and
A5.W.wl = A6.W.wh = −1. The compound time win-
dow attribute Ad can then be composed as (f,A5 −A6,W),
where f is the average function, and W is configured with
wl = wh = 0. Finally, since there is no Cc or Cw specified
for Md, we can now express Md as (∅, ∅,Ad).

4. OPERATORS FOR RECURRENT
COHORT ANALYSIS

In this section, we address the recurrent cohort analysis in
database context by demonstrating a series of table trans-
formation that starts from the original user activity table
eventT, and ends at the final table resultT, which estab-
lishes the temporal dependence between the causative and
dependent behaviors. Since Mc.Ce and Md.Ce are simple
database predicates and trivial to evaluate, we assume they
are both empty. For the simplicity of expression, we further
assume the time window attributes involved in Mc and Md

share the same time window, denoted by W. Albeit leading
to additional tables generated, relaxing this assumption does
not affect the transformation process, and is hence omitted.

4.1 Table transformation
As mentioned, to measure the causative behavior of each

user, we need to summarize the activities within the con-
stituent time slices for each qualified (wrt Mc.Cw) position
in the sliding path of the time window W. Hence, it is natu-
ral to first generate a table (sliceT) for time slices defined by



Table 1: The schemas of tables that are used for recurrent cohort analysis, where 3 and© respectively represent a mandatory
column and an optional column.

tables
columns

user time event cohort wpos wlow whigh age metric

eventT 3 3 ©
sliceT 3 3 3 3

windowT 3 3 3 3
cohortT 3 3 3 3 3
winAgeT 3 3 3 3 3

cohortAgeT 3 3 3 3 3 3
resultT 3 3 3

eventT windowT cohortT winAgeT cohortAgeT resultT

γ

φ

σ

σ

ψ

ω

Mc.A
Ag

Figure 2: Table transformation

W.P, and then generate a table (windowT) which contains
for each user the constituent time slices for each position in
the sliding path of the time window. From windowT, we
can identify the activities in eventT that need be included
for the measurement of each causative behavior, and aggre-
gate over them to generate a table (cohortT) which records
for each user the cohorts (i.e., causative behaviors) that this
user enters during the sliding of the time window W .

Likewise, the first two tables that need be generated for
dependent behavior measurement Md are the counterparts
of sliceT and windowT. Since all time windows involved in
Mc and Md are same, sliceT and windowT can be reused
in this stage. The next step is to determine the age of each
user for each position in the respective sliding path, which
leads to table winAgeT. Then, for each user and each
cohort that this user entered (recorded in table cohortT),
we collect the age associated with each sliding position after
the cohort entrance, and record it in table cohortAgeT.
Finally, we are able to locate the activities for each age of
each cohort, and we aggregate over them to measure the
respective dependent behavior and in turn generate the final
table resultT.

The schemas of the aforementioned tables are shown in
Table 1, where user, time, event, cohort and age have a mean-
ing suggested by their names, wpos is the position of the
time window, and wlow and whigh are respectively the lower
and the upper time points of the constituent time slices of
the position wpos.

The transformations between the tables are shown in Fig-
ure 2, where each table transformation is accomplished by
an operator. There are in total five different operators in-
volved, namely, window slicing operator γ, window aggre-
gation operator φ, standard database selection operator σ,
age-by operator ψ and recurrent aggregation operator ω. The
window slicing operator γ completes the transformation be-
tween eventT and windowT, and hence conceals the in-
termediary table sliceT in Figure 2. The selection opera-
tor σ is used to enforce the conditions specified in Mc.Cw

and Md.Cw. For ψ and ω, there can be alternative input
tables, as shown by dashed lines, which respectively repre-

sent the case where the age-defining time window attribute
is specified by default, and the case where the time win-
dow attribute Md.A for measuring the dependent behavior
is compound (i.e., defined in Definition 6).

4.2 Operators
In this section, we give the definition of the operators that

are introduced in Figure 2, except the standard database
selection operator σ.

