
PlanetP: Infrastructure Support for P2P Information Sharing

Francisco Matias Cuenca-Acuna, Christopher Peery, Richard P. Martin, Thu D. Nguyen
{mcuenca, peery, rmartin, tdnguyen}@cs.rutgers.edu

Technical Report DCS-TR-465
Department of Computer Science, Rutgers University

110 Frelinghuysen Rd, Piscataway, NJ 08854

November 19, 2001

Abstract

Storage technology trends are providing massive storage in
extremely small packages while declining computing costs
are resulting in a rising number of devices per person.
The confluence of these trends are presenting a new, crit-
ical challenge to storage and file system designers: how
to enable users to effectively manage, use, and share huge
amounts of data stored across a multitude of devices. In
this paper, we present a novel middleware storage system,
PlanetP, which is designed from first principles as a peer-
to-peer (P2P), semantically indexed storage layer. Plan-
etP makes two novel design choices to meet the above chal-
lenge. First, PlanetP concentrates on content-based query-
ing for information retrieval and assumes that the unit of
storage is a snippet of XML, allowing it to index arbitrary
data for search and retrieval, regardless of the applications
used to create and manipulate the data. Second, PlanetP
adopts a P2P approach, avoiding centralization of storage
and indexing. This makes PlanetP particularly suitable for
information sharing among ad hoc groups of users, each of
which may have to manage data distributed across multi-
ple devices. PlanetP is targeted for groups of up to 1000
users; results from studying communities of 100-200 peers
running on a cluster of PCs indicates that PlanetP should
scale well to the 1000-member threshold. Finally, we de-
scribe BreezeFS, a semantic file system that we have imple-
mented to validate PlanetP’s utility.

1 Introduction

Storage technology trends are providing massive storage
in extremely small packages while declining computing
costs are resulting in a rising number of devices per per-
son. The confluence of these trends are presenting a new,

critical challenge to storage and file system designers: how
to enable users to effectively manage, use, and share huge
amounts of data stored across a multitude of devices. The
current model of hierarchical directory-based storage on a
single machine is increasingly becoming inadequate to meet
this challenge. Even today, a typical user is faced with the
complex problem of managing gigabytes, and soon, ter-
abytes, across many systems. For example, in the near
future, a typical user will not only possess multiple PC’s
and laptops at work and home, but also will own a plethora
of devices such as PDA’s, cellphones, and digital cameras.
Each of these is a complete computer capable of running
a modern operating system and able to store gigabytes of
information.

In this paper, we present a novel middleware storage sys-
tem, PlanetP, which is designed from first principles as
a peer-to-peer (P2P), semantically indexed storage layer.
PlanetP makes two novel design choices as a storage layer.
First, instead of blocks, PlanetP’s unit of storage are snip-
pets of eXensible Markup Language (XML) 1. This choice
makes it possible for PlanetP to index and support searches
over the data without considering the applications used to
create and manipulate the data.

The size of storage that will soon be available per person
makes content-based search and retrieval a vital property
new storage and file systems must support. The success
of Internet search engines is strong evidence that content-
based search and retrieval is an intuitive paradigm that users
can leverage to manage and access large volumes of infor-
mation. With just a few search terms, high quality, relevant
documents are routinely returned to users out of billions of
choices. PlanetP aims to provide a personal search ser-
vice, built into the storage system, thereby enabling ad-hoc
groups of users to store, share and manage data distributed
across multiple devices.

1By snippet, we are really referring to an XML document. However,
we use snippets to indicate that many XML documents may be very small.

1



The second novel aspect of PlanetP is that it is designed
from the ground up as a P2P system. This means that Plan-
etP is designed to operate in a fluid environment, where
peers may join and leave the system dynamically. Also,
PlanetP explicitly recognizes that in such an environment,
users may have many copies of the same data spread across
multiple devices. For example, user now hoard information
locally in devices such as laptops, PDA’s, and cell phones
in order to maintain access during periods of weak or non-
existent connectivity. However, hoarding introduces new
problems of consistency, and worse, of even finding the doc-
uments among the maze of directories. PlanetP provides
explicit support for managing and synchronizing replicas to
address these problems.

Two alternative design approaches are to rely on either cen-
tralized storage or centralized indexing and search. While
centralization of storage is tempting from the system de-
signer’s perspective, in practice users will use storage wher-
ever it is available; for example, it is inevitable that a laptop,
cell phone, or PDA will be used to store data that is not in
the central repository. Centralized indexing and search has
proven to be a valuable approach in web search engines.
However, this approach has many inefficiencies, including
the replication of data in a central place as well as recrawl
of data that may not have changed. Such inefficiencies are
tolerable in commercial search engines because they are
backed by companies with large computing, connectivity,
and administrator budgets. These costs, especially admin-
istrators, cannot be ignored by ad hoc groups of users with
limited resources.

One of the key elements of the success of the client-server
model can be traced back to it’s ability to allow small to
medium sized groups to share information. PlanetP is de-
signed to scale to this level as well, allowing a group of
trusting users to manage a single storage volume across
multiple machines, laptops, and devices. We target a regime
of about 1000 devices, possibly spread across the Internet.

Targeting community sizes of around 1000 nodes instead
of very large systems (such as those targeted by efforts like
OceanStore[16], Chord[24], and PAST[8]) allows us to as-
sume that each member can track the membership of the
entire group. PlanetP takes advantage of this assumption to
diffuse individuals’ summaries of their content, in the form
of Bloom filters [1], to all members of the group. This ap-
proach has two advantages. First, if a peer is off-line, other
peers can still at least know whether it contains information
that they are searching for. Second, searches place very lit-
tle load on the community at large for the bulk of data that
changes slowly; the searching peer query against his local
store of Bloom filters and then contact peers with matching
snippets directly.

