
Report on Unstructured Network in Peer-to-Peer System

Zhang Zhenjie
Yu Feng

Yang Xiaoyan
{zhangzh2,yufeng,yangxia2}@comp.nus.edu.sg

1 Introduction

In Structured peer-to-peer systems, there are several problems hard to tackle. First,
loads on different peers are difficult to balance. Since the peers in the system can
be heterogenous, it is not fair to distribute equal load to every peer. In Chord, the
authors argued that one peer with large capacity can occupy several nodes on the
ring to relieve the pressure on other peers. In fact, there is still a lower bound on the
workload and it is difficult to estimate the number of nodes one large peer should
take. Second, the communication cost in Structured system can be great. The topol-
ogy of a Structured peer-to-peer system is decided by the global mapping only. No
information about the communication condition among those peers are considered.
This may lead to the connection of peers who are far away geographically and great
latency during information exchange.

Unstructured system in peer-to-peer can overcome the drawbacks in Structured
system. There is no mandatory topology in Unstructured system. Every peer can
choose whether to accept or reject the replication by itself and only need to con-
tact with his neighbors in reasonable latency. However, most of the operations on
Unstructured system are not deterministic. That is why the performances of such
systems are not stable. Moreover, message flooding can overflow the whole network
when there are too many queries from different peers at the same time.

Generally speaking, most of the current research works on Unstructured system
are based on some heuristics to reduce the number of messages. In [1], Clark et al.
used the Depth First Search technique and proposed several encryption methods in
Unstructured system. In [5][6], k-random walker was adopted to relieve the problem
of message flooding. Gossip Protocol is another direction in Unstructured network.
In [2], Kempe et al. tried to aggregate the information on all the peers by gossip

1

protocol. In [3], Acuna et al. presented the new information sharing system “Plan-
etP” which exchange the summarization in Bloom Filter[4].

The rest of the report is organized as follows: Section 2 addresses some basic
ideas in Freenet, Section 3 presents GIA and the techniques used in it, Section 4
introduces Gossip Protocol and two corresponding applications. finally, conclusion
is given in Section 5.

2 Freenet

Freenet is an adaptive P2P network application that allows users to store, repli-
cate and retrieve data while keeping users’ readership and authorship anonymous.
It operates on a network of identical nodes which can query one another to store
and retrieve data files. Each node maintains its own local data store, which it
makes available to other peers for reading and writing, and one dynamic routing
table, which is used for routing requests to the most likely physical location of data.
There is no flooding or centralized location index in the system. Files are named
by location-independent keys and are dynamically replicated in locations near re-
questors and deleted if they are never requested. The novelty of this system is that
it is impossible to discover the true origin of the files in the network and the owner
of one node can deny the ownership or knowledge for the physical contents in his
node.

In the paper, the author mentioned the design goals of Freenet, which are:

• Anonymity for both producers and consumers of information

• Deniability for storers of information

• Resistance to attempts by third parties to deny access to information

• Efficient dynamic storage and routing of information

• Decentralization of all network functions

In this system, files are named by location-independent keys. The basic model
is that requests for keys are passed along from one node to another and each node
along the way makes a local decision about where the request should be sent. The
routing algorithm will adaptively adjust the routes so as to provide efficient efficient
routing while using local, rather than global knowledge. This ensures each node in
the system has more privacy. The detailed routing algorithm for data storing and
retrieval will be discussed in later section.

2

2.1 Files keys

Files in Freenet are identified by file keys which are obtained using hash functions.
Depending on the purpose and construction methods, the file keys can be catego-
rized to three types: KSK, SSK and CHK.

KSK, which is short for keyword-signed key, is derived from a short descriptive
string assigned to the file by the user. This string is firstly used as input to generate
a public/private key pair. The public half is hashed to yield the file key. The private
half is used to sign the file, providing a means for the user to check the retrieved
file genuinely matches its file key. The file is also encrypted using the descriptive
string. The reason of this encryption is not for security reasons, as anyone retrieved
the file can decrypt it using its description. However, for the owner of the node
physically storing this file, all he knows about this file is its file key since its content
is encrypted, therefore, he can plausibly deny any knowledge of the contents of his
data store for political or legal reasons. KSK is easy to remember and communicate
to others since the author of the file only need to publish the descriptive string of
the file to allow others to retrieve it. However, one problem of this key is that it
forms a flat global namespace, which is undesirable and problematic. For example,
two users from different locations can choose the same description for two different
files and malicious users can insert junk files under popular descriptions.

