
Composing Mappings Among Data Sources

Jayant Madhavan
University of Washington

jayant@cs.washington.edu

Alon Y. Halevy
University of Washington

alon@cs.washington.edu

Abstract

Semantic mappings between data sources play a key
role in several data sharing architectures. Mappings
provide the relationships between data stored in dif-
ferent sources, and therefore enable answering queries
that require data from other nodes in a data shar-
ing network. Composing mappings is one of the core
problems that lies at the heart of several optimization
methods in data sharing networks, such as caching fre-
quently traversed paths and redundancy analysis.

This paper investigates the theoretical underpin-
nings of mapping composition. We study the problem
for a rich mapping language, GLAV, that combines the
advantages of the known mapping formalisms global-
as-view and local-as-view. We first show that even
when composing two simple GLAV mappings, the full
composition may be an infinite set of GLAV formulas.
Second, we show that if we restrict the set of queries
to be in CQk (a common restriction in practice), then
we can always encode the infinite set of GLAV for-
mulas using a finite representation. Furthermore, we
describe an algorithm that given a query and a finite
encoding of an infinite set of GLAV formulas, finds all
the certain answers to the query. Consequently, we
show that for a commonly occuring class of queries it
is possible to pre-compose mappings, thereby poten-
tially offering significant savings in query processing.

1 Introduction

The problem of sharing data from multiple sources
within or between enterprises has recently received
significant attention in research and in the commer-
cial world. Over the years, a succession of architec-
tures for sharing data have been proposed, beginning

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 29th VLDB Conference,

Berlin, Germany, 2003

UW Stanford

UPenn

MSR

IBM DBLP

ACM

CiteSeer

Submissions DigReview

VLDB

SIGMOD

PODS

DB−Projects

Berkeley

Figure 1: The topology of a data sharing network of
sources related to database research.

with federated databases [27], followed by data inte-
gration systems [30, 14, 18], peer data management
systems [12, 10, 2, 16, 17, 25], and data exchange sys-
tems [24, 26, 8]. A key element in all of these ar-
chitectures is the specification of semantic mappings
between data sources, or between sources and medi-
ated schemas. The semantic mappings describe the
relationships between the terms used in two or more
schemas. In the past, research has focused on the de-
velopment of languages for specifying semantic map-
pings [18, 21], and algorithms that use mappings to
answer queries in data sharing systems (see [28, 18, 11]
for surveys).

This paper considers a new problem, namely the
problem of composing semantic mappings. Specifi-
cally, given semantic mappings between data sources A
and B, and between B and C, is it possible to generate
a direct mapping between A and C that is equivalent
to the original mappings? Equivalence means that for
any query in a given class of queries Q, and for any
instance of the data sources, using the direct mapping
yields exactly the same answer that would be obtained
by the two original mappings.

1.1 Motivations

There are several independent motivations for the
study of mapping composition. The main motivation
for our work comes from query processing and opti-
mization in peer-data management systems (PDMS)
(and in particular, the Piazza System [12, 10]). Fig-
ure 1 shows the topology of an example PDMS in the



domain of database research. In a PDMS each node
can be a data source, a logical mediator, or both. Each
node has its own schema, and the pairwise semantic
mappings (denoted by the arrows in the figure) enable
reformulating a query posed on one node to queries on
its neighbors. As such, the nodes can share data with-
out a central logical schema. Given a query on a par-
ticular node, query processing proceeds by iteratively
reformulating the query using the semantic mappings
until all the relevant data sources are reached [12]. In
a sense, we chain together mappings at query time.
Note that different paths between a pair of nodes may
yield different sets of answers, and hence the maxi-
mal answer is obtained by following all possible acyclic
paths.

Chaining mappings at run-time may be expensive
because we may need to follow long and possibly re-
dundant paths in the network. Furthermore, the re-
sulting reformulations may contain significant redun-
dancies or may not lend themselves to efficient query
execution plans. (This is in the same spirit as getting
better query execution plans by unnesting queries in
SQL). Furthermore, if certain nodes leave the network,
then we may lose valuable paths (even temporarily).

Addressing these issues raises several static analy-
sis questions regarding the network of mappings, and
mapping composition lies at the core of them all. First,
we would like to develop a set of techniques that may
judiciously pre-compose a select set of mapping chains
in the network. By pre-computing the composition,
we can also remove redundancies from it, leading to
significant run-time savings. Second, we would like to
find redundant paths in the network: two paths be-
tween a pair of nodes A and B are equivalent if given
any query on A, reformulating the query along both
paths will result in equivalent queries on B. Third, we
note that data from source A can be used in source B
only if the necessary concepts are modeled in each of
the nodes on the path between A and B. As a result,
when paths in the network get longer, we may wit-
ness information loss. Hence, we would like to deter-
mine whether a path between A and B can possibly be
useful for some query, and if not, find the weak links
and try to improve the mappings there. To address
any of these questions, we must first understand how
to compute a mapping that represents a path, i.e., a
composition of pairwise mappings.

A second motivation for mapping composition
comes from the area of model management [3, 23]. The
goal of model management is to provide an algebra
for explicitly manipulating schemas and mappings be-
tween them. Based on such an algebra, we can build
a system in which common meta-data tasks can be
solved much more effectively. One of the basic oper-
ators in a model-management algebra is composition.
In [3, 23], models and mappings are treated mostly as
syntactic objects. Here we show how to compose map-

pings in a particular mapping language, and show that
considering the semantic aspects of mappings raises
several subtleties. As a final motivation, given the
pervasive role that semantic mappings play in many
systems, the question of composing them arises natu-
rally.

1.2 Contributions

We consider the composition problem for a rich me-
diation language. Specifically, there are three main
formalisms proposed for specifying semantic mappings
(see [11, 18] for surveys). In the first, called global-
as-view (GAV), the target schema is described as a
set of views over the source schemas. In the second,
local-as-view (LAV), the data sources are described as
views over the target schema. This paper considers the
mapping composition problem for the GLAV formal-
ism [9, 8, 12], which combines the practical benefits of
both GAV and LAV.

The contributions of this paper are the following.
We begin by showing that even for relatively simple
GLAV mappings, the composed mapping may be an
infinite set of GLAV formulas. This means that in
general, it may not be possible to obtain the afore-
mentioned advantages of composition. We proceed,
in several steps, to identify cases in which composi-
tion can be done. First, we describe an algorithm that
encodes an infinite number of GLAV formulas in the
composition using a finite structure. The algorithm
works by building the formulas in the composition in
increasing size, and associating residues with each for-
mula. When two formulas have isomorphic residues
they can be extended in the same ways. When there
is a finite number of residues, our algorithm is guaran-
teed to terminate and to encode the exact composition.
The algorithm also enables us to provide upper and
lower complexity bounds on the problem of determin-
ing whether a given finite set of formulas is equivalent
to a composition of the original mappings.

