
Cohort Query Processing

Dawei Jiang†
∗

Qingchao Cai‡ Gang Chen† H. V. Jagadish§

Beng Chin Ooi‡ Kian-Lee Tan‡ Anthony K. H. Tung‡

†Zhejiang University ‡National University of Singapore §University of Michigan
†{jiangdw, cg}@zju.edu.cn ‡{caiqc, ooibc, tankl, atung}@comp.nus.edu.sg §jag@umich.edu

ABSTRACT
Modern Internet applications often produce a large volume
of user activity records. Data analysts are interested in
cohort analysis, or finding unusual user behavioral trends,
in these large tables of activity records. In a traditional
database system, cohort analysis queries are both painful
to specify and expensive to evaluate. We propose to ex-
tend database systems to support cohort analysis. We do
so by extending SQL with three new operators. We devise
three different evaluation schemes for cohort query process-
ing. Two of them adopt a non-intrusive approach. The third
approach employs a columnar based evaluation scheme with
optimizations specifically designed for cohort query process-
ing. Our experimental results confirm the performance ben-
efits of our proposed columnar database system, compared
against the two non-intrusive approaches that implement
cohort queries on top of regular relational databases.

1. INTRODUCTION
Internet applications often accumulate a huge amount of

activity data representing information associated with user
actions. Such activity data are often tabulated to provide
insights into the behavior of users in order to increase sales
and ensure user retention. To illustrate, Table 1 shows some
samples of a real dataset containing user activities collected
from a mobile game. Each tuple in this table represents
a user action and its associated information. For example,
tuple t1 represents that player 001 launched the game on
2013/05/19 in Australia in a dwarf role.

An obvious solution to obtain insights from such activity
data is to apply traditional SQL GROUP BY operators. For
example, if we want to look at the players’ shopping trend
in terms of the gold (the virtual currency) they spent, we
may run the following SQL query Qs.

SELECT week, Avg(gold) as avgSpent

∗Work done while affiliated with National University of Sin-
gapore.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 10, No. 1
Copyright 2016 VLDB Endowment 2150-8097/16/09.

FROM GameActions

WHERE action = "shop"

GROUP BY Week(time) as week

Executing this query against a sample dataset (of which
Table 1 shows some records) results in Table 2, where each
tuple represents the average gold that users spent each week.
The results seem to suggest that there was a slight drop in
shopping, and then a partial recovery. However, it is hard
to draw meaningful insights.

However, there are two major sources that can affect hu-
man behavior [9]: 1) aging, i.e., people behave differently
as they grow older and 2) social changes, i.e., people behave
differently if the societies they live in are different. In our in-
game shopping example, players tend to buy more weapons
in their initial game sessions than they do in later game ses-
sions - this is the effect of aging. On the other hand, social
change may also affect the players’ shopping behavior, e.g.,
with new weapons being introduced in iterative game devel-
opment, players may start to spend again in order to acquire
these weapons. Cohort analysis, originally introduced in
Social Science, is a data analytical technique for assessing
the effects of aging on human behavior in a changing soci-
ety [9]. In particular, it allows us to tease apart the effect of
aging from the effect of social change, and hence can offer
more valuable insights.

With cohort analytics, social scientists study the human
behavioral trend in three steps: 1) group users into cohorts;
2) determine the age of user activities and 3) compute aggre-
gations for each (cohort, age) bucket. The first step employs
the so called cohort operation to capture the effect of so-
cial differences. Social scientists choose a particular action
e (called the birth action) and divide users into different
groups (called cohorts) based on the first time (called birth
time) that users performed e. Each cohort is then repre-
sented by the time bin (e.g., day, week or month) associated
with the birth time 1. Each activity tuple of a user is then
assigned to the same cohort that this user belongs to. In
the second step, social scientists capture the effect of aging
by partitioning activity tuples in each cohort into smaller
sub-partitions based on age. The age of an activity tuple t
is the duration between the birth time of that user and the
time that user performed t. Finally, aggregated behavioral
measure is reported for each (cohort, age) bucket.

Back to our in-game shopping example, suppose we choose
launch as the birth action and week as the cohort time bin
interval, the activity tuples of player 001 are assigned to

1The interval of the time bin is chosen to ensure that there
are no significant social differences occurred in that time bin.

Table 1: Mobile Game Activity Table
player time action role country gold

t1 001 2013/05/19:1000 launch dwarf Australia 0
t2 001 2013/05/20:0800 shop dwarf Australia 50
t3 001 2013/05/20:1400 shop dwarf Australia 100
t4 001 2013/05/21:1400 shop assassin Australia 50
t5 001 2013/05/22:0900 fight assassin Australia 0
t6 002 2013/05/20:0900 launch wizard USA 0
t7 002 2013/05/21:1500 shop wizard USA 30
t8 002 2013/05/22:1700 shop wizard USA 40
t9 003 2013/05/20:1000 launch bandit China 0
t10 003 2013/05/21:1000 fight bandit China 0

2013-05-19 launch cohort since the activity tuple t1 (called
birth activity tuple) indicates that player 001 first launched
the game at that week. We further partition activity tuples
in 2013-05-19 launch cohort into sub-partitions identified by
age, and finally report the average gold spent for each (co-
hort, age) bucket. The result is shown in Table 3.

By looking at each row of Table 3 horizontally, we can
see the aging effect, i.e., players spent more gold on buying
weapons on their initial game sessions than their later game
sessions. On the other hand, by comparing different rows
(i.e., reading rows vertically), we can observe that the drop-
off trend seems to becomes less severe. From rows 1 and 2,
we observe that for the same column, the value of row 2 is
larger than that of row 1. This suggests that the iterative
game development indeed did a better job of retaining player
enthusiasm as they aged, an insight which cannot be drawn
from OLAP style results in Table 2.

The classic cohort analysis we presented so far is extremely
useful for user retention analysis, as exemplified by our in-
game shopping example. By comparing the cardinality and
user behavior between different cohorts, one can infer the
possible factors which affect user behavior by first finding
certain time epochs from which users behaved differently
than they had used to, and then exploring the events that
happened at the same time. For example, Internet star-
tups can use this method to evaluate the impact of new
functionalities or versions of their products in terms of users
acquisition and retention; an online shopping website can in-
vestigate whether a new product recommendation algorithm
can increase the sales or not.

However, there are two limitations in the standard social
science style cohort analysis. First, social scientists typi-
cally analyze a whole dataset. This is because the datasets
used are usually small and are specifically collected for a
certain cohort analysis task. As such, there is no mecha-
nism for extracting a portion of users or activity tuples for
cohort analysis. While this task seems trivial, it has to be
handled with care as a naive selection may lead to incor-
rect answers! Referring to our running example (from Table
1), suppose we choose launch as the birth action, and we
are interested to perform a cohort analysis on those tuples
where time > 2013/05/22:0000. Now, the resultant sub-
set of tuples is {t5, t8}. However, we no longer can perform
any cohort analysis as the birth activity tuple t1, i.e., the
activity tuple representing the first launch action of player
001, has been removed. Second, social scientists use only
the time attribute to identify cohorts. This is because time
is considered to be the key attribute that determines social
change. However, it would also be desirable to provide sup-
port for a more general cohort analysis task where cohorts

Table 2: Results
of Qs

week avgSpent
2013-05-19 50
2013-05-26 45
2013-06-02 43
2013-06-09 42
2013-06-16 45

Table 3: Cohort Report for
Shopping Trend
cohort age (weeks)

1 2 3 4 5
2013-05-19 (145) 52 31 18 12 5
2013-05-26 (130) 58 43 31 21
2013-06-02 (135) 68 58 50
2013-06-09 (140) 80 73
2013-06-16 (126) 86

can be defined with respect to some other attributes of in-
terest. Although this seems only to be a minor extension, it
can significantly widen the application spectrum of cohort
analytics. Below are several interesting problems we choose
from traditional retention analysis, health care and financial
investment that cannot be handled by the classic cohort an-
alytics but can be mapped into an extended cohort analytics
task.

