
1

A Survey Study on Trust Management

 in P2P Systems
Chen Ding, Chen Yueguo, Cheng Weiwei

Department of Computer Science, School of Computing
National University of Singapore

ABSTRACT
Trust management in P2P system is used to detect malicious behaviors and to promote
honest and cooperative interactions. In this report, we first present a computational
model that shows the relationships based on trust and reputation. This model can be
implemented in a real system to consistently calculate trust and reputation scores for
each peer. Furthermore, we introduce two reputation-based trust management
solutions: DMRep and EigenRep. DMRep implements the trust management at both
data management and semantic level. It is based on analyzing earlier transactions of
peers and deriving reputation values from those transactions. EigenRep tries to
minimize the impact of malicious peers by using global reputation values. Finally, we
discuss the security concerns involved in P2P trust management through two
protocols, P2PRep and XRep, which try to provide support on authenticity of the
votes, and protect the integrity of messages exchanged. In conclusion, we point out
the potential future trend or works to be done in P2P trust management.

1. INTRODUCTION

1.1 Malicious Usages and Attacks in P2P
Ever since Napster [1] that allowed individuals to trade in the music commodity,

P2P applications of many different kinds have become a popular medium to share
huge amounts of data. Some allow distributed file sharing, while others facilitate
real-time communications. Many large vendors are beginning to integrate P2P
applications with their core business programs. Their ability to build an extremely
resourceful system by aggregating the resources of a large number of independent
nodes enables P2P systems to compete the capabilities of many centralized systems
for relatively little cost. P2P systems are believed to remain an important approach
and continue to gain popularity and impact in the future due to the anonymity, cost
sharing, dynamism and scalability that P2P systems possess.

However, there are important challenges to overcome before the full potential of
P2P systems can be realized. The main goal of the earlier P2P systems is the
capability of aggregating resources, which assumes certain honesty level of peers.
However, as P2P systems grow tremendously in size, there will be a considerable
number of malicious peers who bring security attacks and threats to the whole
network. In a distributed infrastructure without centralized server for authority,
providing security mechanism is more complicated than in server-centric solutions, as

2

the existence of multiple sites increases the vulnerability and security efforts must be
replicated at multiple sites. Like traditional client-server systems, there are malicious
peers trying to attack against integrity, confidentiality and authenticity, which are the
main issues in the area of system securities. Therefore security issues are one of the
major challenges that need to be carefully analyzed and addressed, especially for fully
decentralized unstructured P2P systems, like Gnutella [2].

1.2 Traditional Security Solutions
However traditional solution (public key encryption) for such attacks requires a

trusted third party to act as certificate authority. In particular P2P environments, lack
of centralized trustworthy party, and the existence of multiple anonymous peers have
handled the public key solution. On the other hand, some proposed public key
mechanism suited for P2P system requires the declaration of the real IP and port.
However, this approach compromises the anonymity by revealing IP and port to other
peers.

Moreover, there are seemingly less serious problems in P2P applications, which
also downgrade the credibility and trustworthiness of the system. For example, in a
P2P environment the collaboration of all peers is very important for the correct
functioning of the system. Every peer is soaking up network bandwidth. If too many
users access the same network resource, the network bandwidth may be used up,
resulting in a denial of service (DoS). P2P network is prone to DoS attack, which
takes advantage of the flooding algorithm that is used for querying the P2P network. A
malicious node continuously issues queries with high TTL values on the network,
which generate huge amount of network traffic rendering the network unusable by
other honest peers. Other examples are as follows. The peer who offers a resource
may go offline while other fellow peers are downloading from it; a malicious peer
may just simply route a query to a non-existent peer or an unreliable peer with long
latency. Malicious or improper usages like these cannot be addressed by security
solutions, as these problems relate more with trustworthiness rather than security.
Therefore there is demand for mechanisms to maintain the trust of P2P systems to
promote peers for correct and positive usage so as to keep the trust level of the whole
system.

1.3 Trust Management Approach
These issues have motivated substantial research on trust management in P2P

networks. Trust management is a successful approach that helps to maintain overall
credibility level of the system as well as to encourage honest and cooperative behavior.
The intuitive motivation of trust management is as follows. Since in P2P system
there is no central authority that can authenticate and guard against the actions of
malicious peers, it is up to the peer to protect itself and to be responsible for its own
actions. Consequently, each peer in the system needs to somehow evaluate
information received from another peer in order to determine the trustworthiness of
both the information as well as the sender. This can be achieved in several ways such

3

as relying on direct experiences or acquiring reputation information from other peers
[3].

Trust management is shown to be nicely suited to those problems briefly
discussed in section 1.2. Particularly trust management systems are classified into
three categories, reputation-based trust systems, policy-based trust systems, and social
network-based trust systems. Section 2 will describe trust and trust management
systems in further detail.

1.4 Goal and Organization of This Survey
In this survey, we specially look into the area of reputation-based trust

management systems. The goal of this survey is to discover the current
achievements and future trend of the researches on the P2P trust management. We
briefly look into the literature of the trust management, and then we study some
remarkable articles that discuss the modeling, computation, maintenance and security
concerns of trust management. These articles propose trust management solutions,
such as EigenRep [4], DMRep [5], P2PRep [6] and XRep [7]. While EigenRep and
DMRep contribute more on proposing a computational model of trust, P2PRep and
XRep protocols look into the effect of combining security solution into trust
management approach. Advantages and disadvantages of each of those approaches
are presented after critical analysis and discussions. Future trend is also given
thereafter based on the findings of this survey paper and conclusive analysis.

The rest of this paper is organized as follows. Section 2 shows the works and
achievements in the literature of trust management. Section 3 presents a description
on computational model for P2P reputation-based trust management. While section
4 presents the detail of EigenRep and DMRep protocols that focus on the
computational model of reputation, section 5 talks about the idea of P2PRep and
XRep that focus on the security concerns of reputation-based systems. Discussions
for each protocol are also presented in section 4 and section 5 respectively. Section 6
points out the future trend of trust management in P2P systems and concludes this
paper.

2. LITERATURE REVIEW
Based on the approach adopted to establish and evaluate trust relationship

between peers, trust management in P2P system can be classified into 3 categories [8]:
credential and policy-based trust management, reputation-based trust management,
and social network-based trust management as shown in Figure 1.

Figure 1: Trust management taxonomy

4

2.1 Policy-based Trust Management Systems
In credential and policy-based trust management systems, peers use credential

verification to establish a trust relationship with other peers [9, 10]. Since the primary
goal of such systems is to enable access control, their concept of trust management is
limited to verifying credentials and restricting access to resource according to
application-defined policies [11].

PolicyMaker [12] is a trust management system that facilitates the development of
security features including privacy and authenticity for different kinds of network
applications. It provides each peer with local control to specify its policies: using
PolicyMaker a peer may grant another peer access to its service if the providing peer
can determine that the requesting peer’s credentials satisfy the policies.

The policy-based access control trust mechanisms do not incorporate the need of
the requesting peer to establish trust in the resource-owner; therefore, they by
themselves do not provide a complete generic trust management solution for all
decentralized applications.