4.2.1 Window slicing operator γ

Definition 9 (Window slicing operator). The window slic-
ing operator is defined as follow:

γ = {(u, p, l, h)|d ∈ sliceT ∧ u← d[user] ∧ p← d[wpos]

∧ l← min{t|t ∈ Su,f(p,w1)}
∧ h← max{t|t ∈ Su,f(p,w2)}}

where f is given in Definition 3, w1 = W.wl, w2 = W.wh,
and sliceT is given by

{(u, p, l, h)|d ∈ eventT ∧ u← d[user] ∧ p ≤ |{Su}|
∧ l← min{t|t ∈ Su,p} ∧ h← max{t|t ∈ Su,p}}

where Su and Su,p are given in Definition 2.

The window slicing operator first generates sliceT from
eventT to record the time slices of each user, and then pro-
duces windowT which contains the constituent time slices
for each position in the sliding path of each user. The output
of the window slicing operator is windowT, which records,
for each user, the start time, wlow, and the end time, whigh,
of the constituent time slices of each position, wpos.

4.2.2 Window aggregation operator φ

Definition 10 (Window aggregation operator). The win-
dow aggregation operator is defined as follow:

φ = {(u, c, p, l,h)|d ∈ windowT ∧ u← d[user] ∧ p← d[wpos]

∧ l← d[wlow] ∧ h← d[whigh]

∧ c← A.f(πA.A(σuser=u∧l≤time<h(eventT)))}



where A is the time window attribute representing the behav-
ior to measure.

The window aggregation operator measures the behavior
of each user along the sliding path of the time window. As
shown in Figure 2, this operator is used for two purposes.
First, it measures the causative behaviors of each user, and
generates Table cohortT, where the measured behavior is
recorded in the column cohort to represent the cohorts this
user enters. Second, it outputs the age for each user at each
position into table winAgeT, where the measured behavior
is recorded in column age.

It should be noted that the above definition only applies
to the case where A is defined by Definition 4. For the com-
posite or the compound time window attribute, we need to
do a little more work by further summarizing the behav-
ior measured by φ. We omit this case since it is trivial to
deduce.

4.2.3 Age-by operator ψ

Definition 11 (Age-by operator). The age-by operator is
defined as follow:

ψ = {(u, c, p, l, h, a)|d ∈ cohortT ∧ d′ ∈ winAgeT

∧ d[user] = d′[user] ∧ d[wpos] < d′[wpos]

∧ u← d[user] ∧ c← d[cohort] ∧ p← d′[wpos]

∧ l← d[wlow] ∧ h← d[whigh] ∧ a← d′[age]}

For each user and each cohort it enters, the age-by oper-
ator simply associates each following position in the sliding
path with an age that is determined by Ag. For the case with
a default Ag where the age is the number of positions that
the time window has slid, we can replace winAgeT and
a ← d′[age] with windowT and a ← d′[wpos] − d[wpos],
respectively. This case corresponds to the dashed lines as-
sociated with the age-by operator ψ in Figure 2.

4.2.4 Recurrent aggregation operator ω

Definition 12 (Recurrent aggregation operator). The re-
current aggregation operator is defined as follow:

φ ={(c, a, s,m)|T← {(c, a, b)|d ∈ cohortAgeT

∧ d′ ∈ eventT ∧ d[user] = d′[user]

∧ d[wlow] ≤ d′[time] < d[whigh]

∧ c← d[cohort] ∧ a← d[age] ∧ b← d′[A]}
∧ d ∈ πcohort,age(T) ∧ c← d[cohort] ∧ a← d[age]

∧ s← |πuser(σcohort=c(T))|
∧m← f(πA(σcohort=c∧age=a(T)))}

where A = Md.A.A is the attribute of eventT over which the
dependent behavior shall be measured, and T is a temporary
table with a schema of (cohort, age,A) which contains all the
values of A that need be included for measuring the dependent
behavior of each cohort at each age.

Basically, the recurrent aggregation operator first identi-
fies for each cohort at each age, all the activities that are
performed by users of that cohort at that age, and then sum-
marizes over those activities to show how the dependent be-
havior is related to the cohort and age, thereby establishing
the desired temporal dependence.