Second, we show that for the class of CQk queries,
there is a finite set of residues, and therefore it is possi-
ble to pre-compute the entire composition. Informally,
CQk is the class of conjunctive queries in which ev-
ery nested expression has at most k variables. CQk

queries cover many queries encountered in practice,
and for that reason, they have also been studied in
the past and shown to have other interesting proper-
ties [15, 29, 6]. Finally, to complete the picture, we
show that given an infinite number of GLAV formulas
encoded by our finite structure, it is possible to find
all the answers to a given query. This query answering
algorithm, which is of independent interest, general-
izes a previous result [19] which showed how to answer
queries using an infinite set of views, but only in the
context of LAV formulas. In summary, the paper pro-
vides significant insights into the problem of mapping
composition, and establishes several practical condi-



tions under which compositions can be pre-computed
and therefore optimized.

It is important to emphasize that the challenge in
designing a mapping composition algorithm is that the
composition needs to yield an equivalent answer for
every data instance and every query in the language
Q over C. This is very different from a query rewriting
algorithm in which a particular query is given as input.
In fact, we are aware of only one recent work [20] in the
same spirit – there the goal was to show that two sets
of views are equivalent for a LAV mapping, i.e. they
would produce the same set of certain answers for any
query. We are not aware of any work addressing the
mapping composition problem.

We note that this paper is not about choosing which
mappings to compose, but rather studying when map-
pings can be composed without losing information.

The paper is organized as follows. Section 2 sets
up the problem, and Section 3 describes our mapping
composition algorithm. Section 4 discusses composi-
tion for CQk queries, and Section 5 describes query
answering with the composed mapping. Section 6 con-
cludes.

The complete proofs of our theorems are omitted
due to space limitations, but they are available at [22].

2 Problem definition

In this section we define the problem of mapping com-
position, and explain the challenges involved in devel-
oping a composition algorithm. We begin by defining
the terminology used throughout the paper.

2.1 Schemas and queries

Our discussion assumes data is represented in the rela-
tional model. Given a data source A, RA refers to its
schema. We denote the relations in the schema RA by
lowercase letters, e.g., a, a1. Queries are assumed to be
conjunctive (i.e., select, project, join), and we assume
that they do not contain comparison predicates (e.g.,
6=, <), hence only equi-joins are allowed. Views are
named queries. When queries refer to views, the un-
folding of the query refers to the query resulting from
replacing the view atoms by the subgoals in their def-
initions (and using fresh variables for the existential
variables in the view definition). We use the following
standard notation for conjunctive queries:

Q(X̄) :−p1(X̄1), . . . , pn(X̄n)

X̄, X̄1, . . . , X̄n are tuples of variables, and X̄ ⊆ X̄1 ∪
. . . ∪ X̄n. The atoms p1(X̄1), . . . , pn(X̄n) are called
the subgoals in the body of the query, and Q(X̄) is
the head of the query. The variables X̄ are the distin-
guished variables, and the others are existential. Given
a query Q and a database instance D, Q(D) denotes
the result of evaluating Q over D. Note that in the

notation of conjunctive queries, joins are expressed by
multiple occurrences of the same variable.

In our discussion, we also make use of two restricted
classes of conjunctive queries. The class CQk is the
class of conjunctive queries that can be written by a
set of nested expressions, each of which includes at
most k variables. For our purposes, the following def-
inition of CQk is most enlightening: CQk queries can
be written by non-recursive datalog program, where
(1) each datalog rule contains at most k variables, and
(2) each predicate is defined by at most one rule.

Example 1: To illustrate CQk queries, consider a
simple query looking for a chain of length n (n > k)
in a database:

q(X,Y ) :−e1(X,X1), . . . , ei(Xi−1, Xi), . . . , en(Xn−1, Y )

This query can be written as a set of rules, each with
3 variables, where each rule corresponds to a nested
expression. Hence, the query is in CQ3:

qn−1(X1, Y ) :−en−1(X1, Z), en(Z, Y )
qn−2(X1, Y ) :−en−2(X1, Z), qn−1(Z, Y )
. . .
q(X,Y ) :−e1(X,Z), q2(Z, Y ) �

The class linCQk is the subset of CQk with a linear
nesting of subexpressions. Formally, it is the class of
CQk queries where each datalog rule has at most one
subgoal of an IDB predicate. The chain query above
is in linCQ3. Similarly, it is possible to show that
cycle and star queries (as long as they select at most k
attributes), as well as many other queries encountered
in practice, are also in CQk.

2.2 Semantic mediation

Our work is concerned with systems that provide ac-
cess to multiple data sources spread throughout a net-
work. No matter what the specific topology of such
a network, the key element is how we describe the se-
mantic relationships between different data sources. In
this paper we employ the GLAV [8, 12] formalism. A
semantic mapping between two data sources A and B
in GLAV is specified by a set of mapping formulas,
each of the form QA(X̄) ⊆ QB(X̄), where QA and QB

are conjunctive queries over RA and RB respectively.
We denote a mapping between A and B by MA→B .

For brevity, we sometimes slightly abuse notation
by specifying only the bodies of QA and QB . The
variables that appear in both bodies are assumed to
be the head variables in both.

The mapping below states that the tuples of relation
a in A are a subset of paths of b of length 2 in B.

MA→B = {a(x, y) ⊆ b(x, x1), b(x1, y)}

We say that database instance DB of RB is con-
sistent with a database DA of RA, with respect to



mapping formula QA(X̄) ⊆ QB(X̄), if the contain-
ment holds true when the queries QA and QB are
evaluated over DA and DB , respectively. Hence, a
given database instance DA defines a set of instances
DB that are consistent with DA with respect to every
mapping formula in MA→B .

The semantics of answering queries in the presence
of mappings is given by certain answers [1]. Given
a query Q over RB , a tuple t̄ is a certain answer to
Q w.r.t. MA→B if t̄ ∈ Q(D) for every D ∈ DB . In a
similar fashion, it is possible to extend the definition of
certain answers to the case where we are also given an
instance of RB , and the case where we have semantic
mappings between multiple data sources [12].

We note that the GAV and LAV formalisms are spe-
cial cases of GLAV. GAV is obtained when QB is a sin-
gle atom and has no projections, and LAV is obtained
when QA has that form. However, their advantages
complement each other: while LAV facilitates relating
many data sources to one target, GAV enables express-
ing joins on attributes that may not appear in outside
a local source. Hence, in practice, GLAV is the most
useful.

Given a semantic mapping and an instance of RA,
we answer Q by computing the maximally-contained
rewriting of Q over RA. The maximally-contained
rewriting is a query Q′ over RA such that Q′(DA)
is guaranteed to be the set of all certain answers to
Q for any instance DA. Algorithms for producing
maximally-contained rewritings are surveyed in [11].
We note that for certain query languages a maximally-
contained rewriting may not yield all certain an-
swers [1, 4], but in our context they do.

2.3 Mapping composition

The problem we address in this paper is the following.
Suppose we have three data sources, A, B and C, and
two mappings MA→B and MB→C . We are interested
in computing a direct mapping MA→C that is guar-
anteed to be equivalent to the two original mappings.
Formally, the problem is as follows.

Definition 1. The mapping MA→C is a composi-

tion of the mappings MA→B and MB→C w.r.t. a query
language Q if for all databases DA for RA, and for all
queries Q over RC such that Q is in the language Q,
the certain answers for Q w.r.t. MA→C are the same
as the certain answers w.r.t. MA→B and MB→C . �

Note that Definition 1 does not define a unique com-
position. Instead, it defines what it means for a set of
formulas to be one of several equivalent compositions.
Unless otherwise mentioned, we are interested in com-
position w.r.t. the set of conjunctive queries. We illus-
trate mapping composition with two examples.