To solve the problem of KSK, SSK, short for signed-subspace key, is introduced.
The main difference between these two keys is SSK enables personal namespaces. It
is achieved by randomly generating a public/private key pair to identify the names-
pace of one user. The SSK key of one file is generated by hashing the public names-
pace key and the descriptive string chosen by user for the file independently and
XORing them and hashing result. Similar to KSK, the private half of the asymmet-
ric key pair is used to sign the file and the file is also encrypted by the descriptive
string.

The third type of key is CHK, short for content-hash key, which is useful for file
updating and splitting. A content-hash key is derived simply by hashing the content
of the corresponding file. The file is encrpted by a randomly-generated encryption
key. The author needs to publish the decryption key along with the content-hash
key of the file to let others retrieve it. As before, the decryption key (previously the
description sting) is never stored with the file itself, for reasons explained above.

3

2.2 Retrieving data

To retrieve a file, a user must first obtained or calculated the file key for that file.
Then he submits the request to his own node with the key and hops-to-live value.
When a node receives a request, it checks its local store first. If a file with the
specified file key is found, the node will return the result to the user, declaring itself
as the data source. If the file is nt found, the node will find the nearest key in its
routing table and forward the request to the corresponding node. If the request is
ultimately successful, the node with the file passes the file back using the reverse
route. Each node along the route caches the file, adds an new entry in routing table,
associating the data source with the requested key. Hence future requests with the
same key can be satisfied by the node from local cache directly. Also requests with
similar keys will be forwarded to the previous successful data source. For security
concern, any node along the way can unilaterally change the reply message to claim
itself as the data source. When hops-to-live value reaches 1, the routing can continue
with finite probability at each node, to disguise the information about the distance
from requester to the actual data source. To conclude, data retrieval in Freenet
operates as a depth-first search with backtracking.
There are several advantages for this mechanism:

• Nodes will be specialized in locating sets of similar keys since requests with
similar keys will forward to previous successful node.

• Nodes will similarly be specialized in storing clusters of files having similar
keys. This is due to local cache once a request is successful.

• Popular data will be transparently replicated and mirrored closer to requestors,
which enhances the efficiency of routing.

• With more and more requests processed, connectivity of the whole system
increases. For each successful data retrieval, a direct link between the data
source and the requester is established.

• Since file keys are obtained using hash functions, lexicographic closeness of the
keys does not imply any closeness of original description. In this way, files for
the same subject will be scattered across the system, thus avoid single point
of failure.

2.3 Storing data

The data storing process is similar to data retrieval. First the author calculates the
file key for his file and submits the key to his own node with a hops-to-live value.

4

Afterwards, the same process as data retrieval is carried out. If a file with the same
key is found ultimately, the file insertion causes a collision. The node possessing the
file passes the pre-existing file back along the reverse route, behaving as if a request
is made. The nodes receiving the file along the way cache it in its local data store
and create a routing table entry for the data source. When he inserter receives this
file, he knows a key collision has occurred and he then tries using another key for
this file. If hops-to-live limit is reached without key collision, a message will be sent
to inserter. The user then sends the file to insert, which will be propagated along
the path established by the previous query process and stored in each node along
the way. Again, any node along the way can unilaterally decide to claim itself as
the data source. A new entry associating the data source with the new key will be
added in the routing table of each node.
The Advantages of this mechanism are:

• New files will be placed on the nodes with similar keys since the routing al-
gorithm will always route the request to the node with similar keys. This
reinforces the clustering effect set up by the data retrieval mechanism.

• New nodes can use inserts as a supplementary means to announce their exis-
tence and build up its routing table.

• This mechanism strengthens the resistance of the system to attackers. At-
tempts by attackers to supplant existing files by inserting junk files under
existing keys are likely to spread the real file further.