2.2 Reputation-based Trust Management Systems
Trust management is any mechanism that allows establishing mutual trust.

Reputation is a measure that is derived from direct or indirect knowledge on earlier
interactions of agents, and it is used to access the level of trust an agent puts into
another agent. Thus, reputation-based trust management is one specific form of trust
management.

Reputation-based trust management systems on the other hand provide a
mechanism, by which a peer requesting a resource may evaluate the trust in the
reliability of the resource and the peer providing the resource. Examples of such
systems include SPORAS and HISTOS [13], XRep [7], NICE [14], DCRC/CORC
[15], EigenRep [4], etc. Peers in such systems establish trust relationships with other
peers and assign trust values to these relationships. Trust value assigned to a trust
relationship is a function of the combination of the peer’s global reputation and the
evaluating peer’s perception of that peer.

Cornelli et al. [5] proposed an approach to share information about peers’
reputation based on the distributed polling algorithm. A node looking for information
broadcasts a query and receives back QueryHits. It then chooses some results and asks
its peers to vote on the reputation of the nodes that sent it QueryHits. Once votes are
received a node contacts voters directly asking to confirm a validity of vote. The data
is retrieved from the peer with highest reputation.

Abdul-Rahman et al. [8] proposed a decentralized approach to trust management
and a recommendation protocol to compute trust related information. Each entity has
its own trust relationship database. They make use of different trust categories (which
aspect is trusted), a scale of trust values on recommendations and direct (related to
one aspect) trust values. In order to get a recommendation, an entity sends
recommendation requests to its trusted recommenders. Results from different paths
(from requester to target entity) are collected and averaged. Each path is computed

5

based on recommender trust value of recommenders and recommended trust value
returned.

NICE [14] is a platform for implementing cooperative applications over the
Internet. It works in a purely decentralized fashion and each peer stores and controls
data that benefits itself. Applications based on NICE barter local resources in
exchange for access to remote resources. NICE provides three main services: resource
advertisement and location, secure bartering and trading of resources, and distributed
trust evaluation. NICE uses two trust mechanisms to protect the integrity of the
cooperative groups: trust-based pricing and trust-based trading limits. One of the main
contributions of the NICE approach is the ability of good peers to form groups and to
isolate malicious peers.

2.3 Social Network-based Trust Management Systems
Social network-based trust management systems utilize social relationships

between peers when computing trust and reputation values. In particular, these
systems form conclusions about peers through analyzing a social network that
represents the relationships within a community.

Marsh [16] is among the first to try to give a formal treatment of trust that could
be used in computer science. His model is based on social properties of trust and
presents an attempt to integrate all the aspects of trust taken from sociology and
psychology. Several limitations exist in his simple trust model: too strong sociological
foundation makes the model rather complex and cannot be easily implemented; the
agents cannot collectively build a network of trust due to the model puts the emphasis
on agent’s own experiences.

Other examples of such trust management systems include Regret [17] that
identifies groups using the social network, and NodeRanking [18] that identifies
experts using the social network.

3. A COMPUTATIONAL MODEL
In this section, we look for the relationships based on trust and reputation, and

introduce a computational model [22] based on sociological and biological
understanding of trust management.

3.1 Understanding Trust & Reputation
After reviewing several important studies on trust management, reputation and

trust have been found to provide useful intuition or services for many systems [19]. It
is also proved that reputation-based system (e.g. the feedback rating system used in
eBay) does encourage transactions [20]. However, all of these studies model neither
how reputation is built nor how trust is derived from reputation.

When facing social dilemmas, trustworthy individuals tend to trust others with a
reputation for being trustworthy and shun those deemed less so. It is always the case
in real world where everyone in a society might not learn the same norms in all

6

situations. Only in an environment where individuals “regularly” perform reciprocity
norms, there is an incentive to acquire a reputation for reciprocities actions.

The model introduced in this section is built on such an environment where
reciprocity norms are expected. The intuition behind this model is inspired by
Ostroms’ 1998 Presidential Speech [21] to the American Political Society, which
proposed a qualitative behavioral model for collective action.

Consider the scenario that agent aj is evaluating ai’s reputation for being
cooperative. Define embedded social network of aj as the set of all the agents that aj
asks for this evaluation. In this way, the reputation of an agent ai is relative to the
particular embedded social network in which ai is being evaluated. Moreover, to be
simplicity, we assume such embedded social networks are taken to be static (i.e. no
new agents are expected to join or leave) and the action space is restrict to be
{cooperate, defect}.

Figure 2 shows the reinforcing relationships among the three highly related
concepts: reciprocity, trust and reputation. The direction of the arrow indicates the
direction of influence among the variables.

Figure 2: Simple relationship model

For an agent aj with a embedded social network A: increase aj’s reputation in A
should also increase the trust from other agents for aj, and the increase in ai’s trust of
aj should also increase the likelihood that ai will reciprocate positively to aj’s action;
since aj’s reciprocation action to others in A increased, its reputation in A should also
be increased.

3.2 Computation Model
Next, we shall see how the three concepts are defined and how to operationalize

this model into mathematical statements.
Reciprocity is defined as mutual exchange of deeds (such as favor or revenge).

Two types of reciprocity are considered in this model: direct reciprocity refers to
interchange between two concerned agents while indirect reciprocity refers to
interchange between two concerned agents interceded by mediating agents in
between.

The model defines reputation as perception that an agent creates through past
actions about its intentions and norms. Mathematically, let θji(c) represent ai’s
reputation in an embedded social network of concern to aj for a context c. This value
is subjective to every other agent since the embedded social network difference when

Trust

Reputation

Reciprocity

7

ai connects to different aj. In this way θji(c) measures the likelihood that ai
reciprocates aj’s actions.

In this model, trust is defined as a subjective expectation an agent has about
another’s future behavior based on the history of their encounters. Thus to evaluate
the trustworthiness of ai, let Dji(c) represents history of encounters that aj has with ai
within the context c. Moreover, we should take note that trust is a subjective quantity
calculated based on the two agents concerned in a dyadic encounter. So we can model
trust using T(c) = E [θji(c)| Dji(c)]. The higher the trust level for agent ai, the higher
the expectation that ai will reciprocate agent aj’s action.

We describe the computational model in detail with the following scenario:
Consider two agents a and b, and assume that they care about each others’ actions

within a specific context c. In this scenario, we assume that agent a always perform
“cooperate” actions and that a is assessing b’s tendency to reciprocate cooperative
actions. We assume the notations used for this scenario are:

θab : b’s reputation in the eyes of a
Xab(i): The ith encounter between a and b

⎩
⎨
⎧

=
otherwise

cooperateisactionsbif
iX ab 0

___'_1
)(

Dab: History. The set of n previous encounters between a and b
 Dab = {Xab (1), Xab (2), …, Xab (n)}

Let p be the cooperative actions by agent b towards a in the n previous encounters, b’s
reputation θab could be modeled by a simple proportion function of p cooperative
actions over n encounters. In statistics, a proportion random variable can be modeled
as a Beta distribution: p(θ

)
) = Beta(c1,c2) where θ

)
 represents an estimator for θ.

