
Managing Trust in a Peer-2-Peer Information System �

Karl Aberer, Zoran Despotovic
Department of Communication Systems

Swiss Federal Institute of Technology (EPFL)
1015 Lausanne, Switzerland

fkarl.aberer, zoran.despotovicg@epfl.ch

ABSTRACT
Managing trust is a problem of particular importance in
peer-to-peer environments where one frequently encounters
unknown agents. Existing methods for trust management,
that are based on reputation, focus on the semantic proper-
ties of the trust model. They do not scale as they either rely
on a central database or require to maintain global knowl-
edge at each agent to provide data on earlier interactions. In
this paper we present an approach that addresses the prob-
lem of reputation-based trust management at both the data
management and the semantic level. We employ at both
levels scalable data structures and algorithms that require
no central control and allow to assess trust by computing
an agents reputation from its former interactions with other
agents. Thus the method can be implemented in a peer-
to-peer environment and scales well for very large numbers
of participants. We expect that scalable methods for trust
management are an important factor, if fully decentralized
peer-to-peer systems should become the platform for more
serious applications than simple �le exchange.

Keywords. trust management, reputation, peer-to-peer
information systems, decentralized databases.

1. INTRODUCTION
Over the last years, mainly due to the arrival of new pos-

sibilities for doing business electronically, people started to
recognize the importance of trust management in electronic
communities. Visitors at 'amazon.com' usually look for cus-
tomer reviews before deciding to buy new books. Partic-
ipants at eBay's auctions can rate each other after each
transaction. But both examples use completely centralized
mechanisms for storing and exploring reputation data. In
this paper we want to explore possibilities for trust manage-
ment in completely decentralized environments, peer-to-peer
networks in particular, where no central database (or data
warehouse) is available.

�

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2001 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

Peer-To-Peer (P2P) systems are driving a major paradigm
shift in the era of genuinely distributed computing. Major
industrial players believe \P2P reects society better than
other types of computer architectures [4]. It is similar to
when in the 1980's the PC gave us a better reection of the
user" (www.infoworld.com).
In a P2P infrastructure, the traditional distinction be-

tween clients and back-end (or middle tier application) servers
is simply disappearing. Every node of the system plays the
role of a client and a server. The node pays its participation
in the global exchange community by providing access to
its computing resources. A P2P system can be character-
ized by a number of properties: no central coordination, no
central database, no peer has a global view of the system,
global behavior emerges from local interactions, peers are
autonomous, and peers and connections are unreliable.
Gnutella (www.gnutella.com) is a good example of a P2P

success story: a rather simple software enables Internet users
to freely exchange �les, such as MP3 music �les. The im-
portance of trust management in P2P systems cannot be
overemphasized, as illustrated by the investigation of Gnutella
[3]. The examples justifying this statement range from the
simplest possible case, where, while downloading (music)
�les with a Gnutella client, we want to choose only reliable
peers, to the situation of an entire P2P community playing
the role of a marketplace, where trusting other peers is a
crucial prerequisite for performing business.
The basic problem related to reputation-based trust man-

agement in P2P networks is that information about transac-
tions performed between peers (agents) is dispersed through-
out the network so that every peer can only build an approx-
imation of 'the global situation in the network'. Of course
this is further complicated by the fact that agents storing
and processing trust related data cannot be considered as
unconditionally trustworthy and their eventual malicious be-
havior must be taken into account, too.
The approach to trust management that we present in this

paper is based on analyzing earlier transactions of agents
and deriving from that the reputation of an agent. The rep-
utation is essentially an assessment of the probability that
an agent will cheat. Thus, the method can be interpreted
as a simple method of data mining using statistical data
analysis of former transactions. The data necessary for per-
forming the analysis is provided by a decentralized storage
method (P-Grid [2]).
The approach works if we make an assumption that we

usually also make in daily life. If the probability of cheating
within a society is comparably low, it becomes more diÆcult

