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Abstract

The ability to efficiently discover information using
partial knowledge (for example keywords, attributes or
ranges) is important in large, decentralized, resource shar-
ing distributed environments such as computational Grids
and Peer-to-Peer (P2P) storage and retrieval systems. This
paper presents a P2P information discovery system that
supports flexible queries using partial keywords and wild-
cards, and range queries. It guarantees that all existing
data elements that match a query are found with bounded
costs in terms of number of messages and number of peers
involved. The key innovation is a dimension reducing index-
ing scheme that effectively maps the multidimensional infor-
mation space to physical peers. The design, implementation
and experimental evaluation of the system are presented.

1. Introduction

The recent years have seen an increasing interest in two
resource sharing environments: Peer-to-Peer (P2P) comput-
ing and Grid computing. Emerging from different commu-
nities, they have a common final objective: to pool and co-
ordinate large sets of resources [5].

In the Peer-to-Peer (P2P) computing paradigm, entities
at the edges of the network can directly interact as equals (or
peers) and share information, services and resources with-
out centralized servers. Key characteristics of these systems
include decentralization, self-organization, dynamism and
fault-tolerance, which makes them naturally scalable and
attractive solutions for applications. Similarly grid com-
puting is rapidly emerging as the dominant paradigm for
wide area distributed computing [6]. Its overall goal is to
realize a service infrastructure for enabling the sharing of
autonomous and geographically distributed hardware, soft-
ware, and information resources (e.g. computers, data, stor-
�
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age space, CPU, software, instruments, etc.). Both systems
also present a common set of challenges: large scale, lack of
global centralized authority, heterogeneity (resources, shar-
ing policies) and dynamism [8].

A fundamental problem in these large, decentralized,
distributed resource sharing environments is the efficient
discovery of information, in the absence of global knowl-
edge of naming conventions. For example a document is
better described by keywords that by its filename, or a com-
puter by a set of attributes such as CPU type, memory, op-
erating system type than by its host name. The heteroge-
neous nature and large volume of data and resources, their
dynamism (e.g. CPU load) and the dynamism of the sharing
environment (with nodes joining and leaving) make the in-
formation discovery a challenging problem. An ideal infor-
mation discovery system has to be efficient, fault-tolerant,
self-organizing, has to offer guarantees and support flex-
ible searches (using keywords, wildcards, range queries).
P2P systems, by their inherent properties (self-organization,
fault-tolerance, scalability), provide an attractive solution.

This paper presents a P2P information discovery sys-
tem that supports complex queries containing partial key-
words, wildcards, and range queries. It guarantees that all
existing data elements that match a query will be found with
bounded costs in terms of number of messages and num-
ber of nodes involved. The key innovation is a dimension
reducing indexing scheme that effectively maps the multi-
dimensional information space to physical peers. The sys-
tem can be used to index and locate content in P2P storage
and sharing systems (using keywords), as a complement for
current resource discovery mechanisms in Computational
Grids (to enhance them with range queries) or to query in-
terest groups in a bulletin-board news system.

The overall architecture of the presented system is a
distributed hash table (DHT), similar to typical data lookup
systems [14, 17]. The key difference is in the way we map
data elements1 to the index space. In existing systems, this

1We will use the term ’data element’ to represent a piece of information
that is indexed and can be discovered. A data element can be a document, a
file, an XML file describing a resource, an URI associated with a resource,
etc.



is done using consistent hashing to uniformly map data el-
ement identifiers to indices. As a result, data elements are
randomly distributed across peers without any notion of lo-
cality. Our approach attempts to preserve locality while
mapping the data elements to the index space. In our sys-
tem, all data elements are described using a sequence of
keywords (common words in the case of P2P storage sys-
tems, or values of globally defined attributes - such as mem-
ory and CPU frequency - for resource discovery in compu-
tational grids). These keywords form a multidimensional
keyword space where the keywords are the coordinates and
the data elements are points in the space. Two data ele-
ments are “local” if their keywords are lexicographically
close or they have common keywords. Thus, we map doc-
uments that are local in this multi-dimensional index space
to indices that are local in the 1-dimensional index space,
which are then mapped to the same node or to nodes that
are close together in the overlay network. This mapping
is derived from a locality-preserving mapping called Space
Filling Curves (SFC) [2, 16]. In the current implementation,
we use the Hilbert SFC [2, 16] for the mapping, and Chord
[17] for the overlay network topology.