If agents a and b are complete strangers, when they first meet, their estimate for
each other’s reputation is assumed to be uniformly distributed across the reputation’s
domain:

⎩
⎨
⎧ <<

=
otherwise

p
0

101
)(

θ
θ

)
)

In this model, the beta distribution will be uniform when c1=c2=1.
Now we have a simple estimator for θab which is the proportion of cooperation in

n finite encounters: npab /=θ
)

. Assuming that each encounter’s cooperation
probability is independent of other encounters between a and b, the likelihood of p
cooperations and (n-p) defections can be modeled as L (Dab |θ

)
) =θp (1-θ) n-p

.
Combining the prior and the likelihood, the posterior estimate for θ

)
 becomes:

p(θ
)

|D) = Beta(c1+p, c2+n-p). As we mentioned previously, trust toward b from a is
the conditional expectation of reputation θ

)
 so it can be computed by

pcc
pc

DEDnxpT abab ++
+

===+=
21

1]|[)|1)1((θ
)

8

4. REPUTATION-BASED TRUST MANAGEMENT
In this section, two reputation-based trust management models, the DMRep and

EigenRep, are described in details. These two models focus on how the reputation
values are accessed and computed in a fully decentralized Peer-2-Peer System.

4.1 DMRep
DMRep [5] is an approach that addresses the problem of reputation-based trust

management at both the data management and the semantic level. This approach
assumes that the probability of cheating within a society is comparably low, and thus
it becomes more difficult to hide malicious behavior.

Similarly to the computational model in the previous section, this approach can be
interpreted as a simple method of data mining using statistical data analysis of former
tractions. It is based on analyzing earlier transaction of peers and deriving from that
the reputation of peer. The data necessary for performing the analysis is provided by a
decentralized storage method (P-Grid [23]).

4.1.1 Manage Trust in a Decentralized System

In a fully decentralized P2P system, the problem of reputation-based trust
management can be defined as follows:

Let P denote the set of all peers. The behavior data B are observations t (q, p) a
peer q ∈ P makes when he interacts with a peer p∈P. Based on those observations
one can access the behavior of p based on the set B (p) = {t (p, q) or t (q, p) | q∈ P}
⊆ B. The equation means: we take into account all reports about transactions that are
made about p, but as well all reports about transactions that are made by p.

Two problems reputation-based trust management faced in a decentralized
environment:

• The semantic question: what is the model that allows to access trust of p based
on the data B(p) and B?

• The data management question: how can the necessary data B(p) and B be
obtained to compute trust according to the semantic trust model with
reasonable effort?

Looking at these two questions more closely, one sees that they cannot be investigated
in separation. Next we will show how these two questions are solved in the DMRep
Model.

In a fully decentralized environment, a peer q has no access to the global data B(p)
and B. Rather, it has to rely on the data obtained from direct interaction, or it can
obtain indirectly through a limited number of referrals from witnesses PWr q ⊆∈ .
Thus q has information }),(|),({)(BpqtpqtpBq ∈= and

}),(,|),({)(BprtWrprtpW qq ∈∈= to determine the reputation of a peer p.
Since we assume that usually trust exists and malicious behavior is the exception,

information on dishonest interactions can be considered as relevant. Thus a peer p can,
in case of malicious behavior of q, file a complaint c(p, q). Complaints are the only

9

behavioral data B used in the model. To disseminate those behavioral data, a peer
forwards its complaints to other peers.

4.1.2 Overview of DMRep

4.1.2.1 Global Trust Model
Let us look at a simple situation where p and q interact and later on r wants to

determine the trustworthiness of p and q. We assume that p is cheating and q is honest.
After their interaction, q will file a complaint about p, which is perfectly fair.
However, q will also file a complaint about p, in order to hide its misbehavior. For an
external observer r, it cannot distinguish whether p or q is cheating. This means, a
social mechanism to detect dishonest behavior will not work for private interactions.

If p continues to cheat, it will be in trouble. Assume it cheats in another interaction
with s. then r will observe that p complaints about both q and s, whereas both q and s
complain about p. r can conclude that it is very probable that p is the cheater.

Based on the above scenario, the reputation of a peer can be computed by the
equation |}|),({||}|),({|)(PqpqcPqqpcp ∈×∈=θ . High values of θ(p) indicate
that p is not trustworthy. The reputation is computed based on the global knowledge
on complaints. Whereas it is straight forward a peer to collect all information about its
own interactions with other peers, it is very difficult for it to obtain all the complaints
about any other specific peer. At this point, a perspective of data management is
needed in order to solve the problem.
4.1.2.2 Decentralized Data Management

P-Grid method [23] (similar methods like [24] & [25] could also be considered) is
used to store data in a P2P network in a scalable way. Figure 3 shows a simple
example of a P-Grid. Six peers together support a virtual binary search tree of depth 2.
Each peer is associated with one path of the search tree.

Figure 3: Example P-Grid

1 6 2 3 4 5

1:3

01:2

Stores

complaints

about and by 1

1:4

01:2

Stores

complaints about

and by 2.3

1:5

01:2

Stores

complaints

about and by 1

0:2

01:2

Stores

complaints about

and by 4,5

0:6

01:2

Stores

complaints about

and by 4,5

0:6

10:4

Stores

complaints

about and by 6

0 1

0 0 1 11 Query(2,100)

Query(4,100) found!

Virtual binary search tree

10

It stores data items for which the associated path is a prefix of the data key. For

the trust management application this are the complaints indexed by the peer number.
Each peer can serve any search request. Either the requested key has as prefix the
search path associated with the peer processing the request, or the peer can use its
routing table to forward the query to another peer that is responsible for the
complementary part of the search tree. We demonstrate in the figure the processing of
one sample query query(2,100) using this search structure. As peer 2 is not associated
with keys start with 1 it looks up in its routing table peer 4, who can answer the query,
as it stores all data with keys, that start with 10.

This access method is organized in a peer-to-peer fashion, i.e. there exists no
central database. Two request forms are allowed in this model:

• Insert(a,k,v), where a is an arbitrary peer in the network, k is the key value to
be searched for, and v is the data value associated with the key.

• Query(a, k): v, where a is an arbitrary peer in the network, which returns the
data values v for a corresponding query k

The following properties that P-Grid satisfies enable it to be the access structure:
1. There exists an efficient decentralized bootstrap algorithm which creates the

access structure without central control.
2. The search algorithm consists of randomly forwarding the requests from one

peer to the other, according to routing tables that have been constructed in the
bootstrap algorithm.

3. All algorithms scale gracefully. Time and space complexity are both O(logn)
where n is the number of peers.

4.1.2.3 Local Trust Model
Since every peer p can file a complaint about q at any time, it stores the complaint

by sending messages insert(a1, key(p), c(p, q)) and insert(a2, key(q), c(p, q)) to
arbitrary peers: a1 and a2 in the P-Grid storage structure. The insertion algorithm of
P-Grid forwards the complaints to one or more peers storing complaints about p
respectively q. In this way the desired re-aggregation of the complaint data is
achieved.