Example 2: Let the schemas RA, RB and RC each
have a single binary relation a, b and c respectively.

Consider the two mappings,

MA→B = {a(x, y) ⊆ b(x, x1), b(x1, y)}

MB→C = {b(x, x1), b(x1, x2), b(x2, y) ⊆ c(x, y)}

If b encodes all the edges of a graph G, then MA→B

states that a is a subset of the node pairs with paths
of length 2 in G. Similarly, MB→C states that all
node pairs with paths of length 3 are a subset of
c. Note that, for brevity, we later use the notation
va(x, y) ⊆ va

b (x, y) for the formula in MA→B , and
vc

b(x, y) ⊆ vc(x, y) for the formula in MB→C .
The composition of MA→B and MB→C consists of

the three formulas:

a(x, x1), a(x1, x2) ⊆ c(x, y1) (1a)

a(x1, x2), a(x2, x) ⊆ c(y1, x) (1b)

a(x, x1), a(x1, x2), a(x2, y) ⊆ c(x, y1), c(y1, y) (1c)

Formula 1a captures the fact that if there is a path of
length 4 in b emanating from x (guaranteed by the left
hand-side and MA→B), then there is a path of length 3
emanating from x, which according to MB→C , means
that x is in the projection of c on its first column.
Formula 1b is similar, but with paths ending at x.
Formula 1c shows that even though the composition
cannot obtain facts for c(x, y), we can obtain the end-
points of paths of length two in c, by following paths
of length 6 in b, which, in turn, are obtained by paths
of length 3 in a. Intuitively these formulas capture all
the relationships between RA and RC , and any other
relationships follow from these. �

Example 2 illustrates the key difficulty in construct-
ing a composition. It does not suffice to consider only
composition formulas whose right-hand side are the
c-views that appear on the right-hand side of formu-
las in MB→C . The composition may require formulas
with more complex c-views, as in Formula 1c. The key
challenge is to bound the set of c-views that are con-
sidered. In fact, the following example shows that the
situation is even more subtle; the set of c-views may
not even be finite.

Example 3: Consider the following mappings. Here,
the graph encoded by RB has red edges (relation br)
and green edges (relation bg).

MA→B = {arg(x, y) ⊆ br(x, x1), bg(x1, y)

agg(x, y) ⊆ br(x, x1), bg(x1, y)}

MB→C = {br(x, x1), bg(x1, x2), bg(x2, y) ⊆ crgg(x, y)

bg(x, x1), bg(x1, y) ⊆ cgg(x, y)}

As in the earlier example, arg is a subset of the
node pairs with red-green paths. The other relations
agg, crgg and cgg can be described similarly. Observe
that the following sequence of formulas are all in the



composition of MA→B and MB→C :

agg(x, y) ⊆ cgg(x, y) (2a)

arg(x, x1), agg(x1, x2) ⊆ crgg(x, y1) (2b)

arg(x, x1), agg(x1, x2), ⊆ crgg(x, y1), cgg(y1, y2) (2c)

agg(x2, x3)

arg(x, x1), agg(x1, x2), ⊆ crgg(x, y1), cgg(y1, y2),(2d)

. . . , agg(xn, xn+1) . . . , cgg(yn−1, yn)

The sequence is infinite. Each equation in the infinite
sequence captures the formula that a path comprising
of one red (br) edge followed by 2n+1 green (bg) edges
(the query over RA) is contained within a path com-
prising of a red edge followed by 2n + 2 green edges
(the query over RC). None of them can be expressed
in terms of the others (e.g. the rule 2c is not implied
by rules 2a and 2b). Fortunately, as we will see later,
in some cases (including this one) there is a finite en-
coding of the infinite set of GLAV formulas. �

Before proceeding, we remark that the definitions
and results we present in the paper apply to multiple
levels of composition, but our discussion focuses on the
composition of two mappings.

Remark 1. In a sense, the union of the formulas be-
ing composed is already an implicit representation of
the composition. However, as pointed out earlier, the
direct representation of the composition has several
computational advantages in a PDMS, such as yield-
ing more efficient reformulation, better query execu-
tion plans (e.g., minimizing the number of joins), and
pruning redundant paths in a PDMS. One of our goals
is to identify cases in which it is possible to produce
the entire composition ahead of time, and therefore
optimize it in advance. One of the key results of this
paper is to show that if we restrict the set of queries
to those in CQk, then we can produce the entire com-
position. Fortunately, CQk queries are representative
of many queries encountered in practice.

As a particular case in point, we can consider rep-
resenting the composition as a set of inverse rules [7].
As shown in [12], given a query Q, we can reformulate
it into a datalog program that accesses the base data.
The datalog program includes the query Q as one rule,
and a set R of inverse rules that essentially invert the
LAV-style mediation formulas. Hence, one could try
to optimize the rules in R ahead of time. However,
because of the special structure of inverse rules, they
can only be optimized after the query Q is given, and
hence are of limited use for composition. In fact, our
techniques can be viewed as a method for optimizing
a set of inverse rules in advance of the query. �

3 Mapping composition algorithm

In this section we describe our mapping composition
algorithm. In order to explain some of the basic terms
used in the algorithm, we begin by explaining how

MA→B va : a(x, y) ⊆ va
b : b(x, x1), b(x1, y)

MB→C vc
b : b(x, x1), b(x1, x2), b(x2, y) ⊆ vc : c(x, y)

Q(x, y) qc(x, y) :− c(x, y1), c(y1, y)
⇓

RewC(Q) q′c(x, y) :− vc(x, y1), vc(y1, y)
↓

QueryB(Q) qb(x, y) :− vc
b(x, y1), v

c
b(y1, y)

qb(x, y) :− b(x, z1), b(z1, z2), b(z2, y1),
b(y1, z3), b(z3, z4), b(z4, y)

⇓
RewB(Q) q′b(x, y) :− va

b (x, z2), v
a
b (z2, z3), v

a
b (z3, y)

↓
QueryA(Q) qa(x, y) :− va(x, z2), va(z2, z3), va(z3, y)

qa(x, y) :− a(x, z2), a(z2, z3), a(z3, y)

Figure 2: Composing MA→B and MB→C in Example 2
w.r.t. a single query as a sequence of reformulations.

mappings can be composed for a single query (Sec-
tion 3.1). In Section 3.2 we show that our algorithm
need only consider composition formulas that are min-
imal, and that such minimal formulas can be con-
structed in increasing size. Given those observations,
we introduce mapping residues (Section 3.3) that de-
termine when two minimal formulas can be extended
in similar ways. In Section 3.4 we put this all together
and describe query rewrite graphs, that represent all
the minimal formulas, and whose construction termi-
nates based on comparing residues of its nodes.

3.1 Composing for a single query

As a basis for the discussion of our composition algo-
rithm, we first describe how to compose MA→B and
MB→C for a single query, Q, over RC . Informally, we
proceed in two steps. In the first we reformulate the
query using MB→C , and in the second, we reformulate
the result using MA→B . Each of the steps has two
parts; first we reformulate the query using the right-
hand side of the formulas, and then we replace the
views on the right-hand side with those appearing on
the left. We illustrate this process in Figure 2 for the
query Q(x, y) :−c(x, y1), c(y1, y) and the mappings in
Example 2. We proceed by computing the following
queries:

RewC(Q): the maximally-contained rewriting of Q
in terms of the views on the right-hand sides of the
formulas in MB→C .

