
RDFPeers: A Scalable Distributed RDF Repository
based on A Structured Peer-to-Peer Network

Min Cai
Information Sciences Institute

4676 Admiralty Way
Marina del Rey, CA 90292

mcai@isi.edu

Martin Frank
Information Sciences Institute

4676 Admiralty Way
Marina del Rey, CA 90292

frank@isi.edu

ABSTRACT
Existing centralized Resource Description Framework (RDF) repo-
sitories have limitations both in their failure tolerance and in their
storage capability. Existing Peer-to-Peer (P2P) RDF repositories
either (a) cannot guarantee to find query results, even if these re-
sults exist in the network, or (b) are not truly peer-to-peer by de-
signating “super-”peers. We present a P2P network of RDF-triple-
storing nodes (“RDFPeers”) that stores each triple at three places
in the network by applying a globally known hash function to its
subject, predicate, and object. Thus, all nodes know which node is
responsible for storing triple values they are looking for.

RDFPeers’ benefits are that (1) each participating node can see
and mine (a fraction of) the queries issued, in contrast to a Google-
like privately owned RDF search engine, that (2) it has no sin-
gle point of failure and no elevated peers, that (3) it does not re-
quire the prior definition of RDF schemas, that (4) it efficiently
resolves exact-match and range queries that select a small fraction
of the overall triples, and finally that (5) it guarantees that queries
find matched triples in the network if the triples exist. Our pre-
viously published Multi-Attribute Addressable Network (MAAN)
extended Chord to efficiently answer multi-attribute and range que-
ries. In this paper, we extend MAAN by adding RDF-specific sto-
rage, retrieval, and load balancing schemes. The result is that in
RDFPeers (a) the size of the neighborhood state [in number of con-
nections], (b) the RDF triple insertion cost [in number of routing
hops], and (c) the query execution cost for many queries [in number
of routing hops] are logarithmic to the number of nodes in the net-
work. We further performed experiments that show that the triple-
storing load in RDFPeers differs by less than an order of magnitude
between the most and the least loaded node for real-world RDF
data.

Categories and Subject Descriptors
C.2.4 [Computer Communication Networks]: Distributed Sys-
tems – Distributed Applications, Distributed Databases; C.2 [Net-
work Protocols]: Routing Protocols; H.2.3 [Database Manage-
ment]: Languages – Query Languages

General Terms
Networking, Algorithms, Routing, Distributed Computing

Keywords
Semantic Web, Peer-to-Peer, Distributed RDF Repositories

.

1. INTRODUCTION
RDF [1] meta-data makes flexible statements about resources

that are uniquely identified by URIs. RDF statements are machine-
processable and machine-understandable, and statements about the
same resource can be distributed on the Web and made by different
users. RDF schemata [2] are extensible and evolvable over time by
using a new base URI every time the schema is revised. The distri-
bution of RDF statements provides great flexibility for annotating
resources. However, distributed RDF documents on Web pages are
hard to discover. That is, obviously, just because you put an RDF
document on your Web site does not mean that others can find it,
much less issue structured queries against it. One approach is to
crawl all possible Web pages and index all RDF documents in cen-
tralized search engines, “RDF Google” if you wish, but this ap-
proach makes it difficult to keep the indexed RDF up to date. For
example, it currently takes Google many days to index a newly cre-
ated Web page. Further, this approach has a large infrastructure
footprint for the organization providing the querying service, and
is a centralized approach on top of technologies (RDF, the Internet
itself) that were intentionally designed for decentralized operation.

One choice for non-centralized RDF repositories is Edutella [11]
which provides an RDF-based meta-data infrastructure for P2P ap-
plications. It uses a Gnutella-like [15] unstructured P2P network
which has no centralized index or predictable location for RDF
triples. Instead, RDF queries are flooded to the whole network and
each node processes every query. Measurement studies [18, 20]
show that Gnutella-like unstructured P2P networks do not scale
well to a large number of nodes. This is because their flooding
mechanism generates a large amount of unnecessary traffic and pro-
cessing overhead on each node, unless a hop-count limit is set for
queries – but then the queries cannot guarantee finding results, even
if these results exist in the network. Super-peer based RDF P2P
networks [12] provide better scalability by introducing super-peers
and schema-based routing, with the drawback of not truly being
peer-2-peer and requiring the definition of schemas.

This paper presents a scalable and distributed RDF triple repos-
itory named RDFPeers for storing, indexing and querying individ-
ual RDF statements, and which does not require the definition of an
RDF schema before inserting RDF triples into the network. RDF
triple storage providers self-organize into a structured P2P network
based on randomly chosen node IDs. When an RDF triple is in-
serted into the network, it will be stored three times, based on ap-
plying a globally-known hash function to its subject, predicate, and
object values. Queries can then efficiently be routed to those nodes
in the network where the triples in question are known to be stored
if they exist.