As described previously, when a peer p wants to evaluate the trustworthiness of
another peer q, it starts to search for complaints on q. Based on the data obtained, p
uses the trust function θ(q) to decide upon trustworthiness.

However, there are two problems when the complaints data are obtained. First, the
witness peers might also be malicious and will provide wrong t(r, p) values. This can
be dealt with by checking the trustworthiness of the witness in the next step.
However eventually this would lead to the exploration of the whole network, which is
clearly undesirable. Second, even if the referring peer is honest, it may not be
reachable reliably over the network. This might distort the quality of the data received
about the behavior of other peers.

To address the above problems, DMRep proceeds as follows:
DMRep assumes that the peers are only malicious with a certain

probability 1max <≤ ππ . Then it configures the storage infrastructure, such that the

11

number r of replicas satisfies on average επ <r
max , where ε is an acceptable

fault-tolerance.
Thus, if the same data about a specific peer is received from a sufficient number

of replicas, no further checks are need. If the data is insufficient or contradictory,
DMRep will continue to check. In addition, DMRep also limits the depth of the
exploration of trustworthiness of peers to limit the search space, and might end up in
situations, where no clear decision can be made. However, these cases should be rare.

4.1.3 DMRep Algorithms

As shown in figure 4, when a peer p evaluates the trustworthiness of a peer q, it
retrieves from the decentralized storage complaint data by submitting messages
query(a, key(q)) to arbitrary peers a. In order to obtain multiple referrals it will do
this repeatedly for a number (n) of times. As a result it obtains a set:

W = {(cri(q), cfi(q), si , fi) | i = 1…w}
where

• w is the number of different witness found
• si is the identifier of the ith witness,
• fi is the frequency with which witness si is founded.
• cri(q) and cfi(q) are number of complaints q received and filed respectively.

Figure 4: Check complaints

Different frequencies fi indicate that not all witnesses are found with the same
probability due to the non-uniformity of the P-Grid structure. This non-uniformity
impacts not only query message but also storage messages. Thus witnesses found less
frequently will probably also not receive as many storage messages when complaints
are filed. Thus the number of complaints they report will tend to be low. Therefore we
normalize the values by using the frequencies observed during querying. The
following function compensates for the variable probability of a peer to be found,

p q

a1 a2 a3 as…

s1 s2 sw

?

a4

s3 …

12

wi
s

fs
qcfqcf

wi
s

fs
qcrqcr

si
i

norm
i

si
i

norm
i

,...,1),)(1)(()(

,...,1),)(1)(()(

=
−

−=

=
−

−=

The factor si

s
fs)(1 −

− corresponds to the probability of not finding witness i in s

attempts. This probability is high when the fi value is high and vice versa, which leads
to the desired compensation effect.

The following decision criterion is used to decide when to consider a peer
trustworthy.

=))(),((qcfqcrdecide norm

i
norm

ip

if

avg
p

avg
pavg

p
avg
p

norm
i

norm
i cfcr

cfcr
qcfqcr 2)4

2
1()()(+≤

then 1 else -1

where avg
pcr and avg

pcf are the average number of complaints received and

complaints filed.
This criterion is a heuristics. It is based on the argument that, if an observed value

for complaints exceeds the general average of the trust measure too much, the peer
must be dishonest. And the factor is determined by preformed a probabilistic analysis
by modeling peer interaction as Poisson processes.

Two strategies are proposed in the DMRep Model to determine trust. The simplest
strategy (ExploreTrustSimple (p, q)) is to take a majority decision and in case of a tie
return “undecided”. A more sophisticated strategy (ExploreTrustComplext(p, q, l))
includes the checking of the witness. The underlying assumption for this strategy is
that the probability π that a peer is not trustworthy is higher than the tolerance for a
wrong assessment, i.e. π ≥ ε, but that two witnesses giving the same assessment are
acceptable, i.e. π2 ≤ ε, therefore, in case of a single witness, it always needs to be
checked. If after the check, a majority decision can be made, it is accepted.

4.1.4 DMRep Discussion

DMRep is an approach that addresses the problem at both the data management
and the semantic level. The principal advantage of this approach is that it has an
efficient way of storing and retrieving trust data and does not flood every peer in the
system with queries about other peers, thus limiting storage and bandwidth costs. It is
thus more scalable than approaches that broadcast trust queries to all peers in the
system.

13

The main disadvantage, however, is that a peer is forced to store data owned by
other peers and does not have local control over the treatment of that data. Therefore,
the system is not truly decentralized because peers have to implicitly agree to not alter
data owned by others. It also does not employ any kind of mechanism to authenticate
messages or explicitly protect the identity of peers. And DMRep assumes that usually
trust exists and malicious behavior is the exception, thus it is not suitable for the
environment with high cheating rates.

Since DMRep uses complaints to report behaviors of peers and so relies on a
negative reputation-based scheme. Global trust information in the form of complaints
is stored across peers. This leads to two problems. The first is that the entry and
departure of peers from the system may result in important trust information being
lost, resulting in a decrease of the fault-tolerance ability of the system. The second
affects reliability since it is possible that a peer may end up storing complaints about
itself which it may be motivated to alter or destroy. P-Grid addresses both these
concerns by making trust data redundant across peers improving both fault-tolerance
and reliability. However, DMRep always regards a new peer as a good peer since
there is no complaint data associated with it. It cannot prevent the case that a
malicious peer frequently leaves the network and re-join as a new peer.

4.2 EigenRep

4.2.1 Reputation Values

4.2.1.1 Local Reputation Values
The evaluation of a peer to another peer can simply rely on the transactions

between the two peers. For example, peer i may have a positive opinion on peer j if it
successfully download an authentic file from peer j. On the other hand, it will have a
negative opinion if the file downloaded is inauthentic, or if the download fails. In this
way, EigenRep defines a local reputation value sij as the sum of the ratings of the
individual transactions that peer i has downloaded from peer j, where

),(),(jiunsatjisatsij −= . Here, sat(i, j) represents the number of satisfactory

transactions peer i has had with peer j. While unsat(i, j) represents the number of
unsatisfactory transactions. In this way, a peer evaluates the other peers by its own
experience. However, its own experience is very limited because a peer usually has
transactions with only a small number of peers in the system. How should a peer
evaluate another peer on which it has no experience? It should get evaluation from
other peers which may be familiar with the unknown peer. In this way, peers share
their experience (local evaluation values) with each other.

Since there is no centralized peer that stores and manages all the local reputation
values in P2P system, it gives rise to a challenge that how to aggregate these local
reputation values. EigenRep presents an efficient way to manage and use the
reputation values with minimal overhead in terms of message traffic in the system.

The local reputation values are the basis of a reputation system. The numbers of

14

transactions may vary greatly in different peers, which may result in the large
variation in local reputation values. Consequently, it will be better to normalize the
reputation values before peers sharing them. EigenRep defines a normalized local

reputation value cij, where
∑

=
j ij

ij
ij s

s
c

)0,max(
)0,max(

.

