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École Polytechnique Fédérale de Lausanne (EPFL)

CH-1015 Lausanne, Switzerland

[Karl.Aberer, Philippe.Cudre-Mauroux, Manfred.Hauswirth]@epfl.ch

ABSTRACT
This paper describes a novel approach for obtaining seman-
tic interoperability among data sources in a bottom-up, semi-
automatic manner without relying on pre-existing, global
semantic models. We assume that large amounts of data
exist that have been organized and annotated according to
local schemas. Seeing semantics as a form of agreement, our
approach enables the participating data sources to incre-
mentally develop global agreement in an evolutionary and
completely decentralized process that solely relies on pair-
wise, local interactions: Participants provide translations
between schemas they are interested in and can learn about
other translations by routing queries (gossiping). To sup-
port the participants in assessing the semantic quality of
the achieved agreements we develop a formal framework that
takes into account both syntactic and semantic criteria. The
assessment process is incremental and the quality ratings are
adjusted along with the operation of the system. Ultimately,
this process results in global agreement, i.e., the semantics
that all participants understand. We discuss strategies to
efficiently find translations and provide results from a case
study to justify our claims. Our approach applies to any
system which provides a communication infrastructure (ex-
isting websites or databases, decentralized systems, P2P sys-
tems) and offers the opportunity to study semantic interop-
erability as a global phenomenon in a network of information
sharing parties.
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1. INTRODUCTION
The recent success of peer-to-peer (P2P) systems and the

initiatives to create the Semantic Web have emphasized again
a key problem in information systems: the lack of seman-
tic interoperability. Semantic interoperability is a crucial
element for making distributed information systems usable.
It is prerequisite for structured, distributed search and data
exchange and provides the foundations for higher level (web)
services and processing.

For example, the technologies that are currently in place
for P2P file sharing systems either impose a simple semantic
structure a-priori (e.g., Napster, Kazaa) and leave the bur-
den of semantic annotation to the user, or do not address
the issue of semantics at all (e.g., the current web, Gnutella,
Freenet) but simply support a semantically unstructured
data representation and leave the burden of “making sense”
to the skills of the user, e.g., by providing pseudo-structured
file names such as Enterprise-2x03-Mine-Field that encap-
sulate very simple semantics.

Also, classical attempts to make information resources
semantically interoperable, in particular in the domain of
database integration, do not scale well to global informa-
tion systems, like P2P systems. Despite a large number
of approaches and concepts, such as federated databases,
the mediator concept [17], or ontology-based information
integration approaches [8, 13], practically engineered solu-
tions are still frequently hard-coded and require substantial
support from human experts. A typical example of such
systems are domain-specific portals such as CiteSeer (www.
researchindex.com, publication data), SRS (srs.ebi.ac.uk, bi-
ology) or streetprices.com (e-commerce). They integrate
data sources on the Internet and store them in a central
warehouse. The data is converted to a common schema
which usually is of simple to medium complexity. This ap-
proach adopts a simple form of wrapper-mediator architec-
ture and typically requires substantial development effort
for the automatic or semi-automatic generation of mappings
from the data sources into the global schema.

In the context of the Semantic Web, a major effort is
devoted to the provision of machine processable semantics
expressed in meta-models such as RDF, OIL [5], OWL [3] or
DAML+OIL [7], and based on shared ontologies. Still, these
approaches rely on commonly agreed upon ontologies, which
existing information sources can be related to by proper an-
notation. This is an extremely important development, but
its success will heavily rely on the wide adoption of common
ontologies or schemas.

The advent of P2P systems, however, introduces a dif-



ferent view on the problem of semantic interoperability by
taking a social perspective which relies on self-organization
heavily. We argue that we can see the emerging P2P para-
digm as an opportunity to improve semantic interoperability
rather than a threat, in particular in revealing new possibil-
ities on how semantic agreements can be achieved. This mo-
tivated us to look at the problem from a different perspective
and has inspired the approach presented in this paper.

In the following, we abstract from the underlying infra-
structure such as federated databases, web sites or P2P sys-
tems and regard these systems as graphs of interconnected
data sources. For simplicity, but without constraining the
general applicability of the presented concepts, we denote
these data sources as peers. Each peer offers data which
are organized according to some schema expressed in a data
model, e.g., relational, XML, or RDF. Among the peers,
communication is supported via suitable protocols and ar-
chitectures, for example, HTTP or JXTA.

The first thing to observe is that semantic interoperabil-
ity is always based on some form of agreement. Ontology-
oriented approaches in the Semantic Web represent this
agreement essentially explicitly through a shared ontology.
In our approach, no explicit representation of a globally
shared agreement will be required, but agreements are im-
plicit and result from the way our (social) mechanism works.

We impose a modest requirement on establishing agree-
ments by assuming the existence of local agreements pro-
vided as mappings between different schemas, i.e., agree-
ments established in a P2P manner. These agreements will
have to be established in a manual or semiautomatic way
since in the near future we do not expect to be able to
fully automate the process of establishing semantic map-
pings even locally. However, a rich set of tools is getting
available to to support this [16]. Establishing local agree-
ments is a less challenging task than establishing global
agreements by means of globally agreed schemas or shared
ontologies. Once such agreements exist, we establish on-
demand relationships among schemas of different informa-
tion systems that are sufficient to satisfy information pro-
cessing needs such as distributed search.

