
GridDB: A Data-Centric Overlay for Scientific Grids
David T. Liu Michael J. Franklin

UC Berkeley, EECS Dept.
Berkeley, CA 94720, USA

{dtliu,franklin}@cs.berkeley.edu

Abstract

We present GridDB, a data-centric overlay for scien-
tific grid data analysis. In contrast to currently de-
ployed process-centric middleware, GridDB man-
ages data entities rather than processes. GridDB pro-
vides a suite of services important to data analy-
sis: a declarative interface, type-checking, interac-
tive query processing, and memoization. We discuss
several elements of GridDB: workflow/data model,
query language, software architecture and query pro-
cessing; and a prototype implementation. We vali-
date GridDB by showing its modeling of real-world
physics and astronomy analyses, and measurements
on our prototype.

1 Introduction
Scientists in fields including high-energy physics, astronomy,
and biology continue to push the envelope in terms of compu-
tational demands and data creation. For example, the ATLAS
and CMS high-energy physics experiments are both collect-
ing and analyzing one petabyte (1015 bytes) of particle col-
lision data per year [13]. Furthermore, continuing advances
in such ”big science” fields increasingly requires long-term,
globe-spanning collaborations involving hundreds or even
thousands of researchers. Given such large-scale demands,
these fields have embraced grid computing [25] as the plat-
form for the creation, processing, and management of their
expermental data.

1.1 From Process-Centric to Data-Centric

Grid computing derives primarily from two research do-
mains: cluster-based metacomputing [31, 15] and distributed
cluster federation [22]. As such, it has inherited a process-
centric approach, where the software infrastructure is fo-
cused on the management of program invocations (or pro-
cesses). Process-centric grid middleware enables users to
submit and monitor jobs (i.e., processes). Modern grid soft-
ware (e.g., Globus[24] and Condor [31]) also provides addi-
tional services such as batching, resource allocation, process
migration, etc. These systems, however, provide a fairly low-
level, OS-like interface involving imperative programs and
files.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date ap-
pear, and notice is given that copying is by permission of the Very Large
Data Base Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 30th VLDB Conference,
Toronto, Canada, 2004

process-centric overlay

distributed grid resources

scientific
apparatus

Internet
clusters

data-centric interface:
SQL, tuples

GridDB: data-centric overlay

process-centric interface: processes,files

process-centric
client

data-centric client

Figure 1: Grid Access Overview

The process-centric approach is a direct extension of the
techniques used by scientists in the past. But, with the
increasing complexity, scope, and longevity of collabora-
tions and the continuing growth in the scale of the scien-
tific endeavour, it has become apparent that new tools and
paradigms are needed. Furthermore, the widespread popu-
larity of interactive processing in many domains has led to a
desire among scientists for more interactive access to grid re-
sources. As a result, a number of large, multi-disciplinary ef-
forts have been started by scientists to define the next gener-
ation of grid models, tools and infrastructure. These include
the Grid Physics Network (GriPhyN) [28], the International
Virtual Data Grid Observatory [14], the Particle Physics Data
Grid [34], and the European Union DataGrid [47].

GriPhyN, in particular, is built around the notion of “Vir-
tual Data” [51], which aims to put the concept of “data” on
an equal footing with that of “process” in grid computing.
Our GridDB project, which is being done in the context of
GriPhyN, elevates the importance of data one step further, by
proposing a data-centric view of the grid.

As illustrated in Figure 1, GridDB provides a veneer, or
overlay, on top of existing process-centric grid services that
enables clients to create, manage, and interactively access the
results of grid computations using a query language interface
to manipulate tables of input parameters and results. The
benefits of GridDB include:

• Declarative Interface: Scientific computing is a data-
intensive task. The benefits of declarative interfaces for
such tasks are well-known in the database field, and in-
clude: ease of programming, resilience to change, and
support for transparent, system-directed optimization.

• Type Checking: In contrast to process-centric ap-

proaches, which have little or no knowledge of data types,
GridDB provides a language for describing data types and
function signatures that enables a number of features in-
cluding more timely error reporting, and support for code
sharing [19, 36].

• Interactive Query Processing: Scientific computing jobs
are often long running. The batch-oriented mode of in-
teraction supported by existing process-centric middle-
ware severely limits scientists’ ability to observe and
steer computations based on partial results [35, 18].
GridDB’s data-centric interface directly supports compu-
tational steering, giving scientists more effective control
over the use of grid resources.

• Memoization Support: A key feature advocated by
many current grid efforts is the minimization of resources
wasted due to the recomputation of previously gener-
ated data products [28]. GridDB’s data-centric approach
provides the necessary infrastructure for supporting such
memoization [30].

• Data Provenance: Because grid data production will en-
tail promiscuous, anonymous, and transparent resource
sharing, scientists must have the ability to retroactively
check information on how a data product was created [51,
28]. GridDB’s model of function-based data processing
lends itself well towards tracking the lineage, or prove-
nance, of individual data products.

• Co-existence: Perhaps most importantly, GridDB pro-
vides these benefits by working on top of process-centric
middleware, rather than replacing it. This allows users
to continue to employ their existing (or even new), im-
perative data processing codes while selectively choos-
ing which aspects of such processing to make visible to
GridDB. This approach also enables incremental migra-
tion of scientific workflows into the GridDB framework.

1.2 Contributions and Overview

In this paper, we describe the design, implementation and
evaluation of GridDB, a data-centric overlay for scientific
grid computing. GridDB is based on two core principles:
First, scientific analysis programs can be abstracted as typed
functions, and program invocations as typed function calls.
Second, while most scientific analysis data is not relational
in nature (and therefore not directly amenable to relational
database management), a key subset, including the inputs and
outputs of scientific workflows, have relational characteris-
tics. This data can be manipulated with SQL and can serve
as an interface to the full data set. We use this principle to
provide users with a SQL-like interface to grid analysis along
with the benefits of data-centric processing listed previously.

Following these two principles, we have developed a grid
computing workflow and data model, the Functional Data
Model with Relational Covers (FDM/RC), and a schema def-
inition language for creating FDM/RC models. We then de-
veloped GridDB, a software overlay that models grid analy-
ses in the FDM/RC. GridDB exploits the FDM/RC’s mod-
eling of both workflow and data to provide new services pre-
viously unavailable to scientists. We demonstrate its useful-
ness with two example data analysis workflows taken from

a High Energy Physics experiment and an Astronomy sur-
vey, and report on experiments that examine the benefits of
GridDB’s memoization and compuational steering features.

2 High-Energy Physics Example
In this section we introduce a simplified workflow obtained
from the ATLAS High-Energy Physics experiment [18, 21].
We refer to this workflow as HepEx (High Energy Physics
Example) and use it as a running example1.

The ATLAS team wants to supplement a slow, but trusted
detector simulation with a faster, less precise one. To guar-
antee the soundness of the fast simulation, however, the
team must compare the response of the new and old sim-
ulations for various physics events. A workflow achieving
these comparisons is shown in Fig. 2(a). It consists of
three programs: an event generator, gen; the fast simulation,
atlfast; and the original, slower simulation, atlsim.
gen is called with an integer parameter, pmas, and cre-
ates a file, 〈pmas〉.evts that digitally describes a particle’s
decay into subparticles. 〈pmas〉.evts is then fed into both
atlfast and atlsim, each simulating a detector’s reac-
tion to the event, and creating a file which contains a value,
imas. For atlfast to be sound, the difference between
pmas and imas must be roughly the same in both sim-
ulations across a range of pmas values 2. All three pro-
grams are long-running, and compute-bound, thus requiring
grid processing.

Before describing GridDB, it is useful to examine how
HepEx would be deployed in a process-centric system. We
identify three types of users who would contribute to such
a deployment: coders, who write programs; modelers, who
compose these programs into analysis workflows; and ana-
lysts, who execute workflows and perform data analysis.