The disadvantage of using a diffusion approach is that it

may take some time to spread new information. Also, it
requires that information be spread to everyone in the com-
munity. To address these concerns, peers in PlanetP also
collaborate to implement an information brokerage service
using consistent hashing [15]. This approach is similar in
spirit to that taken in [24].

Finally, in order to export a well-known API, we are in the
process of implementing a file system, Breeze, that allows
users to build a hierarchical and semantic directory struc-
ture on top of PlanetP. In this paper, we describe the cur-
rent status of the Breeze file system (BreezeFS) and how it
leverages PlanetP to provide a content-addressable way to
build directories; in BreezeFS, a directory not only repre-
sents a collection of files, it also represents a collection of
files logically related by content. Sub-directories represent
more refined queries over the content.

The remainder of the paper is organized as follows. Sec-
tion 2 describes the design and implementation of PlanetP.
Section 3 provides a preliminary evaluation of PlanetP’s
performance. Section 4 describes BreezeFS while Section 5
briefly examines BreezeFS performance. Section 6 dis-
cusses related work. Finally, Section 7 concludes the paper
and discusses our planned future work.

2 PlanetP

As explained in Section 1, PlanetP is a peer-to-peer middle-
ware storage layer. Like most distributed storage systems,
queries for data are made transparent to their actual loca-
tion. PlanetP is peer-to-peer in the sense that each node
participates in the storage, search and retrieval functions.

PlanetP provides two distinct features for a storage layer.
First, queries are made based on the content of the data, not
a logical block number. Second, queries can be persistent.
That is, a query can persist in the community long after it
was initiated; a notify event is sent to the requesting peer
when new data matching the query enters the system. The
combination of these two features places PlanetP closer to
publish-subscribe systems than a traditional storage layer.
We describe how PlanetP differs from these systems in Sec-
tion 6.

Given PlanetP’s semantic, peer-to-peer model, the key ques-
tions are (1) what is the unit of storage, (2) how are the in-
dexes built, (3) how are membership lists maintained , and
(4) how queries are performed.

PlanetP’s unit of storage is an XML snippet. We made
this choice for two reasons: (a) the assumption of XML
allows PlanetP to index and support searches over arbi-
trary data without considering the applications used to cre-
ate and manipulate the data, and (b) in the future, we plan
to use XML tags to provide additional semantics to PlanetP

2



queries. When a peer wishes to write a snippet to PlanetP, it
uses an explicit publish operation. When publishing a snip-
pet, the publisher can also provide a set of keys that should
map to the snippet; this allows the publisher to associate
keys with the snippet that may not appear in the snippet
itself. We found this feature useful, for example BreezeFS
makes extensive use of keywords not appearing in the docu-
ment text. Currently, the only keys that PlanetP handles are
text strings. In the future, we intend to extend PlanetP to
allow typing of the keys using XML tags and plan to build
automatic keyword extraction.

PlanetP uses two mechanisms to index the communal data
store. First, for each peer, PlanetP summarize all the keys
associated with snippets that the peer has published using a
Bloom filter [1] and diffuses it throughout the community.
Each peer can then query for content across the community
by querying against the Bloom filters that it has collected.
Diffusion is also used to maintain membership information
across the peers; that is, each peer maintains a local list of
all active members. In the absence of joins and departures,
all members should eventually have the same local directory
and set of Bloom filters.

Our global diffusion approach has the advantage of plac-
ing very little load on the community for searches against
the bulk of slowly changing data [20, 7]. The disadvan-
tage of using a diffusion approach is that new or rapidly
changing information spreads slowly, as diffusion is nec-
essarily spread out over time to minimize spikes in com-
munication bandwidth. To address this problem, peers in
PlanetP also implement an information brokerage service
which uses consistent hashing [15] to publish and locate in-
formation. This second indexing service supports the timely
location of new information, as well as the exchange of in-
formation between subsets of peers without involving the
entire community.

When a query is posed to PlanetP, it performs two searches.
First it uses its list of Bloom filters to compute the subset of
peers that may have snippets that match the query, forward-
ing the query to this subset. Second, it contacts the appro-
priate information broker for each key in the query. Once
all contacted peers and brokers have replied, PlanetP pro-
cesses the replies and returns the matching XML snippets
to the caller.

Persistent queries are kept by both the querying peer and
the queried brokers. When new information is published to
a broker that matches a persistent query, the broker forwards
the information to the peer that posted the query. The query-
ing peer also keeps the persistent query to check against new
Bloom filters as they arrive via diffusion.

Figure 1 shows PlanetP’s current architecture. XMLStore is
an in-memory hash table that is used to store the published

[Snippet1,…Snippetn]

Local Directory

�� Peer1 (BF, Status, …)
����

� Peerm (BF, Status, …)

[key1,…,keyn] Persistent Queries

Brokerage Server XMLStore

Figure 1. PlanetP’s current architecture.

XML snippets. The Local Directory is a list of all mem-
bers, their Bloom filters, and other per-member information
(such as whether a member is currently on-line). The Bro-
kerage Server implements the information brokerage ser-
vice. When a PlanetP peer shuts down, PlanetP uses the
local file system to store the content of the XMLStore. This
is why we call PlanetP a “middleware” storage system.

In the remainder of this section, we discuss the diffusion
algorithm used to spread information, how the information
brokerage service works, and how queries are handled by
PlanetP. At the end, we give the current programming inter-
face exported by PlanetP.

2.1 Information Diffusion

PlanetP uses a combination of Harchol-Balter et al.’s name
dropper algorithm [14] and Demers et al.’s rumor monger-
ing algorithm [6] to maintain a consistent Local Directory
at each member in the community. This algorithm works as
follows. Each member x maintains a gossiping interval, call
Tg. Every Tg, x randomly chooses a target y from its Lo-
cal Directory and sends a summary of its local directory to
y; we call this a gossip message. When y receives the gos-
sip message, it determines whether x knows anything that it
does not. If so, y contacts x to update its Local Directory.
The default gossiping interval is currently set to 1 second to
prevent an instantaneous communication spike whenever a
new piece of information enters the system.