QueryB(Q): a query over RB obtained by replacing
the views in RewC(Q) by the corresponding views on
the left-hand sides of the formulas in MB→C , and un-
folding these view definitions.

RewB(Q): the maximally-contained rewriting of
QueryB(Q) using the views on the right-hand sides
of the formulas in MA→B .

QueryA(Q): a query over RA obtained by replacing
the views in RewB(Q) by the corresponding views on
the left-hand sides of the formulas in MA→B , and un-
folding these view definitions.



The following proposition is a simple corollary of The-
orem 4.2 in [1]. It says that the reformulations above
will provide all the certain answers to a given query.

Proposition 1. Let Q be a conjunctive query over
RC , and let Q′ be the union of conjunctive queries
QueryA(Q). Then for any instance DA of RA,
Q′(DA) is the set of all certain answers to Q given
DA. �

Proposition 1 also provides the first characterization
of the composition of MA→B and MB→C as a set of
GLAV formulas:

Proposition 2. Let C be the set of all GLAV formulas
of the form QA(x̄) ⊆ QC(x̄), where:

• QC(x̄) is a conjunctive query over RC , and

• QA(x̄) is one of the conjunctive queries in
QueryA(QC(x̄)).

Then, C is a composition of MA→B and MB→C w.r.t.
the set of conjunctive queries over RC . �

Although C in the above proposition may be infinite,
we can now identify several special cases where it is
finite.

Proposition 3. Let Q be a query language such that
for any fixed schema, Q can express only a finite
number of non-equivalent queries. Then, there is a
procedure to compute the composition of MA→B and
MB→C , which is a finite set of GLAV formulas. �

The above composition can be obtained by rewrit-
ing each of the non-equivalent queries using the pro-
cedure defined earlier in this section. An example of
where Proposition 3 may apply, is when the size of the
queries in Q is bounded or includes a bounded num-
ber of variables. (Note that CQk and linCQk are sub-
stantially more powerful than queries with a bounded
number of variables.) Finally, we note that if the se-
mantic mappings are all in LAV, or all in GAV, then
the composition will also be finite.

3.2 Minimal mapping formulas

We now identify a set of formulas, which we call min-
imal formulas, and show that they are sufficient for
producing a composition. Intuitively, these composi-
tion formulas are minimal in the sense that we cannot
get the same results by using a combination of smaller
formulas. That is, there exists a database instance
such that these formulas will produce certain answers
that cannot be produced by piecing together smaller
formulas in the composition.

We illustrate the intuition using the same query
Q(x, y) : − c(x, y1), c(y1, y) from Figure 2. We claim
that the composition must include a rule with Q on
the right-hand side (see formula 1c).

To see why, we note that to show that RewB(Q) is a
rewriting of QueryB(Q) in terms of the view va

b , there
must be a containment mapping [5] from the unfolding
of QueryB(Q) to the unfolding of RewB(Q). A vari-
able mapping from a query Q1 to a query Q2 is said to
be a containment mapping if it maps each subgoal in
Q1 to a subgoal in Q2, and it maps the head of Q1 to
the head of Q2. The existence of a containment map-
ping is a necessary and sufficient condition for show-
ing that Q1 contains Q2. The queries QueryB(Q),
RewB(Q) and their respective unfoldings are shown in
Figure 3. The containment mapping in this example
is the obvious one implied by our left-to-right ordering
of the subgoals.

Note that the zi variables are existential in vc
b , and

that the ui variables are existential in va
b . We refer to

the ui variables as internally existential – visible only
in the unfolding of RewB(Q).

The important thing to note about the containment
mapping in the example is that it maps variable y1,
which appears in both subgoals of Q, to variable u2,
which is internally existential. The join between the
two subgoals in Q could only be enforced in the rewrit-
ing because they are part of a single composition for-
mula. This join condition cannot be imposed using
the formulas 1a and 1b. Hence, we would not be able
to find paths of length 2 in c without this composition
formula.

In general, if Q is formed by piecing together two
composition formulas, say Q1 and Q2, then the in-
ternally existential variables in RewB(Q) can only be
the image of variables in one of them, and are useless
for enforcing join conditions between Q1 and Q2. On
the contrary, any formula Qa ⊆ Qc such that all join
variables in Qc map to internally existential variables,
must be a part of the composition.

Formally, we can define minimal composition for-
mulas as follows.

Definition 2. Let R : QA(x̄) ⊆ QC(x̄) be a formula in
the composition of MA→B and MB→C . We say that R
is a minimal composition formula if no proper subset
of the subgoals of QC satisfies the following condition.

Let S be a subset of the subgoals of QC , and suppose
that the containment mapping from the unfolding of
QueryB(QC) to the unfolding of RewB(QC) maps a
variable x that appears in S to an internally existential
variable in RewB(QC). Then all atoms in QC that
mention x are in S.

The following theorem provides the first step in de-
signing our composition algorithm; it shows that we
can restrict our attention to minimal mapping formu-
las.

Theorem 1. Let C be the set of all minimal
GLAV composition formulas of the form QA(x̄) ⊆
QC(x̄), where QC(x̄) is a conjunctive query over
RC , and QA(x̄) is one of the conjunctive queries in



QueryB(Q) = qb(x, y) : − vc
b(x, y1), vc

b(y1, y)

qb(x, y) : −
︷ ︸︸ ︷

b(x, z1), b(z1, z2), b(z1, y1),
︷ ︸︸ ︷

b(y1, z3), b(z3, z4), b(z4, y)
RewB(Q) = q′b(x, y) : − va

b (x, x1), va
b (x1, x2) va

b (x2, y)

q′b(x, y) : −
︷ ︸︸ ︷

b(x, u1), b(u1, x1),
︷ ︸︸ ︷

b(x1, u2), b(u2, x2),
︷ ︸︸ ︷

b(x2, u3), b(u3, y)

Figure 3: Query unfolding for QueryB(Q) and RewB(Q) from Figure 2

QueryA(QC(x̄)). Then, C is a composition of MA→B

and MB→C w.r.t. the set of conjunctive queries over
RC . �

The theorem is proved by showing that every an-
swer that would be obtained from a non-minimal for-
mula could be obtained by piecing together multiple
minimal formulas. Note that there may still be an
infinite number of minimal composition formulas.

For simplicity of further exposition, we make two as-
sumptions: (1) all the formulas in MB→C have a single
atom on the right-hand side (i.e., c-views are trivial),
and (2) every relation name appears on the right-hand
side of a single formula in MB→C . See Remark 3 for a
brief explanation on removing these assumptions.

The following lemma provides the second observa-
tion underlying our algorithm. It shows that minimal
composition formulas can be constructed in increasing
size.