To deploy HepEx , coders write the three programs gen,
atlfast, and atlsim, in an imperative language, and
publish them on the web. A modeler then composes the
programs into an abstract workflow, or AWF. Logically, the
AWF, is a DAG of programs to be executed in a partial or-
der. Physically, the AWF is encoded as a script, in perl
or some other procedural language[1]. Each program exe-
cution is represented by a process specification (proc-spec)
file, which contains a program, a command-line to execute
the program, and a set of input files [2, 5]. The AWF script
creates these proc-spec files along with a precendence speci-
fication (prec-spec) file that encodes the dependencies among
the programs.

The analyst carries out the third and final step: data pro-
curement. Existing middleware systems are extremely ef-
fective in presenting a single-machine interface to the grid.
Thus, the analyst works as if he/she is submitting jobs on
a single (very powerful) machine and the grid middleware
handles the execution and management of the jobs across the
distributed grid resources. The analyst creates a grid job by
executing another script that invokes the AWF script mul-

1The GridDB implementation of a more complex scientific workflow is
described in Section 6.

2The physics can be described as follows: pmas is the mass of a
particle, while imas is the sum of subparticles after the particle’s decay.
pmas − imas is a loss of mass after decay, which should be the same
between the two simulations.

imas = x

atlfast

gen

<pmas>

<pmas>.atlfast <pmas>.atlsim

<pmas>.evts

imas = y

atlsim

(a)

...pm
a

s
=

 1
0

1

101

101.atlfast 101.atlsim

pm
a

s
=

 2
0

0

200

200.atlfast 200.atlsim

...
pmas

diff

(b)

s
i
m
C
o
m
p
a
r
e
M
a
p

gID pmas

g00 101

g99 200

... ...
gRn

s99 ...

... ...

s00 100

sID sImassRnfID fImas

f00 102

f99 ...

... ...

fRn

genF

evts ...

atlfastF atlsimF

(c)

Figure 2: (a) HepEx abstract workflow, (b) HepEx grid job, (c) GridDB’s simCompareMap replaces(a) and (b)

pmas(GeV)

11
0

expedite
fImas, sImas
in this range

10
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

12
0

pmas

101

...

130

...

160

...

200

fImas

101

...

139

...

168

...

198

sImas

100

...

133

...

164

...

200

fImas
sImas(G

eV
)

131

inputs vs. outputs

not yet
computed

Figure 3: Interactive Query Processing

tiple times. For example, to run HepEx for all pmas val-
ues from 101 to 200, the AWF script would be invoked 100
times. Each invocation results in three processes being sub-
mitted and scheduled. Fig. 2(b) shows the HepEx grid job
consisting of these invocations.

3 Data Analysis With GridDB
In the previous section, we identified three roles involved
in the deployment of grid applications. With GridDB, the
job of the coder is not changed significantly; rather than
publishing to the web, the coder publishes programs into a
GridDB code repository available to grid users. In contrast,
the modeler sees a major change: instead of encoding the
AWF in a procedural script, he encodes it with a schema def-
inition language, conveying workflow and data structure in-
formation to GridDB, thus empowering GridDB to provide
data-centric services. The analyst’s interaction with the grid
is also changed dramatically.

We describe the workflow and data model and schema
definition language used by the modeler in detail in Sec-
tion 4. Here, we focus on the analyst’s interactions using
GridDB’s data manipulation language (DML).

3.1 Motivating Example: IQP

To illustrate the benefits of data-centric grid analysis, we de-
scribe how Interactive Query Processing (IQP) can provide
increased flexibility and power to the data analysis process.

Recall from Section 1 that GridDB provides a relational
interface for data analysis; for example, the table on the right-
side of Fig. 3. This table shows, for each value of an input

pmas, the output imas values from two simulations (fI-
mas and sImas). On the left-side of the figure, we show
streaming partial results in the table’s corresponding scat-
ter plot, which has been populated with 20 out of 200 data
points.

The scatter plot indicates discrepancies between fI-
mas and sImas in the range where pmas is between 130
and 160, a phenomenom that needs investigation. Using IQP,
an analyst can prioritize data in this range simply by selecting
the relevant portion of the x-axis (between the dashed lines)
and prioritizing it with a GUI command. GridDB is capable
of expediting the minimal set of computations that material-
ize the points of interest. Through this graphical, data-centric
interface, the user drives grid process execution. In contrast,
users of process-centric middleware usually run jobs in batch
(consider the term “batch” scheduler used to describe many
process-centric middlewares).

GridDB’s workflow and data model enables it to provide
such data-centric services, which are unavailable in process-
centric middleware.

3.2 GridDB Modeling Principles

Before walking through an analyst’s interaction with
GridDB, we describe GridDB’s modeling principles and pro-
vide a conceptual model for HepEx. The GridDB model
rests on two main principles: (1) programs and workflows
can be represented as functions, and (2) an important subset
of the data in a workflow can be represented as relations. We
refer to this subset as the relational cover.

Representing programs and workflows as typed functions
provides GridDB with the knowledge necessary to perform
type checking of program inputs and outputs and enables a
functional representation for AWFs — composite functions.
Note, however, that this does not require a change to the
programs themselves, but rather, consists of wrapping pro-
grams with functional definitions, as we describe in Section
4. In contrast, the process-centered approach uses opaque
command-line strings, thereby depriving the middleware of
any knowledge of data types for type checking.

In terms of data, while most scientific data is not relational
in nature, the inputs and outputs to workflows can typically
be represented as tables. For input data, consider data pro-

1 gRn:set(g); fRn:set(f); sRn:set(s);
2 (fRn,sRn) = simCompareMap(gRn);
3 INSERT INTO gRn VALUES pmas = {101, . . . , 200};
4 SELECT * FROM autoview(gRn,fRn,sRn);

Listing 1: DML for analysis in HepEx

curement, as described in Section 2: a scientist typically uses
nested-loops in a script to enumerate a set of points within
a multidimensional parameter space and invoke an AWF for
each point. Each point in the input set can be represented as
a tuple whose attributes are the point’s dimensional values, a
well-known technique in OLAP systems [49]. Therefore, an
input set can be represented as a tuple set, or relation.

The relational nature of outputs is observed through a dif-
ferent line of reasoning. Scientists commonly manipulate
workflow output with interactive analysis tools such as fv in
astronomy[4] and root or paw in high energy physics[16, 6].
Within these tools, scientists manipulate — with operations
like projection and selection — workflow data to generate
multidimensional, multivariate graphs [48]. Such graphs —
including scatter plots, time-series plots, histograms, and bar-
charts — are fundamentally visualizations of relations.

Figure 2(c) shows a HepEx model using these two prin-
ciples3. In the figure, the HepEx workflow is a represented
as a function, simCompareMap, which is a composition in-
cluding three functions representing the workflow programs:
genF, atlfastF, and atlsimF. The input data is repre-
sented as a relation of tuples containing pmas values and the
outputs are represented similarly.

3.3 Data Manipulation Language

Having described the main modeling principles, we now de-
scribe the data manipulation language for analyst interaction.
With GridDB, analysts first create their own computational
“sandbox”, in which to perform their analyses. This sand-
box consists of private copies of relations to be populated
and manipulated by GridDB. Next, the analyst specifies the
analysis workflow he/she wishes to execute by connecting
sandboxed relations to the inputs and outputs of a GridDB-
specified workflow function.

The DML required for setting up HepEx is shown in
Listing 1. Line 1 declares the sandbox relations. For ex-
ample, gRn is declared with a type of set(g). The
next statement (Line 2) assigns the two-relation output of
simCompareMap, applied to gRn, to the output relations
fRn and sRn. The modeler, at this point, has already de-
clared simCompareMap, with the signature: set(g) →
set(f) × set(s), an action we show in Section 4.3.2.