Example 1. Understanding the retention of users of dif-
ferent attributes (e.g., age, salary and location) can be of
interest to company business. By grouping users into co-
hort based on the attributes of interest and studying user
retention of different cohorts, one can understand where to
put effort to improve user retention and develop appropriate
business plans.

Example 2. A doctor might be interested in finding if
there exists a correlation between patient readmission and
the physical status of patients when they are initially admit-
ted. This can be achieved by grouping patients into cohorts
based on the their physical status, and then comparing be-
tween cohorts the number of readmissions in different time
periods to see how this number is related to the physical sta-
tus of users in the cohort.

Example 3. Venture Capital is eager to find what kind
of startups have potential to provide a positive investment
return. To this end, it can group startups into cohorts based
on many aspects, such as products, user acquisition, net rev-
enue, user retention and company structure, at the time
when they received investment, and then find the attribute
values of the cohorts consisting of more companies that fi-
nally survived or survived for a long time.

In this paper, we make the following contributions to ad-
dress the above issues.

• We define the important problem of cohort analytics
in the context of a DBMS.

• We introduce an extended relation to model user activ-
ity data for cohort analytics, and introduce three new
operators for manipulating the extended relation and
composing cohort queries. Two of the operators are
designed for extracting a subset of activities for cohort
analysis, and the last one is designed for producing
aggregates over arbitrary attribute combinations. We
show that cohort queries can be expressed elegantly
and concisely using the data model and the newly pro-
posed operators. We also show how more complicated
data analytics tasks can be expressed using a mix of
traditional SQL clauses and the newly proposed oper-
ators.

WITH birth AS(
SELECT p, Min(t) as birthTime
FROM D
WHERE a = "launch"
GROUP BY p

),

(a)

birthTuples AS (
SELECT p, c as cohort, birthTime

role as birthRole
FROM D, birth
WHERE D.p = birth.p AND

D.t = birth.birthTime),

(b)

cohortT AS (
SELECT p, a, cohort, birthRole, gold

TimeDiff(D.t, birthTime) as age
FROM D, birthTuples
WHERE D.p = birthTuples.p),

(c)

cohortSize AS (
SELECT cohort, Count(distinct p) as size
FROM cohortT
GROUP BY cohort

),

(d)

SELECT cohort, size, age, Sum(gold)
FROM cohortT, cohortSize
WHERE cohortT.cohort = cohortSize.cohort

birthRole = "dwarf" AND a = "shop" AND age > 0
GROUP BY cohort, age

(e)

Figure 1: The SQL query Qs of our example analysis task.

• We build a columnar based cohort query engine, CO-
HAHA, which implements multiple optimizations for
efficient cohort query processing.

• We design a benchmark study to compare COHANA
against alternative non-intrusive evaluation schemes in
terms of cohort query processing performance. The ex-
perimental results show that COHANA is two orders
superior to its mostly optimized counterpart, demon-
strating the necessity of extending database systems to
cater to cohort analytics, rather than simply running
an SQL statement over a traditional DBMS.

The rest of the paper is organized as follows: Section
2 presents the SQL based and the materialized view ap-
proaches for processing cohort queries. Section 3 presents
the foundations of cohort analysis. Section 4 presents our
proposed columnar database based scheme for cohort query
processing. Section 5 reports the experimental results. We
present related work in Section 6 and conclude in Section 7.

2. A NON-INTRUSIVE APPROACH TO CO-
HORT ANALYTICS

A least intrusive approach to supporting cohort analytics
is to use an existing relational DBMS and express the cohort
analysis task as a SQL query. We illustrate such an approach
using the following cohort analysis task:

Example 4. Given the launch birth action and the activ-
ity table as shown in Table 1 (denoted as D), for players who
play the dwarf role at their birth time, cohort those players
based on their birth countries and report the total gold that
country launch cohorts spent since they were born.

Figure 1 shows the corresponding SQL query Qs for this
task. To save space, we use p, a, t, c abbreviations re-
spectively to denote the player, action, time, and country

attribute in Table 1. The Qs employs four sub-queries (i.e.,
Figure 1(a) – Figure 1(d)) and one outer query (i.e., Fig-
ure 1(e)) to produce the results. Overall, this SQL approach
performs poorly for three reasons:

• The SQL statement Qs is verbose, and its complexity
renders it prone to mistakes.

• The SQL statement Qs requires many joins to perform
the analysis task. As we shall see in our experimental
study, such a query processing scheme can be up to 5
orders of magnitude slower than our proposed solution.

• It requires manual tuning. For example, one may no-
tice that we can push the selection condition (i.e.,
birthRole = "dwarf") from the outer query (Figure 1(e))
to the inner sub-query (Figure 1(c)) to reduce the size
of intermediate tables. Ideally, such an optimization
can be performed by an intelligent optimizer. How-
ever, our evaluation shows that few database systems
can perform such an optimization.

To speed up the processing of the analysis task, we can
adopt a materialized view (MV) approach that stores some
intermediate results. For example, we can materialize the
intermediate table cohortT produced by the sub-query in
Qs (Figure 1(c)) as follows.

CREATE VIEW MATERIALIZED cohorts as cohortT

With cohorts, we can express the query QS in a simpler
SQL statement consisting of a single sub-query (Figure 1(d))
and an outer query (Figure 1(e)). The performance of the re-
sulting SQL expression is also improved since it only involves
a single join. However, the materialized view approach also
suffers from a number of issues.

• The cost of generating the MV is still high since it
involves two joins (Figure 1(b) and 1(c)).

• The storage space for the MV is huge if the approach
is used as a general cohort query processing strategy.
Figure 1(c) only includes a single calculated birth at-
tribute birthRole as it is the only attribute appearing
in the birth selection condition (i.e., the condition of
playing as the dwarf role at birth time) of the analy-
sis task. However, if other calculated birth attributes
are also involved in the birth selection condition, we
need to include those attributes in the MV as well. In
the extreme case, every possible birth attribute shall
be included in the MV, doubling the storage space as
compared to the original activity table.

• The MV only answers cohort queries introduced by
launch birth action. If another birth action (e.g.,
shop) is used, one more MV is required. Obviously,
this per birth action per MV approach does not scale
even for a small number of birth actions due to the
cost of MV construction and maintenance.

• The query performance is still not optimal. By the
definition of the analysis task, if a player did not play

as dwarf role when that player was born, we should ex-
clude all activity tuples of that player in the result set.
Ideally, If the birth activity tuple indicates that the
player is not qualified, we can safely skip all activity
tuples of that player without further checking. How-
ever, as shown in Figure 1(e), the MV approach needs
to, unnecessarily, check each activity tuple of a player
to perform the filtering operation (i.e., comparing the
value in birthRole attribute against dwarf). Building
an index on the birthRole attribute cannot improve
the situation much since index look up will introduce
too many random seeks on large activity tables.

3. COHORT ANALYSIS FOUNDATIONS
In this paper, we seek to extend an existing relational

database system to support cohort analytics. This section
presents the data model, which includes a central new con-
cept of an activity table, and the proposed new cohort op-
erators.