To reduce gossiping when the system has reached a stable
configuration, the gossip interval is adjusted dynamically.
We use a simple algorithm from [6] which works quite well
in practice: x maintains a count of the number of times
it has contacted a peer that does not need any information
from x’s Local Directory. Whenever this count reaches 2, x
increases its gossiping interval by 1 second. Whenever x re-
ceives a gossip message which contains more updated infor-
mation than it has, then it resets its gossiping interval to the
default. The constants we use were found experimentally
to work well in our current test-bed, which is comprised of
PCs connected by a 100 Mb/s Ethernet LAN. The values
would likely need to be modified for WAN-connected com-
munities.

3



Using a dynamic gossiping interval has two advantages.
First, we do not need to define a termination condition.
Given that the algorithm is probabilistic, there is always
a small chance that any termination condition will not re-
sult in all peers having a consistent view of the system any-
way. Second, when global consistency has been achieved,
the bandwidth use is negligible after a short time.

Finally, a peer skews its random selection of a gossiping
target more heavily toward peers that it has not contacted in
a while. This increases the chances that the members views
are different and so makes the gossiping useful.

When a member (re)joins the community—a join can hap-
pen when a brand new member joins or when a member that
has been inactive comes back on-line—it simply starts gos-
siping to let others know that it is back on-line. To join, a
new member must know how to contact at least one peer of
the community that is currently on-line.

2.2 Information Brokerage

In addition to the use of Bloom filters to summarize infor-
mation being shared with the community by each member,
PlanetP also supports an information brokerage service for
more flexible information sharing. Each member joining
a PlanetP community can choose to support the brokerage
service or not; this allows devices without sufficient com-
puting, storage, or communication resources to avoid host-
ing this service.

This service works as follows. Information is published to
the brokerage service as an XML snippet with a set of as-
sociated keys. The network of brokers use consistent hash-
ing [4] to partition the key space among them. To imple-
ment this algorithm, each active member chooses a unique
broker ID from a predetermined range (0 tomaxID). Then,
all members arrange themselves on a ring using their IDs.
To map a key to a broker, we compute the hash H of the
key. Then, we send the snippet and key to the broker whose
ID makes it the least successor to H mod maxID on the
ring. For example, if H is 4, and a broker with ID 4 exists,
then the key and snippet are sent to broker 4. On the other
hand, if the broker with the smallest ID greater than 4 is 6,
then we send the key and snippet to broker 6.

The complexity of implementing this service lies in han-
dling the dynamic joining and leaving of members. A new
member wishing to join a PlanetP community must first
contact some active member of that community to obtain
a copy of that member’s Local Directory. It then randomly
chooses an ID that does not conflict with the IDs of any
known active member. As the copy of the Local Directory
that it obtained is not guaranteed to be globally consistent,
however, it still must check for conflicts. To do this, it con-

tacts the peer that should be its immediate successor (as in-
dicated by the Local Directory) and informs the successor
of its presence and ID. If the successor has a predecessor
with ID less than that of the new member, then the join is
done. Otherwise, the new member has to contact the new
successor and tries again.

Even after following this process, it is possible for mem-
bers to join with the same broker ID. This can happen when
many members join at once and there is wide inconsisten-
cies among the Local Directories. When this occurs, the
members simply compare their joining time (when dupli-
cation of identity is discovered through information diffu-
sion). The member with the lowest joining time keeps the
ID; the others must rerun the join algorithm to get new IDs.
Any snippets and keys that were published at the loosing
members are transferred to the winning member.

When leaving the community, the leaving peer should con-
tact its successor in the ring and forward all data that have
been published to it. If a member leaves without doing this
cleanup, then the published data is lost. It is possible to
avoid the loss of data by using several different hashing
functions and publishing replicas to several different bro-
kers. Currently, we do not support this replication; rather,
we depend on the fact that data is summarized in the Bloom
filters as well as published to the brokerage. If information
is lost because a peer leaves without forwarding informa-
tion, eventually, it can be found again when the Bloom filter
is diffuse throughout the community.

In the best case, a join and departure only needs one mes-
sage to contact the successor (a join also needs the original
message to initialize its Local Directory). Later, this change
to the ring structure will be piggybacked on our diffusion
algorithm and thus spread to all active peers. On the other
hand, if membership is in a state of extremely high flux,
joining and leaving might require O(n) messages, where n
is the number of active members.

2.3 Searching

PlanetP currently supports a basic query language where a
query string is interpreted as a conjunction of keys separated
by white spaces (Keys comprised of several words can be
specified using double quotes).

When presented with a query, PlanetP first searches the
Bloom filters in its Local Directory to obtain a list of candi-
date peers that might have data matching the query. Briefly,
a Bloom filter is an array of bits used to represent some set
A. The filter is computed by obtaining n indexes for each
member of A, typically via n different hashing functions,
and setting the bit at each index to 1. Then, given a Bloom
filter, we can ask, is some element x a member ofA by com-

4



puting n indexes for x and checking whether those bits are
1. Bloom filters can give false positives but never false neg-
atives. Further, membership tests are performed in constant
time.

PlanetP also queries the appropriate brokers, which can
return XML data snippets2 or snippets containing URLs
pointing to where matching data might be found. Returned
XML snippets are kept in a list of matching snippets. Nodes
pointed to by URLs are added to the candidate list. Once
all brokers have been contacted, the querying peer forwards
the query to all candidate nodes. XML snippets returned
by candidate nodes are added to the list of matching snip-
pets. When all candidates have replied, the list of matching
snippets is returned to the caller.