With a sandbox and workflow established, data procure-
ment proceeds as a simple INSERT statement into the work-
flow’s input relation, gRn, as shown in Line 3. Insertion of
values into the input relation triggers the submission of proc-
specs for grid execution. This is conceptually similar to the
execution represented by Fig. 2(b). A readily apparent bene-
fit of GridDB’s data procurement is that INSERT’s are type-
checked; for example, inserting a non-integral value, such as
110.5, would result in an immediate exception.

3This model is created by schema definition commands written by the
modeler, as we describe in Section 4

Analysts commonly seek to discover relationships be-
tween different physical quantities. To support this analy-
sis task, GridDB automatically creates relational views that
map between inputs and outputs of functions. We call such
views automatic views. For example, GridDB can show the
relationships between tuples of gRn, fRn, and sRn in a
view called autoview(gRn, fRn, sRn) (Line 4). Us-
ing this view, the analyst can see, for each value of pmas,
what values of fImas resulted. The implementation of au-
toviews is described in Section 5.1.2. The autoview mecha-
nism also plays in an important role in the provision of IQP,
as is discussed in Section 7.1.

3.4 Summary

To summarize, GridDB provides a SQL-like DML that al-
lows users to initiate grid analysis tasks by creating private
copies of relations, mapping some of those relations to work-
flow inputs and then inserting tuples containing input param-
eters into those relations. The outputs of the workflow can
also be manipulated using the relational DML. The system
can maintain automatic views that record the mappings be-
tween inputs and outputs; these “autoviews” also play an
important role in supporting Interactive Query Processing.
By understanding both workflow and data, GridDB provides
data-centric services unavailable in process-centric middle-
ware.

4 Data Model: FDM/RC
The previous section illustrated the benefits of GridDB data
analysis provided that the modeler has specified a workflow
and data schema to GridDB. In this section, we describe
a model and data definition language for these schemas.
The model is called the Functional Data Model with Rela-
tional Covers(FDM/RC) and has two main constructs: enti-
ties and functions. Functions, which map from entities to en-
tities, and can be composed together and iterated over, are
used to model workflows. Data entities may be modeled
opaquely as blobs, or transparently as tuples, providing the
modeling power of the relational model. By modeling both
workflows and their data (as tuples), the FDM/RC enables
GridDB to provide not only services found in either work-
flow and database systems, but also services not found in ei-
ther.

4.1 Core Design Concepts

We begin our discussion with two concepts: (1) the inclusion
of transparent and opaque data and (2) the need for fold/un-
fold operations.

4.1.1 Opaque and Transparent Data

The FDM/RC models entities in three ways: transparent,
opaque and transparent-opaque.

One major distinction of GridDB, compared with process-
centric middleware, is that it understands detailed semantics
for some data, which it treats as relations. Within the data
model, these are transparent entities, as GridDB interacts
with their contents. By providing more information about
data, transparent modeling enables GridDB to provide richer
services. For example, the input, pmas, to program gen in
Fig. 2(a) is modeled as a transparent entity: it can be modeled

as a tuple with one integer attribute, pmas. Knowing the con-
tents of this data, that the input is a tuple with an integer at-
tribute, GridDB can perform type-checking on gen’s inputs.
Other services enabled by transparent data are a declarative
SQL interface and IQP based on the declarative interface.

On the other hand, there are times when a modeler wants
GridDB to catalog a file, but has neither the need for en-
hanced services, nor the resources to describe data seman-
tics. GridDB allows lighter weight modeling of these enti-
ties as opaque objects. As an example, consider an output
file of gen, x.evt. The entity is used to execute programs
atlfast and atlsim. GridDB must catalog and retrieve
the file for later use, but the modeler does not need extra ser-
vices.

Finally, there is opaque-transparent data, file data that is
generated by programs, and therefore needs to be stored in
its opaque form for later usage, but also needs to be under-
stood by GridDB to gain data-centric services. An example
is the output of atlfast; it is a file that needs to be stored,
possibly for later use (although not in this workflow), but it
can also be represented as a single-attribute tuple (attribute
fImas of type int). As part of data analysis, the user may
want to execute SQL over a set of these entities.

4.1.2 Unfold/Fold

To provide a well-defined interface for grid programs,
GridDB allows a modeler to wrap programs behind typed
function interfaces. The unfold and fold operations define
the “glue” between a program and its dual function.

For this abstraction to be sound, function evaluations must
be defined by a program execution, a matter of two transla-
tions: (1) The function input arguments must map to program
inputs and (2) the programs outputs files, upon termination,
must map to the functions return values. These two mappings
are defined by the fold and unfold operations, respectively.

In Section 4.3.2, we describe atomic functions, which en-
capsulate imperative programs and employ fold and unfold
operations. In Section 4.3.3, we elucidate the operations with
an example.

4.2 Definition

Having described the core concepts of our grid data model,
we now define it:

The FDM/RC has two constructs: entities and functions.
An FDM schema consists of a set entity-sets, T , and a set of
functions, F , such that each function, Fi ∈ F , is a mapping
from entities to entities: Fi : X1×. . .×Xm → Y1×. . .×Yn,
Xi, Yi ∈ T , and can be the composition of other functions.
Each non-set type, τ = [τt, τo] ∈ T , can have a transpar-
ent component, τt, an opaque component τo, or both4. τt

is a tuple of scalar entities. Set-types, set(τ), can be con-
structed from any type τ . The relational cover is the subset,
R, of types, T , that are of type set(τ), where τ has a trans-
parent component. An FDM/RC schema (T, R, F) consists
of a type set, T ; a relational cover, R; and a function set, F .

4.3 Data Definition Language

An FDM/RC schema, as we have just described, is defined
by a data definition language (DDL). The DDL is divided

4one of τt and τo can be null, but not both

into type and function definition constructs. In this section,
we describe the constructs, and illustrate them with HepEx’s
data definition, when possible. Its DDL is shown in Listing
2.

4.3.1 Types

As suggested in Section 4.1.1, modelers can define three
kinds of types: transparent, opaque and transparent-opaque.
All types, regardless of their kind, are defined with the type
keyword. We show declarations for all three HepEx types
below.

Transparent type declarations include a set of typed at-
tributes and are prefixed with the keyword transparent.
As an example, the following statement defines a transparent
type g, with an integer attribute pmas:

transparent type g = (pmas:int);

Opaque types do not specify attributes and therefore are eas-
ier to declare. Opaque type declarations are prefixed with
the keyword opaque. For example, the following statement
declares an opaque type evt:

opaque type evt;

Suppose an entity e is of an opaque type. It’s opaque com-
ponent is accessed as e.opq.

transparent-opaque type declarations are not prefixed,
and contain a list of attributes; for example, this statement
declares a transparent-opaque type f, which has one integer
attribute imas:

type f = (imas:int);

A variable of type f also has an opaque component.
Finally, users can construct set types from any type. For

example, this statement creates a set of g entities:
type setG = set(g);

Because setG has type set(g), and g has a transparent
component, setG belongs in the relational cover.

4.3.2 Functions

There are four kinds of functions that can be defined in DDL:
atomic, composite, map and SQL. Function interfaces, re-
gardless of kind, are defined as typed lists of input and output
entities. The definition header of atomic function genF is:

atomic fun genF (params:g):(out:evt)

This header declares genF as a function with an input
params, output out, and type signature g → evt. We
proceed by describing body definitions for each kind of func-
tion.

As mentioned in Section 4.1.2, atomic functions embody
grid programs, and therefore determine GridDB’s interaction
with process-centric middleware. The body of atomic func-
tion definitions describe these interactions. Three items need
to be specified: (1) the program (using a unique program ID)
that defines this function. (2) The unfold operation for tran-
forming GridDB entities into program inputs and (3) the fold
operation for transforming program outputs to function out-
put entities. Three examples of atomic functions are genF,
atlfastF, and atlsimF(function headers in Listing 2, at
Lines 12-14). Because the body of an atomic function def-
inition is quite involved, we defer its discussion to Section
4.3.3.