Note that locality is not preserved in an absolute sense
in this keyword space; documents that match the same
query (i.e. share a keyword) can be mapped to disjoint frag-
ments of the index space, called clusters. These clusters
may in turn be mapped to multiple nodes so a query will
have to be efficiently routed to these nodes. We present an
optimization based on successive refinement and pruning
of queries that significantly reduces the number of nodes
queried.

Unlike the consistent hashing mechanisms, SFC does
not necessarily result in uniform distribution of data ele-
ments in the index space - certain keywords may be more
popular and hence the associated index subspace will be
more densely populated. As a result, when the index space
is mapped to nodes load may not be balanced. We present a
suite of relatively inexpensive load-balancing optimizations
and experimentally demonstrate that they successfully re-
duce the amount of load imbalance.

The rest of this paper is structured as follows. Section
2 compares the presented system to related work. Section
3 describes the architecture and operation of the presented
P2P information discovery system. Section 4 presents an
experimental evaluation of the system. Section 5 presents
our conclusions and outlines open issues and future research
directions.

2. Related Work

Existing information storage/discovery systems can be
broadly classified as unstructured or structured. Unstruc-
tured systems (such as Gnutella [21]) are based on flood-

ing techniques and process queries by forwarding them to
neighboring peers. While unstructured systems are rela-
tively easy to maintain and can support complex queries,
they do not guarantee that all matches to a query in a
practical-sized system will be found. Furthermore, over-
heads of flooding can be significant, and a number of
techniques have been proposed to reduce these overheads
[4, 8, 11]. Structured data lookup systems (e.g. CAN [14],
Chord [17]) use structured overlay networks and consistent
hashing to implement Internet-scale distributed hash tables.
These systems offer search guarantees and bound search
costs, but at the cost of maintaining a rigid overlay structure.
Data placement and overlay topology are highly structured
and only data lookup using unique data identifiers is sup-
ported. Structured keyword search systems [7, 18] extend
the data lookup protocol with a distributed inverted index to
support keyword searches.

The system presented in this paper is structured and
uses an SFC-based indexing scheme. It maps data elements
to peers using all keywords, and consequently, when re-
solving a query only the data elements that match all the
keywords in the query are retrieved. This system also sup-
ports searches with partial keywords, wildcards, and range
queries.

To our knowledge, there exists one other P2P resource
discovery system that uses the Hilbert SFC [1]. Unlike our
approach, this system uses the inverse SFC mapping, from
a 1-dimensional space to a d-dimensional space, to map a
resource to peers based on a single attribute (e.g. memory).
It uses CAN [14] as its overlay topology, and the range of
values of the resource attribute (1-dimensional) is mapped
onto CAN’s d-dimensional Cartesian space. This system
was designed to enhance other resource discovery mecha-
nisms with range queries. In contrast, we use SFC’s to en-
code the d-dimensional keyword space to a 1-d index space
which can then be mapped to any peer overlay. For ex-
ample, we can map and search a resource using multiple
attributes.

3. System Architecture and Design

The architecture of the presented P2P information re-
trieval system is similar to data-lookup systems [14, 17],
and essentially implements an Internet-scale distributed
hash table. The architecture consists of the following com-
ponents: (1) a locality preserving mapping that maps data
elements to indices, (2) an overlay network topology, (3)
a mapping from indices to nodes in the overlay network,
(4) load balancing mechanisms, and (5) a query engine for
routing and efficiently resolving keyword queries using suc-
cessive refinements and pruning. These components are de-
scribed below.



3.1. Constructing an Index Space: Locality Pre-
serving Mapping

A key component of a data-lookup system is defin-
ing the index space and deterministically mapping data el-
ements to this index space. To support complex keyword
searches in a data lookup system, we associate each data el-
ement with a sequence of keywords and define a mapping
that preserves keyword locality. The keywords are com-
mon words in the case of P2P storage systems, and values
of globally defined attributes of resources in the case of re-
source discovery in computational grids.