γ

φ σ

φ σ

ψ ω

Mc

Md

Figure 3: Query plan. The upper branch of γ is for causative
behavior measurement, and the lower branch is for depen-
dent behavior measurement.

The above definition applies to the case where A is an
attribute of eventT. When it is another time window at-
tribute, we can first use a window aggregation operator
φ to evaluate it for each position in the sliding path of
each user, and append the result to cohortAgeT. Then,
cohortAgeT itself can be used to measure the dependent
behavior in the similar way as T of Definition 12 does, which
corresponds to the dashed line associated with the recurrent
aggregation operator ω in Figure 2.

4.3 Query plan
From Figure 2, it is intuitive to derive the query plan for

recurrent cohort analysis. As shown in Figure 3, the query
plan is actually a sequential execution of the five operators
involved in Figure 2. The window aggregation operator φ
and the selection operator σ are both executed twice. In
addition to Mc.A and Ag, the two window aggregation op-
erators φ also measure the time window attributes that are
respectively included in Mc.Cw and Md.Cw, in order to eval-
uate the two selection operators σ. This is possible because
we assume all time window attributes involved in Mc and
Md share the same underlying time window configuration.
However, in normal cases where there can be multiple con-
figurations in the time slice range of time windows, we need
execute φ the same number of times.

5. OPERATOR EVALUATION
In this section, we present two evaluation strategies for

the operators devised in the previous section. The first
strategy is to translate these operators into standard SQL
statements (SQL-based strategy), and for the second one
(intrusive strategy), we natively implement the proposed op-
erators atop the storage layer of COHANA [19].

5.1 SQL-based strategy
We shall only discuss how to generate sliceT that is used

in the window slicing operator γ, since the generation of
all other tables can be straightforwardly translated to SQL
queries from the definitions of respective operators.

As shown in Definition 9, sliceT records the time slices
of each user partitioned by a given P. Hence, it suffices to
compute the delimiters defined by P, which can be found
in Definition 2. In the case of P.A ∈ {time, event}, the de-
limiters can be trivially computed by using built-in time
functions or simply applying a standard database selection
operator on the user activity table eventT.

In the case of dimensional partition where P.A 6∈ {time,
event}, each delimiter corresponds to a change in the value
of P.A. We can associate each activity with its rank in the
chronologically sorted activities performed by the same user.



The delimiters can then be obtained by joining this aug-
mented activity table with itself on the following condition
θ:

θ , T1.user = T2.user∧T1.A 6= T2.A∧T1.rank = T2.rank+1

where T1 and T2 are both aliases of the augmented eventT,
and A is given in the partition P.

5.1.1 Optimization
During the translation of window generation operator, we

can optimize for the case of temporal and dimensional time
window by materializing the delimiters of each time slice
along with each activity record belonging to that slice, since
they are static in these two cases. However, for the event-
based case, such materialization optimization cannot be ap-
plied as the time slices depends on the propositional formula
specified, which can vary from time to time.

The materialization, however, does not come at no cost. It
trades storage space for processing time. For it to work, one
may need to do the materialization for each time unit and
for each possible dimension. Each materialization means
two additional columns added to the activity relation, and
hence can significantly offset the gain in processing time,
especially in the cases of limited runtime memory, where
additional IOs may occur due to the increase in the data size.
An alternative way of materialization is to persist sliceT
separately. This way, the storage cost is small, but we need
to join this table with the original activity table for the
evaluation of each time window attribute.

Unfortunately, the most serious problem of the SQL-based
evaluation strategy is that we need to join the cohort table
cohortT with eventT for the recurrent aggregation opera-
tor, as can be seen from Definition 12. The processing time
of this join operation grows quadratically with the number of
activities, since the size of both tables grow linearly as users
perform more activities. As such, the SQL-based evaluation
strategy does not scale well.