Composite functions are used to express complex anal-

yses, and then abstract it — analogous to the encoding of
abstract workflows in scripts. As an example, a composite
function simCompare composes the three atomic functions
we have just described. It is defined with:

fun simCompare(in:g):(fOut:f,sOut:s) =

(atlfastF(genF(in)), atlsimF(genF(in));

This statement says that the first output, fOut, is the re-
sult of function atlfastF applied to the result of function
genF applied to input in. sOut, the second return-value, is
defined similarly. The larger function, simCompare, now
represents a workflow of programs. The composition is type-
checked and can be reused in other compositions.

Map functions, or maps, provide a declarative form of fi-
nite iteration. Given a set of inputs, the map function re-
peatedly applies a particular function to each input, creat-
ing a set of outputs. For a function, F , with a signature
X1 × . . .×Xm → Y1 × . . .×Yn, a map, FMap, with a sig-
nature: set(X1)×. . .×set(Xm) → set(Y1)×. . .×set(Yn),
can be created, which executes F for each combination of its
inputs, creating a combination of outputs.

As an example, consider the following statement, which
creates a map function simCompareMap with the
type signature set(g) → set(f) × set(s), given that
SimCompare has a signature g → f × s:

fun simCompareMap = map(simCompare);

We call SimCompare the body of simCompareMap.
Maps serve as the front-line for data procurement — analysts
submit their input sets to a map, and receive their output sets,
being completely abstracted from grid machinery.

The benefit of transparent, relational data is that
GridDB can now support SQL functions within workflows.
As an example, a workflow function which joins two rela-
tions, holding transparent entities of r and s, with attributes
a and b, and returns only r tuples, can be defined as:

sql fun (R:set(r), S:set(s)):(ROut:set(r)) =

sql(SELECT R.* FROM R,S WHERE R.A = S.B);

In Section 6, we will show an SQL workflow function that
simplifies a spatial computation with a spatial “overlaps”
query, as used in an actual astronomy analysis.

4.3.3 Fold/Unfold Revisited

Finally, we return to defining atomic functions and their fold
and unfold operations. Recall from Section 4.1.2 that the
fold and unfold operations define how data moves between
GridDB and process-centric middleware.

Consider the body of function atlfastF, which trans-
lates into the execution of the program atlfast:

atomic fun atlfastF(inEvt:evt):(outTuple:f) =

exec(

‘‘atlfast’’,

[(‘‘events’’,inEvt)],

[(/.atlfast$/, outTuple, ‘‘adapterX’’)]

)

The body is a call to a system-defined exec function, which
submits a process execution to process-centric middleware.
exec has three arguments, the first of which specifies the
program (with a unique program ID) which this function
maps to. The second and third arguments are lists that spec-
ify the unfold and fold operations for each input or output

1 //opaque-only type definitions
2 opaque type evt;
3

4 //transparent-only type declarations
5 transparent type g = (pmas:int);
6

7 //both opaque and transparent types
8 type f = (fImas:int);
9 type s = (sImas:int);

10

11 //headers of atomic function definitions for
genF, atlfastF, atlsimF

12 atomic fun genF(params:g):(out:evt) = ...;
13 atomic fun atlsim(evtsIn:evt):(outTuple:s)

= ...;
14 atomic fun atlfastF(inEvt:evt):(outTuple:f) =
15 exec(‘‘atlfast’’,
16 [(‘‘events’’,inEvt)],
17 [(/.atlfast\$/, outTuple, ‘‘adapterX’’)]);
18

19 //composite function simCompare definition
20 fun simCompare(in:g):(fOut:f,sOut:s) =
21 (atlfast(gen(in)), atlsim(gen(in)));
22

23 //a map function for simCompare
24 fun simCompareMap = map(simCompare);

Listing 2: Abridged HepEx DDL

a
tlf

as
t

pr
o

ce
ss

 e
xe

cu
ti

on

atlfast

outfile

GridDB: entities + functions
process-centric grid:

files + cmd-lines + pgms

tFile

adapterX 101 127
fID fImas opq

inEvt
-events tFile

atlfastF

fold

outTuple

atlfastF
function

invocation

Unfold (out of GridDB,
into grid)

Fold (into GridDB,
out of grid)

Figure 4: Unfold/Fold in atomic functions

entity.
The second argument is a list of pairs (only one here)

which specifies how arguments are unfolded. In this case,
because evtsIn is an opaque entity, the file it represents is
copied into the process’ working directory before execu-
tion, and the name of the newly created file is appended
to the command-line, with the tag events. For exam-
ple, atlfast would be called with the command-line
atlfast -events tFile, where tFile is the name
of the temporary file (top of Fig. 4).

The last argument to exec is also a list, this time of triples
(only one here), which specify fold operations for each out-
put entity (bottom of Fig. 4). In this case, the first list item in-
structs GridDB to look in the working directory after process
termination, for a file that ends with .atlfast (or matches
the regular expression /.atlfast$/). The second item
says that the opq component of the output, outTuple, re-
solves to the newly created file. The third item specifies
an adapter program — a program that extracts the attributes

process-centric
middleware

GridDB
Overlay

DML streaming tuples

GridDB
Client x

y

Query
Processor

Scheduler

proc-specs,files

Grid Resources

Request
Manager

RDBMS (PostgreSQL)

data, catalog

Figure 5: GridDB’s Architecture

of outTuple’s transparent component into a format under-
standable by GridDB; for example, comma-separated-value
format. GridDB ingests the contents (in this case, fImas)
into the transparent component. The adapter program is also
registered by the coder and assigned a unique program ID.

Object-to-file mappings have previously been studied in
the ZOO project [10].

5 Design and Implementation
In this section, we discuss the design of GridDB, focusing
on the query processing of analyst actions, as embodied in
DML statements.

GridDB’s software architecture is shown in Fig. 5.
The GridDB overlay mediates interaction between a
GridDB Client and process-centric middleware. Four main
modules implement GridDB logic: the Request Manager
receives and initializes queries; the Query Processor man-
ages query execution; the Scheduler dispatches processes to
process-centric middleware; and an RDBMS (we use Post-
greSQL [44]) stores and manipulates data, as well as the sys-
tem catalog.

In the rest of this section, we describe how GridDB pro-
cesses DML statements. We do not discuss the processing
of schema definition statements, as they are straightforward
updates to the system catalog (similar to data definition state-
ments of relational databases).

5.1 Data Representation and Query Processing

Our general implementation strategy is to translate DML
statements into SQL, re-using a pre-existing relational query
processor for most processing. One consequence of this strat-
egy is that our main data structures must be stored in tables.
In this section, we take a bottom-up approach, first describ-
ing the tabular data structures, and then describing the query
translation process.

5.1.1 Tabular Data Structures

GridDB uses three kinds of tables: two for entities and func-
tion mappings and the last for process state. We describe
these three in turn.

Entity Tables: Recall from Section ?? that non-set en-
tities may have two components: a transparent component,
τt, which is a tuple of scalar values; and an opaque com-
ponent, τo, which is a bitstream. Each entity also has
a unique system-assigned ID. Thus, an entity of type τ
having an m-attribute transparent component (τt) and an
opaque component (τo) is represented as the following tu-
ple: (τID, τt.attr1, . . . , τt.attrm, τo). Entity-sets are repre-
sented as tables of these tuples.