We briefly highlight two of the application scenarios that
convinced us (besides the obvious applicability for informa-
tion exchange on the web) that enabling semantic interoper-
ability in a bottom-up way driven by the participants is valid
and applicable: introduction of meta-data support in P2P
applications and support for federating existing, loosely-
coupled databases.

Imposing a global schema for describing data in P2P sys-
tems is almost impossible, due to the decentralization prop-
erties of such systems. It would not work unless all users
conscientiously follow the global schema. Here our approach
would fit well: We let users introduce their own schemas
which best meet their requirements. By exchanging trans-
lations between these schemas, the peers can incrementally
come up with an implicit “consensus schema” which gradu-
ally improves the global search capabilities of the P2P sys-
tem. This approach is orthogonal to the existing P2P sys-
tems and could be introduced basically into all of them.

The situation is somewhat similar for federating existing
loosely-coupled databases. Such large collections of data
exist for example for biological or genomic databases. Each
database has a predefined schema and possibly some trans-
lations may already be defined between the schemas, for ex-

ample data import/export facilities. However, global search,
i.e., propagation of queries among the set of databases, is
usually not provided and if this feature exists it is usually
done in an ad-hoc, non-systematic way, i.e., not reusable and
not automated. The more complex these database schemas
get, the less likely it is that the schemas partially overlap
and the harder it gets to increasingly generate translations
automatically.

In our approach, we build on the principle of gossiping
that has been successfully applied for creating useful global
behaviors in P2P systems. In any P2P system, search re-
quests are routed in a network of interconnected information
systems. We extend the operation of these systems as fol-
lows: When different schemas are involved, local mappings
are used to further distribute a search request into other
semantic domains.

For simplicity but without constraining general applicabil-
ity, we will limit the following discussions to the processing
of search requests. The quality of search results in such a
gossiping-based approach depends clearly on the quality of
the local mappings in the mapping graph. Our fundamental
assumptions is that these mappings may be incorrect. Thus
our agreement construction mechanisms try to determine
which mappings can be trusted and which not and take this
into account to guide the search process.

A main contribution of the paper is to identify the differ-
ent methods that can be applied to establish global forms of
agreement starting from a graph of local mappings among
schemas. We elaborate the details of each of these methods
for a simple data model, that is yet expressive enough to
cover many practical cases. Three methods will be intro-
duced in particular:

1. A syntactic analysis of search queries after mappings
have been applied in order to determine the potential
information-loss incurred through the transformation.

2. A semantic analysis of composite mappings along cy-
cles in the mapping graph, in order to determine the
level of agreement that peers achieve throughout the
cycle.

3. A semantic analysis of search results obtained through
composite mappings based on the preservation of data
dependencies.

The information obtained by applying these different anal-
yses is then used to direct searches in a network of seman-
tically heterogeneous information sources (e.g, on top of a
P2P network). We will provide results from initial experi-
ments that have been performed for this setting.

We believe that this radically new approach to semantic
interoperability shifts the attention from problems that are
inherently difficult to solve in an automated manner at the
global level (“How do humans interpret information mod-
els in terms of real world concepts?”), to a problem that
leaves vast opportunities for automated processing and for
increasing the value of existing information sources, namely
the processing of existing local semantic relationships in or-
der to raise the level of their use from local to global seman-
tic interoperability. The remaining problem of establishing
semantic interoperability at a local level seems to be much
easier to tackle once an approach such as ours is in place.

2. OVERVIEW
Before delving into the technical details, this section pro-



vides an informal overview of our approach and of the paper.
We assume that there exists a communication facility

among the participants that enables sending and receiving
of information, i.e., queries, data, and schema information.
This assumption does not constrain the approach, but em-
phasizes that it is independent of the system it is applied
to. The underlying system could be a P2P system, a feder-
ated database system, the web, or any other system of in-
formation sources communicating via some communication
protocol. We denote the participants as peers abstracting
from the concrete underlying system.

In the system, groups of peers may have agreed on com-
mon semantics, i.e., a common schema. We denote these
groups as semantic neighborhoods. The size of a neighbor-
hood may range from a single individual peer up to any num-
ber. If two peers located in two disjoint neighborhoods meet,
they can exchange their schemas and provide mappings be-
tween them (how peers meet and how they exchange this
information depends on the underlying system but does not
concern our approach). We assume that skilled experts sup-
ported by appropriate mapping tools provide the mappings.
The direction of the mapping and the node providing a map-
ping are not necessarily correlated. For instance, nodes A
and B might both provide a mapping from schema(A) to
schema(B), and they may exchange this mapping upon dis-
cretion. During the life-time of the system, each peer has
the possibility to learn about existing mappings and add
new ones. This means that a directed graph of mappings as
shown in Figure 1 will be built between the neighborhoods
along with the normal operation of the system (e.g., query
processing and forwarding in a P2P system).
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Figure 1: Mapping graph among semantic neighbor-
hoods

This mapping graph has two interesting properties: (1)
based on the already existing mappings and the ability to
learn about existing mappings, new mappings can be added
automatically by means of transitivity, for example, D →
E → B ⇒ D → B and (2) the graph has cycles. (1) means
that we can propagate queries towards nodes for which no
direct translation link exists. This is what we call semantic
gossiping. (2) gives us the possibility to assess the degree of
semantic agreement along a cycle, i.e., to measure the qual-
ity of the translations and the degree of semantic agreement
in a community.