This definition maps all local reputation values sij to a value from 0 to 1.

Furthermore, peer i has a normalized local reputation vector, T
iNii ccc),...,(1=v , which

contains all the normalized local reputation values of peer i to the peers in the system.
As the limited experience of a peer, most entries of its normalized local reputation

vector will be zeros. The advantage of this definition is that, 1..,1
1

1
== ∑

=

N

j
iji ceicv .

It determines the convergence of iterations in the following algorithms in EigenRep.
However, the definition still has some drawbacks. First, it does not distinguish
between the peers that peer i has no experience and the peers that peer i has poor
experience since the normalized local reputation values of them are all zeros. Second,

for new peers, which has no experience on the other peers, 0)0,max(=∑ j ijs . So the

normalized local reputation value can not be defined in this case.

4.2.1.2 Global Reputation Values
Based on the normalized local reputation values, peer i can get experience on peer

k by ask its acquaintances about their opinions on peer k. And it weights its
acquaintances’ opinions by the trust peer i places in them.

∑=
j

jkijik cct

Similarly, peer i can ask its friends (acquaintances) about their opinions on all peers.

i
T

i cCt vv
= , i. e.,

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

iN

ik

i

NNkNN

Nkkkk

Nk

iN

ik

i

c

c

c

ccc

ccc

ccc

t

t

t

...

...

......
......

......
......

......

...

...
1

1

1

11111

In this way, peer i broadens its own experience. However, it
v

 only reflects the experience
of its friends, which may still be limited. To broaden the view further, peer i can ask its
friend again, and weights their opinions using the new experience it gets last time
(i

T
i cCt vv 2)2()(=). This is can be interpreted as peer i ask its friends’ friends. If it

continues in this manner,)()1(k
i

Tk
i tCt

vv
=+ and i

kTk
i cCt vv

)()(= . If k is large enough,
)(k

it
v

 will eventually converge to the left principle eigenvector of C regardless of

icv (0≠icv). This is determined by C is irreducible and aperiodic, which can be
deduced from the definition of icv . We call the converged vector, t

v
, global reputation

vector. An element of t
v

, for example, jt , quantifies how much trust the system as a

15

whole places peer j.
If one peer can collect all the normalized local reputation vectors, which means it

has the whole information of matrix C, it will be able to calculate the global
reputation vector t

v
 using a non-distributed algorithm.

εδ

δ

<

−=

=

=

+

+

until

tt

tCt
repeat

et

kk

kTk

)()1(

)()1(

)0(

;

;

rr

vv

vv

4.2.1.3 Practical Issues
In a P2P system, there are some peers that firstly join the system, and they are

usually known to be trusted by other peers. These peers are pre-trusted peers which
can be assigned some per-trust values in the process of calculation. This can be done

through a pre-trusted vector, pv .

An element of pv ,
⎩
⎨
⎧ ∈

=
othervise

PiifP
pi ,0

,/1

pv can be used in three ways.

First, it can be used as the starting vector of non-distributed algorithm.
Second, for new peers, their normalized local reputation values can not be defined

since 0)0,max(=∑ j ijs . In this case, we can use pv as the new peers’ local

reputation values.
Third, to weaken the effects of malicious collectives, the calculation of global

reputation vector can place some trust in peers that are not part of collective, for
example, pre-trust peers.

patCat kTk vvv
+−=+)()1()1(

According to these practical issues, the non-distributed algorithm can be modified as
follows.

εδ

δ

<

−=

+−=

=

=

+

++

+

until

tt

patCat
tCt

repeat
pt

kk

kTk

kTk

)()1(

)1()1(

)()1(

)0(

)1(
;

;

rr

vvv

vv

vv

16

4.2.2 Reputation Algorithm

4.2.2.1 Distributed Algorithm
However, in a P2P system, no peer can collect all the normalized local reputation

vectors from the other peers. Consequently, non-distributed algorithm is not practical.
Therefore, peers need to cooperate to compute global trust vector based on distributed
algorithms. EigenRep provides such a distributed algorithm which costs minimal
computation, storage, and message overhead.

The distributed algorithm is based on the component-wise version of
patCat kTk vvv

+−=+)()1()1(.

i
k

NNi
k

i
k

i aptctcat +++−=+)...)(1()()(
11

)1(
Here,)1(+k

it represents the k+1 times of global reputation value of peer i. It is
calculated and stored by peer i itself. The distributed algorithm is shown as follows:

Ai: set of peers who have downloaded files from peer i;
Bi: set of peers from which peer i has downloaded files;

}
; Until

return to peers allfor Wait

; Compute

; peers all to Send

;)...)(1(Compute
Repeat

 ;for peers allQuery
do{ ipeer Each

)1(

)()1(

)1(

)()(
11

)1(

)0(

εδ

δ

<

∈

−=

∈

+++−=

=∈

+

+

+

+

k
ijii

k
i

k
i

i
k

iij

i
k

NNi
k

i
k

i

jji

tcAj

tt

Bjtc

aptctcat

ptAj

The algorithm can be interpreted as figure 5.
)(k

aaitc)1(+k
iixtc

)1(+k
it)(k

ccitc

Figure 5: calculating global reputation value

Experiment shows that for a P2P system with 1000 peers, the algorithm has
converged after less than 10 iterations. Actually, each peer has limited interaction with
other peers in P2P systems. As a result, most cij in

i
k

NNi
k

i
k

i aptctcat +++−=+)...)(1()()(
11

)1(are zero; the sizes of Ai and Bi are also
small. All these factors determine that a limited number of messages used in the
algorithm. If the average number of acquaintances per peer is m, average number of
iteration is k, the mean number of messages per peer will be O(mk).

17

4.2.2.2 Secure Algorithm
Considering the existence of malicious peers, computing and storing global

reputation values by peers themselves will cause two problems: first, malicious peers
report false trust values of their own; second, malicious peers provide false reputation
values to others. Consequently, distributed algorithms can not guarantee the security
because malicious peers can easily cheat. Thus EigenRep provide a secure algorithm
to resolve this problem.

The basic idea of secure algorithm is that the trust value of one peer is computed
by some other peers. Those peers are called mothers which are responsible for
computing their daughters’ global reputation values. The reason for using more than
one other peer to compute a peer’s reputation value is that some mothers may be
malicious peers and they report false trust values for their daughters.

Figure 6: finding mothers using multiple DHTs

As shown in the Figure 6, the mothers of a peer can be assigned using multiple
DHTs. If a peer needs the trust value of peer i, it can send queries to mother(i)
(mothers of peer i). A majority vote on the trust value will determine the trust value of
peer i.

EigenRep gives a secure algorithm. A mother of peer i calculates the global
reputation value for peer i as follows.