These keywords form a multidimensional keyword
space where data elements are points in the space and the
keywords are the coordinates. The keywords can be viewed
as base-n numbers, for example n can be 10 if the key-
words are numbers or 26 if the keywords are words in
a language with 26 alphabetic characters. Two data ele-
ments are considered “local” if they are close together in
this keyword space. For example, their keywords are lexico-
graphically close (e.g. computer and computation) or they
have common keywords. Not all combinations of charac-
ters represent meaningful keywords, resulting in a sparse
keyword space with non-uniformly distributed clusters of
data-elements. Examples of keyword spaces are shown in
Figure 1.
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Figure 1. (a) A 2-Dimensional keyword space for a
storage system. The data element “Document” is
described by keywords “Computer:Network”. (b) A
3-Dimensional keyword space for storing compu-
tational resources, using the attributes: storage
space, base bandwidth and cost.

To efficiently support range queries and queries using
partial keywords and wildcards, the index space should pre-
serve locality and be recursive so that these queries can be
optimized using successive refinement and pruning. Such
an index space is constructed using the Hilbert SFC as de-
scribed below.

3.2. Hilbert Space-Filling Curve

A Space-Filling Curve (SFC) is a continuous map-
ping from a d-dimensional space to a 1-dimensional space
f: N ��� N. The d-dimensional space is viewed as a d-
dimensional cube, which is mapped onto a line such that

the line passes once through each point in the volume of the
cube, entering and exiting the cube only once. Using this
mapping, a point in the cube can be described by its spatial
coordinates, or by the length along the line, measured from
one of its ends.

The construction of SFCs is recursive. The d-
dimensional cube is first partitioned into n � equal sub-
cubes. An approximation to a space-filling curve is obtained
by joining the centers of these sub-cubes with line segments
such that each cell is joined with two adjacent cells. An ex-
ample is presented in Figure 2 (a), (c). The same algorithm
is used to fill each sub-cube. The curves traversing the sub-
cubes are rotated and reflected such that they can be con-
nected to form a single continuous curve that passes only
once through each of the n � � regions. The line that con-
nects n � � cells is called the k 	�
 approximation of the SFC.
Figures 2(b) and 2(d) show the second orders approxima-
tions for the curves in Figures 2(a) and 2(c) respectively.
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Figure 2. Space-filling curve approximations for d
= 2: n = 2 (a) 1 � 	 order approximation (b) 2  � order
approximation; n = 3 (c) 1 � 	 order approximation,
(d) 2  � order approximation.

An important property of SFCs is digital causality,
which comes directly from its recursive nature. A unit
length curve constructed at the k 	�
 approximation has an
equal portion of its total length contained in each sub-
hypercube; it has n ��� � equal segments. If distances across
the line are expressed as base-n numbers, then the numbers
that refer to all the points that are in a sub-cube and belong
to a line segment are identical in their first k*d digits. This
property is illustrated in Figure 2 (a), (b).

Figure 3. Clusters on a 3 � � order space-filling curve
(d = 2, n = 2). The colored regions represent clus-
ters: 3-cell cluster and 16-cell cluster.

Finally, SFCs are locality preserving. Points that
are close together in the 1-dimensional space (the curve)
are mapped from points that are close together in the d-
dimensional space. For example, for k � 1, d � 2, the
k 	�
 order approximation of a d-dimensional Hilbert space



filling curve maps the sub-cube [0, 2 � - 1] � to [0, 2 � � - 1].
The reverse property is not true, not all adjacent sub-cubes
in the d-dimensional space are adjacent or even close on the
curve. A group of contiguous sub-cubes in d-dimensional
space will typically be mapped to a collection of segments
on the SFC. These segments called clusters are shown in
Figure 3.

In our system, SFCs are used to generate the 1-d in-
dex space from the multi-dimensional keyword space. Ap-
plying the Hilbert mapping to this multi-dimensional space,
each data element can be mapped to a point on the SFC.
Any range query or query composed of keywords, partial
keywords, or wildcards, can be mapped to regions in the
keyword space and the corresponding clusters in the SFC.