We use the term cohort to refer to a number of individuals
who have some common characteristic in performing a par-
ticular action for the first time; we use this particular action
and the attribute values of the common characteristics to
identify the resulting cohort. For example, a group of users
who first login (the particular action) in 2015 January (the
common characteristic) is called the 2015 January login

cohort. Similarly customers who make their first purchase
in USA form a USA purchase cohort. Broadly speaking, co-
hort analysis is a data exploration technique that examines
longitudinal behavioral trends of different cohorts since they
were born.

3.1 Data Model
We represent a collection of activity data as an instance of

an activity relation, a special relation where each tuple rep-
resents the information associated with a single user activity.
We will also call an activity relation an activity table. In
this paper, the two terms, i.e., activity relation and activity
table are used interchangeably.

An activity tableD is a relation with attributesAu, At, Ae,
A1, . . . , An where n ≥ 1. Au is a string uniquely identifying
a user; Ae is also a string, representing an action chosen
from a pre-defined collection of actions, and At records the
time at which Au performed Ae. Every other attribute in D
is a standard relational attribute. Furthermore, an activity
table has a primary key constraint on (Au, At, Ae). That
is, each user i can only perform a specific action e once
at each time instant. As exemplified in Table 1, the first
three columns correspond to the user (Au), timestamp (At)
and action (Ae) attribute, respectively. Role and Country
are dimension attributes, which respectively specify the role
and the country of player Au when performing Ae at At.
Following the two dimension attributes is gold, a measure
attribute representing the virtual currency that player Au

spent for this action. We shall continue to use Table 1 as
our running example for describing each concept in cohort
analysis.

3.2 Basic Concepts of Cohort Analysis
We present three core concepts of cohort analysis: birth

action, birth time and age. Given an action e ∈ Dom(Ae),
the birth time of user i is the first time that i performed e
or -1 if i never performed e, as shown in Definition 1. An

action e is called a birth action if e is used to define the birth
time of users.

Definition 1. Given an activity table D, and a birth ac-
tion e ∈ Dom(Ae), a time value ti,e is called the birth time
of user i if and only if

ti,e =

{
minπAt(σAu=i∧Ae=e(D)) if σAu=i∧Ae=e(D) 6= ∅
−1 otherwise

where π and σ are the standard projection and selection
operators.

Definition 2. Given an activity table D, and a birth ac-
tion e ∈ Dom(Ae), a tuple di,e ∈ D is called the birth activ-
ity tuple of user i if and only if

di,e[Au] = i ∧ di,e[At] = ti,e

Since (Au, At, Ae) is the primary key of D, we conclude
that for each user i, there is only one birth activity tuple of
i in D for any birth action e that i performed.

Definition 3. Given the birth time ti,e, a numerical value
g is called the age of user i in tuple d ∈ D, if and only if

d[Au] = i ∧ ti,e >= 0 ∧ g = d[At]− ti,e

The concept of age is designed for specifying the time
point to aggregate the behavioral metric of a cohort. In
cohort analysis, we calculate the metric only at positive ages,
and an activity tuple with a positive age is called an age
activity tuple. Furthermore, in practical applications, the
age g is normalized by a certain time unit such as a day,
week or month. Without loss of generality, we assume that
the granularity of g is a day.

Consider the example activity relation in Table 1. Sup-
pose we use the action launch as the birth action. Then,
the activity tuple t1 is the birth activity tuple of player 001,
and the birth time is 2013/05/19:1000. The activity tuple
t2 is an age tuple of player 001 produced at age 1.

3.3 Cohort Operators
We now present operations on a single activity table. In

particular, we propose two new operators to retrieve a subset
of activity tuples for cohort analysis. We also propose a
cohort aggregation operator for aggregating activity tuples
for each (cohort, age) combination. As we shall see, these
three operators enable us to express a cohort analysis task
in a very concise and elegant way that is easy to understand.

3.3.1 The σb
C,e Operator

The birth selection operator σb
C,e is used to retrieve ac-

tivity tuples of qualified users whose birth activity tuples
satisfy a specific condition C.

Definition 4. Given an activity table D, the birth selec-
tion operator σb

C,e is defined as

σb
C,e(D) = {d ∈ D | i← d[Au] ∧ C(di,e) = true}

where C is a propositional formula and e is a birth action.

Consider the activity relation D in Table 1. Suppose we
want to derive an activity table from D which retains all ac-
tivity tuples of users who were born from performing launch

action in Australia. This can be achieved with the following
expression, which returns {t1, t2, t3, t4, t5}.

σb
country=Australia,launch(D)

3.3.2 The σg
C,e Operator

The age selection operator σg
C,e is used to generate an

activity table from D which retains all birth activity tuples
in D but only a subset of age activity tuples which satisfy a
condition C.

Definition 5. Given an activity table D, the age selection
operator σg

C,e is defined as

σg
C,e(D) ={d ∈ D|i← d[Au]∧

((d[At] = ti,e) ∨ (d[At] > ti,e ∧ C(d) = true))}

where C is a propositional formula and e is a birth action.

For example, suppose shop is the birth action, and we
want to derive an activity table which retains all birth ac-
tivity tuples in Table 1 but only includes age activity tu-
ples which indicate users performing in-game shopping in
all countries but China. The following expression can be
used to obtain the desired activity table.

σg
action=shop∧country6=China,shop(D)

The result set of the above selection operation is {t2, t3, t4, t7, t8}
where t2 is the birth activity tuple of player 001, t3 and t4
are the qualified age activity tuples of player 001. The ac-
tivity tuples t7 and t8 are the birth activity tuple and the
qualified age activity tuple of player 002.

A common requirement in specifying σg
C,e operation is

that we often want to reference the attribute values of birth
activity tuples in C. For example, given the birth action
shop, we may want to select age activity tuples whose users
perform in-game shopping at the same location as their
country of birth. We introduce a Birth() function for this
purpose. Given an attribute A, for any activity tuple d, the
Birth(A) returns the value of attribute A in d[Au]’s birth
activity tuple:

Birth(A) = di,e[A]

where i = d[Au] and e is the birth action.
In our running example, suppose shop is the birth ac-

tion, and we want to obtain an activity table which retains
all birth activity tuples but only include age activity tuples
which indicate that players performed shopping in the same
role as they were born. The following expression is used to
retrieve the desired results.

σg
role=Birth(role),shop(D)

The result set of the above operation is {t2, t3, t7, t8} where
t2 and t7 are the birth activity tuples of player 001 and
player 002, respectively, and t3 and t8 are the qualified age
activity tuples.

3.3.3 The γc
L,e,fA

Operator
We now present the cohort aggregation operator γc

L,e,fA
.

This operator produces cohort aggregates in two steps: 1)
cohort users and 2) aggregate activity tuples.

In the first step, given an activity table D with its at-
tribute set A and a birth action e, we pick up a cohort
attribute set L ⊂ A such that L ∩ {Au, Ae} = ∅ and assign
each user i to a cohort c specified by di,e[L]. Essentially, we
divide users into cohorts based on the projection of users’
birth activity tuples onto a specified cohort attribute set.

In our running example, suppose launch is the birth ac-
tion and the cohort attribute set is L={country}, player 001

in Table 1 is assigned to the Australia launch cohort, player
002 is assigned to the USA launch cohort and player 003 is
assigned to the China launch cohort.