User

P2P Trust
Management

P2P Data
Management

P2P Network
Management

QoS

Qos

exploits

QoS

exploits

uses

Figure 1: Di�erent system levels of P2P computing

to hide malicious behavior. The method allows to judge
trust for agents, even when one meets them for the �rst
time, by referring to the experiences other agents made. The
method relies exclusively on peer-to-peer interactions and
requires no centralized services whatsoever, both for trust
assessment and data management.
We present an architecture for trust management which

relies on all system layers, namely network, storage and
trust management, on peer-to-peer mechanisms. This is il-
lustrated in Figure 1. It is important to observe that in such
an architecture a mechanism implemented at a higher level
in a peer-to-peer manner has always to take into account the
properties, in particular the quality of service, of the mech-
anisms of the underlying layers. For example, the storage
layer has to take into account the unreliability of network
connections and thus will use data replication to increase re-
liability. Similarly, the trust layer has to take into account,
that not all data is equally accessible when assessing trust
based on statistical evidence derived from transaction data.
In that sense this paper not only contributes to the ques-

tion of how to manage trust, but shows also a prototypical
case of how a full-edged peer-to-peer architecture for infor-
mation systems can be built.
In Section 2 we review existing work on formal trust mod-

els and their implementation. In Section 3 we identify the
problems that need to be addressed when managing trust
in a decentralized information system. In Section 4 we give
an overview of the method we propose and that illustrates
that the problem is tractable. In Section 5 we present the
detailed algorithms and in Section 6 we give the simulation
results showing that the method works e�ectively. We con-
clude the paper with some �nal remarks in Section 7.

2. RELATED WORK
One of the �rst works that tried to give a formal treat-

ment of trust, that could be used in computer science, was
that of Marsh [5]. The model is based on social properties
of trust and presents an attempt to integrate all the aspects
of trust taken from sociology and psychology. But having
such strong sociological foundations the model is rather com-
plex and cannot be easily implemented in today's electronic
communities. Moreover the model puts the emphasis on
agents' own experiences such that the agents cannot collec-
tively build a network of trust.

An important practical example of reputation manage-
ment is eBay (www.ebay.com), most likely the largest on-
line auction site. After each transaction buyers and sellers
can rate each other and the overall reputation of a partici-
pant is computed as the sum of these ratings over the last
six months. Of course a main characteristic with this ap-
proach is that everything is completely centralized at the
data management level.
Rahman and Hailes [1] proposed a method that can be im-

plemented in P2P networks. This work is based on Marsh's
model. Actually it is a kind of adaptation of Marsh's work
to today's online environments. Some concepts were simpli-
�ed (for example, trust can have only four possible values)
and some were kept (such as situations or contexts). But the
main problem with this approach is that every agent must
keep rather complex and very large data structures that rep-
resent a kind of global knowledge about the whole network.
In real word situations maintaining and updating these data
structures can be a labourous and time-consuming task.
Also it is not clear how the agents obtain the recommen-
dations and how well the model will scale when the number
of agents grows.
Another work is that of Yu and Singh [8]. This model

builds a social network among agents that supports partici-
pants' reputation both for expertise (providing service) and
helpfulness (providing referrals). Every agent keeps a list
of its neighbors, that can be changed over time, and com-
putes the trustworthiness of other agents by updating the
current values by testimonies obtained from reliable refer-
ral chains. After a bad experience with another agent every
agent decreases the rating of the 'bad' agent and propagates
this bad experience throughout the network so that other
agents can update their ratings accordingly. In many ways
this approach is similar to the previously mentioned work
and the same remarks apply.
Also we would like to emphasize that none of these works

discusses the data management and retrieval problems that
certainly exist in distributed environments. We think that
the question of choosing the right model to assess trust and
the question of obtaining the data needed to compute trust
according to the model cannot be investigated in separation.