In such a system, we expect peers to perform several task:
(1) upon receiving a query, a peer has to decide where to
forward the query to, based on a set of criteria that are intro-
duced below; (2) upon receiving results or feedback (cycle),
it has to analyze the quality of the results at the schema and
at the data level and adjust its criteria accordingly; and (3)
update its view of the overall semantic agreement.

The criteria to assess the quality of translations—which in

turn is a measure of the semantic agreement—can be catego-
rized as intrinsic and extrinsic. Intrinsic criteria, discussed
in Section 4, relate only to the processed query and to the
required translation. We introduce the notion of syntactic
similarity to analyze the extent to what a query is preserved
after translation.

Extrinsic criteria, which are discussed in Section 5, re-
late to the degree of agreement that can be achieved among
different peers upon specific translations. Such degrees of
agreement may be computed using feedback mechanisms
(cycles appearing in the translation graph and results re-
turned by different peers). This means that a peer will lo-
cally obtain both returned queries and data through multi-
ple cycles. In case a disagreement is detected (e.g., a wrong
attribute mapping at the schema level or the violation of a
constraint at the data level), the peer has to suspect that
at least some of the mappings involved in the cycle were
incorrect, including the mapping it has used itself to prop-
agate the query. Even if an agreement is detected, it is not
clear whether this is not accidentally the result of compen-
sating mapping errors along the cycle. Thus, analyses are
required that assess which are the most probable sources of
errors along cycles, to what extent the own mapping can
be trusted and therefore of how to use these mappings in
future routing decisions. At a global level, we can view the
problem as follows: The translations among domains of se-
mantic homogeneity (same schemas) form a directed graph.
Within that directed graph we find cycles. Each cycle allows
to return a query to its originator which in turn can make
the analysis described above.

Each of these criteria is applied on an attribute-basis to
the transformed queries and results in a feature vector (i.e.,
a vector encompassing the outcome of the criterion for each
of the attributes concerned). The decision whether or not
to forward a query using a translation link is based on these
feature vectors. The details of the query forwarding process
are provided in Section 6.

Assuming all the peers implement this approach, we ex-
pect the network to converge to a state where a query is
only forwarded to the peers most-likely understanding it
and where the correct mappings are increasingly reinforced
by adapting the per-hop forwarding behaviors of the peers.
Implicitly, this is a state where a global agreement on the
semantics of the different schemas has been reached. This
is illustrated by a case study in Section 7.

3. THE MODEL

3.1 The Data Model
We assume that each peer p is maintaining its database

DBp according to a schema Sp. The peers are able to iden-
tify their schema, either by explicitly storing it or by keeping
a pseudo unique schema identifier, obtained for example by
hashing. The schema consists of a single relational table R,
i.e., the data that a peer stores consists of a set of tuples
t1, . . . , tn of the same type. The attributes have complex
data types and NULL-values are possible.

We do not consider more sophisticated data models to
avoid diluting the discussion of the main ideas through tech-
nicalities related to mastering complex data models. More-
over, many practical applications, in particular in scientific
databases, use exactly the type of simplistic data model we
have introduced, at least at the meta-data level.



We assume that integrity constraints are known for the
schema table R, both in terms of key constraints (unique-
ness) and functional dependencies among attributes. Peers
can answer queries q against their database. The result of a
query q is denoted as q(DBp).

We use a query language for querying and transforming
databases. The query language consists of basic relational
algebra operators since we do not care about the practical
encoding, e.g., in SQL or XQuery. The relational operators
that we require are:

• Selection σp(a)(R), where a =< A1, . . . , Ak > is a list
of attribute names, and p is any predicate on the at-
tributes a using standard atomic predicates on the re-
spective datatypes, i.e., p = p(A1, . . . , Ak).

• Projection πa(R), where a is a list of attribute names
A1, . . . , Ak.

• Mapping µf (R), where f is a list of functions of the
form A0 := F (A1, . . . , Ak) and A1, . . . , Ak are attribute
names occurring in R. The function F is specific to the
datatypes of the attributes A1, . . . , Ak. A special case
is renaming of an attribute: A0 := A1.

We assume that queries can be evaluated against any
database irrespective of its schema. Predicates containing
attributes not present in the evaluated schema are ignored.1

Projection attributes which are not present in the current
schema return a NULL-value. Mappings applied to non-
existing attributes also return NULL-values.

3.2 The Network Model
Let us now consider a set of peers P . Each peer p ∈ P has

a basic communication mechanism that allows it to establish
connection with other peers. Without loss of generality, we
assume in the following that it is based on the Gnutella
protocol [2]. Thus peers can send ping messages and receive
pong messages in order to learn about the network structure.
In extension to the Gnutella protocol, peers also send their
schema identifier as part of the pong message.

Every peer maintains a neighborhood N(p) selected from
the peers that it identified through pong messages. The
peers in this neighborhood are distinguished into those that
share the same schema, Ne(p), and those that have a differ-
ent schema, Nd(p) as shown in Figure 2.
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Figure 2: The Network Model

1We do not use the same conventions as XPath/XQuery
here, but we will make use of additional mechanisms for
dropping queries.

A peer p includes another peer p′ with a different schema
into its neighborhood if it knows a translation for queries
against its own schema to queries against the foreign schema.
The query translation operator Tp→p′ is given by a query
qT that takes data structured according to schema Sp′ and
transforms it into data structured according to schema Sp.