Function Memo Tables: Given an instance of its input
entities, a function call returns an instance of output en-
tities. Function evaluations establish these mappings, and
can be remembered in function memo tables [30]. We de-
scribe the table of a function with one input and one output,
F : X → Y , as the description easily extends to functions
with multiple inputs and outputs. F has an associated memo
table, FMemo, with the schema (FID, XID, Y ID). Each
mapping tuple has an ID, FID, which is used for process
book-keeping (see below); and IDs for its domain and range
entities (XID and Y ID, respectively). Each domain entity
can only map to one range entity, stipulating that XID is a
candidate key.

Process Table: As described in Section 4.3.3, function
evaluations are resolved through process process invocation.
Process invocations are stored in a table with the follow-
ing attributes: (PID, FID, funcName, priority, status).
PID is a unique process ID; FID is a foreign key to the
memo table of function funcName, representing the pro-
cess’ associated function evaluation; priority is the process’
priority, used for computational steering; and status is one
of done, running, ready, or pending.

5.1.2 DML Query Processing: Translation to SQL

Having represented entities, functions and processes in
RDBMS tables, query processing can proceed by translating
the DML to standard SQL.

In this section, we describe how each analyst action is
processed and show, as an example, query processing for the
HepEx analysis. The internal data structures for HepEx are
shown in Fig. 6. The diagram is an enhanced version of the
analyst’s view of Fig. 2(c).

Recall the three basic analyst actions from Section 3:
workflow setup creates sandbox entity-sets and connects
them as inputs and outputs of a map; data procurement is
the submission of inputs to the workflow, triggering function
evaluations to create output entities. Finally, streaming
partial results can be perused with automatic views. We
repeat the listing for convenience:

1: gRn:set(g); fRn:set(f); sRn:set(s);

2: (fRn,sRn) = simCompareMap(gRn);

3: INSERT INTO gRn VALUES pmas = {101, . . . , 200};

4: SELECT * FROM autoview(gRn,fRn);

Workflow Setup

During workflow setup, tables are created for the entity-sets
and workflow functions. At this step, GridDB also stores
a workflow DAG for the analysis. In the example, workflow
setup (Lines 1-2) creates a table for each of the four entity-
sets (gRn, fRn, sRn, evts), as well as each of the three
functions (genFMemo, atlfastFMemo, atlsimMemo).
An internal data structure stores the workflow DAG, repre-
sented by the solid arrows between tables.

Data procurement and Process Execution

Data procurement is performed with an INSERT state-
ment into a map’s input entity-set variables. In GridDB, an
INSERT into an entity table connected to a function trig-
gers evaluations of that function. Function outputs are ap-

s
i
m
C
o
m
p
a
r
e
M
a
p

gID pmas

g1 101

g3 103

g2 102gRn

evts

eID opq

e1

e3

e2

fID fImas

f1 101

f3

f2
fRn

opq sID sImas

s1 102

s3

s2
sRn

opq

g3 e3

g2 e2

g1 e1

gID eIDgenFMemo

F3

F2

F1

FID

e3 s3

e2 s2

e1 s1

eID sID

atlsimFMemo

F9

F8

F7

FID

e3 f3

e2 f2

e1 f1

eID fID

atlfastFMemo

F6

F5

F4

FID

FID

Process table

Status Priority

F3

F2

F1 done

ready

running

0

0

0 2

F6

F5

F4 done

pending

pending

0

0

0 2

F9

F8

F7 done

pending

pending

0

0

0

Function

genF

genF

genF

atlfastF

atlfastF

atlfastF

atlsimF

atlsimF

atlsimF

PID

P3

P2

P1

P6

P5

P4

P9

P8

P7

Figure 6: Internal data structures representing HepEx func-
tions, entities, and processes. Shaded fields are system-
managed. Dashed arrows indicate interesting tuples in our
IQP discussion (Sec. 7.1)

pended to output entity tables. If these tables feed into an-
other function, function calls are recursively triggered. Calls
can be resolved in two ways: a function can be evaluated,
or a memoized result can be retrieved. Evaluation requires
process execution.

Process execution is a three step procedure that uses the
fold and unfold operations described in Section 4.3.3. To
summarize: first, the function’s input entities are converted
to files and a command-line string using the unfold opera-
tion; second, the process (defined by program, input files and
command-line) is executed on the grid; and third, the fold op-
erations ingest the process’ output files into GridDB entities.

In the example, a data procurement INSERT into
gRn has cascaded into 9 function calls (F1-F9 in the three
function tables) and the insert of tuple stubs (placeholders
for results) for the purpose of partial results. We assume an
absence of memoized results, so each function call requires
evaluation through a process (P1-P9 in the process table).

The process table snapshot of Fig. 6 indicates the com-
pletion of three processes (P1, P4, P7), whose results have
been folded back into entity tables (entities e1, f1, s1, re-
spectively).

Automatic Views (Autoviews)

A user may peruse data by querying an autoview. Because
each edge in a workflow graph is always associated with a
foreign key-primary key relationship, autoviews can be con-
structed from workflow graphs. As long as a path exists be-
tween two entity-sets, an automatic view between them can
be created by joining all function- and entity-tables on the
path.

In Fig. 7, we show autoview(gRn, fRn), which is
automatically constructed by joining all tables on the path
from gRn to fRn and projecting out non-system, non-
opaque attributes.

gID pmas
g1 101

g3 103
g2 102

gRn evts
eID opq
e1

e3
e2

fID fImas
f1 101

f3
f2

fRn
opq

g3 e3
g2 e2
g1 e1

gID eID
genF

P3
P2
P1

PID

e3 f3
e2 f2
e1 f1

eID fID
atlfastF

p6
p5
p4

pID

priority upgrade to 2

pmas
101

fImas
101

102
103

priority
n/a
0

0 2

autoview(gRn, fRn)

projection(pmas, fImas)autoview(gRn, fRn) query graph

partial result

Figure 7: autoview(gRn, fRn)

6 ClustFind: A Complex Example
Up until this point, we have demonstrated GridDB concepts
using HepEx, a rather simple analysis. In this section, we
describe how GridDB handles a complex astronomy appli-
cation. First, we describe the application science. Next, we
describe how the analysis can be modeled as an FDM/RC
schema. Finally, we describe how ClustFind is enhanced
by memoization and data-centric computational steering.

6.1 The Science: Finding Clusters of Galaxies

The Sloan Digital Sky Survey (SDSS) [7] is a 12 TB dig-
ital imaging survey mapping 250,000,000 celestial objects
with two orders of magnitudes greater sensitivity than pre-
vious large sky surveys. ClustFind is a computationally-
intense SDSS analysis that detects galaxy clusters, the largest
gravitation-bound objects in the universe. The analysis uses
the MaxBCG cluster finding algorithm [11], requiring 7000
CPU hours on a 500 MHz computer [12].

In this analysis, all survey objects are characterized by two
spatial coordinates, ra and dec. All objects fit within a two-
dimensional mesh of fields such that each field holds objects
in a particular square of (ra, dec)-space (Fig. 8(a)). The goal
is to find, in each field, all cluster cores, each of which is the
center-of-gravitation for a cluster. To find the cores in a target
field (e.g., F33, annotated with a ? in Fig. 8(a)), the algorithm
first finds all core candidates in the target, and all candidates
in the target’s “buffer,” or set of neighboring fields (in Fig.
8(a), each field in the buffer of F33 is annotated with a •). Fi-
nally, the algorithm applies a core selection algorithm, which
selects cores from the target candidates based on interactions
with buffer candidates and other core candidates.