3. MANAGING TRUST IN A DECENTRAL-
IZED SYSTEM

Before turning our attention to the technical aspects of
trust management we would like to give some terminologi-
cal clari�cations. Mutual trust allows agents to cooperate in
a game-theoretic situation that corresponds to the repeated
prisoners dilemma and leads in the long term to an increased
aggregated utility for the participating agents. Trust man-
agement is any mechanism that allows to establish mutual
trust. Reputation is a measure that is derived from direct
or indirect knowledge on earlier interactions of agents and
is used to assess the level of trust an agent puts into an-
other agent. Thus, reputation-based trust management is
one speci�c form of trust management.
The notion of context is of great importance when consid-

ering trust. The sentence 'I trust my doctor for giving me
advice on medical issues but not on �nancial ones' is only one
example that shows how important contexts can be. How-
ever, only for the sake of simplicity, trust is in the following
considered for one static context, meaning that we do not

distinguish the evaluation of trust in di�erent contexts. But
the context considerations could be easily integrated into
the model.
We describe now the problem of reputation-based trust

management more formally. Let P denote the set of all
agents. The behavioral data B are observations t(q; p) an
agent q 2 P makes when he interacts with an agent p 2 P .
Based on these observations one can assess the behavior of
p based on the set

B(p) = ft(p; q) or t(q; p) j q 2 Pg � B

This means, we take into account all reports about transac-
tions that are made about p, but as well all reports about
transactions that are made by p. In the simplest case, when
data is available globally, the reputation of an agent p can
be derived from B(p). In addition the global, aggregate be-
havior B of the system can be used in order to normalize
results obtained about a speci�c agent.
When studying methods to assess trust based on reputa-

tion in a decentralized environment we have to face now two
questions:

� The semantic question: which is the model that allows
to assess trust of p based on the data B(p) and B ?

� The data management question: how can the neces-
sary data B(p) and B be obtained to compute trust
according to the semantic trust model with reasonable
e�ort ?

Looking at these two questions more closely, one sees that
they cannot be investigated in separation. A powerful trust
model is worthless if it cannot be implemented in a scalable
manner, because it requires, for example, some centralized
database.
However, with trust another factor comes into play that

additionally complicates the situation. The problem of how
to eÆciently manage the behavioral data in trust manage-
ment is not just an ordinary distributed data management
problem. Each agent providing data on earlier interactions
about others needs in turn also to be assessed with respect
to its own trustworthiness. Thus, we cannot obtain data for
determining trust without knowing about the trust we can
put into the data sources.
More formally, an agent q, that has to determine trust-

worthiness of an agent p, has no access to the global data
B(p) and B. Rather, it has to rely on that part of the data
that it has obtained from direct interactions and that it can
obtain indirectly through a limited number of referrals from
witnesses r 2Wq � P . Thus q has as information

Bq(p) = ft(q; p) j t(q; p) 2 Bg

and

Wq(p) = ft(r; p) j r 2 Wq; t(r; p) 2 Bg

to determine the reputation of an agent p. The problem is of
course that t(r; p) is not necessarily correct as also a witness
r can be malicious. Thus there exists the additional and
principal problem that the necessary data to assess trust
cannot be obtained in a reliable manner.
Finally, even if the referring agent is honest it may not

be reachable reliably over the network. This might distort
the quality of the data received about the behavior of other
agents.

Thus to formulate the problem of managing trust in a de-
centralized information system we can partition it now, more
precisely, into three subproblems that need to be studied:

1. Global trust model: What is the model that describes
whether an agent is trustworthy ? This model could
be based on simple statistical methods, on experiences
gained in economic and sociological sciences or on game-
theoretic foundations.

2. Local algorithm to determine trust: What is the com-
putational procedure that an agent can apply in or-
der to determine trust under the limitations discussed
above, which are the unreliability of the agents pro-
viding trust data both with respect to their trustwor-
thiness themselves as well as their reachability over
the network. To what extent does this local algorithm
provide a good approximation of the global model?

3. Data and communication management: Can the local
algorithm be implemented eÆciently in a given data
management infrastructure? In order to obtain scal-
able implementations the resources required by each
agent must scale gracefully in the agent population
size n, ideally as O(log n).

It is important to observe that these questions occur inde-
pendently of which speci�c model of trust is used. They are
generic to the problem of managing trust in a distributed
and decentralized environment.
In the following we demonstrate that a solution is feasible.

We propose a simple yet e�ective method, that implements a
fairly straightforward reputation-based trust model but en-
compasses all the relevant aspects. This model may be con-
sidered as an interesting result in itself as well as a starting
point for developing further more sophisticated re�nements
of the method.