Definition 6. Given an activity table D, the cohort ag-
gregation operator γc

L,e,fA
is defined as

γc
L,e,fA(D) ={(dL, g, s,m)|

Dg ← {(d, l, g)|d ∈ D ∧ i← d[Au]

∧ l = di,e[L] ∧ g = d[At]− ti,e}
∧ (dL, g) ∈ πl,g(Dg)

∧ s = Count(πAuσdg [l]=dL(Dg))

∧m = fA(σdg [l]=dL∧dg [g]=g∧g>0(Dg))

where L is a cohort attributes set, e is a birth action and
fA is a standard aggregation function with respect to the
attribute A.

In the second step, for each possible combination of cohort
and age, we select the corresponding age activity tuples of
the belonging users and perform the aggregation function
against them.

In summary, the cohort aggregation operator takes an ac-
tivity table D as input and produces a normal relational
table R as output. Each row in the output table R consists
of four parts (dL, g, s,m), where dL is the projection of birth
activity tuples onto the cohort attributes set L and identifies
the cohort, g is the age, i.e., the time point that we report
the aggregates, s is the size of the cohort, i.e., the number of
users in the cohort specified by dL, and m is the aggregated
measure produced by the aggregate function fA. Note that
we only apply fA on age activity tuples with g > 0.

3.3.4 Properties of Cohort Operators
We note that the two selection operators, σb

C,e and σg
C,e,

are commutative if they involve the same birth action.

σb
C,eσ

g
C,e(D) = σg

C,eσ
b
C,e(D) (1)

Based on this property, we can, as we shall see in Section
4, push the birth selection operator down the query plan to
optimize cohort query evaluation.

3.4 The Cohort Query
Given an activity table D and operators σb

C,e, σg
C,e, πL,

and γc
L,e,fA

, a cohort query Q : D → R can be expressed as
a composition of those operators that takes D as input and
produces a relation R as output with the constraint that
the same birth action e is used for all cohort operators in Q.
To specify a cohort query, we propose to use the following
SQL-style SELECT statement.

SELECT ... FROM D

BIRTH FROM action = e [AND σb
C,e]

[AGE ACTIVITIES IN σg
C,e]

COHORT BY L

In the above syntax, e is the birth action that is speci-
fied by the data analyst for the whole cohort query. The
order of BIRTH FROM and AGE ACTIVITIES IN clauses is ir-
relevant, and the birth selection (i.e., σb

C,e) and age selection
(i.e., σg

C,e) clauses are optional. We also introduce two key-
words AGE and COHORTSIZE for data analysts to retrieve the
calculated columns produced by γc

L,e,fA
in the SELECT list.

Note that except for projection, we disallow other relational
operators such as σ (i.e., SQL WHERE) and γ (i.e., SQL GROUP

BY), and binary operators like intersection and join, in a ba-
sic cohort query.

With the newly developed cohort operators, the cohort
analysis task presented in Example 4 can be expressed by
the following query:

Q1: SELECT country, COHORTSIZE, AGE, Sum(gold) as spent

FROM D AGE ACTIVITIES IN action = "shop"

BIRTH FROM action = "launch" AND role = "dwarf"

COHORT BY country

3.5 Extensions
Our cohort query proposal can be extended in many direc-

tions to enable even more complex and deep analysis. First,
it would be great to mix cohort queries with SQL queries
in a single query. For example, one may want to use a SQL
query to retrieve specific cohort trends produced by a cohort
query for further analysis. This mixed querying requirement
can be achieved by applying the standard SQL WITH clause
to encapsulate a cohort query as a sub-query that can be
processed by an outer SQL query. The following example
demonstrates how to use a mixed query to retrieve specific
cohort spent trends reported by Q1 for further analysis.

WITH cohorts AS (Q1)

SELECT cohort, AGE, spent FROM cohorts

WHERE cohort IN ["Australia", "China"]

Another extension is to introduce binary cohort operators
(e.g., join, intersection etc.) for analyzing multiple activity
tables. We leave the details of evaluating a mixed query and
other interesting extensions in a future paper. In the rest of
this paper, we shall focus on the approaches for evaluating
a single cohort query over a single activity table.

3.6 Mapping Cohort Operations to SQL State-
ments

Before leaving this section, we shall demonstrate that
given a materialized view (MV) built for a specific birth
action, the proposed cohort operators can be implemented
by SQL sub-queries. This enable us to pose cohort queries
composed of newly developed operators in the context of a
non-intrusive mechanism.

As shown in Section 2, the MV approach stores each ac-
tivity tuple of user i along with i’s birth attributes. Thus, to
implement the birth selection operator, one can use a SQL
SELECT statement with a WHERE clause specifying the birth
selection condition on the materialized birth attributes. Sim-
ilarly, the age selection operator can be simulated by a SQL
SELECT statement with a WHERE clause specifying the age
selection condition along with an additional predicate to in-
clude birth activity tuples. The cohort aggregation operator
can be implemented by applying a SQL GROUP BY aggrega-
tion operation on the joined results between the cohortSize

table and the qualified age activity tuples.
As an example, Figure 2 demonstrates for Q1 of Exam-

ple 1 the correspondence between the three proposed cohort
operators and the equivalent SQL statements posed on the
MV built for the launch birth action. As in Figure 1, the
player, action and time attributes are respectively abbre-
viated to p, a, and t. bc, br, bt and age are four attributes

Parser
Query

Executor

Catalog

COHANA

Query

Results

Storage

Manager

Figure 3: COHANA Architecture

additionally materialized along with the original activity ta-
ble. The first three attributes, bc, br and bt, respectively
represent the birth attributes for country, role and time.
It should be noted that the SQL statements of Figure 2 are
separated out for ease of exposition: one can optimize them
by combining Figure 2(a) and 2(b) into a single SQL state-
ment, as we do in all experiments.

4. COHANA: COHORT QUERY ENGINE
To support cohort analytics with the newly designed co-

hort operators, we present four extensions to a columnar
database: 1) a fine tuned hierarchical storage format for
persisting activity tables; 2) a modified table scan operator
capable of skipping age activity tuples of unqualified users;
3) a native efficient implementation of cohort operators; 4) a
query planner capable of utilizing the cohort operator prop-
erty (i.e., Equation (1)) for optimization. We have imple-
mented the proposed techniques in a columnar based query
engine, COHAHA, for performance study. Figure 3 presents
the architecture of COHAHA which includes four modules:
parser, catalog, storage manager and query executor. The
first two modules are trivial, and we shall focus on the other
two modules.

4.1 The Activity Table Storage Format
We store an activity table D in the sorted order of its

primary key (Au, At, Ae). This storage layout has two nice
properties: 1) activity tuples of the same user are clustered
together; we refer to this as the clustering property; 2) The
activity tuples of each user are stored in a chronological
order; this is called the time ordering property. With these
two properties, we can efficiently find the birth activity tuple
of any user for any birth action in a single sequential scan.
Suppose the activity tuples of user i is stored between dj
and dk. To find the birth activity tuple of i for any birth
action e, we just iterate over each tuple between dj and dk
and return the first tuple db satisfying db[Ae] = e.

We employ a chunking scheme and various compression
techniques to speed up cohort query processing. We first
horizontally partition the activity table into multiple data
chunks such that the activity tuples of each user are included
in exactly one chunk. Then, in each chunk, the activity
tuples are stored column by column. For each column in a
data chunk, we choose an appropriate compression scheme
for storing values based on the column type.

For the user column Au, we choose Run-Length-Encoding
(RLE) scheme. The values in Au is stored as a sequence of
triples (u, f, n), where u is the user in Au, f is the position of
the first appearance of u in the column, and n is the number
of appearances of u in the column. We shall see in Section
4.3, a modified table scan operator can directly process these
triples and efficiently skip to the activity tuples of the next
user if the birth activity tuple of the current user is not
qualified with respect to the birth selection condition.