6.2 An FDM/RC Schema for ClustFind

In this section, we describe the top-level ClustFind work-
flow as an FDM/RC function, getCores. Given a target
field entity, getCores returns the target’s set of cores.
getCores is shown as the outermost function of Fig.
8(b). The analysis would actually build a map function using
getCores as its body, in order to find cores for a set of
targets.

getCores is a composite of five functions: getCands,
on the right-side of the diagram, creates A, a file of target
candidates. The three left-most functions — sqlBuffer,
getCandsMap, and catCands— create D, a file of buffer
candidates. Finally, bcgCoalesce is the core selection al-
gorithm; it takes in both buffer candidates, D, and target can-
didates, A, returning a file of target cores, cores. During

F11 F12 F13 F14 F15

F
21

F
22

F
23

F
24

F
25

F31 F32 F33 F34 F35

F
41

F
42

F
43

F
44

F
45

F51 F52 F53 F54 F55

ra

de
c

(a)

catCands

bcgCoalesce

getC
ores

target:
Field

sqlBuffer

getCandsgetCandsMap

A:bcgF
C:set(bcgF)

D:bcgF

cores:set(Core)

allFlds:
set(Field)

B:set(Field)

(b)

brgLL

bcgLL

sqlBuffer

catBufferFiles

getC
ands

f:Field

H:Buffer

I:brgF

cands:bcgF

allFields:set(Field)

G:set(Field)

(c)

Figure 8: (a) ClustFind divides sky objects into a square mesh of buckets in (ra, dec) space. (b) getCores, the body of
the top-level ClustFind map function. (c) getCands, a composite subfunction used in getCores.

the fold operation, cores is ingested as a set of Core en-
tities (shown at the bottom of Fig. 8(b)).

ClustFind analysis is carried out with a map based on
the getCores function we have just described, mapping
each target field to a set of cores.

This use-case illustrates three notable features not encoun-
tered in HepEx: (1) it uses an SQL function, sqlBuffer.
Given a target field (target) and the set of all fields
(allFields), sqlBuffer uses a spatial overlap query
to compute the target’s buffer fields, B. (2) it uses a nested
map, getCandsMap, which iterates over a dynamically cre-
ated set of entities. This means that materialization of B will
create a new set of processes, each executing the contents of
getCands to map an element of B to an element of C.
(3) getCores, as a whole, creates a set of Core objects
from one target, having a signature of the form α → set(β).
This pattern, where one entity maps to a set of entities, is
actually quite common and suggests the use of a nested rela-
tional model and query language[39]. We have decided that
even though such a model provides sophisticated support for
set types, its added complexity is not justified in the system.

In Fig. 8(c), we show getCands, a function used
in getCores, standalone and also as the body of
getCandsMap. Given a target field, f , getCands returns
a set of core candidates, cands. It is interesting to note that,
like getCores, a buffer calculation is needed to compute a
field’s candidates — resulting in the reuse of sqlBuffer in
getCands. As an example, in computing the candidates
for F44, we compute its buffer, or the set of fields annotated
with a ◦ in Fig. 8(a). Note that the bcgLL function within
getCands is the most expensive function to evaluate [12],
making getCands the bottleneck in getCores.

The analysis touches upon 2 kinds of entity types (exam-
ples in parentheses): opaque (A), and transparent-opaque
(target); set types (C); and all four kinds of functions:
atomic (bcgCoalesce) , composite (getCands), sql
(sqlBuffer) , map (getCandsMap). The atomic func-
tions, which cause grid process executions, are the solid
boxes.

6.3 Memoization & IQP in ClustFind

Embedded in our description is this fact: getCands is
called ten times per field. getCands is called twice in
computing the field’s cores and once each for computing the
cores of its eight neighbors. By modeling this workflow in a
GridDB schema, an astronomer automatically gains the per-
formance of memoization, without needing to implement it
himself.

Finally, it is common for astronomers to point to a spot
on an image map — for instance, the using SkyServer
interface[7] — and query for results from those coordinates.
These requests translate to (ra, dec) coordinates, and are ac-
comodated by GridDB’s data-driven prioritization of inter-
esting computations.

7 Performance Enhancements
Previous sections have shown how GridDB provides ba-
sic services. In this section, we show that GridDB’s model
serves as a foundation for two other performance-enhancing
services: Interactive Query Processing and Memoization.
We describe these two services and validate their benefits us-
ing a prototype GridDB implementation.

7.1 Interactive Query Processing

Due to the conflict between the long-running nature of grid
jobs and the iterative nature of data analysis, scientists have
expressed a need for data-centric computational steering
(IQP) [18, 35].

In this section, we describe how the FDM/RC enables IQP
through a relational interface. We introduce IQP with an ex-
ample. Consider the autoview at the top of Fig. 7. The view
presents the relation between pmas and fImas values. The
user has received one partial result, where pmas= 101. At
this point, the user may upgrade the priority of a particular
tuple (with pmas= 103) using an SQL UPDATE statement:

UPDATE autoview(gRn, fRn) SET PRIORITY = 2

WHERE pmas = 103

By defining a relational cover, GridDB allows prior-

itization of data, rather than processes. In GridDB, the
UPDATE statement is enhanced; one can update a special
PRIORITY attribute of any view. This scheme is expressive:
a set of views can express, and therefore one may prioritize,
any combination of cells in a relational schema (the relational
cover).

Next, we turn to how such a request affects query pro-
cessing and process scheduling, where GridDB borrows an
technique from functional languages, that of lazy evaluation
[30]. Any view tuple can always be traced back to entities of
the relational cover, using basic data lineage techniques [50].
Each entity also has a functional expression, which encodes
its computational recipe. Since function evaluations are as-
sociated with process execution, GridDB can prioritize only
the minimal process executions, delaying the computation of
other, irrelevant computations.

As an example, consider the processing of the prioritiza-
tion request in Fig. 7. The only missing uncomputed attribute
is fImas, which is derived from from relational cover tuple
f3. Fig. 6 (see dashed arrows) shows that f3 is a result of
function evaluation F6, which depends on the result function
of evaluation F3. The two processes for these evaluations are
P3 and P6, which are prioritized. Such lineage allows lazy
evaluation of other irrelevant, possibly function evaluation,
such as any involving atlsimF.

In summary, the FDM/RC, with its functional representa-
tion of workflows and relational cover, have provided a data-
centric interface for computational steering.

7.2 Memoization

Recall from Section 5.1.1 that function evaluations are stored
in memo tables. Using these tables, memoization is simple:
if a function call with the same entities has been previously
evaluated and memoized, we can return the memoized en-
tities, rather than re-evaluating. This is possible if function
calls, and the programs which implement them, are deter-
ministic. Scientific analysis programs are often determin-
istic, as repeatibility is paramount to computational science
[8]. However, if required, our our modeling language could
be extended to allow the declaration of non-deterministic
functions, which may not be memoized, as is done with the
VARIANT function modifier of PostgreSQL.

7.3 Implementation

We have implemented a java-based prototype of GridDB,
consisting of almost 19K lines of code. Modular line counts
are in Table. 1. The large size of the client is explained by
its graphical interface, which we implemented for a demon-
stration of the system during SIGMOD 2003 [32]. Currently,
the system uses condor [31] as its process-centric middle-
ware; therefore, it allows access to a cluster of machines. In
the future, we plan to use Globus, in order for the system
to leverage distributively-owned computing resources. The
change should not be conceptually different, as both provide
the same process-centric interface.

7.4 Validation

To demonstrate the effectiveness of IQP and memoization,
we conducted validation experiments with our prototype im-
plementation and the cluster testbed of Fig. 9. Measurements

Module(s) LOC Module(s) LOC
Rqst Mgr. & Q.P. 1495 Catalog Routines 756
Scheduler 529 Data Structures 7207
Client 7471 Utility Routines 1400
Total 18858

Table 1: LOCs for a java-based GridDB prototype.

worker

worker

worker

GridDB
Client

Condor
master

D
M

L

tu
p

 le
s

GridDB

fil
e

s
pr

o
c-

sp
e

c
s,

fil

e
s

worker

Figure 9: Experimental setup.

were conducted on a miniature “grid” consisting of six nodes
(Fig. 9). The GridDB client issued results from a laptop
while the GridDB overlay, a “Condor Master” batch sched-
uler [31] and 4 worker nodes each resided on one of 6 cluster
nodes. All machines, with the exception of the client, were
Pentium 4, 1.3 GHz machines with 512 MB RAM, running
Redhat Linux 7.3. The client was run on an IBM Thinkpad
Mobile Pentium 4, 1.7 GHz with 512 MB RAM. The ma-
chines were connected by a 100 Mbps network.