Thus Tp→p′ has the property

Tp→p′(qp)(DBp′) = qp(qT (DBp′))

We assume that transformations only use a mapping op-
erator followed by a projection on the attributes that are
preserved. Thus qT will always be of the form

qT (DBp′) = πa(µf (DBp′))

Furthermore, we assume that the transformation query is
normalized as follows: If an attribute A is preserved, it also
occurs in the mapping operator as an identity mapping, i.e.,
A := A ∈ f . This simplifies our subsequent analysis. Note
that multiple transformations may be applied to a single
query iteratively:

Tn−1→n(. . . T1→2(q) . . .) = T1→2,...,n−1→n(q)

Such query translations may be implemented easily using
various mechanisms, for example XQuery, as done in our
case study in Section 7.

Queries can be issued to any peer through a query mes-
sage. A query message contains a query identifier id, the
(potentially transformed) query q, the query message orig-
inator p, and the translation trace TT to keep track of the
translations already performed. In the subsequent sections
we will extend the contents of the query message in order
to implement a more intelligent control of query forwarding.
The basic query message format is

query(id, q, p, TT )

The translation trace TT is a list of pairs {(pfrom, Spfrom),
(pto, Spto)} keeping track of the peers having sent the re-
quest through a translation link (pfrom) and of the peers
having received it after the translation link (pto), along with
their respective schema identifiers (Spfrom and Spto). We
will call pfrom the sender, and pto the receiver. For any
translation link, we have to record both the sender and the
recipient, as after a translation a query might be forwarded
without transformation to peers sharing the same schema.

4. SYNTACTIC SIMILARITY
As intrinsic criterion to measure the degree of similarity

between two queries (in our context, between an original
query and a transformed query), we introduce the notion of
syntactic similarity. Note that a high syntactic similarity (in
terms of attributes lost during translation) will not ensure
that forwarding the query is useful, but conversely a low
syntactic similarity implies that it might not be useful to
forward the query.

Let us suppose we have a query q, which always has the
generic form of a selection-projection-mapping query

q = πap(σp(as)(µfa(DB)))



where as is a list of attributes used in the selection pred-
icates, ap is a list of attributes used in the projection, and
fa is a list of functions applied. Again, without loss of gen-
erality, we assume that the query is normalized such that all
attributes required in as and ap are computed by one of the
functions in fa to simplify the subsequent analysis.

Therefore the transformed query will be of the form (this
is also true for multiple transformations after normalization)

T (q)(DB′) = πap(σp(as)(µfa(πa(µf (DB′)))))

It might occur that attributes used in q are no longer avail-
able after the transformation T has been applied to q. This
can only happen when an attribute needed for the deriva-
tion of a new attribute by means of one of the functions in
fa and required in ap or as is missing, i.e., not occurring in
a.

We now analyze which attributes are exactly needed in
order to properly evaluate the query q. We define

attσ(q) =
{[A0 : {A1, . . . , Ak}] | A0 ∈ as, A0 := F (A1, . . . , Ak) ∈ fa}
and similarly

attπ(q) =
{[A0 : {A1, . . . , Ak}] | A0 ∈ ap, A0 := F (A1, . . . , Ak) ∈ fa}

Given a transformation T we can define the source of an
attribute sourceT (A):

If

∃F ∈ fa such that A := F (A1, . . . , Ak)

then

sourceT (A) = {A1, . . . , Ak}
else

sourceT (A) = ⊥.

Informally, sourceT (A) tells whether and how an attribute
is preserved in a transformation T . Then we can define the
operation ωT (attσ(q)) as follows:

If

∀[A0 : {A1, . . . , Ak}] ∈ attσ(q)
∀A ∈ {A1, . . . , Ak}sourceT (A) 6= ⊥

then

[A0 :
S

A∈{A1,...,Ak} sourceT (A)] ∈ ωT (attσ(q))

else

[A0 : ⊥] ∈ ωT (attσ(q)).

This definition extends naturally to multiple transforma-
tion. In order to define

ωTn(. . . (ωT1(attσ(q))) . . .)

we simply apply the above definition for ωTn to ωTn−1(. . .
(ωT1(attσ(q))) . . .) instead of attσ(q). All definitions are
analogous for ωT (attπ(q)).

ωTn(. . . (ωT1(attσ(q))) . . .) allows to determine which of
the required attributes for evaluating queries are at disposal

after applying the transformations T1, . . . , Tn. The defini-
tions are given such that they can be evaluated locally, i.e.,
for each transformation step in an iterative manner. Using
this information we can now define the syntactic similarity
between the transformed query and the original query.

The decision on the importance of attributes is query de-
pendent. We have two issues to consider:

1. Not all attributes in as are preserved. Therefore some
of the atomic predicates in p(as) will not be correctly
evaluated (the atomic predicates will simply be dropped
in this case). Depending on the selectivity of the pred-
icate this might be harmful to different degrees. We
capture this by calculating a value fvσ

Ai
for every at-

tribute Ai ∈ as ∪ ap as follows:

If

Ai ∈ as, [Ai : ⊥] ∈ ωTn(. . . (ωT1(attσ(q)) . . .)

then

fvσ
Ai

(T1→,...,→n(q)) = 0

else

fvσ
Ai

(T1→,...,→n(q)) = selAi

where selAi is the selectivity (ranging over the inter-
val [0, 1], with high values indicating highly-selective
attributes, i.e., attributes whose predicates select a
small proportion of the database) of an attribute Ai.
Given the values fvσ