3.3. Mapping Indices to Peers and the Overlay Net-
work

The next step consists of mapping the 1-dimensional
index space onto an overlay network of peers. This step is
similar to existing data-lookup systems. In our current im-
plementation we use the Chord [17] overlay network topol-
ogy. In Chord each node has a unique identifier ranging
from 0 to 2 � -1. These identifiers are arranged as a cir-
cle modulo 2 � . Each node maintains information about (at
most) m neighbors, called fingers, in a finger table. The i 	�

finger node is the first node that succeeds the current node
by at least 2 ����� , where 1 � i � m. The finger table is used for
efficient routing.
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Figure 4. Example of the overlay network. Each
node stores the keys that map to the segment of
the curve between itself and the predecessor node.

In our implementation, node identifiers are generated
randomly. Each data element is mapped, based on its SFC-
based index or key, to the first node whose identifier is equal
to or follows the key in the identifier space. The node is
called the successor of the key. Consider the sample over-
lay network with 5 nodes and an identifier space from 0 to
16, as shown in Figure 4. In this example, data elements
with keys 6, 7, and 8, will map to node 8, the successor of
these keys. The management of node joins, departures, and
failures is described below.

Node Joins: The joining node has to know about at
least one node already in the network. It randomly chooses

an identifier from the identifier space and sends a join mes-
sage with this identifier to the known node. This message
is routed across the overlay network to the successor of the
new node (based on the new identifier). The joining node
is inserted into the overlay network at this point and takes
a part of the successor node’s load. The cost for joining is
O(log � � N) messages2.

Node Departures: The finger tables of the nodes that
have entries pointing to the departing node have to be up-
dated. The cost is O(log � � N) messages.

Node Failures: When a node fails, the finger tables
that have entries pointing to it will be incorrect. Each node
periodically runs a stabilization algorithm where it chooses
a random entry in its finger table, checks for its state, and
updates it if required.

Data Lookup: Nodes are efficiently located based on
their content. Data lookup takes O(log � N) hops. In our sys-
tem partial queries and range queries will typically require
interrogating more than one node, as the desired informa-
tion may be stored at multiple nodes in the system.

3.4. The Query Engine

The primary function of the query engine is to effi-
ciently process user queries. As described above, data el-
ements in the system are associated with a sequence of one
or more keywords (up to d keywords, where d is the dimen-
sionality of the keyword space). The queries can consist
of a combination of keywords, partial keywords, or wild-
cards. The expected result of a query is the complete set
of data elements that match the user’s query. For exam-
ple, (computer, network), (computer, net*) and (comp*, *)
are all valid queries. Another query type is a range query
where at least one dimension specifies a range. For exam-
ple if the index encodes memory, CPU frequency and base
bandwidth resources, the following query (256 - 512MB, *,
10Mbps - *) specifies a machine with memory between 256
and 512 MB, any CPU frequency and at least 10Mbps base
bandwidth.

3.4.1. Query Processing

Processing a query consists of two steps: translating the
keyword query to relevant clusters of the SFC-based index
space, and querying the appropriate nodes in the overlay
network for data-elements.

If the query consists of whole keywords (no wildcard) it
will be mapped to at most one point in the index space, and
the node containing the result is located using the network’s
look-up protocol. If the query contains partial keywords
and/or wildcards or it is a range query, the query identifies a
set of points (data elements) in the keyword space that cor-
respond to a set of points (indices) in the index space. In

2N is the number of nodes in the system
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Figure 5. Regions in a 2-dimensional space defined
by the queries (000, *) and (1*, 0*).

Figure 5, the query (000, *) identifies 8 data elements, the
squares in the vertical region. The index (curve) enters and
exits the region three times, defining three segments of the
curve or clusters (marked by different patterns). Similarly
the query (1*, 0*) identifies 16 data elements, defining the
square region in Figure 5. The SFC enters and exits this re-
gion once, defining one cluster.