; Until

return to peers allfor Wait

; Compute

; peers all to Send

;)...)(1(Compute
Repeat

 ;for peers allQuery

)1(

)()1(

)1(
11

)1(

)0(

εδ

δ

<

∈

−=

∈

+++−=

=∈

+

+

+

+

k
ijii

k
i

k
i

i
k

iij

i
k
NNi

k
i

k
i

jjiji

tcAj

tt

Bjtc

aptctcat

pctAj

Mother(i) needs to get Ai, Bi and peer i’s opinions on Bi from peer i, before it starts to
calculate the global trust value of peer i. In the process of calculating, after mother(i)
collects all reputation values from Ai for the k+1 times of computing, it calculates the
k+1 times of global trust value of peer i. Then it send its new reputation value (with
the weight they trust Bi) to Bi. Mother(i) continues computing in this way until the
global trust value of peer i converges to a certain value.

18

4.2.2.3 Improved Secure Algorithm
However, there is a bug in this algorithm. Actually, mother(i) should not collect all

reputation values from Ai, but the mothers of peers in Ai. Similarly, mother(i) should
not send its reputation value to Bi, but the mothers of peers in Bi. This is because Ai are
not the peers which send reputation values to mother(i), and Bi are not the peers which
need the reputation value from mother(i). The reputation values should be transferred
among the mothers of Ai, Bi, and peer i. According to this, we give a modified secure
algorithm as follows:

end
end

; until
;1

; compute

;for ,)(peers all to send

;)...)(1(compute

;return tofor ,)(peers allfor t wai
repeat

;for ,)(peers all to send
0;

);(
do each for

 ; daughters its from , ,collect
 ; mothers its to , , send

do ipeer each for

)()1(

)1(

)()(
11

)1(

)(

)(

εδ

δ

<
+=

−=

∈

+++−=

∈

∈=

=
=

∈

+

+

+

kk

tt

BjjHashtc

aptctcat

tcAjjHash

BjjHashpctc
k

dHashi
Dd

DcBA
McBA

k
i

k
i

it
k

ddj

d
k

NNd
k

d
k

d

k
jjddt

itddj
k

ddj

t

i

iddd

iiii
v

v

In our modified secure algorithm, we assume that each peer has the same number of
mothers. To cut down the message traffic, a mother of peer i will only communicate
with the mothers of Ai and Bi which use the same hash function as it. In this way, the
mean number of messages per peer will be O(tmk), where t is the number of mothers
for one peer, m is the mean number of acquaintances per peer, k is the mean number
of iteration in calculating a peer’s global trust value.

4.2.3 Discussion of EigenRep

Reputation Reputation

Noraml PopularMalicious

Malicious

Good New

Figure 7: the use of EigenRep
Basically, a trust management solution in P2P system needs to do the following
things:

19

Isolate malicious peers: malicious peers usually try to enhance their own
reputations and reduce others’ reputation. It is difficult to avoid malicious peers from
doing these especially when some malicious peers cheat in collectives. A good
reputation management solution should have the mechanism to detect the malicious
peers and isolate them from the others. EigenRep succeeds in this by using multiple
mothers to calculate and store reputation values for a peer. It also biases the users to
download files from reputable peers.

Encourage peers to share file: P2P system should be able to encourage peers to
share their authentic files. EigenRep achieves this by rewarding reputation to those
peers which provide good services. The more authentic a peer shares to others, the
more positive transactions others may have with the peer, and the more reputation the
peer gains.

Allow the new peers to build trust: As mentioned in the local reputation values
section, peers can not distinguish between new peers and malicious peers because the
normalized local reputation values to those peers are all zero. As a result, the global
trust value of them will be also zero. This causes a problem that, like malicious peers,
new peers will hardly be selected because of their poor reputation. To allow the new
peers to build trust, EigenRep provides a probability of 10% for new peers to be
selected. However, other methods need to be used to distinguish between new peers
and malicious peers before assigned some probability to be selected to new peers.
Another way to help new peers build trust may be to reward them greatly for their
good behaviors, so that they can keep up with good peers quickly.

Balance the load: Reputable peers have a high probability to be chosen because
of their high reputations. Consequently, more transactions may be done in these peers,
which will enhance their reputation further. This may lead them to be overloaded. A
good reputation system should avoid this by balancing the load among peers. Some
strategies may be used to achieve this goal. One way is to download probabilistically
so that low reputation peers still have chance to be selected. The other is to set up
maximum reputation values so that reputable peers will not be overloaded.

4.2.4 Limitations of EigenRep

First, malicious peers can still cheat in collectives. Since a peer reports Ai and Bi
to its mothers directly, it can report other malicious peers as its Ai and Bi. So still they
can cooperate to cheat. EigenRep seems do not solve this problem.

Second: the flexibility of calculating global reputation value. Since peers join and
leave frequently in P2P system, and they may also be off line for a long time.
EigenRep does not provide solutions to handle this.

Third, update global reputation values. After a certain time, the local reputation
values of some peers may change greatly due to the transactions during this time. The
global reputation values need to be recalculated in this case. How to determine
whether recalculation need to be done or not? How to minimize the message traffic in
the process of recalculation? EigenRep does not give answers.

Fourth: anonymous. EigenRep promises that it is not possible for a peer at a
specific coordinate to find out which peer ID exactly it computes for. However, since

20

a peer may calculate many other peers, how does it distinguish the received reputation
messages? It does not know for which peer is the reputation message. To solve this,
the mother peer has to know its daughters’ ID. As a result, anonymity loses.

5. SECURITY CONCERNS
As discussed in earlier section, security concerns are raised out in reputation based
trust management systems. In this section we will look into two papers [6, 7], which
firstly point out that anonymity opens the door to possible misuses and abuses by
resource providers while it enables P2P information sharing systems to gain
popularity. Motivated by that, the papers look into the area of trust management with
reputation-based approach, which aims to complement the security weakness of P2P
protocols. However, the focus is not the modeling, computation or maintenance of
reputations. Instead they propose two P2P reputation-based protocols that take care of
the security concerns of reputation-based trust management. We studied these two
papers with the critical goal of discovering the weaknesses and advantages of the
protocols by comparing, questioning and analyzing. The following section presents
a clearer detail of the two protocols, with discussions and conclusions enclosed
thereafter.

5.1 Basic Description of Gnutella
Gnutella is used as the testbed for their research, for Gnutella is an open protocol

and simple open source implementations are available that permit to experiment with
their protocol variants.

Gnutella offers a fully peer-to-peer decentralized infrastructure for information
sharing, where all servents act both as clients and servers and as routers propagating
incoming messages to neighbors. Messages, that can be broadcast or unicast, are
labeled by a unique identifier, used by the recipient to detect where the message
comes from. This feature allows replies to broadcast messages to be unicast when
needed. To reduce network congestion, all the packets exchanged on the network are
characterized by a given TTL (Time to Live) that creates a horizon of visibility for
each node on the network. To search for a particular file, a servent p sends a broadcast
Query message to every node linked directly to it. Servents that receive the query and
have in their repository the file requested, answer with a QueryHit unicast packet that
contains a ResultSet plus their IP address and the port number of a server process
from which the files can be downloaded using the HTTP protocol. Finally,
communication with servents located behind firewalls is ensured by means of Push
messages. A Push message behaves more or less like passive communication in
traditional protocols such as FTP, inasmuch it requires the “pushed" servent to initiate
the connection for downloading.