2. RDFPEERS ARCHITECTURE
Our distributed triple repository consists of many individual no-

des called RDFPeers that self-organize into a multi-attribute ad-
dressable network (MAAN) [4] which extends Chord [19] to effi-
ciently answer multi-attribute and range queries. However, MAAN
only supported predetermined attribute schemata with a fixed num-
ber of attributes. RDFPeers exploits MAAN as the underlying
network layer and extends it with RDF-specific storage, retrieval,
and load balancing techniques. Figure 1 shows the architecture of
RDFPeers. Each node in RDFPeers consists of five components:
the MAAN network layer, the RDF triple loader, the local RDF
triple storage, the native query resolver and the RDQL-to-native-
query translator. The underlying MAAN protocol contains three
classes of messages for (a) topology maintenance, (b) storage, and
(c) search. (a) The topology maintenance messages are used for
keeping the correct neighbor connections and routing tables and
include JOIN/LEAVE, KEEPALIVEand other network-structure-
stabilizing messages. (b) TheSTOREmessage inserts triples into
the network. (c) TheSEARCHmessage visits the nodes where the
triples in question are known to be stored, and returns the matched
triples to the requesting node. The RDF triple loader reads an RDF
document, parses it into RDF triples, and uses MAAN’sSTORE
message to store the triples into the RDFPeers network. When an
RDFPeer receives aSTOREmessage, it stores the triples into its
Local RDF Triple Storage component such as a relational database.
The native query resolver parses native RDFPeers queries and uses
MAAN’s SEARCHmessage to resolve them. There can be a mul-
titude of higher-level query modules on top of the native query re-
solver which map higher-level user queries into RDFPeers’ native
queries, such as an RDQL to Native Query Translator.

RDF
Documents

JOIN/LEAVE,
STORE,

SEARCH,
KEEPALIVE

RDQL
Queries

MAAN Network Layer

RDF
Triple

Loader Native
Query

Resolver

RDFPeer

RDQL to
Native
Query

Translator

Local
RDF

Triple
Storage

RDFPeers Network

MAAN Network Layer

RDF
Triple

Loader Native
Query

Resolver

RDFPeer

RDQL to
Native
Query

Translator

Local
RDF

Triple
Storage

Figure 1: The architecture of RDFPeers

3. MAAN AS USED FOR RDFPEERS
MAAN uses the same one-dimensional circular identifier space

with modulo2m as Chord, wherem is the number of bits in node
identifiers and attribute hash values. Every node in MAAN is as-
signed a uniquem-bit identifier, called the node ID, and all nodes
self-organize into a ring topology based on their node IDs. The
node ID can be chosen locally, for example by applying a hash
function to the node’s IP address and port number.

In Chord, bundles of related attribute-value pairs such as “name:
John, age: 27” are called “resources”, a term we will avoid in this
paper because of its different meaning in RDF. Note that for RDF-
Peers’ use of MAAN, a “bundle of related attribute-value pairs” is
always synonymous with “an RDF triple”.

Unlike Chord in which these bundles can only be stored and
looked up by one unique key, they can be stored and looked up by
any attribute value in MAAN. Chord uses SHA1 hashing [10] to as-
sign each key a uniquem-bit identifier. MAAN uses the same hash-
ing for string-valued attributes. However, for numeric attributes
MAAN uses locality preserving hash functions to assign each at-

tribute value an identifier in them-bit space. Here, we refer to the
hashing image of the key in Chord as well as to the hashing image
of the attribute value in MAAN as “the key” which is an identi-
fier in the circularm-bit space. Suppose we have an attributea
with numeric valuesv ∈ [vmin, vmax]. (Note that in RDFPeers,
the only attributes that can have numeric values are the objects
given that subjects and predicates are always non-numeric URIs
in RDF.) A simplistic locality preserving hash function we could
use isH(v) = (v − vmin) × (2m − 1)/(vmax − vmin), where
v ∈ [vmin, vmax]. Key k is assigned to the first node whose iden-
tifier is equal to or followsk in the identifier circle. This node is
called the successor node of keyk, denoted bysuccessor(k). Sim-
ilar to Chord, each node in MAAN maintains two sets of neighbors,
thesuccessor listand thefinger table. The nodes in the successor
list immediately follow the node in the identifier space, while the
nodes in the finger table are spaced exponentially around the iden-
tifier space. The finger table has at mostm entries. Thei-th en-
try in the table for the node with IDn contains the identity of the
first nodes that succeedsn by at least2i−1 on the identifier circle,
i.e.s = successor(n+2i−1), where1 ≤ i ≤ m and all arithmetic
is modulo2m. MAAN uses Chord’s successor routing algorithm to
forward a request of keyk to its successor node. If a noden re-
ceives a request with keyk, the node searches its successor list for
the successor ofk and forwards the request to it if possible. If it
does not know the successor ofk, it forwards the request to the
nodej whose identifier most immediately precedesk in its finger
table. By repeating this process, the request gets closer and closer
to the successor ofk. Since the fingers on each node are spaced
exponentially around the identifier space, each hop from noden to
the next node covers at least half the identifier space (clockwise)
betweenn andk. The average number of hops for this routing is
O(log N) for a network withN nodes.

MAAN stores each bundle of attribute-value pairs on the suc-
cessor nodes of the keys for all its attribute values. Suppose each
bundle hasM pairs<ai, vi> andHi(v) is the hash function for
attributeai (Note thatM is always 3 in RDFPeers,a1 is always
subject, a2 is alwayspredicate, anda3 is alwaysobject.) Each
bundle of attribute-value pairs will be stored at nodeni = suc-
cessor(H(vi)) for each attribute valuevi, where1 ≤ i ≤ M .
A STOREmessage for attribute valuevi is routed to its succes-
sor node using the above successor routing algorithm.M nodes
store the same bundle consisting ofM attribute-value pairs, each
by keying on a different attribute. Thus, the routing hops for stor-
ing a bundle of attribute-value pairs isO(M log N) for bundles
with M attributes (and, again,M is always 3 for RDFPeers’ use of
MAAN).