Lemma 1. Let QA(x̄) ⊆ QC(x̄) be one of the minimal
composition formulas in C, where QC has n subgoals,
n > 1. Then there exists another minimal composi-
tion formula Q′

A(x̄) ⊆ Q′

C(x̄) in C also satisfying the
description of Theorem 1, where Q′

C has n−1 subgoals,
a subset of the subgoals in QC , and hence possibly a
subset of the head variables of QC . �

Remark 2. Definition 2 and Theorem 1 can be ex-
tended to n levels of composition, for an arbitrary n.
As a consequence, we can generalize our composition
algorithm to arbitrary fixed number of levels of com-
position. The details are omitted because of space
limitations. �

Given Lemma 1, a mapping composition algorithm
can begin with composition formulas whose right-hand
sides have only a single atom. At every step, the algo-
rithm considers the minimal formulas computed thus
far, and tries to extend them by adding another atom
to their right-hand side. If this process terminates, i.e.
when no new minimal rules can be obtained by exten-
sion, the set of all computed minimal rules (a finite
set) will be a composition of the given mappings.

3.3 Residues in minimal formulas

The next issue we need to consider is how to deal
with a possibly infinite number of composition formu-
las. We try to encode the infinite formulas in a finite
structure. To do so, we identify a condition on pairs of
mapping formulas that essentially tells us that the two
formulas can be extended in similar ways. With that

condition, we can partition formulas into equivalence
classes and treat all the formulas in an equivalence
class identically. We formalize the condition with the
notion of residues, which we describe below.

To illustrate the notion of a residue, consider how
formula 1a in Example 2 could be extended to obtain
formula 1c. The intermediate steps in deriving for-
mula 1a are shown in Figure 4.

q(x, y1) :− c(x, y1) RewB(q) : vc(x, y1)
QueryB(q) : vc

b(x, y1)
︷ ︸︸ ︷

b(x, z1), b(z1, z2), b(z1, y1),
RewB(q) : va

b (x, x1), va
b (x1, x2)

︷ ︸︸ ︷

b(x, u1), b(u1, x1),
︷ ︸︸ ︷

b(x1, u2),b(u2,x2)

Figure 4: Deriving formula 1a in Example 2

The containment mapping from QueryB(q) to
RewB(q) maps the variable y1 in QueryB(q) to the
internally existential variable u2 in RewB(q). The
last atom in RewB(q), b(u2,x2), is not the target
of any atom in QueryB(q). Observe that we can ex-
tend RewC(q) (and the containment mapping) to in-
troduce an atom in QueryB(q) that includes y1, such
that b(u2, x2) is in the target of the extended contain-
ment mapping.

The extended query would include a join condition
(using variable y1) that cannot be captured using for-
mulas 1a and 1b (since the join variable y1 maps to the
internally existential variable u2). Atom b(u2, x2) and
the position of variable u2 in that atom characterize
the possible extensions of the formula, and constitute
the residue of the formula. A complete formula is ob-
tained by extending the maximally contained rewrit-
ing RewB(q) to cover the new atoms introduced in
QueryB(q).

Informally, the residue is a quadrapule
〈Atoms, Ē, D̄, ψd〉, where Atoms are the atoms
in the unfolding of RewB that can be mapped to in
an extension of the formula, Ē is the set of internally
existential variables that can be used to enforce
further join conditions, D̄ is the set of variables
that can be distinguished in extended formulas
(i.e. appear in both sides of the mapping formula),
and ψd is the containment mapping restricted to
the variables whose image is in Ē or D̄.1 In our
example, the residue for the formula in Figure 4 is
〈{b(u2, x2)}, {u2}, {x2}, {y1 → u2}〉.

Residues in in minimal composition formulas are
constructed as follows. Let r : QA(x̄) ⊆ QC(x̄) be

1ψd is used to link a minimal formula with its extensions.



such a formula; let D̄1, the variables that appear both
in RewB(QC) and its unfolding; and ψ, a containment
mapping from the unfolding of QueryB(QC) to the un-
folding of RewB(QC). Construct a hypergraph G for
RewB(QC) such that there is a node for every variable
in its unfolding and an edge (x1, . . . , xn) with label bi
for every atom bi(x1, . . . , xn) in its unfolding. The
residue of r can be constructed as follows: an atom
bi ∈ Atoms if it lies on a path in G between two vari-
ables (nodes), x and y ∈ D̄1, where x is in the image
of ψ and y is not, and the path includes an internally
existential variable in the image of ψ. Ē is the set of
internally existential variables in Atoms. D̄ is the sub-
set of D̄1 restricted to the variables in Atoms. Finally,
ψd is the restriction of ψ to variables whose image is
in Ē ∪ D̄.

Observe that minimal composition formulas can
have null residues, e.g. the formula in Figure 3. Such
minimal rules cannot be extended as they have no
available internally existential variables.

Going back to Figure 4, we can clearly see that this
formula can be extended by adding the atom c(y1, y)
to q to obtain formula 1c. The atom b(y1, z3) in the
unfolding of vc

b(y1, y) maps to b(u2, x2) in the extended
containment mapping. In general, it is important to
note that any atom c′ that extends the c-query in a
minimal formula must satisfy the following conditions

• c′ must include a variable, say y′, that is mapped
by ψ to a variable in Ē, and

• all atoms in the unfolding of c′ with y′ must be
mapped by the extension of ψ to atoms in the
residue.

A residue concisely captures all information that is
required to extend a formula. As a consequence, if two
minimal formulas have isomorphic residues, they will
also have isomorphic extensions. We exploit this key
fact in the next section to encode infinite compositions.

3.4 Query Rewrite Graphs

We now describe the construction of a Query Rewrite
Graph (QRG) that encodes the composition of two
sets of mapping formulas. Briefly, a QRG consists two
kinds of nodes: Query nodes and Rewrite nodes. Paths
in a QRG contain alternate query nodes (Qis) and
rewrite (Ris) nodes. Every path p : Q1R1 . . . QnRn,
from a root node Q1, encodes a minimal composition
formula r(p) : QA(x̄) ⊆ QC(x̄). Each Qi contains a
single atom from Rc such that the Qis along p can be
chained to obtain the query QC . Similarly, the Ris
can be chained to obtain the query QA.

The construction of the QRG, as we shall shortly
see, mirrors the extension of minimal mapping formu-
las. For example, the rewrite node Rn (at the end of
path p) has as children the query nodes that contain
possible single atom extensions to the query QC of the

minimal rule p(r). Further, the QRG is able to encode
infinite composition formulas using cyclic paths.

In Figure 5 we show the QRG for the composition
of the mappings in Example 3. This finite sized QRG
encodes the infinite mapping formulas in that compo-
sition.

Roots of a QRG

The roots of a QRG are query nodes. There is a root
node for each single atom query QC(x̄) :− c(x̄, ȳ) such
that there exists a non-null minimal composition for-
mula QA(x̄) ⊆ QC(ȳ). If g is a query node, then
Atom(g) is the single atom of RC , and QueryB(g) is
the query QueryB(Atom(g)).

The root node g has one child rewrite node for
every possible minimal composition formula whose
right-hand-side is QC(x̄). If r is one such rewrite
node, then RewB(r) and QueryA(r) are the queries
RewB(QC) and QueryA(QC) respectively. We denote
by ψr the containment mapping from the unfolding of
QueryB(g) to the unfolding of RewB(r).