7.4.1 Validation 1: IQP

In the first validation experiment, we show the benefits of
IQP by comparing GridDB’s dynamic scheduler, which mod-
ifies its scheduling decisions based on interactive data prior-
itizations, against two static schedulers: batch and pipelined.

In this experiment, an analyst performs the data pro-
curement of Section 3, inserting 100 values of pmas into
simCompareMap. 200 hundred seconds after submission,
we inject a IQP request, prioritizing 25 as yet uncomputed
f tuples:

UPDATE autoview(gRn, fRn) SET PRIORITY = 2

WHERE 131 ≤pmas≤ 150

The batch scheduler evaluates all instances of each func-
tion consecutively, applying genF to all pmas inputs,
and then to atlsimF, and then atlfastF. The pipelined
scheduler processes one input at a time, starting with
pmas=1, and applying all three functions to it. Neither
changes its schedule based on priority updates. In contrast,
the GridDB dynamic scheduler does change its computation
order as a user updates preferences.

In Fig. 10, we plot Number of Prioritized Data Points re-
turned vs. time. In the plot, GridDB(dynamic) has delivered
all 20 interesting results. The figure shows that dynamic has
delivered all 20 interesting results within 1047s. The static
pipelined and batch schedulers require 2608s and 3677s, re-
spectively. In this instance, GridDB cut time-to-interesting-
result by 60% and 72%, respectively.

The performance gains are due to the lazy evaluation of
the expensive function, atlsimF, as well as the prioritiza-
tion of interesting input points, two effects explained in Sec-
tion 7.1.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 5 10 15 20

T
im

e(
s)

Number of Prioritized Data Points

Interactive Query Processing

dynamic
pipelined

batch

Figure 10: Validation 1, IQP for HepEx

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 2 4 6 8 10 12 14 16 18 20

Jo
b

C
om

pl
et

io
n

T
im

e(
s)

Mesh Size

Memoization

noMemo
memo

Figure 11: Validation 2, Memoization in ClustFind

7.4.2 Validation 2: Memoization Speedup

We validated the GridDB memoization implementation by
testing how well it exploits ClustFind memoization op-
portunities (from Section 6). We observed that when memo-
ization is used, system throughput speeds up by 6.13 relative
to when it is absent. Note that process-centric middleware
typically does not provide a memoization service.

In these experiments, we used GridDB to drive clus-
ter core search for square meshes of varying size. The
smallest, of size 5, is shown in Fig. 8(a). Each field was
of length 0.1 × 0.1 degrees. Recall from Section 6.3 that
the GridDB modeling of ClustFind analysis presents a
prime opportunity for memoization, as the most expensive
functions are also repeated many times.

As shown in Fig. 11, an analysis using memoiza-
tion (memo) out-performs an analysis without memoization
(noMemo) for meshes from sizes 6 to 19. Meshes of size
5 have no memoization opportunities; we can only calcu-
late one target (each target requires a 5 by 5 buffer around it
for computation). At mesh size 19 (361 fields), a memoized
analysis requires 5041 seconds while one without memoiza-
tion requires 30894 seconds — a speedup of 6.13. Analysis
using Amdahl’s law dictates an upper bound of 7, when ex-
ploiting memoization.

To precisely understand these performance gains, we
profiled the ClustFind analysis, recording the amount

Workflow:
Chimera, Dagman, WASA, CRISTAL,

RealityGrid, ICENI, BPEL4WS

Database:
SkyServer and other scientific databases

Process-Centric:
Condor (and other batch schedulers),

globus

Workflow-Database:
GridDB, Zoo

Figure 12: A categorization of related systems.

of time spent in the four main modules of Fig.
8(b): sqlBuffer, getCands(and getCandsMap) ,
catCands, and bcgCoalesce. We discovered 95% of
the execution time was spent in getCands. Our pro-
filing showed that memoization reduced the time calling
getCands by up to 86%, where 90% is optimal (each call
is made a maximum of 10 times, so a 10 to 1 reduction is
optimal).

8 Related Work

We classify related systems into four categories: Process-
Centric, Workflow, Database and Workflow-Database. In
this section, we summarize the salient features of each cate-
gory, deferring discussions of individual systems to [33]. Us-
ing this classification, we argue that by combining the models
of both Workflow and Database systems, GridDB not only
provides the feature-sets of both systems, but also provides
features absent from both categories.

The four categories are related in Figure 12, where an
arrow from category A to category B indicates that B de-
rives from A. Process-centric systems such as Condor [31]
and Globus [24] provide an OS-like process submission in-
terface. Workflow systems, such as WASA [45], CRISTAL
[20], chimera [12, 51] and DAGMan [3], focus on the man-
agement of processes that create data, but typically do not
exploit the structure of the data created by their workflows.
Naturally, Workflow systems build on top of process-centric
systems. On the other hand, Database systems used for sci-
entific computing, such as SQL Server (used to build Sky-
Server [42, 43]), model and manipulate data, the final prod-
uct of workflows, but do not provide workflow management
facilities.

Finally, Workflow-Database systems model both work-
flows and their data. GridDB, along with ZOO [29, 9], fit
into this category. To our knowledge, ZOO is the first, and
only other system to incorporate workflow and data model-
ing into a scientific analysis framework. GridDB and ZOO
share many similarities; for example, ZOO also provides a
data model and query language [46], and maps between files
and objects [10].

However, we have identified three main differences: (1)
GridDB is focused on the grid environment rather than the
desktop environment, (2) GridDB uses the simpler relational
model, which we argue is sufficient for input and output mod-
eling (Section 3), and (3) GridDB exploits synergy between
workflow and data modeling, providing features unavailable
in ZOO, such as IQP.

An alternative parallel programming model is represented
by MPI [23] and MPI-based libraries, such as Master-

Worker[26]. These programming models can increase the
execution speed of an individual process by running it on
multiple machines, but stipulate a lower-level programming
model when compared to any of the Workflow, Database, or
Workflow-Database systems described above.

Finally, GridDB builds upon the Functional Data Model
(FDM) [40, 41, 17] and relational Interactive Query Process-
ing (IQP) [37, 38, 27]. We expand the use of the FDM to
model grid workflows and extend previous IQP systems by
steering grid computation, rather than the relational queries
of previous work.

9 Conclusion
In this paper, we have presented GridDB, a software overlay
that provides data-centric services for scientific grid comput-
ing. We exploit two key principles: first, imperative pro-
grams can be modeled as typed-functions and second, that a
key subset of data, the relational cover, can be modeled as
relations, and used as a relational interface to the full data
set. As such, we have built a workflow and data model
(FDM/RC) and query language for representing workflows
and accessing their data through a relational interface. Ad-
ditionally, GridDB exploits the synergy between workflow
and data modeling to provide previously unavailable data-
centric grid services. Finally, we have demonstrated the use
of GridDB in modeling High Energy Physics and Astron-
omy analyses and have validated our ideas by measuring a
prototype implementation.

10 Acknowledgements
We thank many collaborators from the GriPhyN, ATLAS
and SDSS projects and other members of the UC Berkeley
Database Group. This work was funded in part by the NSF
under ITR grants SCI-0086044 and SI-0122599, by the IBM
Faculty Partnership Award program, and by research funds
from Intel, Microsoft, and the UC MICRO program.