Since numeric attribute values in MAAN are mapped to them-
bit identifier space using locality preserving hash functionH, nu-
merically close values for the same attribute are stored on nearby
nodes. Given a range query[l, u] where l and u are the lower
bound and upper bound respectively, nodes which contain attribute
value v ∈ [l, u] must have an identifier equal to or larger than
successor(H(l)) and equal to or less thansuccessor(H(u)). Sup-
pose noden wants to search for bundles with attribute valuev ∈
[l, u] for attributea. Noden composes aSEARCHmessage and
uses the successor routing algorithm to route it to nodenl, the suc-
cessor ofH(l). The search message has parametersk, a, R, and
X. k is the key used for successor routing, initiallyk = H(l). a
is the name of the attribute we are interested in,R is the desired
query range[l, u] and X is the list of bundles of attribute-value
pairs discovered in the range. Initially,X is empty. When nodenl

receives the search message, it searches its local sets and appends
those sets that satisfy the range query for attributea to X in the

message. Then it checks whether it is the successor ofH(u) also.
If true, it sends back the search result inX to the requesting node
n. Otherwise, it forwards the search message to its immediate suc-
cessorni. Nodeni repeats this process until the message reaches
nodenu, the successor ofH(u). Thus, routing the search message
to nodenl via successor routing takesO(log N) hops forN nodes.
The next sequential forwarding fromnl to nu takesO(K) , where
K is the number of nodes betweennl andnu. So there are total
O(log N + K) routing hops to resolve a range query for one at-
tribute. Given that the nodes are uniformly distributed in them-bit
identifier space,K is N × s wheres is the selectivity of the range
query ands = (l − u)/(vmax − vmin).

MAAN supports multi-attribute and range queries using a single-
attribute-dominated query resolution approach. SupposeX are
the bundles of attribute-value pairs satisfying all sub-queries, and
Xi are the bundles satisfying the sub-query on attributeai, where
1 ≤ i ≤ M . So we haveX =

⋂
Xi and eachXi is a superset of

X. This query resolution approach first computes aXk which sat-
isfies one sub-query on attributeak. Then it applies the sub-queries
for other attributes on these candidate bundles and computes the in-
tersectionX which satisfies all sub-queries. Here, we call attribute
ak the dominant attribute. In order to reduce the number of the
candidate sets which do not satisfy other sub-queries, we carry all
other sub-queries in theSEARCHmessage, and use them to filter
out the unqualified bundles of attribute-value pairs locally at the
nodes visited. Since this approach only needs to do one iteration
around the Chord identifier space for the dominant attributeak, it
takesO(log N +N × sk) routing hops to resolve the query, where
sk is the selectivity of the sub-query on attributeak. We can further
minimize the routing hops by choosing the attribute with minimum
selectivity as the dominant attribute, presuming, of course, that the
selectivity is known in advance; in that case, the routing hops will
beO(log N + N × smin), wheresmin is the minimum range se-
lectivity for all attributes in the query.

Although the simplistic locality preserving hash function above
keeps the locality of attribute values it does not necessarily pro-
duce uniform distributions of hashing values if the distribution of
attribute values is not uniform. Consequently, the load balancing of
resource entries can be poor across the nodes. To address this prob-
lem, we proposed a uniform locality preserving hashing function
in MAAN which always produces uniform distribution of hash-
ing values if the distribution function of input attribute values is
continuous and monotonically increasing, and if the distribution
is known in advance. (The former condition is satisfied for many
common distributions, such as Gaussian, Pareto, and Exponential
distributions.) Suppose attribute valuev conforms to a certain dis-
tribution with continuous and monotonically increasing distribu-
tion functionD(v) and possibility functionP (v) = dD(v)

dv
, and

v ∈ [vmin, vmax]. We can design a uniform locality preserving
hashing functionH(v) as follows:H(v) = D(v)× (2m − 1).

4. STORING RDF TRIPLES
RDF documents are composed of a set of RDF triples. Each

triple is in the form ofsubject, predicate, object. Thesubjectis the
resource about which the statement was made. Thepredicateis a
resource representing the specific property in the statement. The
object is the property value of the predicate in the statement. The
object is either a resource or a literal; a resource is identified by a
URI; literals are either plain or typed and have the lexical form of
a unicode string. Plain literals have a lexical form and optionally a
language tag, while typed literals have a lexical form and a datatype
URI. The following triples show three different types of objects,
resource, plain literal, and typed literal, respectively.

@prefix info: <http://www.isi.edu/2003/11/info#> .
@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix xmls: <http://www.w3.org/2001/XMLSchema#> .

<info:rdfpeers> <dc:creator> <info:mincai> .
<info:mincai> <foaf:name> "Min Cai" .
<info:mincai> <foaf:age> "28"ˆˆ<xmls:integer> .

In order to support efficient queries on distributed RDF triples,
we exploit the overlay structure of MAAN to build a distributed
index for these triples. In RDFPeers, the bundle of attribute-value
pairs to be stored will always be of size three. In theSTOREmes-
sage one of the three attribute values is designated as the destina-
tion of the routing, and we store each triple three times, once each
based on its subject, predicate, and object. Each triple will be stored
at the successor node of the hash key of the value of the routing
key attribute-value pair. Since the value of attribute “subject” and
“predicate” must be a URI which is a string, we apply the SHA1
hash function to mapping the subject value and predicate value to
the m-bit identifier space in MAAN. However, the values of at-
tribute “object” can be URIs, plain literals or typed literals. Both
URIs and plain literals are strings and we apply SHA1 hashing on
them. The typed literal can be either string types or numeric types,
such as an enumeration type or a positive integer respectively. As
discussed above, we apply SHA1 hashing on string-typed literals
and locality preserving hashing on numeric literals. For example,
to store the first triple above by subject, RDFPeers would send the
following message in which the first attribute-value pair(”subject”,
info:rdfpeers)is the routing key pair, andkey is the SHA1 hash
value of the subject value.