5.2 Security Threats to Gnutella
Gnutella, a pure distributed architecture there is no central authority to trust, is a

good tested for security provisions, as its current architecture provides an almost ideal

21

environment for the spread of self-replicating malicious peers. In an ordinary
Internet-based transaction, if malicious content is discovered on a server the
administrator can be notified. In Gnutella, malicious nodes have relatively small
chance of detection due to the self-appointed opaque identifiers. Another security
threat to Gnutella is man-in-the-middle-attack, where a QueryHit is modified by some
malicious node in the path. The modified QueryHit directs the downloading request to
a non-existent node or an unreliable or a malicious node.

The two protocols proposed by [6, 7], named P2PRep and XRep, aim for novel
provisions preventing the attacks against the above security threats. The following
sections discuss common basis for the two protocols, and different perspectives of the
two protocols will be described thereafter.

5.3 P2PRep and XRep

5.3.1 Basics of P2PRep and XRep

Both P2PRep and XRep share the following common requirements. Each servent
has associated a self-appointed servent id, which can be communicated to others when
interacting. The servent id of a party can change at any instantiation or remain
persistent. The two protocols encourage persistence as the only way to maintain
history of a servent id across transactions.

Both protocols assume the usage of public key encryption to provide integrity and
confidentiality of message exchanged. Whether persistent or fresh at each transaction,
each servent_id is required to be a digest of a public key, for which the servent knows
the corresponding private key. The public key is obtained using a secure hash
function.

The basic idea is as follows. Upon receiving QueryHits from fellow peers,
requestor p will enquire about the reputation of offerers by polling its peers before
deciding from where to download the resource. p polls its peers by broadcasting a
message requesting their opinion about the selected servents. All peers can respond to
the poll with their opinions about the reputation of each of such servents. The poller p
can use the opinions expressed by these voters to make its decision.

In particular, the two protocols need to ensure authenticity of servents acting as
offerers or voters and the quality of the poll. The next two sections will show how
P2PRep and XRep ensure the quality of the poll by ensuring the integrity of each
single vote.

5.3.2 P2PRep

P2PRep has two flavors, basic polling and enhanced polling. The former does not
require the voters responding to the poll to provide their servent_id, whereas the latter
requires the declaration of the servent_id to facilitate weighting of votes by p.

22

5.3.2.1 Basic Polling

Figure 8: Basic polling of P2PRep

The basic polling solution, illustrated in Figure 8, works as follows. The servent p

looking for a resource broadcasts a Query. Servents who receive the query and are
willing to offer the requested resource, send back a QueryHit message indicating its IP,
port, and servent id. Then, p selects its top list of servents T and polls its peers about
the reputations of these servents. In the poll request, p includes the set T of servent ids
and a public key generated on the fly for the poll request, with which responses to the
poll will need to be encrypted. Peers receiving the poll request and willing to
express an opinion on any of the servents in the list, send back a PollReply declaring
their votes, IP and port. The PollReply is encrypted with the public key provided by p
to ensure its confidentiality. Before making decision based on the received votes, p
needs to test the reliability of the votes. Thus, p first uses decryption to detect
tampered with votes and discards them, and then selects a set of voters and checks
whether they actually expressed that vote by direction connection. If a negative reply
is received, p will discard that vote. Upon assessing correctness of the votes received,
p can finally select the offerer it judges as its best choice.

Now p needs to challenge the selected offerer s to assess whether it corresponds to
the declared servent id before initiating the actual download. Servent s needs to
respond with a message containing its public key PKs and the challenge signed with
its private key SKs as shown in figure 9. If challenge-response exchange succeeds and
the PKs’s digest is equal to the servent id declared by s, then p will know that it is
actually talking to s. With the authenticity of the counterpart established, p can initiate
the download and, depending on its satisfaction for the operation, update its reputation
for s.

23

Figure 9: Challenge-response phase

5.3.2.2 Enhanced Polling
As mentioned before, the enhanced polling protocol differs from the basic solution

by requesting voters to provide their servent id. Intuitively, while in the previous
approach a servent only maintains a local recording of its peer’s reputation, in the
enhanced solution each servent also maintains track of the credibility of its peers,
which it will use to properly weight the votes they express.

Figure 10: Enhanced polling of P2PRep

The approach, illustrated in Figure 10, works as follows. A voter responds to the

poll with a PollReply message, in which it also reports its servent id unlike the basic
polling. More precisely, PollReply encrypted with the public key PKpoll, and its vote
signed with its own private key SKi. Like in the basic polling, after collecting all the
replies to the poll, p carries out an analysis of the votes received removing suspicious
votes and then selects a set of voters to be contacted directly to assess the correct
origin of votes. This time, the direct connection is needed to avoid servent id to
declare fake IPs via an AreYou message (there is no need anymore to check the
integrity of the vote as the vote's signature guarantees it). Servent p can now evaluate
the votes received in order to select an offerer to download. While in the basic polling
all votes were considered equal, the knowledge about the servent ids of the voters
allows p to weight the votes based on who expressed them. This distinction is based
on credibility information maintained by p. Like for the basic case, before

24

downloading, a challenge-response exchange is executed.

5.3.3 XRep

Extended from P2PRep for which reputation is solely associated with servents,
XRep combines servent-based reputation and resource-based reputation together to
allow votings on a node, or a particular resource, or both of the two. As in P2PRep,
public key encryption is used in the same way as P2PRep to ensure the authenticity of
the voter and votes, as well as the integrity of the messages exchanged. The XRep
protocol may also have two flavors, basic polling and enhanced polling. While basic
polling does not require voter to declare its servent id, enhanced polling needs the
voter to declare their servent id in PollReply messages.

The XRep protocol differs from P2PRep as follows. In the PollReply messages,
a voter can express its opinions on some nodes, or some recourses. Additionally, to
support the resource-based reputation, resources must have some unique identifiers to
distinguish from other resources. More precisely, in XRep, resource-based reputations
are tightly coupled to the resource’s content via digest, which is derived by applying a
secure hash function to its content, similar in forming the identifiers of servents. To
facilitate XRep, each peer is required to maintain two experience repositories, a
resource repository and a servent repository for resource reputation and servent
reputation respectively.

5.4 Discussions on P2PRep and XRep

5.4.1 Security Improvements

Section 5.2 described the two main security threats for Gnutella system. This
section will analyze how P2PRep and XRep eliminate those two threats.

5.4.1.1 Distribution of Tampered with Information
The simplest version of this attack is based on the fact that there is virtually no

way to verify the source or contents of a message. A particularly nasty attack is for a
malicious node to simply respond providing a fake resource. Both the simple and
enhanced versions of P2PRep and XRep protocol aim at solving the problem of
impersonation. When p discovers the potentially harmful content of the information it
downloaded from q, p will update q’s reputation, thus preventing further interaction
with q. Subsequently p will become a material witness against q in all polling
procedures called by others.