2.4 Managing data

In Freenet, the owners of a node can configure the amount of storage he is willing
to dedicate to his data store. Finite storage capacity poses the problem of data
management. In Freenet, node storage is managed as an LRU (least recently used)
cache. When a new file causes the data store to exceed to its designated size, the
least recently used files will be evicted to make room for the new file. However, the
impact of data deletion on availability is alleviated by the fact that routing table
entries for those evicted files will remain, enabling the node to get a new copy from
the data source in future if it is requested again. Strictly speaking, once all nodes
dropped a particular file, it will no longer be available to the network, though the
probability of this case is very small. One advantage of this expiration mechanism
is that outdated files will fade away naturally if not requested for long therefore no
explicit deletion operations are necessary to maintain the system.

5

The experiments in the paper prove that Freenet is scalable and fault-tolerant
with an efficient adaptive routing algorithm. To conclude, Freenet provides an effec-
tive means of anonymous information storage and retrieval. It can keep information
anonymous and available while remaining highly scalable.

3 Scalability Problem in Unstructured P2P systems

3.1 Introduction

Gnutella, a purely decentralized and unstructured P2P system, is a famous dis-
tributed file-sharing application. Its query method is TTL-limited flooding. How-
ever, such search mechanism as flooding is inherently unscalable. For example, a
single query may generate large amount of messages, which may ultimately con-
tribute to the blocking of the whole network traffic. Using TTL to limit the number
of hops of one query message partly address this problem. Since the probability of
search success and message overhead on network traffic increase with TTL, there
must be a trade-off between search success and network traffic. Further, the load on
each node grows with the number of queries and the system size. Nodes, especially
high degree ones, are prone to get overloaded.

In order to address the scalability problem of Gnutella-like P2P systems, works
have been done to explore alternatives to Gnutella’s design. In the following sections,
several search methods and replication strategies[5] will be discussed and a new P2P
system GIA[6] is introduced.

3.2 Search Methods

In [5], two search methods were proposed and proved to be more scalable than
flooding, concerning four different network topologies: Power-Law random graph,
normal random graph, Gnutella graph and 2D Grid.

3.2.1 Expanding Ring

The first seach method studied is expanding ring and its basic idea is very simple.
Once a node has a new query, it starts a flood with small TTL. A new flood with
larger TTL will be invoked only when the last search fails. Such process repeats
until the query succeeds. To summarize, expanding ring is multiple floods with in-
creasing TTLs.

6

Results show that expanding ring improve the network traffic by significantly
reducing the message overhead. However, since it still use floods, expanding ring
did not address the message duplication problem, which is inherent in flooding. Thus
a new method - random walks is proposed.

3.2.2 Random walks

This search method is based on the standard random walk, which, at each step, for-
wards a query message to a randomly chosen neighbor rather than to all neighbors
until search succeeds. However, the disadvantage of this technique is obvious. Al-
though such random walk reduces the message overhead largely, the resultant long
delay of one query success is quite unacceptable.

In order to speed up per query processing, a modified version of standard random
walk named “multiple-walker” random walks is proposed. Here, a walker is equal to
one query message. Instead of just forwarding one message each time, a k multiple-
walker random walks forwards k messages at each time. Thus k walkers after N
hops is roughly equal to 1 walker after kN hops. “Checking” is adopted as the
mechanism to determine when to terminate the walks. To reduce the overhead
caused by checking, random walks check with the original query requester every c
steps.

A further improvement to random walks is by keeping state. A unique ID is
assigned to each query together with all its k walkers. Each node remembers the k
neighbors it has forwarded query messages to with a certain ID. Such mechanism
guarantees that more nodes will be visited during random walks. However, the mes-
sage overhead savings achieved by this technique varies among different topologies.
Therefore, different P2P network should consider the savings and implementation
overhead of state keeping and decide separately whether it is worthwhile or not.

3.2.3 Comparison

Let’s compare the two search methods with flooding in Gnutella network topology.
As Figure[1] shows, expanding ring and random walks improve network traffic by
reducing the average number of messages per node per query and the average number
of nodes visited per query significantly. Random walkers achieve the most savings
in the Gnutella graph.

On the other hand, the delay of finding one target file in the form of the number
of hops per query caused by random walks and expanding ring is quite acceptable
as Figure[2] (1) shows.