STORE {key, {("subject", <info:rdfpeers>),
("predicate", <dc:creator>),
("object", <info:mincai>)}}

where key=SHA1Hash("<info:rdfpeers>")

This triple will be stored at the node which is the successor node
of key. Figure 2 shows how the three triples above are stored into a
RDFPeers network with eight nodes and a 4-bit identifier space. It
also shows the finger tables of nodeN6 and nodeN14.

N1

N2

N5

N6

N10

N12

N14

N15

13<info:rdfpeers>

2“28”
7“Min Cai”
10<foaf:age>
4<foaf:name>
5<dc:creator>
1<info:mincai>

Hash
Value in
[0, 15]

URI / Literal

<info:mincai> <foaf:age> “28”

By subject:

<info:rdfpeers> <dc:creator> <info:mincai>
By object:

<info:mincai> <foaf:name> “Min Cai”

By predicate:
<info:rdfpeers> <dc:creator> <info:mincai>

<info:mincai> <foaf:age> “28”
By predicate:

<info:mincai> <foaf:name> “Min Cai”
By object:

<info:mincai> <foaf:age> “28”
By object:

<info:rdfpeers> <dc:creator> <info:mincai>
By subject:

<info:mincai> <foaf:name> “Min Cai”

N14+1

N14+2

N14+4

N6 +1,+2, +4

N6+8

N14+8

Figure 2: Storing three triples into an RDFPeers network with
eight nodes in a 4-bit identifier space

Since nodes might fail and network connections might break, the
triples stored on its corresponding successor nodes are replicated on
its neighbors in Chord identifier space. This can be done by setting
the parameterReplicaFactor in MAAN. Whenever a node receives
a triple storing request, it will not only store the triple locally but
also store it to as many of its immediate successors as the above
parameter dictates. If any node fails or its connection breaks, its
immediate successor and predecessor will detect it by checking the
KEEPALIVEmessages. If the node does not come back to life af-
ter a time-out period, nodes will repair the ring structure using the
Chord stabilization algorithm. After stabilization, the immediate
successor node of the failed node will restore its replicas to its new
predecessor.

5. RDFPEERS NATIVE QUERIES
Based on the above triple-storing scheme, we define a set of na-

tive RDFPeers queries which can be efficiently resolved via MAAN’s
multi-attribute range queries. These native queries include atomic
triple patterns, disjunctive and range queries, and conjunctive multi-
predicate queries.

5.1 Atomic Triple Patterns
An atomic query pattern is a triple pattern in which the subject,

predicate, or object can each either be a variable or an exact value.
The eight resulting possible queries are shown in Table 1.

Q1 is the most general and most expensive query which matches
all triples. Since there is no restriction whatsoever on this triple
pattern, we have to flood this query to all nodes, which takesO(N)
routing hops for a network withN nodes.

We can use MAAN’s routing algorithm to resolve queries Q2
through Q8 since we store each triple three times based on its hashed
subject, predicate, and object values. In these seven query patterns,
there is always at least one value which is a constant, and we resolve
the query by routing it to the node responsible for storing that con-
stant, that node then matches these triples against the pattern locally
and returns them to the requesting node.1 For example, in Figure 2
if nodeN6 asks the native query (<info:mincai>, <foaf:name>,
?name), we hash oninfo:mincaiand get the hash value “1”. Then
N6 routes it to the corresponding nodeN1 via N14. N1 filters
triples locally using this pattern, and send back the matched triple
<info:mincai>, <foaf:name>, “Min Cai” to N6.

5.2 Disjunctive and Range Queries
RDFPeers’ native queries support constraints on variables in the

triple patterns. Q9 extends the above atomic queries with a con-
straint list which limits the domain of variables.

Q9 ::= TriplePattern ’AND’ ConstraintList
TriplePattern ::= Q1|Q2|Q3|Q4|Q5|Q6|Q7
ConstraintList ::= OrExpression (’&&’ OrExpression)*
OrExpression ::= Expression (’||’ Expression)*
Expression ::= Variable (NumericExpression

| StringExpression)+
NumericExpression ::=(’>’|’<’|’=’|’!=’|’<=’|’>=’)

NumericLiteral
StringExpression ::= (’=’|’!=’)Literal
Literal ::= PlainLiteral|URI|NumericLiteral

Variables can be either string-valued or numeric. Constraints can
limit the domain of string values by enumerating a set of either
allowed or forbidden constants. Numeric variables can additionally
be limited to a set of disjunctive ranges.
1Note that we assume here that the value does not occur so often
that the node it hashes to gave up on storing triples containing it as
the routing key, in which case we would have to flood the network
with O(n) messages, see Section 7.2.

No. Query Pattern Cost Query Semantics

Q1 (?s, ?p, ?o) O(N) find all possible triples
Q2 (?s, ?p, oi) log N given objectoi of any predicate,

find the subjects and predicates
of matched triples

Q3 (?s, pi, ?o) log N given predicatepi, find the sub-
jects and objects of the triples
having this predicate

Q4 (?s, pi, oi) log N given objectoi of predicatepi,
find the subjects of matched
triples

Q5 (si, ?p, ?o) log N given subjectsi, find all pred-
icates and objects of the re-
source identified bysi

Q6 (si, ?p, oi) log N given subjectsi, find its predi-
cate which has objectoi

Q7 (si, pi, ?o) log N given subjectsi, find its object
of predicatepi

Q8 (si, pi, oi) log N return this triple if it exists oth-
erwise return nothing

Table 1: The eight possible atomic triple queries for exact
matches. The cost is measured in the number of routing hops
needed to resolve each query

(a) (?s, dc:creator, ?c) AND ?c=’’Tom’’ || ?c=’’John’’
(b) (?s, foaf:age, ?age) AND ?age > 10 && ?age < 20