Handling conjunctions is straightforward. When querying a
candidate based on its Bloom filter, the entire query is sent
and so matching snippets already satisfy the conjunction.
For the brokers, the querying peer maintains a re-assembly
buffer. By maintaining a hash for each snippet in this buffer,
PlanetP can compare new matching snippets with the ones
already present.

Persistent queries use the same language as regular queries,
with the difference being that they can upcall the user asyn-
chronously. When posting a persistent query, the user pro-
vides an object that will be invoked whenever a new match-
ing snippet is found. Persistent queries can be matched
by both the brokers or the Bloom filters; every time a new
bloom filter is received, PlanetP tries to match all the local
queries against it. Since we can’t tell which keys have been
added to the filter, PlanetP might upcall the user repeatedly
with an already matched query. We believe that applications
have better means to resolve this type of conflicts.

2.4 Interface

PlanetP currently supports the following interface:

GoOnline(peers) peers is a set of members of the com-
munity, some of which should currently be online. A
call to this function tells PlanetP to contact the given
peers and join the community. Note that PlanetP cur-
rently assumes each peer can only be a member in one
community. We will extend this framework to allow a
user to join multiple communities at once in the near
future.

GoOffline() Gracefully leave the community.

2Peers can store data directly in the brokerage service, which allows
important content to be shared even when the owning peer is off-line. Of
course, we limit the size of the XML data that can be published this way
to prevent overload of the brokers.

Publish(important_keys, all_keys, snippet, timeout)
Share snippet with the community. all_keys
contains the list of all keys that should map to
snippet; that is, any query looking for a key
contained in all_keys should find snippet.
important_keys contains a subset of the keys in
all_keys that should be used to publish snippet
to the brokerage service. If timeout is nonzero, then
the brokers will drop the snippet after time timeout.

Query(query_string) Find all published XML snippets
that matches the query query_string.

Persistent_Query(query_string, call_back) Find all
published XML snippets that matches the query
query_string. Additionally, make the query
persistent; invoke the call_back every time there is
a new snippet that matches query_string.

This is not intended to be the final API for PlanetP. In many
ways, this API was shaped by our design and implemen-
tation of BreezeFS. We expect this API to change signifi-
cantly over time.

3 PlanetP Performance

In this section, we assess PlanetP’s performance by running
a PlanetP community on two clusters of PCs. Note that
PlanetP’s most significant contribution is its ability to ease
the management and sharing of data distributed across hun-
dreds (or even thousands) of devices; absolute performance
is a secondary concern (although PlanetP must be efficient
enough for users to want to use it). PlanetP’s effectiveness
in providing this functionality can only be evaluated with
use, however. Here, we assess PlanetP’s performance to
evaluate its ability to scale and to show that users can ex-
pect reasonable performance.

3.1 Experimental Environment

We run a PlanetP community on two clusters of PCs, one
with 6 quad 500 Mhz Pentium III Xeon machines and one
with 8 800 MHz Pentium III machines. The Xeon machines
have 1 GB of memory each while the others have 512 MB
each. All machines are interconnected by a 100 Mb/s switch
Ethernet LAN. All machines are running Red Hat Linux
7.1, kernel 2.2.

PlanetP is written entirely in Java and currently stands at
around 7000 lines of code. Our experiments were per-
formed on the BlackDown Java JVM, version 1.3.0. The
resource requirements of the Java JVM and its instability
effectively limited us to about 10 peers per single-processor

5



Operation Cost (ms)

Bloom filter insertion 44.8 + (0.012 * no. keys)
Bloom filter search 0.4 + (0.011 * no. keys
Bloom filter compress 51.2 + (0.002 * no. keys in filter)
Bloom filter decompress 36.5 + (0.002* no. keys in filter)

XMLStore insertion 245.5 + (0.043 * no. keys)
XMLStore search 0.6 + (0.0001 * no. keys)

Table 1. Costs of PlanetP’s basic operations. Each
cost is presented as a fixed overhead plus a marginal
per key overhead; for example, the cost for inserting
n keys into a Bloom filter is 44:8ms+ 0:012n.

machine and 20 per quad-process machine. This gave us a
maximum community of about 200 peers.

To coordinate the experiments, we implemented a central
coordinator. The coordinator runs on a separate machine but
does spawn a slave daemon on each machine running Plan-
etP. Each slave process is responsible for running and com-
municating with the PlanetP peers on that machine. All the
coordinator processes were listening on a multicast socket
that was used for communicating commands from the mas-
ter coordinator.

3.2 Micro Benchmarks

We start by measuring the costs of PlanetP’s basic opera-
tions, the manipulation of Bloom filters and managing the
XMLStore. Table 1 lists these operations and the mea-
sured costs. These measurements were performed on one
of the 800 MHz PIII machines. We observe that while us-
ing Java allowed us to shortened the development time of
PlanetP—for example, we were able to use the Java Collec-
tions Framework to implement most of the more complex
data structures—it extracts a cost in performance. Most of
the basic operations have fixed overheads of several to tens
of milliseconds, and a marginal per key cost of several to
tens of microseconds.

Currently, we are using constant size Bloom filters because
we are investigating whether it is possible to combine sev-
eral filters when diffusing information to reduce bandwidth
consumption. One drawback of using fixed-size Bloom fil-
ters is that we must choose a size large enough to summa-
rize the largest XMLStore without introducing too many
false positives. To reduce bandwidth consumption, Plan-
etP compresses the Bloom filters when diffusing them. The
compression scheme is a run-length compression that uses
Golomb codes [12] to encode runs. Figure 2 shows that
this compression scheme is quite effective at compressing
Bloom filters.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

10 20 40 80 16
0

32
0

64
0

12
80

25
60

51
20

10
24

0

20
48

0

40
96

0

Words

C
o

m
p

re
ss

ed
si

ze
(p

er
c.