5.2 Intrusive strategy
It can be seen from Section 4 that except the recurrent

aggregation operator ω, the other operators involved in the
query plan manipulate the input tables in user granularity.
For each user, the window slicing operator γ computes the
constituent time slices of each position in the sliding path of
the time window; the window aggregation operator φ mea-
sures the behavior for each position; the selection operator
σ prunes the positions that are unqualified with respect to
Cw, and for each cohort this user enters, the age-by operator
ψ determines the age for each position following the cohort
entrance. Although the recurrent aggregation operator ag-
gregates over activities for multiples users of a same cohort,
it can still execute in a user-by-user manner, since for most
aggregation functions, such as SUM, MIN, MAX, COUNT
and AVG, the final result can be calculated from the values
aggregated for each user. In addition, the database selec-
tion operator used to evaluate Mc.Ce and Md.Ce operates in
the granularity of user activity, and is hence even finer than
the other operators. Therefore, to perform recurrent cohort
analysis, we can first evaluate the query plan for each user
and combine the respective results together to establish the
desired dependency between the causative behavior and the
dependent behavior.

To that end, we present another evaluation strategy for
the proposed operators by implementing the proposed oper-
ators on top of the storage layer of COHANA [19], which we
developed for traditional cohort analysis. This system orga-
nizes the user activity table eventT by clustering the activ-
ities of the same user in chronological order, and employs a
hierarchical storage layout by horizontally partitioning ta-
ble into multiple equal-size chunks, and applying multiple
compression techniques for the storage of each chunk col-
umn. Each chunk column provides both sequential access
and random access through the interface of getNextTuple

and getTuple, and a skipTo interface is also provided to
adjust the internal offset for chunk column access. We refer
interested readers to [19] for more details.

5.2.1 Implementation
We model the time window attribute as an object with five

interfaces, namely, getSlices, getMaxTime, getMinTime
and getValue, which naturally reflect the operations on time
window attributes that are required by the cohort operators.
The getSlices returns the number of time slices of the cur-
rent user, and the getMaxTime and getMinTime interfaces
respectively returns the upper and the lower delimiters of
the constituent time slices of a given sliding position, as
recorded in windowT. The getValue interface returns the
value taken by the time window attribute at the giving po-
sition. To speed up getValue, we introduce an initWindow

interface to pre-compute the aggregated value for each time
slice, and implement the getValue interface by combining
together the values of the constituent time slices. In this
way, we remove the duplicate evaluations in the cases where
there are multiple constituent time slices for each position
during the sliding path.

The native implementation of the operators can be found
in Algorithm 1. The main entrance of the algorithm is
processUser. For causative behavior measurement, we first
apply Mc.Ce to select the qualified activities of the current
user (line 2–5), and then call the initWindow interface to
evaluate Mc.A and each time window attribute involved in
Mc.Cw for each time slice. Hence, the window slicing opera-
tor γ is also implemented inside initWindow. Thereafter, for
each qualified sliding position of the time window Mc.A.W,
we compute the causative behavior and allocate the current
user to the respective cohort (line 12–14). For dependent be-
havior measurement, we also first evaluate all the involved
time window attributes for each time slice (line 16). After
that, Md.Cw is applied to prune unqualified sliding positions
of the time window Md.A.W (line 17–20). Finally, for each
cohort that the current user enters, the behavior measured
for each following (qualified) sliding position is then used to
update the respective dependent behavior (line 21–25).

5.3 Discussion
The intrusive evaluation strategy benefits a lot from the

customized layout of the user activity table eventT where
the activities of each user are clustered together in chrono-
logical order. This layout enables the initWindow interface
to be fulfilled within two or three scans from the first activ-
ity to the last activity of the current user. First, the window
slicing operator scans user activities to find the delimiters of
time slices. In the case of dimensional lifetime partition, the
delimiters can be found by comparing the values between
the current and the previous activity during scanning, and



Algorithm 1: Operator evaluation

Input : A data chunk D, and two positions start and end which
respectively represent the first activity of the current
user and the next user

1 initUser(D, start, end, Ce,A )

// selection operator for Ce

2 D.skipTo (start), T ← ∅
3 for i← start to end do
4 if Ce(D.getNextTuple()) then
5 T ← T ∪ i

// window slicing operator
6 for A ∈ A do
7 A.initWindow (T , D)

8 processUser(D, start, end,Mc,Md,Ag)