Ai
for Ai ∈ as ∪ ap we can intro-

duce a feature vector
−−→
FVσ for the transformed query

Tn(. . . T1(q) . . .) characterizing the syntactic similarity
with respect to the selection operator:

−−→
FVσ(T1→,...,→n(q)) = (fvσ

A1, . . . , fvσ
Ak)

We derive the syntactic similarity between the original
query and the transformed query for the selection from
this feature vector and from a user-defined weight vec-

tor
−→
W = (wA1, . . . , wAk) with Ai ∈ as ∪ ap pondering

the importance of the attributes:

Sσ(q, T1→,...,→n(q)) =

−→
W · −−→FVσ��−→W �� ��−−→FVσ

��
where

−→
W · −−→FVσ = w1fvσ

A1 + w2fvσ
A2 + . . . + wkfvσ

Ak

and where

��−→X �� = −→X
2

=
q

x2
1 + x2

2 + . . . + x2
k.

This value is normalized on the interval [0, 1]. Orig-
inally, the similarity will be one, and it will decrease
proportionally to the relative weight and selectivity of
every attribute lost in the selection operator, until it
reaches 0 when all attributes are lost.



2. Not all attributes in ap are found in a or af . Therefore,
some of the results may be incomplete or even erro-
neous (due to the loss of key attributes, for example).
Following the method used above for the selection, we
propose to measure this for every attribute:

If

Ai ∈ as, [Ai : ⊥] ∈ ωTn(. . . (ωT1(attπ(q)) . . .)

then

fvπ
Ai

(T1→,...,→n(q)) = 0

else

fvπ
Ai

(T1→,...,→n(q)) = 1.

The feature vector and the syntactic similarity for the
projection operator then are

−−→
FVπ(T1→...→n(q)) = (fvπ

A1, . . . , fvπ
Ak)

and

Sπ(q, T1→,...,→n(q)) =

−→
W · −−→FVπ��−→W �� ��−−→FVπ

�� .
Again, this similarity decreases with the number of
translations applied to the query, until it reaches 0
when all the projection attributes are lost.

5. SEMANTIC SIMILARITY
The intrinsic measure for syntactic similarity is based on

the assumption that the query translations are semantically
correct, which in general might not be the case. A better
way to view semantics is to consider it as an agreement
among peers. If two peers agree on the meaning of their
schemas, then they will generate compatible translations.
From that basic observation, we will now derive extrinsic
measures for semantic similarity. These measures will allow
us to assess the quality of attributes that are preserved in
the translation.

To that end, we introduce two mechanisms for deriving
the quality of a translation. One mechanism will be based
on analyzing the fidelity of translations at the schema level,
the other one will be based on analyzing the quality of the
correspondences in the query results obtained at the data
level.

5.1 Cycle Analysis
For the first mechanism, we exploit the protocol property

that detects cycles as soon as a query reenters a semantic
domain it has already traversed (see Section 6 for the exact
algorithm). Such a cycle starts with a peer p1 transmitting
a query q1 to a second peer p2 through a translation link
T1→2 (see Figure 3).
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Figure 3: The Feedback Mechanism

After a few hops, the query is finally sent to a peer pn

which, sharing the same schema as p1, detects a cycle and
informs p1. The returning query qn is of the form

qn = T1→2,3→5,...,n−1→n(q1)

p1 may now analyze what happened to the attributes
A1 . . . Ak originally present in q1. We could attempt to
check whether the composed mapping is identity, but the
approach we propose here appears more practical. We dif-
ferentiate three cases:

– Case 1: sourceT1→...→n(Ai) = {Ai}, this means that
Ai has been maintained throughout the cycle. It usu-
ally indicates that all the peers along the cycle agree
on the meaning of the attribute. Such an observation
increases the confidence in the correctness of the map-
ping.

– Case 2: sourceT1→...→n(Ai) = ⊥, this means that
someone along the cycle had no representation for Ai.
Ai is not part of the common semantics. This leaves
the confidence in the mapping unchanged.

– Case 3: Otherwise, if none of the two previous cases
occurs, e.g., sourceT1→...→n(Ai) = {Aj}, j 6= i, this in-
dicates some semantic confusion along the cycle. Sub-
cases can occur depending on what happens to Aj .
This lowers the confidence in the mapping.

We then derive heuristics for p1 to assess the correctness
of the translation T1→2 it has used based on the different cy-
cle messages it received. Let us consider a translation cycle
ci composed of ‖ci‖ translation links. On an attribute ba-
sis, ci may result in positive feedback (case 1 above), neutral
feedback (case 2, not used for the rest of this analysis but
taken into account by the syntactic similarity), or negative
feedback (case 3). We denote by εs and by εf the probability
of p1’s translation (i.e., T1→2) and another foreign transla-
tion (i.e., T3→4 . . . Tn−1→n) being wrong for the attribute
in question. Considering the foreign error probabilities as
being independent and identically distributed random vari-
ables, the probability of not having a foreign translation
error along the cycle is

(1− εf )‖ci‖−1

Moreover, compensating errors, i.e., series of independent
translation errors resulting in a correct mapping, may oc-
cur along the cycle of foreign links without being noticed
by p1 (which only has the final result qn as its disposal).
Thus, assuming T1→2 correct and denoting by δ the (possi-



bly high) probability of errors being compensated somehow,
the probability of a cycle being positive is

(1− εf )‖ci‖−1 + (1− (1− εf )‖ci‖−1)δ = p(‖ci‖, εf , δ)

while, under the same assumptions, the probability of a
cycle being negative is

(1− (1− εf )‖ci‖−1)(1− δ) = 1− p(‖ci‖, εf , δ).