As discussed in Section 3, MAAN can efficiently resolve range
queries by using locality preserving hashing2. In addition to speci-
fying a single range, Q9 can also specify a set of disjunctive ranges
for attribute values. For example, a user can submit a range query
for variable?x and ?x ∈

⋃d
i=1[li, ui]. Obviously, this kind of

disjunctive range query could simply be resolved by issuing one
query for each contiguous range and by then computing the union
of the results. For a query withd disjunctive ranges, this takes
d × O(log N + N × s), wheres is the aggregate selectivity of
the d ranges. So the number of hops in the worst case increases
linearly with d and is not bounded byN . We can optimize this
by using a range ordering algorithm which sorts these disjunctive
query ranges in ascending order. Given a list of disjunctive ranges
in ascending order,[li, ui], 1 ≤ i ≤ d whereli ≤ lj andui ≤ uj

iff i ≤ j, the query request will be first routed to nodenl1, the suc-
cessor node ofH(l1) which is the key corresponding to the lower
bound of the first range. Nodenl1 then sequentially forwards to the
query to the successor node of the upper boundH(u1) if itself is
not the successor node ofH(u1). Then nodenu1 uses successor
routing algorithm to forward the query to nodenl2, the successor
node corresponding to the lower bound of the next range[l2, u2],
which in turn forwards the query to the successor node ofH(u2).
This process will be repeated until the query reaches the succes-
sor node ofH(ud). This optimized algorithm exploits the locality
of numeric MAAN data on the Chord ring and the ascending or-
der of the ranges, reduces the number of routing hops, especially
for cases whered is very large, and bounds the routing hops to
N . Disjunctive exact-match queries such as?c ∈ {Tom, John}
present a special case of the above disjunctive range queries where

2Note that this is the one case where RDFPeers would benefit from
up-front RDF Schema information: if say an Integer-valued object
of some triples in reality only ever has values 1 through 10, RDF-
Peers can use a hash function that yields better load balancing for
these triples.

both the lower bound and upper bound of the range are equal to the
exact-match value, and we use the same algorithm to resolve them.

5.3 Conjunctive Multi-Predicate Queries
In addition to the atomic triple patterns and disjunctive range

queries, RDFPeers handles conjunctive multi-predicate queries which
describe a non-leaf node in the RDF graph by specifying a list of
edges for this node. They are expressed as a conjunction of atomic
triple patterns or disjunctive range queries for the same subject vari-
able. Q10 consists of a conjunction of sub-queries where all subject
variables must be the same.

Q10 := TriplePatterns ’AND’ ConstraintList
TriplePatterns := (Q3|Q4|Q9)+

In Q10, we restrict the sub-query Q9 to be the Q3 style triple
pattern with constraints on the object variable. Thus Q10 describes
a subject variable with a list of restrictingpredicate, objector pred-
icate, object-rangepairs.

(?x, <rdf:type>, <foaf:Person>)
(?x, <foaf:name>, "John")
(?x, <foaf:age>, ?age) AND ?age > 35

To efficiently resolve these conjunctive multi-predicate queries,
we use a recursive multi-predicate query resolution algorithm. This
algorithm searches candidate subjects on each predicate recursively
and intersects the candidate subjects inside the network, before re-
turning the search results to the query originator. The search re-
quest takes the parametersq, R, C, and I, whereq is the cur-
rently active sub-query,R is a list of remaining sub-queries,C is
a set of candidate subjects matching current active sub-query, and
I is a set of intersected subjects matching all resolved sub-queries.
Initially, q is the first sub-query in this multi-predicate query,R
contains all sub-queries exceptq, C is empty andI is the whole
set. Suppose the sub-queryq for predicatepi is vli ≤ oi ≤ vui,
wherevli and vui are the lower bound and upper bound of the
query range for the object variableoi, respectively. When noden
wants to issue a search request, it first routes the request to node
nli = successor(H(vli)). The nodenli receives the request,
searches its local triples corresponding to predicatepi, appends the
subjects matching sub-queryq to C, forwards this request to its im-
mediate successornsi unless it is already thesuccessor(H(vui)).
Nodensi repeats this process until the search request reaches node
nui = successor(H(vui)). When nodenui receives the request,
it also searches locally for the subjects matching sub-queryq and
appends them toC. It then intersects setI with setC, and pops
the first sub-query inR to q. If R or I is empty, it sends the query
response back with the subjects inI as result. Otherwise, it starts
resolution next active sub-queryq. This process will be repeated
until no sub-queries remain orI is empty.

This recursive algorithm takesO(
k∑

i=1

(log N + N × si)) rout-

ing hops in the worst case, wherek is the number of sub-queries
andsi is the selectivity of the sub-query on predicatepi. How-
ever, it intersects the search results on different predicates in the
network and will terminate the search process before resolving the
query on all predicates if there are no matches left, i.e.I is empty.
Thus, we can further reduce the average number of expected rout-
ing hops by sorting the sub-queries in ascending order of selectivity
(presuming the selectivity can be estimated in advance). For exam-
ple, in the above three-predicate query, the sub-query onrdf:type
might match many subjects, whilefoaf:agematches far fewer and
foaf:namematches only a handful. After sorting the sub-queries,
we resolvefoaf:namefirst, thenrdf:age, and finallyrdf:type.

6. RESOLVING RDQL QUERIES
RDQL [9] is a query language for RDF proposed by the de-

velopers of the popular Jena Java RDF toolkit [7]. RDQL oper-
ates at the RDF triple level, without taking RDF Schema informa-
tion into account and without providing inferencing capabilities.
As such, it is the type of low-level RDF query language that we
want RDFPeers to support well. It is our intuition that it is possi-
ble to translate all RDQL queries into combinations of the native
RDFPeers queries above; however, we have not yet written such a
translator. Thus, this section informally describes how the exam-
ple RDQL queries from the Jena tutorial (http://www.hpl.hp.com-
/semweb/doc/tutorial/RDQL) would be resolved.