)

GZip

RLE+Golomb

Figure 2. Normalized size of compressed filters vs.
different number of keys in the filter. We are compress-
ing a fixed-size filter of 50,000 bytes, which should
give approximately a 5% error rate for summarizing
50,000 words. We show that the Golomb-based run-
length encoding is quite effective when compared to
gzip, on average uses half of its size.

3.3 The Cost to Join

We now assess the expense of having new members join an
established community. To do this, we start a community of
100 peers and wait until their views of membership is con-
sistent. Then, n peers will attempt to join the community;
we measure the time required until all members have a con-
sistent view of the community again as well as the required
bandwidth during this time. For this experiment, each peer
was set to share 1000 keys with the rest of the community
through their Bloom filters. All new members will join the
information brokerage service but there are no keys pub-
lished to this service.

Figure 3 plots the time to reach consistency vs. the num-
ber of joining peers for our diffusion algorithm as well as
the original name dropper algorithm. Figure 4 shows the
total bandwidth used per peer during this process. Finally,
Figure 5 plots the average per-node bandwidth against the
number of joining members.

Our results show that even when the community doubles
in size, members reaches stability in several hundred sec-
onds. While this number will likely increase for a WAN-
connected community, a time to reach global consistency
of around tens of minutes seem quite reasonable when your
community size changes by 100%. The growth shown in
Figures 3 and 4 is consistent with the expected running time
of the underlying name dropper algorithm. However, note
that our optimizations has significantly reduced the time as
well as the bandwidth required to reach global consistency.

Finally, observe that the average bandwidth required during

6



0

200

400

600

800

1000

1200

1400

1600

1800

2000

120 140 160 180 200
Nodes

T
im

e
(s

ec
)

Name dropper

PlanetP

Figure 3. Average time required to reach a stable
state when joining different amounts of nodes on a
stable network of 100 nodes.

0

1000

2000

3000

4000

5000

6000

7000

120 140 160 180 200
Nodes

D
at

a
(K

B
)

Name dropper

PlanetP

Figure 4. Average data sent by each node when join-
ing different amounts of nodes on a stable network of
100 nodes.

0

2

4

6

8

10

12

120 140 160 180 200
Nodes

A
ve

ra
g

e
b

an
d

w
id

th
(K

B
/s

ec
)

Figure 5. Average bandwidth used per node per sec-
ond when adding different amounts of nodes to an sta-
ble group of 100 nodes.

0

5

10

15

20

25

30

100 120 140 160 180 200 220 240 260
Nodes

T
im

e(
se

c)

Figure 6. Average time needed to propagate an up-
dated Bloom filter throughout the community.

this period of high diffusion activity is relatively constant
vs. the number of joining members — in fact, it is decreas-
ing. This is because the gossiping interval is effective at
spacing out the diffusion. We are trading the time where
views may be inconsistent for lower average bandwidth us-
age. The success of this trade-off bodes well for PlanetP’s
scalability to the regime that we are targeting, on order of
1000 peers.

3.4 Diffusion

In this section, we examine the time required to diffuse a
Bloom filter in a stable community. This is important be-
cause it gives an estimate of how long peers must be in con-
tact in order to update information that are hoarded at each
peer for off-line operation.

For this study, we started communities of sizes ranging from
100 to 260. Once the community is stable, the coordinator
injects a new piece of data on a random peer and measures
the time it takes for that peer to diffuse its new Bloom filter
throughout the entire community.

Figure 6 plots the measured times against community size.
The slow growth in time is quite promising for PlanetP’s
scalability.

3.5 Information Brokerage Service

Finally we wanted to test the performance of the brokerage
service in the presence of joins and departures. In this study,
we start a community of 160 peers sharing 1000 keys in the
brokerage service and wait until it achieves stability. Then,
the coordinator randomly selects nodes and tells them to
leave the community and return in 180 seconds; when a peer
leaves, it forward all brokerage information correctly. When

7



0

0.05

0.1

0.15

0.2

0.25

0.3

0 500 1000 1500 2000
time

se
ar

ch
ti

m
e

(s
ec

)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

O
n

lin
e

p
ee

rs

Search time

Online peers

Figure 7. Search time need by the brokers network
to find a key. In this study a varying percentage of the
nodes are leaving and joining the network.

0

0.05

0.1

0.15

0.2

0.25

0.3

time

se
ar

ch
ti

m
e

(s
ec

)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

O
n

lin
e

p
ee

rs

Search time

Online peers

Figure 8. Search time need by the brokers network
to find a key. In this study a varying percentage of
the nodes are leaving and joining the network. To
overcome temporal inconsistencies every node tries 3
times to get the key before giving up

a peer rejoins, it starts with an empty Local Directory.

Once the test bed is ready, the coordinator asks random
peers that are active to query for a random key from the
original 1000 and measures the time required for a reply to
come. Figure 7 plots the result. In this Figure, the Online
peers curve gives the number of peers active vs. time. The
Search time curve gives the search time for the sequence
of queries. As the percentage of active peers decrease, this
means that a larger number is joining and leaving the com-
munity at a given instant in time. Thus, at the extreme right
of the curve, about 80% of the members are leaving and
joining while only 20% are active at any one time.

Clearly, as flux increases past about 25% of the community
joining and leaving, search time starts to increase signifi-
cantly. On the other hand, only 22% of the queries over
the entire time of the experiment did not find the matching
data because of temporal inconsistencies. The bulk of these
failures occurred when 50% or more of the community is
joining/leaving.

Figure 8 shows the same experiment except that the query-
ing peer retries a failed query three times. While the search
time still increases significantly when flux in membership
becomes too great, the fraction of failed queries drops to
5%. The bulk of these failures occurred when 80% of the
community is joining/leaving.

This experiment shows that the brokerage service is quite
robust in the face of dynamic changes to the community’s
membership. Under normal circumstances, one would not
expect over 50% of the members in the community to be
actively joining or leaving at once.