// causative behavior measurement
9 A c ← {A|A is involved in Mc.Cw}

10 initUser(D, start, end,Mc.Ce, {Mc.A} ∪A c)
11 cohorts← ∅
12 for i← 1 to Mc.A.getSlices() do

// selection operator for Mc.Cw

13 if Mc.Cw({A.getValue(i)|A ∈ A c}) then
14 cohorts←

cohorts ∪ (Mc.A.getValue(i),Mc.A.getMaxTime(i))

// dependent behavior measurement

15 A d ← {A|A is involved in Md.Cw}
16 initUser(D, start, end,Md.Ce, {Md.A,Ag} ∪A d)
17 slices← ∅
18 for i← 1 to Md.A.getSlices() do

// selection operator for Md.Cw

19 if Md.Cw({A.getValue(i)|A ∈ A d}) then
20 slices← slices ∪ i

21 for c ∈ cohorts do
22 for i ∈ slices do

23 if c.time < Md.A.getMinTime(i) then
// age-by operator

24 a← Ag.getValue(i)
// recurrent aggregation operator

25 combine metrics[c, a] with Md.A.getValue(i)

hence the database join required in the SQL-based approach
is no longer needed. Depending on whether Ce is empty on
not, another scan may be needed to select activities of inter-
est (line 3–5 of Algorithm 1). The final scan is to aggregate
the selected activities of each time slice.

As such, it can be easily drawn from Algorithm 1 that its
time complexity is O(Nu + |Su|2), where Nu is the number
of activities user u performed, and Su is the set of time slices
as defined in Definition 2. In contrast, the time complexity
of the SQL-based approach is (Nu × |Su|), as each activity
of u should be taken into consideration to measure the de-
pendent behavior of each cohort that u previously entered,
as shown in Definition 12. Since Nu � |Su|, the perfor-
mance of the intrusive strategy is likely much better than
that of the SQL-based approach, as demonstrated in Sec-
tion 7. Moreover, thanks to the columnar chunk storage
and the compression techniques employed, the scanning of
activities is very efficient, which further improves the per-
formance of the intrusive strategy.

6. DISTRIBUTED PROCESSING
In the intrusive strategy, all activities of each user are

clustered within a single chunk of the hierarchical storage
layout, and can be processed independently of the activities
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Figure 4: The architecture for distributed recurrent cohort
analysis queries

of other users as a result of user-oriented cohort algorithms
proposed in Section 5.2. Therefore, different chunks can be
processed in parallel without any synchronization between
them, which renders the intrusive strategy extremely suit-
able for distributed processing.

There have been many frameworks for distributed com-
putation [13, 14, 15, 30, 31]. Such frameworks, however,
cannot be used for our purpose as the cohort operators can-
not be readily mapped into their computation models. Also,
these frameworks employ complicated mechanisms to coor-
dinate computation and data flow among computing nodes.
Such mechanisms, however, are not necessary in the dis-
tributed evaluation of the intrusive strategy, as there is no
need for synchronization or communication during the evalu-
ation. As a result, using existing frameworks for distributed
evaluation is too heavy-weight, which motivates us to design
a system architecture, as shown in Figure 4.

There are two layers in this architecture. The bottom
layer is a distributed storage to persist the cublets, each com-
posed of roughly the same number of compressed chunks.
The upper layer is a cluster of multiple workers and a mas-
ter, managed by ZooKeeper [2]. The master is elected from
workers, and is responsible for allocating cublets and coor-
dinating query processing among workers. For cublet allo-
cation, the master employs a round-robin policy so that the
load on each worker is balanced due to the similar number
of chunks in each cublet. Upon receiving a query (task),
the master simply broadcasts it to all workers for processing
and then waits for replies. Once it collects all the replies
for a query, it then combines them and sends the combined
result to the query client. Currently, we only allow distribu-
tive and algebraic aggregate functions to be used in time
window attributes, so the combination of query replies is
trivial.

The functionalities of workers are rather simple. Each
worker loads the cublets allocated to it from underlying dis-
tributed storage into local memory in advance, and uses the
in-memory copies for the processing of received queries by
executing the algorithm proposed in Section 5.2 against user
activities contained in its allocated cublets.