SELECT ?x WHERE (?x, <vcard:FN>, "John Smith")

The above translates directly into Q4, so that it can be resolved
in log N routing hops in a network ofN nodes.

SELECT ?x, ?fname WHERE (?x, <vcard:FN>, ?fname)

This query translates directly into Q3, takinglog N hops.

SELECT ?givenName WHERE (?y, <vcard:Family>, "Smith"),
(?y, <vcard:Given>, ?givenName)

To resolve this query, we first issue a Q4-style query and then use
its query result as constraint to issue a Q9-style disjunctive query
with Q3-style triple patterns. Since all the predicate values in the
two triple patterns are known, these two native queries can be re-
solved in2× log N hops.

SELECT ?resource, ?givenName
WHERE (?resource, <vcard:N>, ?z),

(?z, <vcard:Given>, ?givenName)

The above query can be resolved via two Q3-style queries, and
by then joining the first triple set’s object with the second triple’s
subject,2× log N routing hops. (However, note that these two Q3-
style queries might generate large-size messages if the predicates
vcard:Nor vcard:Givenare very popular.)

SELECT ?resource
WHERE (?resource, <inf:age>, ?age) AND ?age >= 24

The above is a typical Q9-style range query with the constraint
on the object value. Since its predicate value is known, we can
route the query to the node which stores the triples with predicate
inf:age in log N hops.

SELECT ?resource, ?familyName
WHERE (?resource, <inf:age>, ?age),

(?resource, <vcard:N>, ?y),
(?y, <vcard:Family>, ?familyName) AND ?age >= 24

This final query can be resolved by first issuing the same query
as for the previous RDQL example for the first triple pattern. Then
we use the query result as a constraint for variable?resourceand re-
solve the second triple pattern as a Q9-style disjunctive range query.
Finally, we use the second query result as a constraint for variable
?y and again resolve the third triple as a Q9-style query, which in
the aggregate takes3× log N hops.

7. IMPLEMENTATION AND EVALUATION
We implemented the MAAN layer of RDFPeers in Java and mea-

sured its performance on a real-world network of up to 128 nodes
in a previous paper [4]. We also measured the number of neighbors
per node against the network size. Similar to Chord, the number of
neighbors at each node increases logarithmically with the network
size, so that the node state in MAAN scales well to a large number
of nodes; for example, in a hypothetical network of eight billion
nodes (one for each human on Earth) each node would maintain
just thirty-three IP connections. We measured the number of rout-
ing hops against the network size for both exact-match queries and
for range queries. The experiment results show that for exact-match
queries, the number of routing hops in the worst case isO(log N)
and the average routing hops islog N/2. However, for range que-
ries whose selectivitysi > ε% , the routing hops increase linearly
with network size. This is becausesi of total N nodes have to be
visited by the search queries, given that we want to balance the load
to all the nodes. We implemented an RDF/XML triple loader based
on the Jena Toolkit 2.0 to measure the number of routing hops in a
simulation (measuring the query cost); we also studied the number
of triples stored per node by loading real-world RDF data into our
simulator (measuring the storage cost).

7.1 Routing Hops to Resolve Native Queries
The number of routing hops taken to resolve a query is the domi-

nant performance metric for P2P systems. Figure 3 shows our sim-
ulation result for atomic triple patterns from 1 node to 8192 nodes
on a logarithmic scale, which matches our theoretical analysis. We
also compared two disjunctive range query resolution algorithms:
the simple algorithm vs. range ordering algorithm. Figure 4 shows
the simulation result for up to 1000 disjunctive exact-match values
(si = ε%) in a network with 1000 nodes. Figure 5 shows the
result for up to 1000 disjunctive ranges with 0.1% selectivity each
in the same network. From these two experiments, we can see that
the range ordering algorithm takes less routing hops to resolve a
range query than the simple algorithm, and that its routing hops are
indeed bounded byN .

Figure 3: The number of routing hops to resolve atomic triple
patterns Q2 through Q8

7.2 Dealing with Overly Popular URIs and
Literals

Even today’s cheapest PCs have a surprising storage capacity,
each can store well over ten million RDF triples by dedicating
10 Gigabytes of its typical 80-120 GB disk. Nevertheless, some
triples in RDF such as those with the predicaterdf:type may oc-
cur so frequently that it becomes impossible for any single node
in the network to store all of them. That is, in practice, triples

Figure 4: The number of routing hops to resolve disjunctive
exact-match queries in a network with 1000 nodes

Figure 5: The number of routing hops to resolve disjunctive
range queries (0.1% selectivity) in a network with 1000 nodes

may not hash around the Chord identifier circle uniformly due to
the non-uniform frequency count distribution of URIs and literals.
Figure 6 shows the frequency count distribution of the URIs and
Literals in the RDF dump of the “Kids and Teens” catalog of the
Open Directory Project (http://rdf.dmoz.org). There are two RDF
files for this catalog:kt-structure.rdf.u8.gzandkt-content.rdf.u8.gz.
The former describes the tree structure of this catalog and contains
19,550 triples. The latter describes all the sites in this catalog and
contains 123,222 triples. Figure 6 shows that only 10 to 20 URIs
and literals (less than 0.1%) occur more than a thousand times. Ta-
ble 2 lists the URIs and literals which occur more than 1000 times
in kt-structure.rdf.u8.gz. For example, since each URI as a predi-
cate value will be stored at only one node, this node has the global
knowledge about the frequency count of this predicate value. We
deal with predicate values that become overly popular by simply no
longer indexing triples on them. We define aPopular Thresholdpa-
rameter which sets a threshold for overly popular predicate values.
Each node keeps counting the frequency of each predicate value.
If a predicate value occurs more thanPopular Thresholdtimes, the
node will refuse to store it and internally makes a note of that. If
the node receives a search request with the overly popular value
for the predicate, it sends a refusal message back to the requesting
node and the requesting node must then find an alternative way of
resolving the query by navigating to the target triples though either
the subject or object values. (This approach will addO(logN) to
that node’s total query cost in hops.) We limit subject and object
values in the same way.