Thus the root nodes and their child rewrite nodes
encode all minimal formulas where QC has one atom.
In Example 3 and Figure 5, Q1

c(x, y) :−cgg(x, y) and
Q2

c(x) :−crgg(x, y) are the only two such queries over
RC for which there exists a non-null minimal formula,
and hence are represented in query nodes Q1 and Q2.
The two corresponding queries over RA are in the
rewrite nodes R1 and R2. Observe that the node pairs
Q1R1 and Q2R2 encode the formulas 2a and 2b re-
spectively in the composition.

Internal nodes

Paths starting from a root of a QRG encode mini-
mal composition formulas. We explain this encoding
by induction. Assume, as we have seen for already
from paths of length 2, that a path from a root to a
rewrite node r encodes a minimal composition formula
form(r) : QA(x̄) ⊆ QC(x̄). The rewrite node r has a
child query node g′ for each possible way of extend-
ing form(r) to another minimal composition formula
by adding a single atom to QC . Then, Atom(g′) is a
RC atom such that there exists a minimal composi-
tion formula of the form Q′

A(x̄) ⊆ Q′

C(x̄), where Q′

C is
the result of adding Atom(g′) to the body of QC , and
Q′

A is an extension of QA. ψ′

r(g
′) is the variable map-

ping from the unfolding of QueryB(g′) to the residue
in form(r). Note that such extensions may, in addi-
tion, also apply a homomorphism to the variables in
the residue in form(r).

The node g′ has a child rewrite node r′ for every
possible extended formula Q′

A(x̄) ⊆ Q′

C(x̄). For the
rewrite node r′, RewB(r′) and QueryA(r′) are the sets
of atoms that are added toRewB(Qc) andQueryA(Qc)
to obtain RewB(Q′

c) and QueryA(Q′

c), respectively.
We denote by ψr(r

′) the variable mappings that need



Q2

R2

Q3

R3

Atom: crgg(x,y1)
QueryB: br(x,z1) bg(z1,z2) bg(z2,y1)

RewB: br(x,u1) bg(u1,x1) bg(x1,u2) bg(u2,x2)
ψr: {z1→u1, z2→x1, y1→u2}
QueryA: arg(x,x1),agg(x1,x2)
Residue: < bg(u2,x2), {u2}, {x2}, {y1→u2} >

Atom: cgg(y1,y2)
QueryB: bg(y1,z3) bg(z3,y2)
ψr': {z3→x2}

RewB: bg(x2,u3) bg(u3,x3)
ψr: {y2→u3}
QueryA: agg(x2,x3)
Residue: < bg(u3,x3), {u3}, {x3}, {y2→u3} >

Q1

R1

Atom: cgg(x,y)
QueryB: bg(x,z4) bg(z4,y)

RewB: bg(x,u4) bg(u4,y)
ψr: {z4→u4}
QueryA: agg(x,y)
Residue: < φ, {}, {}, {} >

Q1R1: agg(x,y) ⊆ cgg(x,y)
Q2R2: arg(x,x1),agg(x1,x2) ⊆ crgg(x,y1)
Q2R2Q3R3: arg(x,x1),agg(x1,x2),agg(x2,x3) ⊆ crgg(x,y1),cgg(y1,y2)
Q2R2Q3R3Q3R3: arg(x,x1),agg(x1,x2),agg(x2,x3),agg(x3,x4) ⊆ crgg(x,y1),cgg(y1,y2),cgg(y2,y3)
... ...

Figure 5: Query-Rewrite Graph for Example 3. The query-rewrite graph consists of query nodes and rewrite
nodes. The right-hand sides of formulas in the composition are encoded by paths of query nodes from the root,
and the left-hand sides are encoded by the corresponding rewrite nodes. Below the tree we show how the different
composition formulas are encoded by paths in the tree.

to be added to ψr(r) to obtain the containment map-
ping from the unfolding of QueryB(Q′

c) to the unfold-
ing of RewB(Q′

c).
In Figure 5, atom cgg(y1, y2) in Q3 extends query

crgg(x, y1) such that ψ′

r maps atom bg(y1, z3) to atom
bg(u2, x2) in the residue of R2. Atom agg(x2, x3)
completes the rewriting of the extended query. Thus
Q2R2Q3R3 encodes formula 2c. Variable y1 is mapped
to the internally existential variable u2. Thus this for-
mula cannot be obtained by individual formulas for
crgg(x, y1), and cgg(y1, y2) and is hence a minimal for-
mula.

Residue labels

As stated earlier, residues enable us to detect
when minimal formulas can be extended in similar
ways. Hence, with every rewrite node r, we attach
residue(r), as described in the last section. We say
that rewrite nodes r and r′ are isomorphic if there is
a variable isomorphism φ such that φ(residue(r′)) =
residue(r). When we build the QRG, we do not ex-
pand (i.e., create children for) a rewrite node r′ if
there is already another expanded isomorphic node r.
Hence, if there is a finite number of possible residue
labels, then the QRG will be finite.

Isomorphism between rewrite nodes essentially cre-
ates cycles in the QRG. Using these cycles, we can
encode an infinite number of composition formulas.
Specifically, we can extend form(r′) in exactly the
same ways we can extend form(r), modulo the iso-
morphism φ. Note when a child g′ of r uses a variable
that does not appear in r, then the extension of r′

should use a fresh variable that appears nowhere else.
Hence, we say that a composition formula R is encoded
by the QRG if there is some path through the nodes
of the QRG (possibly with cycles) that encodes R.

In Figure 5, all the other minimal formulas are en-
coded by cyclic paths of the form Q2R2(Q3R3)

∗, and
each in turn has a residue isomorphic to R2.

The following theorem shows that the QRG encodes
all composition formulas. The crux of the proof shows
that any formula in the composition can be encoded
by a path in the QRG.

Theorem 2. Let C be the set of composition formu-
las encoded by the QRG constructed for MA→B and
MB→C . If the QRG is finite, then C is a composition
of MA→B and MB→C w.r.t. conjunctive queries. �

If the QRG terminates and is acyclic, it encodes a
finite set of formulas each of which can be extracted by
a top-down traversal of the QRG. If the QRG is finite
but cyclic, it encodes an infinite set of formulas. We
can use a similar procedure to extract a finite encoding
of the composition formulas (we describe the encoding
in Section 5). We omit details of this procedure for
lack of space.

The QRG construction algorithm and Theorem 2
have the following practical implications:

• When the algorithm terminates and the graph is
acyclic (i.e., encodes a finite number of compo-
sition formulas), we can extract the composition
and apply to it a variety of optimizations. While
examples of infinite compositions exist, we still



expect that a large number of practical cases will
result in finite compositions.

• Any subset C1 of C in Theorem 2 is a valid subset
of the composition, and therefore can serve as an
approximate composition. Approximate composi-
tions will yield only correct answers but possibly
only a subset of the certain answers to a query. In
certain scenarios of integrating data over a large
collection of sources, complete answers are any-
way not obtainable. In such scenarios, the effi-
ciency advantages offered by the composition may
yield an attractive query processing alternative.
Of course, additional knowledge is needed to de-
termine how good an approximation a particu-
lar subset C1 offers. An obvious measure can be
given by considering the properties of the partic-
ular data sources that are accessed.

In the next section we show that the QRG con-
struction algorithm is guaranteed to terminate for an
important class of queries. The algorithm is also of
theoretical interest, as it enables us to establish the
following complexity bounds on the problem of testing
whether a set of formulas is a composition.