4 BreezeFS

We have implemented BreezeFS, a middleware seman-
tic file system, on top of PlanetP to validate its utility.
BreezeFS provides similar functionality to the semantic file
system defined by Gifford et al. [11]. BreezeFS’s novelty
lies in the fact that it provides for content querying across
a dynamic community of users, where each user’s data is
potentially distributed among a multitude of devices, with-
out requiring centralized indexing. We call BreezeFS a
middleware system because it does not manage storage di-
rectly. Files are stored using the local file system of each
device; files to be shared with the community are published
to BreezeFS, which then uses PlanetP to make it possible
for the entire community to search for these files based on
its content.

Like the semantic file system, a directory is created in
BreezeFS whenever the user poses a query. BreezeFS cre-
ates links to files that match the query in the resulting direc-
tory. If a file is created or modified such that it matches

8



File Indexer

Breeze
Infra-Structure

Semantic File
System
(SFS)

File Server

File Explorer

Figure 9. Overview of File Explorer.

some query, BreezeFS will update the directory to have
a link to this file. Currently, query-based directories in
BreezeFS are read-only. That is, only BreezeFS is allowed
to change the content of the directory, users must use the
publish operation to add new files. We are currently work-
ing to remove this limitation 3.

Building a query-based sub-directory is equivalent to refin-
ing the query of the containing directory. For example, if
the user has created a directory Query:Breeze and then cre-
ates a sub-directory Query:file system, the content of the
sub-directory would include all files that match the query
Breeze and file system.

Figure 9 shows BreezeFS’s basic architecture, which is
comprised of four components: the Explorer, File Indexer,
File Server, Semantic File System. When the user pub-
lishes a file, BreezeFS first passes it through the File In-
dexer, which takes the textual contents of the file and sepa-
rates them into a set of keys. Currently, the File Indexer can
index text, PDF, and postscript files; as noted in [11], the
functionality of the File Indexer can be arbitrarily extended
by users.

Once the published file has been indexed, BreezeFS gives
the local pathname of the file to the File Server, which is
basically a very simple web server. When given a file, the
File Server returns a URL. When a GET request arrives for
this URL, the File Server returns the content of the pub-
lished file.

Finally, BreezeFS embeds the URL in a XML snippet
and publishes to PlanetP along with the extracted keys.
BreezeFS always uses the Persistent_Query call so that
PlanetP will upcall into BreezeFS when changes in the files
across the community should cause changes in some local
query-based directory. Also, recall that PlanetP allows two
sets of keys to be published with a snippet; one that will

3In fact, we are working to extend BreezeFS’s capabilities to be similar
to HAC [13].

0

50

100

150

200

250

0 5 10 15 20 25 30
Cumulative size of files (MB)

T
im

e
(s

ec
)

Postscript File

Text

Acrobat PDF

Figure 10. Comparison of Time Required to index
vs. Total cumulative size of files.

be published with the information brokerage network and
one that will be published through the slower diffusion of
Bloom filters. BreezeFS uses the top 10% of keys that have
the highest counts as the former set. All keys are published
in the latter set. In this way, a member of the community
can find a file in a very short time after publication if he
is searching for one of the key that appears most often in
the file. For other keys, the newly published file can only be
found when the new Bloom filter has been diffused through-
out the system. Although BreezeFS’s scheme for choos-
ing the “important” keys is very simple, for structured doc-
uments it may be possible to use more complex methods
like the ones used in WWW search engines. For example
Google [2] uses a combination of font size, capitalization
and position to rank the importance of a word with respect
to the page where it resides. We leave this as future work.

BreezeFS automatically updates directories for addition via
PlanetP’s persistent queries. Updates for removal—that is,
when a file is deleted by its owner or modified to no longer
map to the directory’s query—is more difficult. Whenever
the user opens a directory, BreezeFS checks the last time
that the directory was updated. If this time is greater than a
fixed threshold, BreezeFS reruns the entire query to get rid
of stale files.

Given PlanetP, we were able to implement BreezeFS in less
than two weeks, with much of the first week given to de-
signing BreezeFS graphical interface.

5 BreezeFS Performance

To evaluate the feasibility of using BreezeFS in every-
day computing for sharing of information, we wanted to
get an idea of how large the set of keys for each user
might get and the cost of indexing the corresponding files.

9



0

500

1000

1500

2000

2500

0 20 40 60 80 100
Cumulative size of files (MB)

N
u

m
b

er
o

f
ke

ys
(t

h
o

u
sa

n
d

s)
Sum of per-file unique keys

Total unique keys

Figure 11. Number of keys found when indexing dif-
ferent amounts of text files.

0

5

10

15

20

25

30

35

40

45

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

Number of unique keys

T
im

e(
se

c)

Receive Time

Publication Time

Figure 12. Time it takes for publishing information.

To test this, we used three set of files; one consisting of
postscript files, another of acrobat pdf files, and one of text
files. The postscript files and pdf files were obtained from
http://citeseer.com and the text files were obtained from the
Guttenberg Project (http://promo.net/pg/).

Figure 10 plots the indexing time against the cumulative
size of sets of files being indexed when running on an 800
MHz PIII PC. Postscript and PDF files are converted to text
files first using ps2ascii and pdftotext. This graph shows
that indexing can be done approximately at the rate of 0.15
MB/sec. This implies that if we are willing to use 10% of
our computing power to let BreezeFS index files that have
been updated (or created) in the background, we can index
0.015 MB/sec (over 1 GB/day).

Figure 11 shows the number of keys generated by parsing
approximately 118 MB of text files. The Per File line gives
the total number of keys that would be published with Plan-
etP on a per file basis. The Total line indicates the number
of unique keys across all of the files. This provides an ap-

proximation of the upper bound on how many keys PlanetP
must deal with per node, which affect the size of the Bloom
filters.