WITH birthView AS(
SELECT p, a, t, gold,

bc, bt, age
FROM MV
WHERE br = "dwarf"

),

(a) σb
role=”dwarf”, launch

ageView AS (
SELECT *
FROM birthView
WHERE a = "shop" OR

(t=bt AND a="launch")
),

(b) σg
action=”shop”, launch

cohortSize AS (
SELECT bc as cohort,

Count(distinct p)
as size

FROM birthView
GROUP BY bc),

(c)

SELECT cohort, size, age,
Sum(gold) as spent

FROM ageView, cohortSize
WHERE cohort = bc
GROUP BY cohort, age

(d) γc
country, launch, Sum(gold)

Figure 2: The correspondence between cohort operators and SQL statements of the MV approach

For the action column Ae and other string columns, we
employ a two level compression scheme presented in [11] for
storing the values. More details of this encoding scheme can
be found in [11]. For each such column A, we first build
and persist a global dictionary which consists of the sorted
unique values of A. Each unique value of A is then assigned
a global-id, which is the position of that value in the global
dictionary. For each data chunk, the sorted global-ids of the
unique values of A in that chunk form a chunk dictionary.
Given the chunk dictionary, each value of A in that chunk
can be represented as a chunk-id, which is the position of the
global-id of that value in the chunk dictionary. The chunk-
ids are then persisted immediately after the chunk dictionary
in the same order as the respective values appearing in A.
This two level encoding scheme enables efficient pruning of
chunks where no users perform the birth action. For a given
birth action e, we first perform a binary search on the global
index to find its global-id gi. Then, for each data chunk, we
perform a binary search for gi in the chunk dictionary. If
gi is not found, we can safely skip the current data chunk
since no users in the data chunk perform e.

For At and other integer columns, we employ a two-level
delta encoding scheme which is similar to the one designed
for string columns. For each column A of this type, we first
store the MIN and MAX value of A for the whole activ-
ity table as the global range. Then, for each data chunk,
the MIN and MAX values are extracted as the chunk range
from the segment of A in that chunk and persisted as well.
Each value of the column segment is then finally stored as
the delta (difference) between it and the chunk MIN value.
Similar to the encoding scheme for string columns, this two-
level delta encoding scheme also enables the efficient pruning
of chunks where no activity tuples fall in the range specified
in the birth selection or age selection operation.

With the above two encoding schemes, the final represen-
tation of string columns and integer columns are arrays of
integers within a small range. We therefore further employ
integer compression techniques to reduce the storage space.
For each integer array, we compute the minimum number of
bits, denoted by n, to represent the maximum value in the
array, and then sequentially pack as many values as possible
into a computer word such that each value only occupies n
bits. Finally, we persist the resulting computer words to the
storage device. This fixed-width encoding scheme is by no
means the most space-saving scheme. However, it enables
the compressed values to be randomly read without decom-
pression. For each position in the original integer array, one
can easily locate the corresponding bits in the compressed
computer words and extract the value from these bits. This
feature is of vital importance for efficient cohort query pro-
cessing.

TableScan

σb Role = ”dwarf”, launch

σg Action = “shop”, launch

γ
c
country, launch, sum(Gold)

Figure 4: Query plan for Q1

It should be noted that the proposed hierarchical stor-
age format, although highly customized for cohort query
processing, is also applicable to database tables and OLAP
cubes with the restriction on the order of (Au, At, Ae) re-
moved. Consequently, one can also support conventional
database and cube operators on top of this storage format.

4.2 Cohort Query Evaluation
This section presents how to evaluate a cohort query over

the activity table compressed with the techniques proposed
in Section 4.1. We shall use the cohort query Q1 as our
running example. The overall query processing strategy is
as follows. We first generate a logical query plan, and then
optimize it by pushing down the birth selections along the
plan. Next, the optimized query plan is executed against
each data chunk. Finally, all partial results produced by the
third step are merged together to produce the final result.
The final merging step is trivial and we shall only present
the first three steps.

The cohort query plan we introduced in this paper is
a tree of physical operators consisting of four operators:
TableScan, birth selection σb

C,e, age selection σg
C,e and co-

hort aggregation γc
L,e,fA

. Like other columnar databases,
the projection operation is implemented in a pre-processing
step: we collect all required columns at query preparation
stage and then pass those columns to the TableScan opera-
tor which retrieves the values for each column.

In the query plan, the root and the only leaf node are
the aggregation operator, γc

L,e,fA
, and the TableScan oper-

ator, respectively, and between them is a sequence of birth
selection operators and age selection operators.

Then, we push down the birth selection operators along
the query plan such that they are always below the age se-
lection operators. This push-down optimization is always
feasible, since according to equation (1), we can arbitrarily
swap the order of σb

C,e and σg
C,e operators in any sequence

consisting of these two operators. Figure 4 shows the query
plan for the cohort query of Q1. We always employ this

push-down optimization since, as we shall see in Section
4.3, a specially designed TableScan implementation can ef-
ficiently skip age activity tuples without further processing
for users whose birth activity tuples do not satisfy the birth
selection condition. Therefore, the cost of evaluating birth
selection operators before age selection operators is always
less than the cost incurred from the reverse evaluation se-
quence in terms of the number of activity tuples processed.

After pushing down birth selections, the resulting query
plan will be executed against each data chunk. Before the
execution, we apply an additional filtering step by utiliz-
ing the Ae column’s two-level compression scheme to skip
data chunks where no users perform the birth action e. The
concrete processing strategy is presented in Section 4.1. In
practice, we find that this intermediate filtering step is par-
ticularly useful if the birth action is highly selective (i.e.,
only a few users performed that birth action).

We will present the implementation of the physical oper-
ators in the rest of this section.

4.3 The TableScan Operator
We extend the standard TableScan operator of columnar

databases for efficient cohort query processing. The mod-
ified TableScan operator performs scanning operation over
the compressed activity table that we proposed in Section
4.1. We mainly add two additional functions to a standard
columnar database TableScan operator: GetNextUser() and
SkipCurUser(). The GetNextUser() function returns the
activity tuple block of the next user; the SkipCurUser()

skips the activity tuples of the current user.
The modified TableScan operator is implemented as fol-

lows. For each data chunk, in the query initialization stage,
the TableScan operator collects all (compressed) chunk columns
referenced in the query and maintains for each chunk column
a file pointer which is initialized to point to the beginning
of that chunk column. The implementation of GetNext()

function is identical to the standard TableScan operator of
a columnar database.

The GetNextUser() is implemented by first retrieving the
next triple (u, f, n) of Au column and then advancing the
file pointer of each other referenced column to the begin-
ning of the column segment corresponding to user u. The
SkipCurUser() is implemented in a similar way. When it is
called, the SkipCurUser() function first calculates the num-
ber of remaining activity tuples of the current user, and
then advances the file pointers of all columns by the same
number.

4.4 Cohort Algorithms
This section develops algorithms for the implementation

of cohort operators over the proposed storage format for
activity tables.

Algorithm 1 presents the implementation of the birth se-
lection operator σb

C,e. It employs an auxiliary function
GetBirthTuple(d, e) (line 1 – line 5) for finding the birth
activity tuple of user i = d[Au], given that d is the first ac-
tivity tuple of i in the data chunk and e is the birth action.
The GetBirthTuple() function finds i’s birth activity tuple
by iterating over each next tuple d ∈ D and checks whether
d belongs to i and whether d[Ae] is the birth action e (line
3). The first activity tuple d matching the condition is the
required birth activity tuple.