References
[1] Condor-G and DAGMan Hands-On Lab. http://www.cs.wisc.

edu/condor/tutorials/miron-condor-g-dagman-tutorial.
%html.

[2] Condor Manual. Chapter 2.6: Submitting a Job to Condor. Available at http:
//www.cs.wisc.edu/condor/manual/.

[3] Dagman home page. http://www.cs.wisc.edu/condor/dagman/.
Accessed 10/25/03.

[4] fv: The Interactive FITS File Editor. http://heasarc.gsfc.nasa.gov/
docs/software/ftools/fv/. Accessed 10/28/03.

[5] globus-job-submit man page. http://www.globus.org/v1.1/
programs/globus-job-submit.html. Accessed 11/19/03.

[6] PAW: Physics Analysis Workstation. http://wwwasd.web.cern.ch/
wwwasd/paw/. Accessed 10/28/03.

[7] Sloan digital sky survey. http://www.sdss.org/.
[8] Handbook of Mathematics and Computational Science. Springer Verlag, 1998.
[9] A. Ailamaki, et al.. Scientific workflow management by database management.

In Statistical and Scientific Database Management, pp. 190–199. 1998.
[10] V. Anjur, et al.. FROG and TURTLE: Visual bridges between files and object-

oriented data. In Proceedings of the Eighth International Conference on Scientific
and Statistical Database Management, pp. 76–85. IEEE, Stockholm, Sweden,
18–20 1996.

[11] Annis, et al.. MaxBCG Technique for Finding Galaxy Clusters in SDSS Data .
In AAS 195th Meeting. 2000.

[12] J. Annis, et al.. Applying chimera virtual data concepts to cluster finding in the
sloan sky survey. In Supercomputing. 2002.

[13] Grid Physics Network High-Energy Particle Physics Description. http:
//www.griphyn.org/projinfo/physics/highenergy.php. Ac-
cessed 11/19/03.

[14] P. Avery. iVDGL ITR proposal: An International Virtual-Data Grid Labora-
tory for Data Intensive Science. http://www.phys.ufl.edu/˜avery/
ivdgl/itr2001/proposal_all.pdf, 2001.

[15] A. Bayucash, et al.. Portable Batch System: External Reference Specification.
Technical report, MRJ Technology Solutions, November 1999.

[16] R. Brun, et al.. ROOT - An Interactive Object Oriented Framework and its ap-
plication to NA49 data analysis. In Proceedings of Computing in High Energy
Physics. May 1997.

[17] P. Buneman et al.. FQL–A Functional Query Language. In ACM SIGMOD
International Conference on Management of Data. May 1979.

[18] Carminati, F., et al. HEPCAL II: Common Use Cases for a HEP Common Ap-
plication Layer for Analysis. Technical report, LHC Grid Computing Project,
2003.

[19] Charles W. Krueger. Software Reuse. ACM Comput. Surv., 24(2):131–183, 1992.
[20] Concurrent Repository Information. CRISTAL. URL citeseer.ist.psu.

edu/417078.html.
[21] 2003. Personal communication with Craig Tull.
[22] K. Czajkowski, et al.. A resource management architecture for metacomputing

systems. LNCS, 1459, 1998.
[23] M. P. I. Forum. MPI: A message-passing interface standard. Technical Report

UT-CS-94-230, 1994.
[24] I. Foster et al.. Globus: A metacomputing infrastructure toolkit. The Interna-

tional Journal of Supercomputer Applications and High Performance Comput-
ing, 11(2):115–128, Summer 1997.

[25] I. Foster, et al.. The anatomy of the grid. In International Journal of Supercom-
puter Applications. 2001.

[26] J.-P. Goux, et al.. An Enabling Framework for Master-Worker Applications on
the Computational Grid. In HPDC, pp. 43–50. 2000.

[27] J. M. Hellerstein, et al.. Informix under control: Online query processing. In
Data Mining and Knowledge Discovery 4(4), pp. 281–314. 2000.

[28] Ian Foster et al.. Grid Physics Network (GriPhyN) White Paper, 2003. http:
//www.griphyn.org/.

[29] Y. E. Ioannidis, et al.. Zoo: a desktop experiment management environment. In
Proceedings of the 22 nd Conference on Very Large Data Bases (VLDB), 1996,
pp. 580–583. 1997.

[30] John Hughes. Lazy memo-functions. Functional Programming Languages and
Computer Architecture, (201):129–146, September 1985.

[31] M. Litzkow, et al.. Condor - a hunter of idle workstations. In Proceedings of the
8th International Conference of Distributed Computing Systems. 1988.

[32] D. T. Liu, et al.. Demo. GridDB: A Relational Interface to the Grid. In SIGMOD.
2003.

[33] D. T. Liu et al.. GridDB: Data-Centric Services in Scientific Grids. Technical re-
port, UC Berkeley, EECS Department, March 2004. UCB//CSD-04-1311. Avail-
able at http://www.cs.berkeley.edu/˜dtliu/pubs/griddb_tr.
pdf.

[34] M. Livny, et al.. Particle physics data grid collaboratory pilot. http://www.
ppdg.net/docs/SciDAC/PPDG_overview.pdf, September 2001.

[35] D. Olson et al.. PPDG-19: Grid Service Requirements for Interac-
tive Analysis. http://www.ppdg.net/pa/ppdg-pa/idat/papers/
analysis_use-cases-grid-reqs%.pdf. Access 11/21/03.

[36] L. Prechelt et al.. An experiment to assess the benefits of intermodule type check-
ing, 1996.

[37] V. Raman, et al.. Online dynamic reordering for interactive data processing. In
The VLDB Journal, pp. 709–720. 1999.

[38] V. Raman et al.. Partial results for online query processing. In SIGMOD Confer-
ence, pp. 275–286. 2002.

[39] Serge Abiteboul, et al.. Foundations of Databases: The Logical Level, chapter
Chapter 20: Complex Values. Addison-Wesley Longman Publishing Co., Inc.,
1995. ISBN 0201537710.

[40] D. W. Shipman. The functional data model and the data language daplex. ACM
Transactions on Database Systems (TODS), 6(1):140–173, 1981.

[41] E. H. Sibley et al.. Data architecture and data model considerations. In In Pro-
ceedings of the AFIPS National Computer Conference, Dallas, Texas. American
Federation of Information Processing Societies, june 1977.

[42] A. S. Szalay, et al.. Designing and mining multi-terabyte astronomy archives: the
Sloan Digital Sky Survey. pp. 451–462. 2000.

[43] A. S. Szalay, et al.. The SDSS skyserver: Public Access to the Sloan Digital Sky
Server Data. In SIGMOD, pp. 570–581. 2002.

[44] T. P. D. Team. The PostgreSQL Development Team. PostgreSQL User’s Guide,
1999.

[45] M. Weske, et al.. Wasa: A workflow-based architecture to support scientific
database applications. In DEXA. 1995.

[46] J. L. Wiener et al.. A moose and a fox can aid scientists with data management
problems. In Workshop on Database Programming Languages, pp. 376–398.
1993.

[47] Wolfgang Hoschek et al.. Data Management in an International Data Grid
Project. In IEEE/ACM International Workshop on Grid Computing Grid. 2000.

[48] P. Wong et al.. 30 years of multidimensional multivariate visualization, 1997.
[49] Yihong Zhao and Prasad M. Deshpande and Jeffrey F. Naughton. An array-

based algorithm for simultaneous multidimensional aggregates. In 1997 ACM
SIGMOD, pp. 159–170. 1997.

[50] Yingwei Cui, et al.. Tracing the lineage of view data in a warehousing enviroln-
ment. ACM Transactions on Database Systems, 25(2):179–227, 2000.

[51] Y. Zhao, et al.. Chimera: A virtual data system for representing, querying, and
automating data derivation. In 14th Conference on Scientific and Statistical Data
Management. 2002.