Each cluster may contain zero, one or more data ele-
ments that match the query. Depending on its size, an in-
dex space cluster may be mapped to one or more adjacent
nodes in the overlay network. A node may also store more
than one cluster. Once the clusters associated with a query
are identified, straightforward query processing consists of
sending a query message for each cluster. A query message
for a cluster is routed to the appropriate node in the over-
lay network as follows. The overlay network provides us
with a data look-up protocol: given an identifier for a data
element, the node responsible for storing it is located. The
same mechanism can be used to locate the node responsible
for storing a cluster using a cluster identifier. The cluster
identifier is constructed using SFC’s digital causality prop-
erty. The digital causality property guarantees that all the
cells that form a cluster have the same first i digits. These i
digits are called the cluster’s prefix and form the first i digits
of the m digit identifier. The rest of the identifier is padded
with zero.

The node that initiated the query can not know if a clus-
ter is stored in the network or not, or if multiple clusters are
stored at the same node, to make optimizations. The num-
ber of clusters can be very high, and sending a message for
each cluster is not a scalable solution. For example, con-
sider the query (000, *) in Figure 5, but using base-26 digits
and higher order approximation of the space-filling curve.
The cost of sending a message for each cluster can be pro-
hibitive.

3.4.2. Query Optimization

Query processing can be made scalable using the obser-
vation that not all the clusters that correspond to a query rep-
resent valid keywords as the keyword space and the clusters
are typically sparsely populated with data elements. This is
because we are using base-n numbers as coordinates along

each dimension of the space and not all the base-n num-
bers are valid keywords. The number of messages sent and
nodes queried can be significantly reduced by filtering out
the useful clusters early. However, useful clusters cannot
be identified at the node where the query is initiated. The
solution is to consider the recursive nature of the SFC and
its digital causality property, and to distribute the process of
cluster generation at multiple nodes in the system, the ones
that might be responsible for storing them.

Since the SFC generation is recursive, and clusters are
segments on the curve, these clusters can also be generated
recursively. This recursive process can be viewed as con-
structing a tree. At each level of the tree the query defines
a number of clusters, which are refined, resulting in more
clusters for the next level. The tree can now be embedded
into the overlay network: the root performs first query re-
finement, and each node further refines the query, sending
the resulting sub-queries to the appropriate nodes in the sys-
tem.

Consider the following example. We want to process
the query (011, *) in a 2-dimensional space using base-
2 digits for the coordinates. Figure 6 shows the succes-
sive refinement for the query and Figure 7 shows the corre-
sponding tree. The leaves of the tree represent all possible
matches for the query.
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Figure 6. Recursive refinement of the query (011,
*). (a) one cluster on the first order Hilbert curve,
(b) two clusters on the second order Hilbert curve,
(c) four clusters on the third order Hilbert curve.
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Figure 7. Recursive refinement of the query (011,
*) viewed as a tree. Each node is a cluster, and the
bold characters are cluster’s prefixes.

The query optimization consists of pruning nodes from
the tree during the construction phase. As a result of the



load-balancing steps (see Section 3.5), the nodes tend to
follow the distribution of the data in the index space - i.e.,
a larger number of nodes are assigned to denser portions of
the index space, and no nodes for the empty portions. If we
embed the query tree onto the ring topology of the overlay
network, we can prune away many of the nodes that do not
contain valid data elements, knowing that their children do
not exist in the system.
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Figure 8. Embedding the leftmost tree path (solid
arrows) and the rightmost path (dashed arrows)
onto the overlay network topology.

Figure 8 illustrates the process, using the query in Fig-
ure 6 as an example. The leftmost path (solid arrows) and
the rightmost path (dashed arrows) of the tree presented in
Figure 7 are embedded into the ring network topology. The
overlay network uses 6 digits for node identifiers. The ar-
rows are labeled with the prefix of the cluster being queried.
The query initiated at node 111000. The first cluster has
prefix 0, so the cluster’s identifier will be 000000. The
cluster is sent to node 000000. At this node the cluster is
further refined, generating two sub-clusters, with prefixes
00 and 01. The cluster with prefix 00 remains at the same
node. After processing, the sub-cluster 0001 is sent to node
000100. The cluster with prefix 01 and identifier 010000
is sent to node 011110 (dashed line). This cluster will not
be refined because the node’s identifier is greater than the
query’s identifier, and all matching data elements are stored
at this node.