When the result set is large, the combination of query
replies may make the master become bottleneck. This can
be addressed by distributing the combination among work-
ers such that each worker is responsible for the combination



of a disjoint subset of cohorts. The master pulls together
the combined results and returns them to the query client
without further processing.

Once a failure of a worker is detected by ZooKeeper, the
master will get notified and then handle this failure. It
does so by first reallocating the cublets that were allocated
to the failed worker to several alive workers, and then re-
broadcasting the pending queries that were received before
detection of the failure to all workers. This can lead to mul-
tiple replies for a same query being received by the master.
We handle this problem by assigning a unique query id to
each query, and a message id to each message that a worker
sends to the master. Upon detecting two replies from the
same worker for a same query, the master simply chooses
the reply with the larger message id, and discards the other
one.

When the master crashes, the ZooKeeper service will elect
a new master from alive workers. The newly elected master
then contacts each worker to establish the correspondence
between workers and cublets, and reallocates the cubelets
that were allocated to the previous master among the alive
workers. Thereafter, it starts the web service to accept
queries. For now, we do not resume the queries that were
pending when the previous master crashed, and rely on the
query clients to resubmit those queries upon timeout.

7. PERFORMANCE STUDY
In this section, we conduct a set of experiments to study

the performance of the two evaluation strategies. For the
SQL-based strategy, we use two state-of-the-art database
systems, MonetDB and PostgreSQL, which respectively rep-
resent the two major database genres, i.e., column-oriented
databases and row-oriented databases. We implement the
proposed operators by following the table transformation
shown in Figure 2 and translating the respective definitions
into standard SQL statements. The tables that are involved
in the transformation are created as database views so that
the query optimizer of the two databases can have more
opportunities to optimize the physical query plan.

To compare the two strategies, we evaluate the single-
node performance of the three systems, i.e., MonetDB, Post-
greSQL and COHANA2, by running four queries against
datasets of different sizes. Furthermore, we conduct an ad-
ditional experiment in distributed settings to investigate the
scalability of the intrusive approach, in comparison with
Spark SQL [10]. All servers included in both the single-
node and distributed experiments are equipped with 8GB
RAM and one quad-core Intel Xeon E3-1220 3.1GHz pro-
cessor and run CentOS 6.6.

7.1 Dataset and Queries
The original dataset used in our experiments contains

roughly 30M activities which were performed by 57K game
users between 2013-05-21 and 2013-06-26. Figure 5 charac-
terizes this dataset in terms of distribution in user lifetime
and number of activities. As can be observed, 60% of users
were active for only one day, and users performing less than
100 activities account for the same percentage.

We further use this dataset to generate three more datasets
by either removing users and their activities or adding new

2We use COHANA to represent the intrusive evaluation of
the proposed cohort operators.
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Figure 5: The characterization of the dataset in terms of
user lifetime and the number of activities

users which have the same activities as original users. In to-
tal, there are four datasets which respectively have roughly
7.5M, 15M, 30M and 60M user activity records. All four
datasets possess the same characteristics as shown in Fig-
ure 5, and are termed as the tiny, small, medium and large
datasets.

We design the following four recurrent cohort analysis
tasks for our performance study.

Query 1 Group users into cohorts based on the money
spent for each shop event, and show for each cohort
the 7-day retention thereafter.

Query 2 Group users into cohorts based on the number of
events performed each day, and show for each cohort
the average 7-day spending thereafter.

Query 3 For each user, select each week during which she
performed at least one shop event, and allocate her
to the cohort based on the average spending up to
that week. Then, show the per-day retention for each
cohort.

Query 4 For each role, show the distribution of roles that
would be played within 3 role changes. Only the roles
with at lease one shop event performed are taken into
consideration during the computation of distribution.