Algorithm 1: σb
C,e(D) operator implementation

Input : A data chunk D and a birth action e
1 GetBirthTuple(d, e)
2 i← d[Au]
3 while d[Au] = i ∧ d[Ae] 6= e do
4 d← D.GetNext()

5 return d

6 Open()
7 D.Open()
8 uc ← ∅

9 GetNext()
10 if uc has more activity tuples then
11 return D.GetNext()

12 while there are more users in the data chunk do
13 (u, f, n)← D.GetNextUser()
14 uc ← u
15 d← D.GetNext()

16 db ← GetBirthTuple(d, e)

17 Found ← C(db)
18 if Found then
19 return d

20 D.SkipCurUser()

To evaluate σb
C,e, Algorithm 1 first opens the input data

chunk D and initializes the global variable uc (line 7 – line
8) which points to the user currently being processed. In
the GetNext() function, we return the next activity tuple
d of uc if uc is qualified with respect to the birth selection
condition (line 11). If uc’s activity tuples are exhausted, we
retrieve the next user block by calling the GetNextUser()

function of the TableScan operator (line 13). Then, we find
the birth activity tuple of the new user and check if it sat-
isfies the birth selection condition (line 16 – line 17). If the
new user is qualified, its birth activity tuple will be returned;
otherwise all the activity tuples of this user will be skipped
using the SkipCurUser() function so that its next user can
be ready for processing. Therefore, one can continuously
call the GetNext() function to retrieve the activity tuples of
users that are qualified with respect to the birth selection
condition.

The implementation of σg
C,e is much simpler than σb

C,e.
We also employ the user block processing strategy. For each
user block, we first locate the birth activity tuple and then
return the birth activity tuple and qualified age activity tu-
ples.

Algorithm 2 presents the implementation of γc
L,e,fA

opera-
tor. The main logic is implemented in the Open() function.
The function first initializes two hash tables Hc and Hg

which respectively store the cohort size and per data chunk
aggregation result for each (cohort, age) partition (line 2 –
line 6). Then, the Open() function iterates over each user
block and updates Hc for each qualified user (determined by
σb
C,e) and Hg for all qualified age activity tuples (determined

by σg
C,e) (line 10 – line 14). To speed up the query process-

ing, we further follow the suggestions presented in [10, 11]
and use array based hash tables for aggregation. In prac-
tice, we find that the use of array-based hash tables in the
inner loop of cohort aggregation significantly improves the
performance since modern CPUs can highly pipeline array
operations.

Algorithm 2: γL,e,fA(D) operator implementation

Input : A data chunk D, a birth action e, an attribute list L
1 Open()
2 D.Open()
3 Hc ← ∅ // Cohort size hash table
4 Hg ← ∅ // Cohort metric hash table
5 while there are more users in D do
6 (u, f, n)← D.GetNextUser()
7 uc ← u
8 d← D.GetNext()

9 db ← D.GetBirthTuple(d, e)
10 if uc is qualified then
11 Hc[db[L]] + +
12 while uc has more qualified age activity tuples

do
13 g ← d[At]− db[At]

14 update Hg [db[L]][g] with fA(d)

15 GetNext()
16 Retrieve next key (c, g) from Hg

17 return (c, g,Hc[c], Hg [c][g])

4.5 Optimizing for User Retention Analysis
One popular application of cohort analysis is to show the

trend of user retention [1]. These cohort queries involve
counting distinct number of users for each (cohort, age)
combination. This computation is very costly in terms of
memory for fields with a large cardinality, such as Au. For-
tunately, our proposed storage format has a nice property
that the activity tuples of any user are included in only one
chunk. We therefore implement a UserCount() aggregation
function for the efficient counting of distinct users by per-
forming counting against each chunk and returning the sum
of the obtained numbers as the final result.

4.6 Analysis of Query Performance
Given there are n users in the activity table D, each user

produces m activity tuples, it can be clearly seen that, to
evaluate a cohort query composed of σb

C,e, σg
C,e and γc

L,e,fA
operators, the query evaluation scheme we presented so far
only needs to processO(l×m) activity tuples in a single pass,
where l is the number of qualified users with respect to the
birth selection condition. Therefore, the query processing
time grows linearly with l, and therefore approaches optimal
performance.

5. A PERFORMANCE STUDY
This section presents a performance study to evaluate the

effectiveness of our proposed COHANA engine. We mainly
perform two sets of experiments. First, we study the effec-
tiveness of COHANA, and its optimization techniques. In
the second set of experiments, we compare the performance
of different query evaluation schemes.

5.1 Experimental Environment
All experiments are run on a high-end workstation. The

workstation is equipped with a quad-core Intel Xeon E3-
1220 v3 3.10GHz processor and 8GB of memory. The disk
speed reported by hdparm is 14.8GB/s for cached reads and
138MB/s for buffered reads.

The dataset we used is produced by a real mobile game
application. The dataset consists of 30M activity tuples

contributed by 57,077 users worldwide from 2013-5-19 to
2013-06-26, and occupies a disk space of 3.6GB in its raw csv
format. In addition to the required user, action and action
time attributes, we also include the country, city and role as
dimensions and session length and gold as measures. Users
in the game played 16 actions in total, and we choose the
launch, shop and achievement actions as the birth actions.
In addition, we manually scale the dataset and study the
performance of three cohort query evaluation schemes on
different dataset size. Given a scale factor X, we produce a
dataset consisting of X times users. Each user has the same
activity tuples as the original dataset except with a different
user attribute.

We implement the SQL based approach and the materi-
alized view (MV) approach on top of two state-of-the-art
relational databases: Postgres and MonetDB. For the SQL
based approach, we manually translate the cohort query
into SQL queries as exemplified in Figure 1. For the MV
approach, we first materialize the view beforehand using
CREATE TABLE AS command. Specifically, for each birth ac-
tion, we materialize the age and a birth attribute set of time,
role, country and city attribute in its materialized view.
This materialization scheme adds 15 additional columns to
the original table by performing six joins in total. Given the
materialized view, we then follow the method mentioned in
Section 3.6 to translate the cohort query into standard SQL
queries as well. To speed up the two approaches, we fur-
ther build a cluster index on the primary key and indices on
birth attributes, and allow the two databases to use all the
free memory for buffering during query processing. For CO-
HANA, we choose a chunk size of 256K, that is, each chunk
contains 256K user activity tuples. We also allow slightly
more tuples to be included in a chunk in order to ensure all
activity tuples of each user are included in a single chunk.

5.2 Benchmark Queries
We design four queries (described with COHANA’s cohort

query syntax) for the benchmark by incrementally adding
the cohort operators we proposed in this paper. The first
query Q1 evaluates a single cohort aggregation operator.
The second query Q2 evaluates a combination of birth selec-
tion and cohort aggregation. The third query Q3 evaluates
a combination of age selection and cohort aggregation. The
fourth query Q4 evaluates a combination of all three cohort
operators. For each query, we report the average execution
time of five runs for each system.

Q1: For each country launch cohort, report the number
of retained users who did at least one action since they first
launched the game.

SELECT country, CohortSize, Age, UserCount()

FROM GameActions BIRTH FROM action = "launch"

COHORT BY country

Q2: For each country launch cohort born in a specific date
range, report the number of retained users who did at least
one action since they first launched the game.

SELECT country, COHORTSIZE, AGE, UserCount()

FROM GameActions BIRTH FROM action = "launch" AND

time BETWEEN "2013-05-21" AND "2013-05-27"

COHORT BY country

Q3: For each country shop cohort, report the average gold
they spent in shopping since they made the first shop in the
game.