A second query optimization is used to reduce the num-
ber of messages involved. It is based on the observation that
multiple sub-clusters of the same cluster can be mapped to
the same node. To reduce the number of messages, we sort
the sub-clusters in increasing order and send the first one in
the network. The destination node of the sub-cluster replies
with its identifier. The sending node then aggregates all the
sub-clusters associated with this identifier and sends them
as a single message routed to the destination.

3.5. Balancing Load

As we mentioned earlier, the original d-dimensional
keyword space is sparse and data elements form clusters
in this space instead of being uniformly distributed in the

space. As the Hilbert SFC-based mapping preserves key-
word locality, the index space will have the same properties.
Since the nodes are uniformly distributed in the node identi-
fier space when the data elements are mapped to the nodes,
the load will not be balanced. Additional load balancing has
to be performed. We have defined two load-balancing steps
as described below.

Load Balancing at Node Join: At join, the incoming
node generates several identifiers (e.g., 5 to 10) and sends
multiple join messages using these identifiers. Nodes that
are logical successors of these identifiers respond reporting
their load. The new node uses the identifier that will place
it in the most loaded part of the network. This way, nodes
will tend to follow the distribution of the data from the very
beginning. With n identifiers being generated, the cost to
find the best successor is O(n*log � N), and the cost to up-
date the tables remains the same, O(log � � N). However, this
step is not sufficient by itself. The runtime load-balancing
algorithms presented below improve load distribution.

Load Balancing at Runtime: The runtime load-
balancing step consists of periodically running a local load-
balancing algorithm between few neighboring nodes. We
propose two load-balancing algorithms. In the first algo-
rithm, neighboring nodes exchange information about their
loads, and the most loaded nodes give a part of their load
to their neighbors. The cost of load-balancing at each node
using this algorithm is O(log � � N). As this is expensive, this
load-balancing algorithm cannot be run very often.

The second load-balancing algorithm uses virtual
nodes. In this algorithm, each physical node houses mul-
tiple virtual nodes. The load at a physical node is the sum
of the load of its virtual nodes. When the load on a vir-
tual node goes above a threshold, the virtual node is split
into two or more virtual nodes. If the physical node is over-
loaded, one or more of its virtual nodes can migrate to less
loaded physical nodes (neighbors or fingers). An evaluation
of the load balancing algorithms is presented in Section 4.

4. Experimental Evaluation

The performance of our P2P information discovery
system is evaluated using a simulator. The simulator im-
plements the SFC-based mapping, the Chord-based over-
lay network, the load-balancing steps, and the query en-
gine with the query optimizations described above. As the
overlay network configuration and operations are based on
Chord [17], its maintenance costs are of the same order as
in Chord. An evaluation of the query engine and the load-
balancing algorithms is presented below.

4.1. Evaluating the Query Engine

The overlay network used to evaluate the query engine
consists of 1000 to 5400 nodes. 2-dimensional (2D), and a



3-dimensional (3D) keyword spaces are used in this evalua-
tion. Finally, we use up to 10 � keys (unique keyword com-
binations) in the system, each of which could be associated
with one or more data elements. We measure the following:

Number of routing nodes: the nodes that route the
query. Some of them also process the query.

Number of processing nodes: the nodes that actually
process the query, refine it, and search for matches. The
goal is to restrict processing only to those nodes that store
matching data elements.

Number of data nodes: the nodes that have data ele-
ments matching the query.

Number of messages required to resolve a query.
When using the query optimization each message is a sub-
query that searches for a fraction of the clusters associated
with the original query.

The types of queries used in the experiments are:
Q1: Queries with one keyword or partial keyword, e.g.

(computer, *) for 2D, (comp*, *, *) for 3D.
Q2: Queries with two to three keywords or partial key-

words (at least one partial keyword), e.g. (comp*, net*) for
2D, (computer, network, *) for 3D.