For Query 1, we want to find the relationship between
user expense and retention rate. For Query 2, we want
to explore how user expense is affected by daily activeness.
For Query 3, we want to validate whether users with more
spending are more likely to retain. The time window at-
tribute for causative behavior measurement has a time slice
range of [1, 0], which includes all time slices up to the cur-
rent one. For Query 4, we want to mine the pattern among
role changes. A dimensional lifetime partition is used in
the measurement of both the causative and the dependent
behaviors: each change in the role attribute terminates the
current time slice and launches a new one as well. Unlike the
other three queries, the propositional formula Cw to select
qualified time slice positions for dependent behavior mea-
surement is not empty, and the age of this query is defined
with respect to a time window attribute which extracts the
value of the role played in the current time slice.

To speed up the SQL approach, we implement the opti-
mization that we present in Section 5.1 by materializing the
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Figure 6: Single-node evaluation

Table 2: SQL Optimization Speedup

Dataset
MonetDB PostgreSQL

Q3 Q4 Q3 Q4

Tiny 38.46 19.05 1.29 2.50

Small 42.22 27.06 1.20 4.51

Medium 37.93 61.11 1.27 2.13

Large 2.74 11.49 1.27 3.01

respective time slice boundaries for Q3 and Q4. For Q1,
this optimization does not apply, as the time slices are par-
titioned based on a selection predicate, i.e., the event-based
partition. In addition, we do not need to materialize for
Q2, since the time attribute of the four datasets is in date
granularity, and already serves the purpose of materializa-
tion. Table 2 shows the effectiveness of this materialization
optimization. As can be observed, the performance gain
resulted from the materialization can acheieve 60×, and is
hence very promising.

7.2 Single Node Evaluation
For this experiment, we study the performance of the

three systems by running the four queries against the four
datasets. As can be observed from Figure 6, the intrusive
approach can process different queries very efficiently. For
example, it can process all four queries in no more than one
second for all datasets other than the large one. In addition,
the performance of the intrusive approach is very steady and
does not vary much across different queries. In contrast, the
database approach needs a much longer (up to 6 orders) time
than the intrusive approach, and depending on queries, their
performance can vary significantly. This is because, as given
in Section 5.1.1, the SQL-based approach has to join the co-
hort table (i.e., cohortT) generated with the activity table,
which incurs a much higher time complexity than the in-
trusive approach which processes each user individually and
hence avoids the expensive joining process.

Since the cohort tables generated for different queries have
significantly different numbers of tuples, the time spent in
joining them with the activity table also varies, which ex-
plains the varying performance of the database approach
when evaluated for different queries. For Query 13, as a
result of a simple event selection condition, its cohort ta-
ble is much lager than the table generated for other queries,
which makes the joining operation run out of memory, and

3The result of PostgreSQL for Q1 is absent, as it takes such
a long time that we are not able to wait for its completion.
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hence incurs high IO cost. For Q3, MonetDB can achieve
a similar performance to the intrusive approach for tiny-to-
medium datasets. This can also be attributed to the cohort
table generated. In this case, as the number of cohort en-
tries of each user equals the number of weeks during the life
time of that user, which is at most 6, the cohort table hence
is of a very small size.

Figure 7 shows for each query the time breakdown be-
tween the causative behavior measurement and the depen-
dent behavior measurement. The medium dataset is used
for this experiment. The results of the other datasets are
similar, and hence are omitted. It can be shown from this
figure that the measurement of causative behaviors takes
a longer time in all queries, which seems counter intuitive
as the dependent behavior of each sliding position should
be measured for each causative behavior (i.e., cohort), that
took place earlier. This is attributed to our initWindow im-
plementation which pre-computes all involved time window
attributes, and hence eliminates the duplicate measurements
of dependent behaviors. In addition, in the measurement of
dependent behaviors, only the activities performed after the
first causative behavior need be taken into consideration.
This explains the negligible time spent in the dependent be-
havior measurement of Q3, since, as shown in Figure 5, only
20% of users are active after the first week.