Similarly, if we assume T1→2 to be incorrect, the prob-
ability of a cycle being respectively negative and positive
are

(1− εf )‖ci‖−1 + (1− (1− εf )‖ci‖−1)(1− δ) = q(‖ci‖, εf , δ)

and

(1− (1− εf )‖ci‖−1)δ = (1− q(‖ci‖, εf , δ)).

Combining those equations, the likelihood of receiving a
set of cycles C = c1, . . . , ck, some positive (ci ∈ C+), other
negative (ci ∈ C−), is

l(c1, . . . , ck) =

(1− εs)
Y

ci∈C+

p(‖ci‖, εf , δ)
Y

ci∈C−
(1− p(‖ci‖, εf , δ))

+ εs

Y
ci∈C−

q(‖ci‖, εf , δ)
Y

ci∈C+

(1− q(‖ci‖, εf , δ))

Now, we integrate over εf and δ, 2 and let εs tend toward
zero and one in order to get the likelihood of the translation
T1→2 being semantically correct or incorrect respectively:

p1 = lim
εs→0

Z 1

δ=0

Z 1

εf =0

l(c1 . . . ck) dεf dδ

p2 = lim
εs→1

Z 1

δ=0

Z 1

εf =0

l(c1 . . . ck) dεf dδ

Finally, we define a variable γ for the relative degree of
correctness of the translation:

γ =
p1

p1 + p2

Such an analysis may be performed for every outgoing
link and every attribute independently, resulting in series of
values γj

i indicating the likelihood of the translation Tj being
correct for the attribute Ai. Examples of such calculations
are given in Section 7.

As for the preceding section, we define now a feature vec-
tor and a similarity value to capture the semantic losses
along the translation links. Let us suppose that a peer pk

issues a query q = πap(σp(as)(µfa(DB))) through a transla-
tion link Tk→j . pk computes a feature vector for q based on
the cycle messages it has received as follows:

−−→
FV�(Tk→j(q)) = (fv�A1, . . . , fv�Ak)

2We could take into account density functions here if we
have any a priori knowledge about those two variables.

where the feature values fv�Ai
are defined for every at-

tribute Ai ∈ as ∪ ap as

fv�Ai
(Tk→j(q)) = γj

i

These values are updated by iteratively multiplying the
probabilities for each semantic domain traversed.3 Thus,
when forwarding a transformed query using a link Tk→j ,

peer pk updates each value fv�Ai
of the feature vector

−−→
FV�

it has received along with the transformed query T1→...→k(q)
in this way:

fv�Ai
(T1→...→k,k→j(q)) =

fv�Ai
(T1→...→k(q)) fv�Ai

(Tk→j(T1→...→k(q)))

where γj
i values for which we did not receive significant

feedback (either because p does not have a representation
for Ai or because no cycle message has been received so far)
are evaluated to 1. The semantic similarity associated with
this vector is

S�(q, T1→,...,→n(q)) =

−→
W · −−→FV���−→W �� ��−−→FV�

��
This value starts from 1 (in the semantic domain which the

query originates from) and decreases as the query traverses
more and more semantically heterogeneous domains.

5.2 Result Analysis
The second mechanism for analyzing the semantic qual-

ity of a translation is based on the analysis of the results
returned. Here, we assume that if peers agree on the se-
mantics of their schema, they observe the same data depen-
dencies. Therefore, for each functional dependency known,
the peers analyze whether the values of the dependent at-
tributes match. The percentage of matches then gives the
degree of fidelity that can be put into the attributes involved
in the functional dependency. To that end, the peers com-
pare data objects received through a translation link to data
objects they store themselves or that they receive through
non-translation links (i.e., received from peers ∈ Ne(p)).

More precisely, consider two attributes Ai and Aj of p’s
schema Sp. Suppose now that Ai and Aj are tied to each
other by a functional dependency Ai → Aj ; for every value
val(Ai) of Ai received in query responses from neighbor
peers ∈ Nd(p), p tries to find tuples sharing the same val(Ai)
in its own database or in returned tuples coming from peers
∈ Ne(p). When common occurrences are found, p deter-
mines if tuples from peers ∈ Nd(p) satisfy the functional
dependency or not.

Thus the peer can maintain for every attribute Ai and for
every outgoing translation link Tj a fidelity value κj

i keep-
ing track of the proportion of tuples received from this link
satisfying the functional dependency for the attributes Ai:

4

κj
i =

#common tuples satisfying the FD

#common tuples
3We consider here that if two translations Ta and Tb have
probabilities of a and b respectively and are independent,
the overall probability for (Tb ◦ Ta) to be correct is ab.
4κi is called confidence measure in the data mining termi-
nology.



Assuming that the queries are properly processed and that
they are properly distributed, the attribute fidelity even-
tually converges to the degree of compatibility among the
databases (i.e., the percentage of data objects which match
on dependent attributes for matching keys of a functional
dependency).

In a way similar to what we defined for the cycles, we
define a new feature vector with these values

−−−→
FV�(Tj(q)) = (fv�A1, . . . , fv�Ak)

whose feature values fv�Ai
are defined for every attribute

Ai ∈ as ∪ ap as

fv�Ai
(Tj(q)) = κj

i

and where, again, we evaluate missing values to 1 and we
update the vectors iteratively:

fv�Ai
(T1→...→k,k→j(q)) =

fv�Ai
(T1→...→k(q)) fv�Ai

(Tk→j(T1→...→k(q))).