7

msgs per node

4.007

0.302
0.038

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Gnutella

Flooding
Expanding Ring
Random Walks

nodes visited

4479

789

101

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Gnutella

Flooding
Expanding Ring
Random Walks

Figure 1: Network traffic comparison in Gnutella network topology.

hops

2.1

3.02

4.61

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Gnutella

Flooding
Expanding Ring
Random Walks

avg. # msgs per node during simulation

0

10000

20000

30000

40000

50000

60000

Owner
Path
Random

Figure 2: (1).Delay in Gnutella network topology. (2).Message traffic of different
replication strategies.

8

3.3 Replication Strategies

Before discussing different replication strategies, we first introduce three replication
distributions studied in [5]: uniform, proportional and square-root.

3.3.1 Replication distribution

Assume that there are m different objects in the P2P system. Each object i is stored
in ni nodes and we have

∑m
i=1 ni = N . Let qi denote the relative popularity of object

i, in terms of the normalized number of queries issued for object i. Thus we have∑m
i=1 qi = 1. The three replication distributions are as follow:

1. Uniform: ni = N/m, which means the number of nodes each object is repli-
cated at is the same.

2. Proportional: ni ∝ qi, which indicate that the replication of i’s object is
proportional to its popularity.

3. Square-root: ni ∝
√

qi, which means that the replication of i’s object is pro-
portional to the square root of its popularity.

Both uniform and square-root replication distributions tend to allocate less repli-
cas to popular objects than their “fair-share” and vise versa. But compared with
uniform, square-root does so to a less extent. Uniform achieves the highest utiliza-
tion rate while proportional provides optimal load balancing. Square-root proves to
be optimal as it minimizes the average search size thus the overall network traffic
overhead.

3.3.2 Replication Strategies

The performance of three different replication strategies in random graph network
topology is discussed in [5]. They are: owner replication, path replication and
random replication, among which the first two are easy to implement while the last
one is harder.

1. Owner replication: the requested object is stored at the requester node only
after a successful search.

2. Path replication: the requested object is stored at each node along the path
from the requester node to the provider node.

3. Random replication: actually it is not totally ‘random’. Let p denote the
length of the path (the number of nodes along the path) from the requester to

9

the provider. Then from the nodes that the k walkers have visited in a search,
randomly choose p nodes to replicate this object.

Since square-root replication distribution achieve the minimal search traffic com-
pared with the other tow distribution, we want to find out which replication strat-
egy generate replication ratio most similar to square-root. Both path replication
and random replication can. From Figure[2] (2), we can see that path replication
and random replication reduces the whole message traffic significantly compared
with owner replication due to the benefit of square-root replication distribution that
minimize the average search size.

3.4 Discussion One

In [5], among the four network topologies studied, uniformly random graph proves to
be better for both searching and data replication, as such topology doesn’t generate
high degree nodes; while in Gnutella graph, there are some high degree nodes, which
may get overloaded easily or cause great message traffic to the whole network. How-
ever, such conclusion is generated without considering the situation that different
node may have different capacity. In the following sections, we will introduce a P2P
system GIA, which takes node heterogeneity into account.

3.5 GIA

GIA is a P2P system that includes several modifications to Gnutella’s design. It’s
design aim is to achieve a higher system capacity ie., higher scalability than Gnutella.
Four key components are proposed, which contribute to the improvement of system
capacity.

3.5.1 Key Components

• Dynamic Topology Adaptation: the topology adaptation algorithm proposed
is to enable higher-capacity node with higher degree ie., more neighbors and
high-capacity node are easy to access. Each node has a variable named level
of satisfaction (S), whose value is between 0 and 1. S is a function of the
capacity and degree of this node and its neighbors. S = 0 means that the
node is dissatisfied and has no neighbors; S = 1 means that the node is fully
satisfied and has enough neighbors. The topology adaptation algorithm will
continue to seek suitable neighbors to improve S unless S = 1.

• Active Flow Control: flow control is used to avoid overloaded nodes. Token
is introduced to indicate kind of query a node is willing to process. The

10

total amount of tokens a node allocates to its neighbors is proportional to its
capacity of processing queries. Further, tokens of one node are not evenly
distributed among all neighbors but according to neighbors’ capacity. This
implies that a high capacity node will probably handle more queries and at
the same time can forward more queries to other nodes.