Q3: Range queries.

4.1.1. Evaluating a 2-dimensional keyword space

This experiment represents a typical P2P storage sys-
tem where the number of keys and data elements in the sys-
tem increases as the number of nodes increases. The system
size increases from 1000 nodes to 5400 nodes, and the num-
ber of stored keys increases from 2*10 � to 10 � .

The results for experiments using six different type Q1
queries (query1 - query6) are plotted in Figure 9. Each
query resulted in a different number of matches.
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Figure 9. Results for query type Q1, 2D: (a) the
number of matches for the queries, (b) the number
of nodes that process the query, (c) the number of
nodes that found matches for the query.

As seen in Figures 9 (b) and (c), the number of pro-
cessing and data nodes is a fraction of the total nodes and
increase at a slower rate than the system size. The num-
ber of processing nodes does not necessarily depend on the
number of matches. For example, to solve a query with 160
matches (query6) can be more costly than solving a query
with 2600 matches (query1). This is due to the recursive
processing of queries and the distribution of keys in the in-
dex space. In order to optimize the query, we prune parts of
the query tree based on the data stored in the system. The
earlier the tree is pruned, the fewer processing nodes will
be required and the better the performance will be. For ex-
ample, if the query being processed is (computer, *) and the
system contains a large number of data elements with keys
that start with “com” (e.g., company, commerce, etc.) but
do not match the query, the pruning will be less efficient and
will result in a larger number of processing nodes.

Note that even under these conditions, the results are
good. A keyword search system like Gnutella [21] would
have to query the entire network using some form of flood-
ing to guarantee that all the matches to a query are returned,
while in the case of a data lookup system such as Chord
[17], one would have to know all the matches a priori and
look them up individually.

Figure 9 (c) plots the number of data nodes which are a
subset of the processing nodes. The number of data nodes is
close to the number of processing nodes, indicating that the
query optimizations effectively reduce the number of nodes
involved. Furthermore, comparing the number of matches
to the number of data nodes demonstrates the clustering
property of the Hilbert SFC index space, which can be de-
fined as a ratio of the number of matches for a query to the
number of data nodes that store these matches.
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Figure 10. Results for all the metrics, 2D: (a) for a
3200 node system and 6*10 � keys, (b) for a 5400
node system and 10 � keys.

Figure 10 plots all the measurements for two system
sizes and demonstrates the scalability of the presented sys-
tem. Each group of bars represents the results for a particu-
lar query. The maximum value, plotted on the vertical axis,
is the size of the network. As seen in the graph, the pro-
cessing nodes are a small fraction of the routing nodes, and
a very small fraction of the entire system. The processing
node population does not increase as fast as the system. The



number of data nodes is close to the number of processing
nodes. The number of messages used is almost twice the
number of processing nodes, which is as expected.

Figure 11 shows the corresponding results for experi-
ments with 5 different type Q2 queries. As expected, the re-
sults are significantly better than those for type Q1 queries.
This is because query optimization and pruning are effective
when both keywords are at least partially known.
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Figure 11. Results for query type Q2, 2D: (a) the
number of matches for the queries, (2) the number
of data nodes.

4.1.2. Evaluating a 3-dimensional keyword space

The experiment conducted for the 2D keyword space
was repeated for a 3D keyword space. Overall, the results
are similar to the 2D case. The growth of the system, either
in the number of nodes or in the quantity of data stored, or
both, affects the behavior of the queries in the same way.
The only difference is the magnitude of the results. As de-
scribed in Section 1, documents that share a specific key-
word will typically be mapped to disjoint fragments on the
curve (clusters). In the 3D case the number of such frag-
ments is larger than in the 2D case - 3 keywords used in-
stead of 2 and result in a “longer” curve. Consequently, the
results obtained for the 3D case for all the metrics have the
same pattern as the 2D case but a larger magnitude.