5.4.1.2 Man in the Middle Attack
This kind of attacks takes advantage of the fact that the malicious user m can be in

the path between p and q. The basic version of the attack goes as follows. Before q’s
QueryHit message reaches p, t rewrites q’s QueryHit message with t’s IP and port. M
then will download the original file from q, modify the content and pass it to p. Both
P2PRep and XRep protocols address this problem by including a challenge-response
phase just before downloading. In order to impersonate q in this phase, m should

25

know q’s private key and be able to design a public key whose digest is q’s identifier.
Therefore, both versions of this attack are successfully prevented.

5.4.2 XRep’s Combined Reputation

As described in 5.3.3, XRep supports combined reputations of servents and
resources. Combination of the two provides more informative pollings overcoming
the limitations of servent-based only reputations. Comparisons of the two reputations
are presented in table 1 in terms of life cycle, cold start, and performance bottleneck.

 Servent-based Resource-based

Reputation’s life cycle shorter due to peer_id changes good resource always recognizable
Cold start avoids cold start for new resource avoids cold start for new offerers
Performance bottleneck may direct all downloads to most

reputable peers
avoids bottleneck for most
reputable peers

Table 1: Comparison of servent reputation and resource reputation

5.4.3 Some Weaknesses

P2PRep and XRep encourage a persistent identifier (and its good reputation)
through several transactions in order to keep experience repositories so that
reputation-based trust management works. However, this restricts the flexibility of
servents choosing its own ids. Moreover, voters reveal their IP addresses in PollReply
messages, which lead to weak anonymities.

6. CONCLUSION
In P2P systems, it is important to detect the malicious peers and harmful resources

before a peer starts downloading. Reputation-based trust management is used to
promote honest and cooperative behaviors, and thus the overall credibility of the P2P
network can be maintained at an expected level. We have looked into a computation
model in this report that explains the relationships between trust and reputation. It
shows that trust management can be implemented by calculating reputation scores.
Subsequently we studied several reputation-based trust management protocols,
DMRep and EigenRep, through which the computation and maintenance of reputation
scores are analyzed. These protocols assume that the probability of cheating within
a society is comparably low. Security concerns involved in reputation-based
protocols are also studied by two protocols P2Prep and XRep, which use public key
encryption to provide authenticity and integration of reputation scores exchanged.
However, the effect of P2Prep and XRep much depends on the underlying reputation
model.

A number of issues for future studies remain open. First, more extensive
evaluation methods over wider parameters are needed. Second, robust methods are
needed to avoid the malicious peers cheat in collectives, as the current works are
based on the assumption that the probability of cheating within a society is
comparably low. Third, security protocols in self-regulating system still need to be

26

studied to prevent various malicious behaviors, as the public key encryption requires a
trustworthy third party functioning as certificate authority and the current proposed
public key verification by direct connection is still subject to long-time testing.

REFERENCE
[1] Napster http://www.napster.com.
[2] Gnutella http://www.gnutella.com.
[3] P. Resnick, R. Zeckhauser (2000). "Reputation Systems." Communications of

the ACM 43(12): 45-48.
[4] S. Kamvar, M. Schlosser (2003). “The EigenTrust Algorithm for Reputation

Management in P2P Networks”, WWW, Budapest, Hungary.
[5] K. Aberer, Z. Despotovic (2001) “Managing Trust in a Peer-2-Peer Information

System”, In Proc. of the IX International Conference on Information and
Knowledge Management, Atlanta, Georgia.

[6] F. Cornelli, E. Damiani, S.C. Vimercati, S. Paraboschi, and P. Samarati (2002).
A reputation-based approach for choosing reliable resources in peer-to-peer
networks. In CCS’02, Washington DC, USA.

[7] F. Cornelli, E. Damiani, S.C. Vimercati, S. Paraboschi, and P. Samarati (2002).
Choosing reputable servents in a P2P network. In Proceedings of the eleventh
international conference on World Wide Web, Honolulu, Hawaii, USA.

[8] G. Suryanarayana, R. N. Taylor (2004) “A Survey of Trust Management and
Resource Discovery Technologies in Peer-to-Peer Applications”, ISR Technical
Report # UCI-ISR-04-6.

[9] M. Blaze, J.Feigenbaum (1996). “Decentralized Trust Management”, IEEE
Symposium on Security and Privacy.

[10] L. Kagal, S. Cost (2001). “A framework for distributed trust Management”,
Second Workshop on Norms and Institutions in MAS, Autonomous Agents.

[11] T. Grandison, M. Sloman (2000). "A Survey of Trust in Internet Applications",
IEEE Communications Surveys 3(4).

[12] M.Blaze, J. Feigenbaum (1999b) “The Role of Trust Management in Distributed
Systems Security”, Secure Internet Programming.

[13] G.. Zacharia, P. Maes, (2000) "Trust Management Through Reputation
Mechanisms." Applied Artificial Intelligence 14: 881-907.

[14] S. Lee, R. Sherwood (2003). “Cooperative peer groups in NICE”, IEEE Infocom,
San Francisco, USA.

[15] M. Gupta, P. Judge (2003). “A Reputation System for Peer-to-Peer Networks”,
Thirteenth ACM International Workshop on Network and Operating Systems
Support for Digital Audio and Video, Monterey, California.

[16] S. Marsh (1994). “Formalising Trust as a Computational Concept”, Ph.D. Thesis,
University of Stirling.

[17] J. Sabater, C. Sierra, (2002). “Reputation and social network analysis in
multi-agent systems”, First International Joint Conference on Autonomous
Agents and Multi-Agent Systems, Bologna, Italy.

[18] J. Pujol, R. Sanguesa (2002). “Extracting reputation in multi agent systems by

27

means of social network topology”, First International Joint Conference on
Autonomous Agents and Multi-Agent Systems, Bologna, Italy.

[19] J. Rouchier, M. O’Connor, F. Bousquet (2001) “The Creation of a Reputation in
an Artificial Society Organized by a Gift System”, Journal of Artificial Societies
and Social Simulations, 4(2).

[20] P. Resnick, R. Zeckhauser (2000b) “Trust among Strangers in Internet
Transactions: Empirical Analysis of eBay’s Reputation System”, Working paper
for the NBER Workshop on Empirical Studies of Electronic commerce.

[21] E. Ostrom (1998) “A behavioral Approach to the Rational-Choice Theory of
Collective Action”, American Political Science Review, 92(1), pp. 1-22.

[22] L.Mui, M. Mohtashemi, A.Halberstadt (2001) “A Computational Model of Trust
and Repuation”,

[23] K. Aberer (2001) “P-Grid: A self-organizing access structure for P2P
information systems”, In Proc. Of the Ninth International Conference on
Cooperative Information Systems.

[24] S. Ratnasamy, P. Francis, M. Handley, R.Karp, S. Shenker(2001) “A Scalable
Content-Addressable Network”, In Proc. of the ACM SIGCOMM.

[25] I. Stoica, R. Morris, D. Karger, F. Kaashoek, H. Balakrishnan (2001) “Chord: A
Scalable Peer-to-Peer Lookup Service for Internet Applications”, In Proc. of the
ACM SIGCOMM.