• One-hop Replication: as high-capacity nodes are high degree nodes after topol-
ogy adaptation, if we want them to handle high query rate, they should be
guaranteed to have more answers to different queries. One-hop replication
means that each node stores information about files at its neighbors. Since
high-capacity implies high degree thus more information, those high-capacity
nodes are able to handle probably more queries. Moreover, active replication,
letting higher capacity nodes to store popular files at their overloaded low
capacity neighbors, improves the total capacity of file sharing.

• Search Protocol: the search protocol of GIA is based on random walks [5].
However, instead of forwarding queries randomly, queries are guided to high
capacity nodes which probably have more answers. GIA uses biased random
walk and each time a node forward its query to the neighbor with highest
capacity.

3.5.2 Performance Analysis

Simulations show that GIA achieves 3 to 5 magnitude improvement in total system
capacity. Such improvement cannot be obtained by any of the four components but
a result of the combination of the four Table 1.

Algorithm Collapse Point Hop-Count
GIA 7 15.0

GIA - One-hop Replication 0.004 8570
GIA - Biased Random Walk 6 24.0
GIA - Topology Adaptation 0.2 133.7

GIA - Flow Control 2 15.1

Table 1: Factor analysis for GIA. Collapse point and hop-count of GIA are measured
with each of the four key components removed. Here, collapse point means that the
query rate per node that the system can sustain.

11

3.6 Discussion Two

The main contribution of GIA is that it took node capacity into account. By topol-
ogy adaptation, it dynamically adjust the whole network topology to as to make
high-capacity nodes have high degree and easy to access;while at the same time it
guarantee high-capacity nodes have more answers to queries. These contribute to
the large improvement in capacity of GIA.

4 Gossip Protocol on Peer-to-Peer

In the previous sections, all of the methods are based on the dynamic topology of
the network in the system. To find the information in the peer-to-peer system, the
message should be spread from the source peer to other peers according to the some
searching conditions. Gossip Protocol is a quite different method in peer-to-peer
environment. First, any operation in the system needs the involvement of all the
peers. Second, no peer will send the information to the source peer directly. All the
information are spread in the network by ”rumor”.

Generally speaking, a system supporting Gossip Protocol should satisfies the
following assumptions:

1. In Gossip Protocol, it is assumed that every peer knows the route to any other
peer in the network;

2. the communication cost between any pair of peers is reasonable.

3. All the queries are continuous queries, or the information needed by the queries
is continuous;

The first assumption guarantees that one peer can contact any other peer with
the same probability. So, there will never be any bottleneck in the whole system
which block the spread of information from one part to another. The second as-
sumption assures that the communication between any peers can be done quickly.
There does not exist unendurable delay of communication. The third assumption
is very important. Since in gossip protocol any operation involves all the peer, if
all the queries are independent and instantaneous, the peers will have to spread the
information needed by different queries at the same time. This will increase the
burden of peers greatly and block the whole network with communications.

The framework of Gossip Protocol is very simple. Every time a peer can choose
one peer in his route table to spread the information it takes. At the same time, it

12

will summarize the information it gets from other peers. Just like ”rumor” in human
society, the information from any corner of the system can cover all the peers at a
very short time.

In this report, two application scenarios will be introduced in this section: aggre-
gation and information searching. As mentioned above, these two kinds of operations
must satisfy the third assumption. For aggregation, it is the overall statistics of in-
formation from all peers which is continuous in nature. For information searching,
we can present the information of one peer by some structure and spread the rela-
tively stable structure across the system.

The philosophy of Gossip Protocol is that “You never try to find what you want,
just wait for their arrival and check whether it is enough for you.”

4.1 Aggregation on Gossip-Based System

There are three types of aggregations on numerical data: Linear, Linear-Computable,
Non-Linear. Linear aggregation can be calculated by some linear numerical op-
eration on partial aggregations. For example, Sum(X) =

∑
Sum(Xi), if X =⋃

Xi and ∀i, j, Xi
⋂

Xj = φ. Linear-Computable aggregation can be represented
by some simple numerical operation on several Linear operations. For example,
Avg(X) = Sum(X)/Count(X), where Sum(X) and Count(X) are all Linear aggre-
gation. Non-Linear aggregation can not be represented by any Linear aggregation,
like Median(X) or Quantile(X).