It should be noted that the files used for this experiment
contained digital books in at least four different languages;
English, German, Spanish, and French. These files also are
considered the worst case for publishing since they are com-
prised completely of text content; there is no space lost to
formatting or graphics.

By using at least four languages and approximately 120
MBytes of data, the number of overall unique keys does not
exceed 350,000. This implies a maximum size of several
hundred KB for the Bloom filters. In the current implemen-
tation, we are using 50 KB Bloom filters. While not huge,
these sizes may strain the capacities (memory and band-
width) of devices with limited resources. We are currently
exploring methods to reduce the overheads of working with
Bloom filters.

Finally, Figure 12 shows the costs of publishing a set of keys
to PlanetP’s brokerage service. In this experiment, we ran
a community of 20 peers and measured the time required
to publish files with varying number of matching keys. The
time shown for BreezeFS is the time required for a peer
with a persistent query posted for the last key that is pub-
lished to the brokerage service to be notified about the new
file. If we keep the set of keys to be published to the bro-
kerage service small (say on the order of several hundred
keys), then publication is quite fast; about 400 ms for 100
keys. Also, we believe that this number can be heavily op-
timized. Currently, keys are published to brokers one at a
time without any concurrency; hence the linear increase in
publication time.

6 Related Work

Infrastructural support for P2P system has recently become
a popular research topic (e.g., [22, 26, 19, 24]). Much of this
work has focused on scaling to very large storage systems
(e.g., network of 106 peers), and thus, has concentrated on
scalable mechanisms for id to object mapping. For exam-
ple Pastry [22] and Tapestry [26] provide similar features to
PlanetP’s information brokerage service, although their ser-
vice is based on the Plaxton et al.’s approach [18]. PlanetP
is different from these systems in that (a) we focus on much
smaller communities, which leads to significantly different
design decisions, and (b) we focus on content-based infor-
mation retrieval, as opposed to support for more traditional
file system services.

The most similar approach to ours is Chord [24]. Both Plan-
etP and Chord use consistent hashing [15] to map keys to
brokers. Chord, however, also focuses on scaling to very

10



large communities. Thus, they concentrate on how to find
information when members do not have a global view of the
system. Thus, PlanetP is different than Chord in the same
ways that it differs from Pastry and Tapestry.

Finally, CAN [19] is another id to object mapping algorithm
designed for very large P2P systems. We could have used
CAN but consistent hashing was more compatible with our
targeted environment, since we can leverage the fact that
each member has a view of the entire system to optimize
performance.

Because of all the added functionality, PlanetP resem-
bles previous work done on tuple spaces [10, 25, 17] and
publisher-subscriber models [21, 9]. The former introduced
the idea of space and time decoupling by allowing publish-
ers to post tuples without knowing who the receiver is or
when it will pick up the tuples. The latter added the concept
of flow decoupling, which means that a node does not need
to poll for updates; rather, it will be notified asynchronously
when an event occurs. PlanetP is the first P2P infrastructure
that has tried to leverage functionality from both of these
bodies of work. Previous work in those areas had relied on
assumptions like broadcast/multicast [23] or server based
schemes [17] to communicate among members. More re-
cently system like Herald [3] have started to study self or-
ganizing solutions in environments similar to ours. They
have proposed building a publish/subscribe system by us-
ing replicated servers on P2P networks.

PlanetP heavily relies on previous work done on the area
of consistent hashing [15]. We have implemented a version
similar to [4] in which we don’t assume that malicious users
will try to unbalance the key distribution by picking non
random keys. On this first implementation we have used
MD5 to hash keys so we can claim that is cryptographicaly
hard for an adversary to choose keys that will overload a
particular node. Similarly to what was done in Chord we
have extended the original consistent hashing algorithm to
be able to support concurrent node joins and leaves.

Several file systems, or file oriented applications, have
been built using various peer to peer infrastructures as their
framework, including [16, 8, 22, 5]. BreezeFS is different
than these systems in that we were interested in providing a
semantic file system, as opposed to traditional hierarchical
directory-based systems.

With respect to the design of file systems, PlanetP is closest
to the Semantic File System [11] and the HAC File System
[13]. In fact, these two systems have provided many of the
functionalities that we are trying to imbue BreezeFS with.
Our main contribution is a design and implementation that
will support sharing (and hoarding) across ad hoc and dy-
namic communities.

7 Conclusions

A significant challenge looms on the horizon for design-
ers of storage and file systems: how to enable users to
effectively manage, use, and share huge amounts of data
stored across a multitude of devices. We have described
PlanetP, a novel semantically indexed, P2P storage system,
and BreezeFS, a semantic file system built on top of Plan-
etP. PlanetP makes two novel design choices to meet the
above challenge. First, PlanetP concentrates on content-
based querying for information retrieval and assumes that
the unit of storage is a snippet of XML, allowing it to index
arbitrary data for search and retrieval, regardless of the ap-
plications used to create and manipulate the data. Second,
PlanetP adopts a P2P approach, avoiding centralization of
storage and indexing. This makes PlanetP particularly suit-
able for information sharing among ad hoc groups of users,
each of which may have to manage data distributed across
multiple devices.

We have studied PlanetP’s performance on a cluster of ma-
chines allowing community sizes of up to 200 peers. Re-
sults indicate that PlanetP will likely scale well up to our
targeted size of around 1000 peers. Aside from scalability
issues, we believe that the ability to organize and locate in-
formation based on content is the most important aspect of
PlanetP and BreezeFS. This belief is guided by the fact that
many of us routinely use web search engines to locate in-
formation. In fact, we often don’t even bother to use book-
marks, which are organized with the familiar hierarchical
structure. Rather, we rely on search engines to consistently
return relevant documents out of the billions of choices
when given a few search terms. PlanetP and BreezeFS aim
to carry this paradigm to ad hoc groups of users to ease the
management and sharing of data distributed across multiple
devices.