In essence, this means that you cannot ask e.g. “which instances
in the world are the subclass of some class”. However, these que-
ries are so general and would return so many triples that we suspect
they would rarely be of use in practice anyway (in analogy to the

English language, where the words “a” and “the” occur frequently
but provide little value as search terms). For the above query, you
could alternatively gather the class URIs for which you want to
look for instances for, then traverse to the instances viat that set of
URIs by issuing a Q4-style query.

Frequency URI or literal Type

3158 rdf:type predicate
3158 dc:Title object
2612 http://dmoz.org/rdf/Topic object
2612 http://dmoz.org/rdf/catid predicate
2574 http://dmoz.org/rdf/lastUpdate predicate
2540 http://dmoz.org/rdf/narrow predicate
1782 http://dmoz.org/rdf/altlang predicate
1717 dc:Description object

Table 2: URIs and literals that occur more than one thousand
times in kt-structure.rdf.u8.gz

Figure 6: The frequency count distribution of URIs and literals
in the ODP Kids and Teens catalog

Figure 7 shows the minimum, average, and maximum number of
triples per node withPopular Thresholdfrom 500 to 32,000. In this
experiment, we store bothktstructure.rdf.u8.gzandktcontent.rdf.-
u8.gz(total 142,772 triples) into a network of 100 physical nodes
(and the standard Chord log(100)=6 virtual nodes per physical node
for trading off load balancing against routing hops). WhenPopu-
lar Threshold=32,000, there are no overly popular URIs or literals
being removed and there is an average of 4303 triples per node.
However, the load is unevenly balanced – the minimum number of
triples per node is 700 while the maximum number of triples per
node is 36,871. WhenPopular Thresholdis set to 500, there are
20 overly popular URIs and literals being removed from indexing
and there are an average of 2352 triples per node. The minimum
number of triples per node is 688 while the maximum number of
triples per node is reduced to 4900 – which we believe at less than
an order of magnitude difference is acceptable load balancing.

7.3 Load Balancing via Successor Probing
Although limiting overly popular URIs and literals greatly re-

duces the difference between the maximum and minimum number
of triples per node, the triples are still not uniformly distributed
around all nodes. This is because the frequency count distribution
of non-popular URIs and literals remains non-uniform even after
removing overly popular values. We propose asuccessor probing
scheme inspired by the “probe-based” node insertion techniques
of [6] to further achieve a more balanced triple storage load on
each node. In Chord, the distribution of node identifiers is uniform

Figure 7: The number of triples per node as a function of the
threshold of popular triples (100 physical nodes with 6 virtual
node per physical node)

and independent of the data distribution. In this successor probing
scheme, we use a sampling technique to generate a node identifier
distribution adaptive to the data distribution. When a node joins
the network, it will use SHA1 hashing to generateProbing Factor
candidate identifiers. Then it uses Chord’s successor routing al-
gorithm to find the successors corresponding to these identifiers.
All the successors will return the number of triples which would
be migrated to the new node if it joined there, and the new node
will choose the identifier that gives it the heaviest load. The cost
of this technique is that it increases the insertion time of a triple
from log N to Probing Factor × log N . It is our intuition that
log N is a good setting for the probing factor. Figure 8 shows the
minimum, average and maximum number of triples per node with
Probing Factor from 1 to 9 in a network with 100 physical nodes.
The Popular Thresholdis set to 1000 in this experiment. If there
is no successor probing, the most loaded node has 7.2 times more
triples than the least loaded node. If each node probes 9 nodes
when it joins, the node with the heaviest load only has 2.6 times
more triples than the node with the lightest load – which further
reduces load imbalances to much less than an order of magnitude.

Figure 8: The number of triples per node as a function of the
number of the successor nodes probed (100 physical nodes,Pop-
ular Threshold=1000)

8. RELATED WORK
Many centralized RDF repositories have been implemented to

support storing, indexing and querying RDF documents, such as
RDFDB [17], Inkling [8], RDFStore [3] and Jena [7]. These cen-
tralized RDF repositories typically use in-memory or database-sup-
ported processing, and files or a relational database as the back-end
RDF triple store. RDFDB supports a SQL-like query language,

while Inkling, RDFStore and Jena all support SquishQL-style RDF
query languages. Centralized RDF repositories are very fast and
can scale up to many millions of triples. However, they have the
same limitations as other centralized approaches, such as a single
processing bottleneck and a single point of failure. Edutella [11]
and its successor super-peer-based RDF P2P network [12] were
discussed in Section 1. Recent structured P2P systems use mes-
sage routing instead of flooding by leveraging a structured overlay
network among peers. These systems typically support distributed
hash table (DHT) functionality and offer the operationlookup (key),
which returns the identity of the node storing the object with the
key [14]. Current proposed DHT systems include Tapestry [21],
Pastry [16], Chord [19], CAN [13] and Koorde [5]. In these DHT
systems, objects are associated with a key which can be produced
by hashing the object name. Nodes have identifiers which share
the same space as the keys. Each node is responsible for storing a
range of keys and corresponding objects. The DHT nodes maintain
an overlay network with each node having several other nodes as
neighbors. When alookup (key)request is issued from one node,
the lookup message is routed through the overlay network to the
node responsible for the key. Different DHT systems construct dif-
ferent overlay networks and employ different routing algorithms.
They can guarantee to finish lookup inO(log N) or O(dN1/d)
hops and each node only maintains the information ofO(log N)
or d neighbors for aN nodes network whered is the dimension of
the hypercube organization of the network. Therefore, they provide
very good scalability as well as failure resilience. However, these
DHT systems only provide single key based lookup and do not ef-
ficiently support multi-attribute and range queries, nor do they pro-
vide RDFPeers’ triple storage load balancing.