In [2], Kemp et al. adopt the gossip protocol to the aggregation problem in peer-
to-peer environment. Their method can deal with all Linear, Linear-Computable
aggregations and some of the Non-Linear aggregations.

4.1.1 Problem Definition

In Peer-to-Peer system S, every peer i maintains a part of the data X, namely Xi.
Assume Op(X) is an aggregation on the whole data set X. Then, the computation
of Op(X) in S should be conducted efficiently and effectively. The result is available
for every peer i in S.

4.1.2 Gossip Protocol for Linear and Linear-Computable

Obviously, if the Linear aggregations can be computed, Linear-Computable aggre-
gation can be done just by simple operation on those Linear aggregations. So, the
Gossip Protocol will be given on the example of Avg(X). In the following part, xi

13

Algorithm 1 Protocol Push-Sum
1: Let (sr, wr be all pairs sent to peer i in round t− 1
2: Let st,i :=

∑
r sr,wt,i :=

∑
r wr

3: Choose a target ft(i) uniformly at random
4: Send the pair (st,i

2 ,
wt,i

2) to ft(i) and itself
5:

st,i

wt,i
is the estimate of the average in step t

will denote the sum on one peer i.

At all time t, each peer i maintains a sum st,i, which is initialized to s0,i := xi,
and a weight wt,i, which is initialized to w0,i := 1.

At time 0, every peer sends the pair (s0,i, w0,i) to itself. After time 0, all the
communication will follow the Protocol Push-Sum in Algorithm 1.

During the process of spreading, every peer will distribute what it get to other
peers at every round. There is no loss to the sum s and weight w, so

∑
i st,i =

∑
i xi

and
∑

i wt,i = n are invariant. When the round number increases, the sum of s and
w will be distributed evenly to all peers. This gives an intuition to the correctness
of the algorithm.

4.1.3 Diffusion Speed

Diffusion speed is the number of round after which the information in the network
can be distributed to all the peers evenly. Some stochastic process techniques are
used int the proof of the following conclusions.

If the choice of the peer to spread si,t and wi,t is uniform distribution, we call
this protocol is Uniform Gossip. In stochastic process, it can be represented by a
evenly distributed transition matrix T . In the square matrix T , every entry is 1

n ,
where n is the number of peers.

Theorem 1: The diffusion speed of Unifrom Gossip is TU (δ, n, ε) = O(log n+log 1
ε +

log 1
δ). Thus, with probability at least 1−δ, there is a time t = O(log n+log 1

ε +log 1
δ

such that max | st,i

wt,i
−A(X)| < ε·A(X), where A(X) is the true average of the dataset

X.
Proof: please refer to [2].

The theorem above shows that the averages on the all peers can converge to the
true value in a very fast speed. Moreover, to improve the probability of accuracy

14

δ, ε, more time of diffusion is necessary.

Sometimes, there may be some peers failed or some messages blocked in the
network. These factors can affect the performance of the system. The following
theorem proves that the effect is very limited.

Theorem 2: If µ < 1 si an upper bound on the probability of message loss in
each round resp. the fraction of failed peers, then the diffusion speed T ′ in the
presence of failures satisfies T ′(δ, n, ε) ≤ 2

(1−µ2)
T (δ, n, ε).

Proof: please refer to [2].

If the failure probability µ can be controlled in a small range, the increase of
diffusion speed will not be very large.

4.1.4 Practical Consideration

To exploit the full potential of the gossip protocol, several practical problems need
to be considered carefully: Synchronization, Termination Condition and Update in
aggregation.

Algorithm 1 is presented in terms of synchronous rounds, and with a synchro-
nized point. The latter synchronization condition is certainly unnecessary. One peer
can start a new aggregation query with an unique identifier Q, and use the protocol
to spread the start signal to other peers. The synchronous rounds assumption is
also not truly necessary for the definition of the protocols. Every peer in the system
can follow its own clocks in deciding when to forward a share of its s and w.