SELECT country, COHORTSIZE, AGE, Avg(gold)

FROM GameActions BIRTH FROM action = "shop"

AGE ACTIVITIES IN action = "shop"

COHORT BY country

Q4: For each country shop cohort, report the average gold
they spent in shopping in their birth country where they
were born with respect to the dwarf role in a given date
range.

SELECT country, COHORTSIZE, AGE, Avg(gold)

FROM GameActions BIRTH FROM action = "shop" AND

time BETWEEN "2013-05-21" AND "2013-05-27" AND

role = "dwarf" AND

country IN ["China", "Australia", "USA"]

AGE ACTIVITIES IN action = "shop" AND country = Birth(country)

COHORT BY country

In order to investigate the impact of the birth selection
operator and the age selection operator on the query per-
formance of COHANA, we further design two variants of
Q1 and Q3 by adding to them a birth selection condition
(resulting in Q5 and Q6) or an age selection condition (re-
sulting in Q7 and Q8). The details of Q5-Q8 are shown
below.

Q5: For each country launch cohort, report the number
of retained users who did at least one action during the date
range [d1; d2] since they first launched the game.

SELECT country, COHORTSIZE, AGE, UserCount()

FROM GameActions

BIRTH FROM action = "launch" AND time BETWEEN d1 AND d2
COHORT BY country

Q6: For each country shop cohort, report the average gold
they spent in shopping during the date range [d1; d2] since
they made their first shop in the game.

SELECT country, COHORTSIZE, AGE, Avg(gold)

FROM GameActions

BIRTH FROM action = "shop" AND time BETWEEN d1 AND d2
AGE ACTIVITIES IN action = "shop"

COHORT BY country

Q7: For each country launch cohort whose age is less than
g, report the number of retained users who did at least one
action since they first launched the game.

SELECT country, COHORTSIZE, AGE, UserCount()

FROM GameActions BIRTH FROM action = "launch"

AGE ACTIVITIES in AGE < g

COHORT BY country

Q8: For each country shop cohort whose age is less than
g, report the average gold they spent in shopping since they
made their first shop in the game.

SELECT country, COHORTSIZE, AGE, Avg(gold)

FROM GameActions BIRTH FROM action = "shop"

AGE ACTIVITIES IN action = "shop" AND AGE < g

COHORT BY country

5.3 Performance Study of COHANA
In this section we report on a set of experiments in which

we vary chunk size and birth/age selection condition and
investigate how COHANA adapts to such variation.

5.3.1 Effect of Chunk Size
Figures 5 and 6 respectively present the storage space

COHANA requires for the activity table compressed with
different chunk sizes, and the corresponding query perfor-
mance. It is clearly seen from Figure 6 that increasing the
chunk size also increases storage cost. This is because an
increase in the size of a chunk will lead to more players in-
cluded in that chunk. As a result, the number of distinct
values in the columns of each chunk also increases, which in
turn requires more bits for encoding values. We also observe
that cohort queries can be processed slightly faster under a
smaller chunk size than a larger one. This is expected as
fewer bytes are read. However, for large datasets, a larger
chunk size can be a better choice. For example, at scale 64,
COHANA processes Q1 and Q3 most efficiently under 1M
chunk size. This is because the processing of Q1 and Q3 at
scale 64 is dominated by disk accesses, whose granularity is
normally a 4KB block. Compared with a large chunk size, a
small one leads to more part of the neighbouring columns to
be simultaneously read when reading a compressed chunk
column, and hence results in a longer disk read time and
a lower memory efficiency due to the memory contention
between the useful columns and their unused neighbours
within the same chunk.

5.3.2 Effect of Birth Selection
In Section 4.6, we claim that the running time of CO-

HANA is bounded by O(n) where n is the total number of
qualified users. This experiment studies the query perfor-
mance of COHANA with respect to the birth selection selec-
tivity. We run Q5 and Q6, which are respectively a variant
of Q1 and Q3, by fixing d1 to be the earliest birth date, and
incrementing d2 by one day each time. The dataset used in
this experiment is at scale 1.

Figure 7 presents the processing times of Q5 and Q6 which
are respectively normalized by that of Q1 and Q3. The cu-
mulative distribution of user births is also given in this fig-
ure. We do not differentiate the birth distributions between
the birth actions of launch and shop, as the birth distri-
butions with respect to both birth actions are similar. It
can be clearly observed from this figure that the process-
ing time of Q5 highly coincides with the birth distribution.
We attribute this coincidence to the optimization of push-
ing down the birth selection operator and the refined birth
selection algorithm which is capable of skipping unqualified
users. The processing time of Q6, however, is not very sen-
sitive to the birth distribution. This is because in Q6, users
are born with respect to the shop action, and there is a cost
in finding the birth activity tuple for each user. This cost is
avoided in Q5 as the first activity tuple of each user is the
birth activity tuple of this user (recall that the first action
each user performed is launch).

5.3.3 Effect of Age Selection
In this experiment, we run Q7 and Q8, another variant of

Q1 and Q3, on the dataset of scale 1 by varying g from 1
day to 14 days to study the query performance of COHANA
under different age selection conditions. Figure 8 presents
the result of this experiment. As in Figure 7, the process-
ing times of Q7 and Q8 are also respectively normalized by
that of Q1 and Q3. It can be seen from this figure that
the processing times of Q7 and Q8 exhibit different trends.

10
-1

10
0

10
1

10
2

1 2 4 8 16 32 64

ti
m

e
 (

s
)

scale

16K
64K
256K
1M

(a) Q1

10
-2

10
-1

10
0

10
1

1 2 4 8 16 32 64

ti
m

e
 (

s
)

scale

16K
64K
256K
1M

(b) Q2

10
-1

10
0

10
1

10
2

10
3

1 2 4 8 16 32 64

ti
m

e
 (

s
)

scale

16K
64K
256K
1M

(c) Q3

10
-3

10
-2

10
-1

10
0

10
1

1 2 4 8 16 32 64

ti
m

e
 (

s
)

scale

16K
64K
256K
1M

(d) Q4

Figure 5: COHANA’s performance under varying chunk size

10
2

10
3

10
4

10
5

1 2 4 8 16 32 64

s
iz

e
 (

M
B

)

scale

16K
64K
256K
1M

Figure 6: Effect of
chunk size on storage
space

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 5 10 15 20 25 30 35 40

ti
m

e

day

birth CDF
Q5
Q6

Figure 7: Effect of
birth selection

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 2 4 6 8 10 12 14

ti
m

e

age (day)

Q7
Q8

Figure 8: Effect of age
selection

10
1

10
2

10
3

10
4

10
5

10
6

1 2 4 8 16 32 64

ti
m

e
 (

s
)

scale

COHANA
MONET
PG

Figure 9: Time for
generating MV

Specifically, the processing time of Q7 increases almost lin-
early, while the processing time for Q8 increases slowly. The
reason for this difference is that the performance of Q7 is
bounded by the number of distinct users within the given age
range, which grows almost linearly with age range. For Q8,
the processing time mainly depends on finding the birth ac-
tivity tuples and the aggregation performed upon the shop
activity tuples. The cost of the former operation is fixed
across various age ranges, and the cost of the latter oper-
ation does not change dramatically as the number of shop
activity tuples grows slowly with the age – the aging effect.