The associated semantic similarity is, as expected:

S�(q, T1→,...,→n(q)) =

−→
W · −−−→FV���−→W �� ��−−−→FV�

�� .
This value starts from one (in the semantic domain the

query originates from) and approaches 0 as the query tra-
verses more and more semantically heterogeneous domains.

6. GOSSIPING ALGORITHM
At this point, we have four measures (Sσ, Sπ, S� and

S�) for evaluating the losses due to the translations. We
will now make use of these values to decide whether or not
it is worth forwarding a query to a foreign semantic domain.

First, we require the creator of a query to attach a few
user-defined or generated values to the query it issues:

- The weights
−→
W pondering the importance of the at-

tributes in the query

- The respective selectivity of the selection attributes
−→
sel

- The minimal values
−−−→
Smin for the similarity measures

under which a transformed query is so deteriorated
that it can no longer be considered as equivalent to
the original query.

We extend the format of a query message to include these
values as well as the iteratively updated feature vectors:

query(id, q, p, TT,
−→
W,

−→
sel,

−−−→
Smin,

−−→
FVσ,

−−→
FVπ,

−−→
FV�,

−−−→
FV�).

Now, upon reception of a query message, we require a peer
to perform a series of tasks:

1. detect any semantic cycles
2. check whether or not this query has already been re-

ceived
3. in case the local neighborhood has not received the

query, forward it to the local neighborhood

4. return potential results

and, for each of its outgoing translation links:

5. apply the translation to the query
6. update the similarity measures for the transformed

query

7. perform a test for each of the feature vectors: similar(
−−→
FVi)

evaluates to 1 if

−→
W · −−→FVi��−→W �� ��−−→FVi

�� ≥ Smin,i

that is if the semantic similarity is greater or equal to
the specified minimal value, and to 0 otherwise

8. forward the query using the link if all similar() tests
succeed (i.e., evaluate to 1).

This algorithm ensures that queries are forwarded to a
sufficiently large set of peers capable of rendering meaningful
feedback without flooding the entire network.

7. CASE STUDY
Several experiments were conducted following the approach

presented above. This section presents one of them as a case
study detailing how the aforementioned heuristics may be
deployed in a concrete setting.

Seven people from our laboratory were first asked to de-
sign a simple XML document containing some project meta-
data. The outcome of this voluntary imprecise task defini-
tion was a collection of structured documents lacking com-
mon semantics though overlapping partially for a subset of
the embraced meta-data (e.g., name of the project or start
date). Viewing these documents as seven distinct semantic
domains in a decentralized setting, we then produced a ran-
dom graph connecting the different domains together with
series of translation links (the resulting topology is depicted
in Figure 4).

Translations were formulated as XQuery expressions in
such a way that they strictly adhere to the principles stip-
ulated above (see Section 3). As an example, Figure 5
presents two different documents as well as a simple query
translation using the translation expression T12. Providing
the authors with the required documents, we asked them to
write the translations for every link departing from their do-
main (thus, pA was asked to provide us with the translation
to pB , pC and pD). Finally, using the IPSI-XQ XQuery li-
braries [6] and the Xerces [15] XML parser, we built a query
translator capable of handling and forwarding the queries
following the gossiping algorithm.

We focus now on a single node, pA, and on a single-
attribute query issued by pA to obtain all the titles of the
different projects, namely:

¨

§

¥

¦

Query =
FOR $project IN "project_A.xml"/*
RETURN
<title>$project/title </title>

Note that the weight and selectivity values attached to the
query do not matter here, as a single attribute is concerned.
Moreover we will not consider Sσ and S� for the rest of this
study (Sσ always evaluates to 1 because there is no selection
attribute, and so does S� because we have not defined any



A

D

title->acronym

B

title->name

C

title-> -

E
name->title

name->name

name->title

F name->title

G

name->description/name

-

-

-

-

title->title

title->name

title->name

title-> -

title->title

title->description/name

title->title

title-> -

title->description/name

Figure 4: The Semantic Graph

functional dependency). The other minimal values are set
to 0.5.

<zoran_project>
<title> My Project </title>
<acronym> MP </acronym>
<duration>

<start>10/11/01</start>

<team>
<member>1</member>
<member>2</member>

</team>
</zoran_project>

<end>13/10/05</end>
</duration>

Q1 =
FOR $p IN “zoran_project.xml”/*
WHERE “Jie Project” IN p/title
RETURN
<start> $p/duration/start </start>

<jie_project>
<Name> Jie Project </Name>
<Begin> 02/05/02 </Begin>
<Level>Diploma</Level>
<Location>EPFL</Location>
<Lab>LSIR</Lab>
<Institute>IIF</Institute>
<Faculty>I&C</Faculty>
<Length>6 monthsy</Length>
<Benefits>...</Benefits>
<Report>Yes</Report>

</jie_project>

Q2 =
FOR $pr IN
WHERE “Jie Project” IN p/title
RETURN

T12

<start> $p/duration/start </start>

T12 =

<zoran_project>
<title> $p/Name </title>
<acronym> </acronym>
<duration>

<start>$p/Begin</start>
…

FOR $p IN “jie_project.xml”/*
RETURN

Figure 5: The Translation Mechanism

All the domains have some representation for the title of
the project (usually referred to as name or title, see Figure 4
where the translations for the attribute title are represented
on top of the link), except pC which only considers a mere
ID for identifying the projects. Following the gossiping al-
gorithm, pA first attempts to transmit the query to its direct
neighbors, i.e., pB , pC and pD. pB and pD in turn forward
the query to the other nodes, but pC will in fact never re-
ceive the query: As pC has no representation for the title,
the only projection attribute would be lost in the translation
process from pA to pC , lowering Sπ to 0.