If the number of peers in the system is known to every peer, the bound of the
round number is easy to compute. However, in real application, with the frequent
logon and logoff of these peers, it is nearly impossible to know the stable number of
the peers. In [2], the authors didn’t give a definite solution to this problem.

There may be some updates to the data during the aggregation process. If a
node i increment the value xi by ∆i, it can add the ∆i to st,i at any time t. The
sum of the st,i is updated and the increment will soon be distributed to other peers.

4.1.5 Protocol for Quantile Aggregation

Assume that each peer i holds a multiset Mi of mi elements, and let M =
⋃

i Mi

be the union of all these multisets, writing m = |M | =
∑

i Mi. In order to draw a

15

Algorithm 2 Protocol Push-Random
1: Let (qr, wr) be all pairs sent to i in round t− 1
2: Let wt,i :=

∑
r wr

3: Choose qt,i at random from qr with probability wr
wt,i

4: Choose shares αt,i,j for each j
5: Send (qt,i, αt,i,j · wt,i) to each j
6: qt,i is the random element at time t

random sample from M, each node i first samples an element q0,i from Mi uniformly
at random, and then sends the pair (q0,i,mi) to itself. Subsequently, each node
executes the protocol presented in Algorithm 2.

After several rounds of exchange, every peer will take some elements qt,i. The
following theorem characterized the convergence behavior of the protocol.

Theorem 3: Let T be the diffusion speed of the underlying communication mechan-
sim. Then, with probability at least 1−δ, after T (δ, n, ε

(2+ε)n)rounds, the element at
each peer i will be ε-close to uniform, i.e. each element is selected with probability
between 1−ε

m and 1+ε
m .

Proof: Please refer to [2].

With the theorem above, we can get a sketch of all the elements on all the pairs.
Then, the quantile can be drawn from the sampled elements on all pairs respectively.

4.2 PlanetP: Gossip-Based Information Sharing System

Information sharing on unstructured peer-to-peer system often has to face several
severe problems. First, in unstructured network, no peer can guarantee it can find
what exists in the system deterministically. Second, the performance of the system
can be very poor if flooding policy is adopted. Third, these systems never support
semantic searching service but only name matching searching.

PlanetP is a peer-to-peer (P2P), semantically indexed storage layer [3]. It has
the following characteristics:

1. PlanetP’s unit of storage are snippets of eXtensible Markup Language (XML);

2. PlanetP provides personal search service. It can do content searching rather
than title searching;

16

3. PlanetP is designed from the ground up as a P2P system;

4. Gossip Protocol is used in the communication

4.2.1 System Framework

In contract with other information sharing P2P system, the most important differ-
ence in PlanetP is that peers in PlanetP never send their queries to other peers.
Every peer keeps receiving information representation from other peers and try to
maintain the newest ones. Once a query is issued, the peer only needs to search
in local representations and send request to those peers who potentially have the
information it wants.

Bloom Filter is used to represent all the information shared by one peer. As-
suming BFi is the bloom filter of peer i. Next subsection will give the detail of the
structure.

Once a peer logons to the system or has some new shared information, it will
publish its new bloom filter BFi to all its neighbor, and try to get all the bloom
filters stored by its neighbors.

At a definite interval, neighbor peers will contact each other to check whether
the other one takes any new bloom filter and exchange them if necessary. According
to the theorem proved in the last subsection, any new bloom filter can be spread
across the network quickly.

If the update of bloom filters are not very frequent, there is no need to check the
coherence of neighbor’s bloom filters. So, if there is no update from one neighbor
for several times, it does not matter to prolong the interval between these two peers.

PlanetP support continuous queries. The queries are kept by the peer for a long
time. Once updated bloom filters are available, it will search those again for previ-
ous queries. New results may be found from them.

The advantage of PlanetP is that it places very little load on the community for
searches against the bulk of slowly changing data. However, if there are many new
or updated information in the system, they may be spread relatively slowly.

17

4.2.2 Bloom Filter

Bloom Filter is an efficient structure for information compression [4].