5.4 Comparative Study
Figure 10 reports for each scale (factor) the execution time

that each system takes to execute the four queries. The re-
sults of the Postgres and the MonetDB databases are respec-
tively shown in the lines labelled by “PG-S/M” and in those
labelled by “MONET-S/M”, where “S” and “M” respec-
tively mean the SQL and the materialized view approaches.
As expected, the SQL based approach is the slowest as it
needs multiple joins for processing cohort queries. With the
elimination of joins, the materialized view based approach
can reduce the query processing time by an order of magni-
tude. This figure also shows the power of columnar storage
in terms of cohort query processing. MonetDB, a state-of-
the-art columnar database, can be up to two orders faster
than Postgres.

Although the combination of a materialized view and colum-
nar storage can address cohort queries reasonably well on
small datasets; however, it is not able to handle large datasets.
For example, it takes half an hour to process Q1 at scale
64. The proposed system, COHANA, is able to perform ex-
tremely well not only on small datasets, but also on large
datasets. Moreover, for each query, COHANA is able to
perform better than the MonetDB equipped with the ma-
terialized view at any scale. The performance gap between

them is one to two orders of magnitude in most cases, and
can be up to three orders of magnitude (Q4 at scale 32).
We also observe that the two retention queries (Q1 and Q2)
enjoy a larger performance gain than Q3 does and in part
attribute it to the optimization Section 4.5 presents for user
retention analysis. Finally, the generation of the material-
ized view is much more expensive than COHANA. As shown
in Figure 9, at scale 64, MonetDB needs more than 60,000
seconds (16.7 hours) to generate the materialized view from
the original activity table. This time cost is even more ex-
pensive in Postgres, which needs more than 100,000 seconds
(27.8 hours) at scale 32. The result for Postgres at scale 64
is not available as Postgres is not able to generate the mate-
rialized view before using up all free disk space, which also
implies a high storage cost during the generation of the ma-
terialized view. In a sharp contrast, COHANA only needs
1.25 hours to compress the activity table of scale 64.

6. RELATED WORK
The work related to ours is the database support for data

analysis and cohort analysis. The requirement to support
data analysis inside a database system has a long history.
The early effort is the SQL GROUP BY operator and aggre-
gate functions. These ideas are generalized with the CUBE

operator [10]. Traditional row-oriented databases are in-
efficient for CUBE style OLAP analysis. Hence, columnar
databases are proposed for solving the efficiency issue [7,
13, 15]. Techniques such as data compression [16, 18], query
processing on compressed data [4, 6, 12], array based aggre-
gation [5, 17], and materialized view based approaches [14]
are proposed for speeding up OLAP queries. Albeit tar-
geting OLAP queries defined on top of relational operators
these techniques can also be used to accelerate the process-
ing of cohort queries, as we have shown in Section 4.

Cohort analysis originates from social science [9]. How-
ever, the cohort analysis approach presented in social science

COHANA MONET-M MONET-S PG-M PG-S

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

 1 2 4 8 16 32 64

ti
m

e
 (

s
)

scale

(a) Q1

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

 1 2 4 8 16 32 64

ti
m

e
 (

s
)

scale

(b) Q2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

 1 2 4 8 16 32 64

ti
m

e
 (

s
)

scale

(c) Q3

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

 1 2 4 8 16 32 64

ti
m

e
 (

s
)

scale

(d) Q4

Figure 10: Performance comparison among different evaluation schemes

literatures has two limitations: 1) lack of a way for specify-
ing a subset of users or activity tuples for analysis; 2) only
use time attribute to identify cohorts. These two limitations
are recognized in modern analytical software package [3, 1,
2]. These software somehow try to solve these limitations
in their respective application domains. For example, Mix-
Panel allows data analysts to select user segment for cohort
analysis. But none of the solutions we investigated so far is
general. For example, none of the software support Birth()
filtering we present in this paper. An implicit cohort analysis
is conducted in [8] to study the behavior of users in a private
BitTorrent community using the SQL approach. Compared
to the above works, our effort not only generalizes the co-
hort analysis for broader spectrum of applications, but also
is the first attempt to extend database systems to support
the generalized cohort analysis.

7. CONCLUSION
Cohort analysis is a powerful tool for finding unusual

user behavioral trends in large activity tables. This pa-
per has conducted the first investigation of database sup-
port for cohort analysis. Consequently, we have introduced
an extended relation for modeling activity data and ex-
tended SQL with three new operators for composing cohort
queries. We have developed a columnar based query engine,
COHAHA, for efficient cohort query processing. Our ex-
perimental results showed that COHANA can achieve two
orders faster query performance than simply running SQL
queries over conventional database systems, demonstrating
the possible benefit of extending a database system for co-
hort queries over implementing cohort queries on top of it.

8. ACKNOWLEDGMENTS
This research was supported by the National Research

Foundation, Prime Minister’s Office, Singapore, under its
Competitive Research Programme (CRP Award No. NRF-
CRP8-2011-08).

9. REFERENCES
[1] Retention. https://mixpanel.com/retention/.

[2] Rjmetrics. https://rjmetrics.com/.

[3] Use the cohort analysis report. https://support.
google.com/analytics/answer/6074676?hl=en.

[4] D. Abadi, S. Madden, and M. Ferreira. Integrating
compression and execution in column-oriented
database systems. In SIGMOD, pages 671–682, 2006.

[5] S. Agarwal, R. Agrawal, P. Deshpande, A. Gupta,
J. F. Naughton, R. Ramakrishnan, and S. Sarawagi.

On the computation of multidimensional aggregates.
In VLDB, pages 506–521, 1996.

[6] S. Amer-Yahia and T. Johnson. Optimizing queries on
compressed bitmaps. In VLDB, pages 329–338, 2000.

[7] P. A. Boncz, M. Zukowski, and N. Nes.
Monetdb/x100: Hyper-pipelining query execution. In
CIDR, pages 225–237, 2005.

[8] Q. Cai and K.-T. Lo. A multi-faced measurement
study on a large private bittorrent community.
Peer-to-Peer Networking and Applications, 8(1):32–48,
2015.

[9] N. D. Glenn. Cohort Analysis. Sage Publications, Inc.,
London, 2005.

[10] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh.
Data cube: A relational aggregation operator
generalizing group-by, cross-tab, and sub-total. In
ICDE, pages 152–159, 1996.

[11] A. Hall, O. Bachmann, R. Büssow, S. Ganceanu, and
M. Nunkesser. Processing a trillion cells per mouse
click. PVLDB, 5(11):1436–1446, 2012.

[12] Y. Li and J. M. Patel. Bitweaving: Fast scans for
main memory data processing. In SIGMOD, pages
289–300, 2013.

[13] S. Manegold, P. A. Boncz, and M. L. Kersten.
Optimizing database architecture for the new
bottleneck: Memory access. The VLDB Journal,
9(3):231–246, 2000.

[14] M. Staudt and M. Jarke. Incremental maintenance of
externally materialized views. In VLDB, pages 75–86,
1996.

[15] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen,
M. Cherniack, M. Ferreira, E. Lau, A. Lin,
S. Madden, E. O’Neil, P. O’Neil, A. Rasin, N. Tran,
and S. Zdonik. C-store: A column-oriented dbms. In
VLDB, pages 553–564, 2005.

[16] T. Westmann, D. Kossmann, S. Helmer, and
G. Moerkotte. The implementation and performance
of compressed databases. SIGMOD Record,
29(3):55–67, 2000.

[17] Y. Zhao, P. M. Deshpande, and J. F. Naughton. An
array-based algorithm for simultaneous
multidimensional aggregates. In SIGMOD, pages
159–170, 1997.

[18] M. Zukowski, S. Heman, N. Nes, and P. Boncz.
Super-scalar RAM-CPU cache compression. In ICDE,
pages 59–70, 2006.