9. FUTURE WORK AND CONCLUSION
We would like to perform further experiments measuring cost

in terms of message sizes rather than just in the routing hops that
are the customary P2P performance metric, and to implement the
RDQL-to-RDFPeers-Native-Queries translator that we have only
sketched in this paper. We would like to be able to bound the size of
initital query results, so that e.g. only the first one-hundred matches
are returned with the note “there are roughly 4,000 more matches,
would you like to retrieve them?”. We have not yet implemented
“node leave” messages (the opposite of “node join” messages);
rather, the network will detect the missing node after a time-out
and repair itself. Similarly, we have not yet implemented triple
deletions in RDFPeers, only triple insertions.

RDFPeers advances the state of the art of P2P RDF systems by
guaranteeing that query results will be found if they exist, by not
requiring up-front schema definition, by not relying on super-peers,
and by balancing the triple-storing load betwen the most and least
loaded nodes. Its storage cost in neighborhood connections is loga-
rithmic to the number of nodes in the network, and so is its process-
ing cost in routing hops for all insertion and most query operations,
thus enabling distributed RDF repositories of truly large numbers
of participants.

10. ACKNOWLEDGEMENTS
This paper benefited from interactions with Stefan Decker and

from feedback by Geoff Pike. The successor probing technique
of Section 7.3 was inspired by discussions with Shahram Ghande-
harizadeh and Antonios Daskos about load balancing techniques.
We gratefully acknowledge AFOSR funding under contract num-
ber F49620-01-1-0341.

11. REFERENCES
[1] http://www.w3.org/RDF. World-Wide Web Consortium:

Resource Description Framework.
[2] http://www.w3.org/TR/rdf-schema. World-Wide Web

Consortium: RDF Schema.
[3] RDFStore. http://rdfstore.sourceforge.net.
[4] M. Cai, M. Frank, J. Chen, and P. Szekely. MAAN: A

multi-attribute addressable network for grid information
services. In4th Int’l Workshop on Grid Computing, 2003.

[5] D. R. K. Frans Kaashoek. Koorde: A simple degree-optimal
hash table. In2nd Int’l Workshop on Peer-to-Peer Systems
(IPTPS ’03), Feb. 2003.

[6] S. Ghandeharizadeh, A. Daskos, and X. An. PePeR: A
distributed range addressing space for P2P systems. InInt’l
Workshop on Databases, Information Systems, and
Peer-to-Peer Computing (at VLDB), 2003.

[7] B. McBride. Jena: Implementing the RDF Model and Syntax
specification. Inthe Second Int’l Workshop on the Semantic
Web, May 2001.

[8] L. Miller. Inkling: RDF query using SquishQL.
http://swordfish.rdfweb.org/rdfquery.

[9] L. Miller, A. Seaborne, and A. Reggiori. Three
implementations of SquishQL, a simple RDF query
language. InFirst Int’l Semantic Web Conference, 2002.

[10] National Institute of Standards and Technology. Publication
180-1: Secure hash standard, 1995.

[11] W. Nejdl, B. Wolf, C. Qu, S. Decker, M. S. A. Naeve,
M. Nilsson, M. Palmer, and T. Risch. EDUTELLA: A P2P
networking infrastructure based on RDF. In11th World Wide
Web Conference, May 2002.

[12] W. Nejdl, M. Wolpers, W. Siberski, C. Schmitz,
M. Schlosser, I. Brunkhorst, and A. Lser. Super-peer-based
routing and clustering strategies for RDF-based peer-to-peer
networks. In12th World Wide Web Conference, May 2003.

[13] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A scalable content addressable network. In
Proceedings of ACM SIGCOMM, 2001.

[14] S. Ratnasamy, S. Shenker, and I. Stoica. Routing algorithms
for DHTs: Some open questions. In2nd Int’l Workshop on
Peer-to-Peer Systems (IPTPS ’03), Feb. 2003.

[15] M. Ripeanu, I. Foster, and A. Iamnitchi. Mapping the
Gnutella network: Properties of large-scale peer-to-peer
systems and implications for system design.IEEE Internet
Computing Journal, 6(1), 2002.

[16] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized
object location, and routing for large-scale peer-to-peer
systems.Lecture Notes in Computer Science, 2218, 2001.

[17] R.V.Guha. rdfDB : An RDF database. http://guha.com/rdfdb.
[18] S. Saroiu, P. K. Gummadi, and S. D. Gribble. A

measurement study of peer-to-peer file sharing systems. In
Multimedia Computing and Networking, Jan. 2002.

[19] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer lookup
service for internet applications. InProceedings of ACM
SIGCOMM, 2001.

[20] J. W. Subhabrata Sen. Analyzing peer-to-peer traffic across
large networks. InACM SIGCOMM Workshop on Internet
Measurement, Nov. 2002.

[21] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. Tapestry:
An infrastructure for fault-tolerant wide-area location and
routing. Technical Report CSD-01-1141, UC Berkeley, 2001.