Assume there are domain D and binary hash space S, where |S| � |D|. The
purpose of bloom filter is compress the subset d ⊆ D into S. Define a cluster of
independent hash functions H, every of which is a hash function fi : D− > S. For
every n ∈ d, Sn =

⋃
i fi(n), set all elements in Sn as 1.

Given an element n′ ∈ D, if ∀s,∀i,s ∈ fi(n′), s is definitely 1, then we assert
n′ ∈ d. Obviously, the result is false negative free which means if we assert n′ /∈ d,
it must be true. However, there may be some false positive cases in which n′ /∈ d,
but we divide it into d.

In PlanetP, every peer publishes the bloom filter which contains the compression
of the information it shares. For some other peer, checking the bloom filter is enough
to obtain the sketch of the information. As mentioned above, bloom filter may have
some false positive error. So, even if one bloom filter reflect the existence of some
information, it may not exist truly.

On the other hand, in [3], the authors did not give any instruction about how
to define the size of the hashing space. In fact, it is a crucial part in the success of
a real system. Large bloom filters may overflow the capacity of the network. Small
bloom filters may have more false positive errors.

4.2.3 Information Brokage

To promote the performance of the whole system, PlanetP also support the DHT
(Distributed Hashing Table) services. Each peer joining a PlanetP system can choose
to support the Information Brokage service or not. This allows other peers without
sufficient computing, storage, or communication resources to avoid hosting the ser-
vice.

This service works as follows. Information is published by one peer will be
mapped to an identifier in a specific domain. Some architecture like Chord is used
to organized all the peers supporting the service.

To search information in the network, one peer can try to map what it wants to
the domain and contact the information storage peer in Chord Protocol.

18

4.3 Limitation of Gossip Protocol

The advantage of Gossip Protocol is that it does need to maintain the topology of
the whole system. However, there are several limitations of Gossip Protocol.

First, Gossip Protocol assumes that one peer can know all the other peers by
itself. Under this assumption, the route table for one peer in a large system may be
too large to store.

Second, in uniform gossip, one peer can contact any peer in the system with
equal probability. In real application, many peer may be very far geographically.
The cost of communication between them can be too large to afford.

Third, most gossip-based peer-to-peer system prefer slow updated peers. Since
all peers need to exchange asymmetrical information pairwise, if there are many
updates, the performance can not be guaranteed.

5 Conclusion

In this report, we introduce several problems and corresponding solution in Unstruc-
tured network in peer-to-peer network.

The main drawback of Unstructured system is message flooding and non-deterministic
results. These problems limit the scalability of Unstructured network. Freenet is a
system using depth first searching which can partly reduce total number of messages
in search operation. k-random walker is a good message-saving technique but may
lead to slow response. GIA is a high-performance peer-to-peer dynamic adaptation
system with k-random walker, dynamic adaptation and congestion control. Gos-
sip Protocol shows good bound in theoretical analysis but can not be adopted in
general-purpose unstructured system.

The key problem in peer-to-peer system is how to balance the scalability of
unstructured network and stable performance of structured network. This may be
the direction of future research work in this field.

References

[1] I. Clarke, O. Sandberg, B. Wiley and T. W. Hong. Freenet: A Distributed
Anonymous Information Storage and Retrieval System. Workshop on Design

19

Issues in Anonymity and Unobservability 2000: 46-66

[2] D. Kempe, A. Dobra and J. Gehrke. Gossip-based Computation of Aggregation
Information. Symposium on Foundations of Computer Science FOCS’03.

[3] F. M. Cuenca-Acuna, C. Peery, R. P. Martin and T. D. Nguyen. PlanetP: Infras-
tructure Support for P2P Information Sharing. 12th International Symposium
on High-Performance Distributed Computing HPDC03

[4] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors. Com-
munications of the ACM, 13(7):422-426, 1970

[5] Q. Lv, P. Cao, E. Cohen, K. Li and S. Shenker. Search and replication in un-
structured peer-to-peer networks. Proceedings of the 2002 International Con-
ference on Supercomputing ICS 2002: 84-95

[6] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham and S. Shenker: Mak-
ing gnutella-like P2P systems scalable. Proceedings of the ACM SIGCOMM
2003 Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communication: 407-418

20