7.3 Distributed Evaluation
This section presents the performance result of the intru-

sive strategy in distributed environments. The number of
workers is varied from 1 to 16 and the dataset used for this
experiment consists of roughly 480M activity records, and
has a size of 64GB. For comparison purpose, we also deploy
a Spark cluster to run Spark SQL. The master and driver of
the Spark cluster are deployed at two different nodes, and
the executors which conduct the real analysis are deployed at
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Figure 8: Distributed evaluation

other nodes which amount to the same number of the work-
ers used for the intrusive approach. Each Spark component
is allowed to occupy almost all free memory (∼7 GB) of the
host node. For better performance, we convert the dataset
into ORC (Optimized Row Columnar) format, which also
employs various optimization techniques, such as compres-
sion of COHANA. The ORC file is then stored in a HDFS
cluster that is deployed in the same nodes as executors to
exploit data locality.

The results are given in Figure 8. For Q1 and Q4, Spark
SQL is not able to run to the end due to out of memory,
the results of which are hence not available. As shown in
this figure, initially, the performance of the intrusive strat-
egy is improved almost linearly with the number of workers,
showcasing the scalability of the intrusive approach. How-
ever, from 8 workers onwards, the performance gain from
more workers gradually decreases. This is because, as we
mentioned in Section 6, the combination of the result sets
returned by workers starts to dominate the whole processing
in these cases, especially for Q1 which has the largest num-
ber of cohorts and hence requires a lot of time for combining.
Fortunately, this can be simply addressed by distributing
the combining process among all workers, as mentioned in
Section 6. Spark SQL also has a good scalability in that its
processing time halves when the number of executors dou-
bles. However, its performance is much (two orders) worse
than the proposed intrusive approach, and even its best per-
formance achieved in the setting of 16 nodes is still 6x worse
than the performance of the intrusive approach achieved in
the single-node case.

8. RELATED WORK
The traditional cohort analysis [17] is used to find how

behavior of users (typically human being) is affected by two
factors: social change and aging. It has been widely applied
to many areas, such as social research [25], demographic
study [26] and health care [16, 18]. Statistical methods have
also been used to estimate this effect [12, 21].

Recently, due to the increasing volume of web user be-
havioral data, cohort analysis has been introduced to find
unusual user behavior from such data and improve user re-
tention [1, 3, 4, 29]. These products directly follow the single
birth event specification and temporal age definition, which
significantly restrict the diversity and representativeness of
the cohorts that can be generated, and rigidify the way for
measuring user behavior. Furthermore, the requirement of
an event attribute also restricts the application spectrum.

The database support for the traditional cohort analysis
was presented in [19, 29]. Basically, this work proposes three
cohort operators for cohort analysis and implements them in

COHANA. However, this work also follows the single birth
event specification and temporal age definition, and hence
faces the same problems as those commercial tools [1, 3, 4].

The system where we implement the proposed operators
adopts a columnar design [11, 23, 27] and various compres-
sion techniques [28, 32] for the storage of chunks. Hence, our
intrusive implementation of the proposed operators also fol-
lows the spirit of query processing over compressed columns
[7, 9, 22]. The intrusive approach is suitable for distributed
evaluation. However, existing distributed processing sys-
tems [13, 14, 15, 30, 31] incur a lot of unnecessary overhead.
We hence propose and implement a light-weight distributed
architecture for this purpose.

9. CONCLUSION AND DISCUSSION
This paper presents recurrent cohort analysis, which is

a powerful tool for temporal dependence exploration, and
can be used in many application domains. To address such
analysis problems, we then present a set of cohort operators
which capture the essential operations involved in the anal-
ysis. We further present two approaches for operator eval-
uation by respectively translating the operators into stan-
dard SQL statements and implementing them natively in-
side COHANA. A system architecture is then proposed for
distributed processing of the latter approach. Finally, a
comprehensive experimental study is performed to compare
the two evaluation approaches in both single-node and dis-
tributed settings.

There are many interesting problems worth researching
for recurrent cohort analysis. First, since the non-intrusive
SQL approach does not work well, it is desired to natively
implement the proposed cohort operators inside existing dat-
abase systems. Another work is to support other data mod-
els, such as star and snowflake schemas. In addition, there
is a large space to explore within the framework that we
present for recurrent cohort analysis in this paper. For ex-
ample, it might be interesting to permit users to leave co-
horts upon satisfying certain triggering criteria.
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