Theorem 3. Let MA→B and MB→C be two mappings,
each consisting of a finite set of GLAV formulas. Let
C1 be a finite set of GLAV formulas relating directly
between RA and RC .

• Determining whether C1 is a composition of
MA→B and MB→C w.r.t. the set of conjunctive
queries is in Πp

2
.

• Determining whether C1 is a composition of
MA→B and MB→C w.r.t. a language that has only
a finite number of non-equivalent queries for a
given schema is Πp

2
-hard.

�

The upper bound is established by noting that if the
largest view in C1 has k atoms, then C1 can be a com-
position of MA→B and MB→C only if all formulas in
the composition have k or less atoms on their right-
hand side (corollary of Lemma 1). Any single atom
extension of a known minimal formula in C1 must also
exist in C1. The lower bound is obtained by a reduction
from the ∀∃3SAT problem.

Finally, we address the simplifying assumptions
mentioned in the beginning of the section.

Remark 3. The algorithm for mappings that don’t
satisfy our simplifying assumptions is conceptually
similar, though more involved. If MB→C has more
than one formula per relation name, we multiply the
number of query nodes we have: one per combination
of atom and formula. If the formulas of MB→C have
non-trivial views on their right-hand sides, then in-
stead of adding a single atom to a formula as we go
through paths of the QRG, we add a block of atoms

(corresponding to all the subgoals in the definition of
a c-view) every time. �

4 Composition w.r.t. linCQk and CQk

In this section we show that our composition algo-
rithm (with a slight tweak) will terminate if we con-
sider composition w.r.t. the query languages linCQk

and CQk. Recall that composition w.r.t. a query lan-
guage Q means that the composed mapping generates
all certain answers for any given query in Q. (The
composition is still correct for queries outside Q, but
may not be complete). Hence, for these two classes of
frequently occurring queries, we can obtain the advan-
tages offered by pre-composition, and from a theoret-
ical perspective, termination shows that composition
is decidable for these classes of queries.

We begin by explaining the algorithm for linCQk,
and then sketch the extension for CQk. To create
a composition w.r.t. linCQk, we construct our QRG
with the following slight modification: we only con-
sider residues that have at most k2 internally exis-
tential variables (if a node has a bigger residue, then
we instead create multiple nodes each with a different
subset of k2 internally existential variables). A simple
counting exercise shows that this restriction guaran-
tees that there are a finite number of residues.

The reason we can restrict residues in this way is the
following. Because of the structure of linCQk queries,
there is always an ordering of the subgoals in QC such
that all variable interactions are local to small sets
of k variables. Further, we can always reorder the
atoms in Qc such that the algorithm is guaranteed
to construct the formula in that order, and that at
most k2 variables are required to capture all possible
interactions between variables. Hence, as we go down
the tree, we only need to keep track of k2 variables.
This claim is the key behind the following theorem.

Theorem 4. Let C be the set of composition formulas
encoded by the QRG if we only consider nodes whose
residues have at most k2 internally-existential vari-
ables. Then C is a composition of MA→B and MB→C

w.r.t. the class of linCQk queries. �

Queries in CQk also have a similar locality prop-
erty, but not in a linear ordering of the subgoals. In-
stead, if we represent the atoms of a CQk query as
a tree, then we can show that along every path from
the root to a leaf, their variable interactions are lim-
ited to k variables. To compute the composition w.r.t.
the class CQk, we need a slightly more involved al-
gorithm. Instead of encoding composition formulas by
paths through the graph, formulas are encoded by pre-
fix subtrees of the QRG. As in the case of linCQk, we
can reorder the atoms of QC along paths of the tree so
that we are guaranteed that the algorithm will create
the prefix subtree corresponding to any minimal for-
mula. The following theorem summarizes the result.



PC PA

q(x) :−crgg(x, y), p(y) q(x) :−arg(x, y1), agg(y1, y2), p(y2)
p(x) :−cgg(x, y), p(y) p(x) :−agg(x, y), p(y)
p(x) :−cgg(x, y) p(x) :−agg(x, y)

Figure 6: Encoding the infinite composition formulas
in Example 3 using recursive datalog programs.

Theorem 5. Let MA→B and MB→C be GLAV map-
pings, each consisting of a finite number of formu-
las. There is a procedure to compute a composition
of MA→B and MB→C w.r.t. the class of CQk queries.
�

In summary, this section has shown a new way to
use a restriction on the expected queries for the pur-
pose of optimization. If we know that our queries (or a
large number of them) will be in CQk, then we can pre-
compute the compositions. Hence, in practice, benefits
of composition can be achieved in many cases.

5 Using Infinite Compositions

Up to now, we have presented an algorithm for compo-
sition that will generate a finite composition for many
common cases. To complete the picture, we examine
the case where the algorithm terminates, but encodes
an infinite set of composition formulas. The utility of
our finite encoding is dependent on the ability to use
the encoded formulas to obtain the certain answers to
queries. However note that traditional query answer-
ing algorithms [11] cannot utilize such an encoding.
This section shows that in this case too, we can use
the composition provided by the algorithm to provide
complete answers to a query. The algorithm for doing
so is a result of independent interest.

Encoding an infinite composition: When our al-
gorithm returns an infinite composition, it can be en-
coded as follows with a datalog program. Recall that
a recursive datalog program P defines a query predi-
cate p in terms of a set of extensional predicates (and
possible additional intensional predicates). The pro-
gram P can be viewed as encoding an infinite number
of conjunctive queries, which are the finite unfoldings
of p in terms of the extensional predicates. Hence, p
is defined to be the union of its unfoldings.

A composition mapping MA→C is given by a data-
log program whose finite unfoldings encode the right-
hand sides of MA→C , and a function that specifies
the left-hand side for any given right-hand side. For-
mally, a mapping MA→C is encoded by a pair (PC ,
MCA), where PC is a datalog program over RC , and
MCA is a function that for every finite unfolding, QC ,
of PC returns all the conjunctive queries, QA, such
QA ⊆ QC ∈MA→C . The important aspect of MCA is
that it is defined on the rules of PC . Hence, we can de-
fine a datalog program PA such that the unfoldings of
PA correspond to the right unfoldings of PC . Figure 6
shows such a representation for the infinite formulas
in the QRG in Figure 5.

Computing certain answers: Given the above en-
coding, the crux of using the reformulation boils down
to the following problem. Given a query Q, we need
to reformulate Q using an infinite number of views
that are encoded by a datalog program (the right-
hand sides of the composition). A similar problem was
solved in [19], where infinite sets of views represented
data sources that may have query answering capabili-
ties, and the views represented all the possible queries
that a source can answer. However, [19] only con-
sidered the rewriting problem when equivalent rewrit-
ings are considered, rather than maximally-contained
rewritings.

In the full version of the paper we prove the fol-
lowing generalization of [19] to maximally-contained
rewritings:

Theorem 6. Given an infinite set of views V encoded
by the expansions of a datalog program P , and a query
Q over the EDB predicates of P , we can compute a
maximally-contained rewriting, Q′, of Q over V, and
Q′ yields all the certain answers to Q for any instance
of the EDB predicates of P . �

Given the reformulation provided by Theorem 6 for
a query Q, we can apply to it the mapping MCA, thus
obtaining a reformulation of Q in terms of RA. This
reformulation is guaranteed to yield all the certain an-
swers to Q. Furthermore, to obtain additional savings
at run-time, the datalog program encoding the compo-
sition can be optimized in advance, using techniques
such as [13] for pushing selections and removing re-
dundant rules.