8 Future Work

We intend to pursue at least four directions in continuing
work on PlanetP and BreezeFS. First, we will explore how
to go beyond PlanetP’s requirement for exact key match-
ing in queries; two possibilities include the use of pho-
netic string matching techniques and stemming to be able to
match queries with approximate words. Second, we will ex-
plore adding semantics to the query language, including an
awareness of XML tags, and extending the query language
significantly. Third, we will explore extending BreezeFS to
include functionalities provided by systems such as HAC.
Finally, we need to study security implications of PlanetP
and BreezeFS.

11



References

[1] B. H. Bloom. Space/time trade-offs in hash coding
with allowable errors. Communications of the ACM,
13(7):422–426, 1970.

[2] S. Brin and L. Page. The anatomy of a large-scale
hypertextual Web search engine. Computer Networks
and ISDN Systems, 30(1–7):107–117, 1998.

[3] L. Cabrera, M. Jones, and M. Theimer. Herald:
Achieving a global event notification service. In Pro-
ceedings of the 8th Workshop on Hot Topics in Oper-
ating Systems (HotOS-VIII), May 2001.

[4] L. D. Consistent hashing and random trees: Algo-
rithms for caching in distributed networks. Master’s
thesis, Department of EECS, MIT, 1998.

[5] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and
I. Stoica. Wide-area cooperative storage with CFS. In
Proceedings of the 18th ACM Symposium on Operat-
ing Systems Principles (SOSP ’01), October 2001.

[6] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson,
S. Shenker, H. Sturgis, D. Swinehart, and D. Terry.
Epidemic algorithms for replicated database mainte-
nance. In Proceedings of the Sixth Annual ACM Sym-
posium on Principles of Distributed Computing, pages
1–12, 1987.

[7] F. Douglis, A. Feldmann, B. Krishnamurthy, and J. C.
Mogul. Rate of change and other metrics: a live study
of the world wide web. In USENIX Symposium on
Internet Technologies and Systems, 1997.

[8] P. Druschel and A. Rowstron. PAST: A large-scale,
persistent peer-to-peer storage utility. In Proceedings
of the 8th Workshop on Hot Topics in Operating Sys-
tems (HotOS-VIII), pages 35–46, May 2001.

[9] P. Eugster, P. Felber, R. Guerraoui, and A.-M. Kermar-
rec. The many faces of publish/subscribe. Technical
Report DSC ID:2000104, EPFL, 2001.

[10] D. Gelernter. Generative communication in Linda.
ACM Transactions on Programming Languages and
Systems, 7(1):80–112, 1985.

[11] D. K. Gifford, P. Jouvelot, M. A. Sheldon, and J. W. O.
Jr. Semantic File Systems. In Proceedings of the
13th ACM Symposium on Operating Systems Princi-
ples, October 1991.

[12] S. W. Golomb. Run-length encodings. IEEE Transac-
tions on Information Theory, 1966.

[13] B. Gopal and U. Manber. Integrating Content-Based
Access Mechanisms with Hierarchical File System. In
In the Proceedings of the 3th USENIX Symposium on
Operating Systems Design and Implementation, pages
265–278, 1999.

[14] M. Harchol-Balter, F. T. Leighton, and D. Lewin. Re-
source discovery in distributed networks. In Sympo-
sium on Principles of Distributed Computing, pages
229–237, 1999.

[15] D. R. Karger, E. Lehman, F. T. Leighton, R. Panigrahy,
M. S. Levine, and D. Lewin. Consistent hashing and
random trees: Distributed caching protocols for reliev-
ing hot spots on the world wide web. In ACM Sympo-
sium on Theory of Computing, pages 654–663, 1997.

[16] J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton,
D. Geels, R. Gummadi, S. Rhea, H. Weatherspoon,
W. Weimer, C. Wells, and B. Zhao. Oceanstore: An
architecture for global-scale persistent storage. In Pro-
ceedings of ACM ASPLOS, November 2000.

[17] T. Lehman, S. McLaughry, and P. Wyckoff. Tspaces:
The next wave. Hawaii Intl. Conf. on System Sciences
(HICSS-32), January 1999.

[18] C. G. Plaxton, R. Rajaraman, and A. W. Richa. Ac-
cessing nearby copies of replicated objects in a dis-
tributed environment. In ACM Symposium on Parallel
Algorithms and Architectures, pages 311–320, 1997.

[19] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A scalable content addressable network.
In Proceedings of the ACM SIGCOMM ’01 Confer-
ence, August 2001.

[20] D. Roselli, J. Lorch, and T. Anderson. A comparison
of file system workloads. In Proceedings of the 2000
USENIX Annual Technical Conference, June 2000.

[21] D. S. Rosenblum and A. L. Wolf. A design frame-
work for internet-scale event observation and notifica-
tion. In M. Jazayeri and H. Schauer, editors, Proceed-
ings of the Sixth European Software Engineering Con-
ference (ESEC/FSE 97), pages 344–360. Springer–
Verlag, 1997.

[22] A. Rowstron and P. Druschel. Pastry: Scalable, dis-
tributed object location and routing for large-scale
peer-to-peer systems. In Middleware, 2001.

[23] A. Rowstron and A. Wood. An Efficient Distributed
Tuple Space Implementation for Networks of Work-
stations. In L. Bouge, P. Fraigniaud, A. Mignotte, and
Y. Robert, editors, EuroPar 96, volume 1123, pages
511–513. Springer-Verlag, Berlin, 1996.

12



[24] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer
lookup service for internet applications. In Proceed-
ings of the ACM SIGCOMM ’01 Conference, August
2001.

[25] Sun Microsystems. Javaspaces specification.
http://java.sun.com/products/javaspaces/, 1998.

[26] Y. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry: An
infrastructure for fault-tolerant wide-area location and
routing. Technical Report UCB//CSD-01-1141, U. C.
Berkeley, April 2000.

13