Let us now examine the semantic similarity S�. For the
topology considered, thirty-one semantic cycles could be de-
tected by pA in the best case. As the query never traverses
D, only eight cycles remain (Table 1 lists those cycles). We
use now the formulas from Section 5; For its first outgoing
link (i.e., the link going from pA to pB), pA receives five
positive cycles, raising the semantic similarity measure for
this link and the attribute considered to 0.79.5 pA does not

5Remember that we did not make any assumption regarding
the distribution of erroneous links. In this case, the positive

receive any semantically significant feedback for its second
outgoing link TpA → pB , which is anyway handled by the
syntactic analysis. Yet, it receives three negative cycles for
its last outgoing link TpA → pC . This link is clearly seman-
tically erroneous, mapping title onto acronym. This results
in pA excluding the link for this attribute, the semantic sim-
ilarity dropping to 0.26.

Cycle TpA→pC Erroneous TpB→pD Erroneous
A, B, D, E, A + -
A, B, D, E, F, A + -
A, B, E, A + +
A, B, E, F, A + +
A, B, F, A + +
A, D, E, A - +
A, D, E, B, F, A - +
A, D, E, F, A - +

Table 1: Cycles Resulting In Positive(+) or
Negative(-) Feedback

The situation may consequently be summarized in this
way: pA restrains from sending the query through pC be-
cause of the syntactic analysis (too much information lost
in the translation process) and excludes pB because of the
high semantic dissimilarity.

The situation somewhat changes if we correct the erro-
neous link and add a mistake for the link TpB → pD. For the
attribute considered, the semantic similarity drops to 0.69
for the outgoing link to pB (two long cycles are negative,
see third column in Table 1). Even though it is not directly
connected to an erroneous link, pA senses the semantic in-
compatibilities affecting some of the messages traversing pB .
It will continue to send queries through this link, as long as
it receives positive feedback anyway.

8. RELATED WORK
A number of approaches for making heterogeneous in-

formation sources interoperable are based on mappings be-
tween distributed schemas or ontologies without making the
canonical assumption on the existence of a global schema.

feedback received may well come from a series of compen-
sating errors.



For example, in OBSERVER [10] each information source
maintains an ontology, expressed in description logics, to
associate semantics with the information stored and to pro-
cess distributed queries. In query processing, they use lo-
cal measures for the loss of information when propagating
queries and receiving results. Similarly to OBSERVER,
KRAFT [14] proposes an agent-based architecture to man-
age ontological relationships in a distributed information
system. Relationships among ontologies are expressed in
a constraint language. [1] propose a model and architecture
for managing distributed relational databases in a P2P en-
vironment. They use local relational database schemas and
represent the relations between those with domain relations
and coordination formulas. These are used to propagate
queries and updates. The relationships given between the
local database schemas are always considered as being cor-
rect. In [13] a probabilistic framework for reasoning with
assertions on schema relationships is introduced. Thus their
approach deals with the problem of having possibly contra-
dictory knowledge on schema relationships. [11] propose an
architecture for the use of XML-based annotations in P2P
systems to establish semantic interoperability.

EDUTELLA [12] is a recent approach to apply the P2P
architectural principle to build a semantically interoperable
information system for the educational domain. The P2P
principle is applied at the technical implementation level
whereas logically a commonly shared ontology is used.

Approaches for automatic schema matching—see [16] for
an overview—would ideally support the approach we pursue
in order to generate mappings in a semi-automated manner.
In fact, we may understand our proposal as extending ap-
proaches for matching two schemas to an approach matching
multiple schemas in a networked environment. One example
illustrating how the schema matching process could be fur-
ther automated at the local level is introduced in GLUE [4]
which employs machine learning techniques to assist in the
ontology mapping process. GLUE is based on a probabilis-
tic model, employs similarity measures and uses a set of
learning strategies to exploit ontologies in multiple ways to
improve the resulting mappings.

Finally, we see our proposal also as an application of prin-
ciples used in Web link analysis, such as [9], in which local
relationships of information sources are exploited to derive
global assessments on their quality (and eventually their
meaning).

9. CONCLUSIONS
Semantic interoperability is a key issue on the way to

the Semantic Web which can push the usability of the web
considerably beyond its current state. The success of the
Semantic Web, however, depends heavily on the degree of
global agreement that can be achieved, i.e., global semantics.
In this paper we have presented an approach facilitating
the fulfilment of this requirement by deriving global seman-
tics (agreements) from purely local interactions/agreements.
This means that explicit local mappings are used to derive
an implicit global agreement. We have developed our ap-
proach in a formal model that is built around a set of in-
struments which enable us to assess the quality of the in-
ferred semantics. To demonstrate its validity and practical
usability, the model is applied in a simple yet practically
relevant case study. We see our approach as a complemen-
tary effort to the on-going standardization in the area of

semantics which may help to improve their acceptance and
application by augmenting their top-down approach with a
dual bottom-up strategy.
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