6 Conclusion

This paper presented the first treatment of composi-
tion of semantic mappings. The motivations for map-
ping composition are both fundamental, as mappings
become objects of significant interest [3], and as they
are used in large-scale data sharing systems. From a
theoretical perspective, we showed that (1) the com-
position of GLAV mappings may be infinite, (2) for
queries in CQk, the composition can be precisely com-
puted, and (3) bounds can be established on the com-
plexity of composition. From a practical perspective,
we have shown that in many common cases, composi-
tions of mappings can be computed in advance. These
compositions can be pre-optimized to remove redun-
dant rules and joins, push selections, and determine
join orders. In contrast to previous work that needs
to chain semantic mappings at run-time [12], the op-
timized compositions can reduce reformulation time,
prevent the following of redundant paths in the net-
work, and produce better query optimization plans.

This paper provides the basis on which to design
optimization methods for query processing over net-
works of semantically related data. The key challenge
we are addressing now is to decide which paths to pre-



compose and ensure that the optimizer uses the com-
position appropriately. As pertaining to the composi-
tion itself, we would like to extend our algorithm to
compose mappings that are themselves finite encod-
ings of infinite GLAV formulas, and investigate effi-
cient algorithms for performing composition.

Acknowledgements

We would like to thank Surajit Chaudhuri, Zachary
Ives, Todd Millstein, Tova Milo, Rachel Pottinger, and
Ashish Sabharwal for discussions and comments re-
lating to earlier drafts of this paper. This work was
funded in part by NSF ITR grants IIS-0205635 and
IIS-9985114 and a gift from Microsoft Research.

References

[1] S. Abiteboul and O. Duschka. Complexity of an-
swering queries using materialized views. In Proc. of
PODS, pages 254–263, Seattle, WA, 1998.

[2] P. Bernstein, F. Giunchiglia, A. Kementsietsidis,
J. Mylopoulos, L. Serafini, and I. Zaihrayeu. Data
management for peer-to-peer computing : A vision.
In Proceedings of the WebDB Workshop, 2002.

[3] P. A. Bernstein. Applying Model Management to
Classical Meta Data Problems. In Proceedings of
the Conference on Innovative Data Systems Research
(CIDR), 2003.

[4] D. Calvanese, G. D. Giacomo, M. Lenzerini, and
M. Vardi. View-based query processing for regular
path queries with inverse. In In Proceedings of PODS,
pages 58–66, 2000.

[5] A. Chandra and P. Merlin. Optimal implementation
of conjunctive queries in relational databases. In Pro-
ceedings of the Ninth Annual ACM Symposium on
Theory of Computing, pages 77–90, 1977.

[6] C. Chekuri and A. Rajaraman. Conjunctive Query
Containment Revisited. In Proceedings of the Interna-
tional Conference on Database Theory (ICDT), 1997.

[7] O. M. Duschka and M. R. Genesereth. Answering
recursive queries using views. In Proc. of PODS, pages
109–116, Tucson, Arizona., 1997.

[8] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa.
Data Exchange: Semantics and Query Answering.
In Proceedings of the International Conference on
Database Theory (ICDT), 2003.

[9] M. Friedman, A. Levy, and T. Millstein. Navigational
plans for data integration. In Proceedings of AAAI,
1999.

[10] A. Halevy, Z. Ives, I. Tatarinov, and P. Mork. Pi-
azza: Data management infrastructure for semantic
web applications. In Proc. of the Int. WWW Conf.,
2003.

[11] A. Y. Halevy. Answering queries using views: A sur-
vey. VLDB Journal, 10(4), 2001.

[12] A. Y. Halevy, Z. G. Ives, D. Suciu, and I. Tatarinov.
Schema mediation in peer data management systems.
In Proc. of ICDE, 2003.

[13] A. Y. Halevy, I. Mumick, Y. Sagiv, and O. Shmueli.
Static analysis in datalog extensions. Journal of the
ACM, 48(5):971–1012, September 2001.

[14] R. Hull. Managing semantic heterogeneity in
databases: A theoretical perspective. In Proc. of
PODS, pages 51–61, Tucson, Arizona, 1997.

[15] N. Immerman and D. Kozen. Definability with
bounded number of bound variables. Information and
Computation, 83(2):121–139, 1989.

[16] P. Kalnis, W. Ng, B. Ooi, D. Papadias, and K. Tan.
An adaptive peer-to-peer network for distributed
caching of olap results. In Proc. of SIGMOD, 2002.

[17] A. Kementsietsidis, M. Arenas, and R. J. Miller. Map-
ping data in peer-to-peer systems: Semantics and al-
gorithmic issues. In Proc. of SIGMOD, 2003.

[18] M. Lenzerini. Data integration: A theoretical perspec-
tive. In Proc. of PODS, 2002.

[19] A. Y. Levy, A. Rajaraman, and J. D. Ullman. Answer-
ing queries using limited external processors. In Proc.
of PODS, pages 227–237, Montreal, Canada, 1996.

[20] C. Li, M. Bawa, and J. Ullman. Minimizing View
Sets without Losing Query-Answering Power. In Pro-
ceedings of the International Conference on Database
Theory (ICDT), 2001.

[21] J. Madhavan, P. Bernstein, P. Domingos, and A. Y.
Halevy. Representing and Reasoning about Mappings
between Multiple Domain Models. In Proceedings of
the 18th National Conference on Artificial Intelligence
(AAAI), 2002.

[22] J. Madhavan and A. Halevy. Com-
posing mappings among data sources.
www.cs.washington.edu/homes/jayant/full-
composition.pdf, 2003.

[23] S. Melnik, E. Rahm, and P. Bernstein. Rondo: A pro-
gramming platform for generic model management. In
Proc. of SIGMOD, 2003.

[24] T. Milo and S. Zohar. Using Schema Matching to
Simplify Heterogeneous Data Translation. In Proceed-
ings of the International Conference on Very Large
Databases (VLDB), 1998.

[25] W. S. Ng, B. C. Ooi, K.-L. Tan, and A. Zhou. Peerdb:
A p2p-based system for distributed data sharing. In
ICDE, Bangalore, India, 2003.

[26] L. Popa, Y. Velegrakis, R. J. Miller, M. A. Hernandez,
and R. Fagin. Translating Web Data. In Proceed-
ings of the International Conference on Very Large
Databases (VLDB), 2002.

[27] A. P. Sheth and J. A. Larson. Federated database
systems for managing, distributed, heterogenous, and
autonomous databases. ACM Computing Surveys,
22(3):183–236, September 1990.

[28] J. D. Ullman. Information integration using logical
views. In Proc. of ICDT, pages 19–40, Delphi, Greece,
1997.

[29] M. Y. Vardi. On the complexity of bounded-variable
queries. In Proc. of PODS, pages 266–276, 1995.

[30] G. Wiederhold. Mediators in the architecture of future
information systems. IEEE Computer, pages 38–49,
1992.