The results for experiments in the 3D case follow a sim-
ilar pattern to the 2D cases presented in Section 4.1.1. The
main difference from the 2D cases is the magnitude of the
graphs; results for the 3D case may be larger by two to three
times. This is expected and is due to the fact that for the
same types of queries there are more clusters in the 3D case
than in the 2D case.
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Figure 12. Results for query type Q1, 3D: (a) the
number of matches for the queries, (b) the number
of nodes that process the query, (c) the number of
nodes that found matches for the queries.
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Figure 13. Results for all metrics, 3D: (a) for 3000
node system and 6*10 � keys, (b) for 5300 node sys-
tem and 10 � keys.
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Figure 14. Results for query type Q2, 3D: (a) the
number of matches for queries, (b) the number of
processing nodes, (c) the number of data nodes.



4.1.3 Evaluating the range queries in a 3-dimensional
keyword space
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Figure 15. Results for query type Q3 (range query),
of the form: (keyword, range, *). (a) the number of
matches for queries, (b) the number of processing
nodes, (c) the number of data nodes.
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Figure 16. Results for all metrics for range queries:
(a) for 2750 node system and 6*10 � keys, (b) for
4700 node system and 10 � keys.
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Figure 17. Results for query type Q3 (range query),
of the form: (range, range, range). (a) the number
of matches for queries, (b) the number of process-
ing nodes, (c) the number of data nodes.

The following types of range queries were evaluated:
(keyword, range, *) and (range, range, range). The exper-
iments show that the results do not depend on the size of
the range (because the index space is not uniformly popu-
lated), but more on the number of matches found and the
distribution of the data.

4.2. Evaluating the Load Balancing Algorithms

The quality of the load balance achieved by the
two load balancing operations is evaluated for the initial
distribution shown in Figure 18. As expected, the original
distribution is not uniform. The load-balance step at node
join helps to match the distribution of nodes with the
distribution of data. The resulting load balance is plotted
in Figure 19 (a). While the resulting load distribution is
better than the original distribution in Figure 18, this step
by itself does not guarantee a very good load balance.
However, when it is used in conjunction with the runtime
load-balancing step, the resulting load balance improves
significantly as seen in Figure 19 (b). The load is almost
evenly distributed in this case.

0
300
600
900

1200
1500
1800
2100

0 500 1000 1500 2000 2500 3000 3500 4000 4500

N
um

be
r 

of
 k

ey
s

The index space (intervals)

Figure 18. The distribution of the keys in the in-
dex space. The index space was partitioned into
5000 intervals. The Y-axis represents the number
of keys per interval.
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Figure 19. The distribution of the keys at nodes (a)
when using only the load balancing at node join
technique, (b) when using both the load balancing
at node join technique, and the local load balanc-
ing.

5. Conclusions and Future Work

In this paper, we presented the design and evaluation
of a P2P information discovery system that supports com-
plex searches using keyword, partial keywords, wildcards



and range queries, while guaranteeing that all data elements
in the system that match the query are found with bounded
costs in terms of the number of messages and nodes in-
volved in the query. The presented information discovery
system essentially implements an Internet-scale distributed
hash table. It can be used to complement existing resource
discovery mechanisms in computational grids by enhancing
them with range queries, by storage and archival systems to
support keyword searches, and by bulletin-board systems to
support discovery by interest profiles. A key component is
a locality- preserving mapping from data element keyword
space to the index space that is used to assign the data el-
ements to peers. This mapping is based on recursive, self-
similar SFCs. The recursive structure of the index space is
used to optimize query processing and to reduce the number
of nodes queried. As the mapping preserves keyword local-
ity, data-elements may not be uniformly distributed in the
index space. Dynamic load balancing schemes (applicable
at node join and at runtime) were presented.

An experimental evaluation of the presented P2P stor-
age system using a simulator was presented. The ex-
periments demonstrated the scalability of the system, and
showed that only a fraction of the total nodes in the sys-
tem typically process a query and this fraction is almost
the same as the nodes that store data elements matching the
query. The results also demonstrated the ability of the map-
ping to preserve keyword locality and the effectiveness of
the load balancing algorithms. We are extending this re-
search to evaluate other network topologies and mappings,
and to address issues such as hot-spots, fault-tolerance, se-
curity and resistance to attacks, and maintenance of geo-
graphical locality in the overlay network.
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