4. OVERVIEW OF THE TRUST MANAGE-
MENT METHOD

4.1 Global Trust Model
The global trust model we consider is based on binary

trust, i.e. an agent is either trustworthy or not. Agents per-
form transactions and each transaction t(p; q) can be either
performed correctly or not. If an agent p cheats within a
transaction it becomes from the global perspective untrust-
worthy.
In order to disseminate information about transactions

agents can forward it to other agents. Since we assume that
usually trust exists and malicious behavior is the exception,
we just consider information on dishonest interactions as
relevant. Thus an agent p can, in case of malicious behav-
ior of q, �le a complaint c(p; q). Complaints are the only
behavioral data B used in the model.
Let us �rst look at a simple situation where p and q inter-

act and later on r wants to determine the trustworthiness
of p and q. We assume that p is cheating and q is honest.
After their interaction (assuming p and q are acting rational
in a game theoretic sense) q will �le a complaint about p,
which is perfectly fair. On the other hand, also p will �le a
complaint about q in order to hide its misbehavior. An out-
side observer r can therefore not distinguish whether p or q

is the dishonest agent. This is an important point. A social
mechanisms to detect dishonest behavior will not work for
private interactions.
The trouble for p starts when it continues to cheat. As-

sume it cheats in another interaction with s. Then r will
observe that p complains about both q and s, whereas both
q and s complain about p. It will conclude that it is very
probable that p is the cheater.
Generalizing this idea we de�ne the reputation of an agent

as the product

T (p) = jfc(p; q) j q 2 Pgj � jfc(q; p) j q 2 Pgj

High values of T (p) indicate that p is not trustworthy.
The problem is, that we determine the reputation based on
the global knowledge on complaints. Whereas it is straight-
forward for an agent to collect all information about its own
interactions with other agents, it is very diÆcult for it to ob-
tain all the complaints about any other speci�c agent. From
a data management perspective the data is aggregated along
the wrong dimension, namely the �rst argument of c(p; q)
rather than the second. Here we arrive at the point where
we have to study the problem from the perspective of data
management.

4.2 Decentralized Data Management
In order to store data in a P2P network in a scalable way

we use a method that we have proposed earlier, namely P-
Grid [2]. Without going into too much detail we describe
the main properties of this access method that are important
for the subsequent discussion. Other, similar methods are
currently proposed, like [7] or [6], and could be considered
as well.
We show in Figure 2 a simple example of a P-Grid. 6

agents support there together a virtual binary search tree
of depth 2. Each agent is associated with one path of the
search tree. It stores data items for which the associated
path is a pre�x of the data key. For the trust management
application this are the complaints indexed by the agent
number. Each agent can serve any search request. Either
the requested key has as pre�x the search path associated
with the agent processing the request, or the agent can use
its routing table to forward the query to another agent that
is responsible for the complementary part of the search tree.
We demonstrate in the �gure the processing of one sample
query query(6; 100) using this search structure. As agent
6 is not associated with keys starting with 0 it looks up in
its routing table agent 5, to whom it can forward the query.
Agent 5 in turn cannot process a query starting with 10
and therefore looks up in its routing table agent 4, who can
�nally answer the query, as it stores all data with keys, that
start with 10.
At the leaf level the agents store complaints about the

agents, whose identi�er corresponds to the search key, using
the encoding 1 = 001; 2 = 010; : : : ; 6 = 110. One can see
that multiple agents can be responsible for the complaints
on a speci�c agent. Thus, the same data can be stored at
multiple agents and we have replicas of this data. Repli-
cas make the access structure robust against failures in the
network.
As the example shows, collisions of interest may occur,

where agents are responsible for storing complaints about
themselves. We do not exclude this, as for large agent pop-
ulations these cases will be very rare and multiple replicas

1 26 43 5

00 01 10 11

stores
complaints
about and

by 1

stores
complaints
about and

by 2, 3

stores
complaints
about and

by 4, 5

stores
complaints
about and

by 6

1: 3
01: 2

1: 5
01: 2

1: 4
00: 6

0: 2
11: 5

0: 6
11: 5

0: 6
10: 4

stores
complaints
about and

by 1

stores
complaints
about and

by 4, 5

"virtual binary search tree"

0

1

1

routing tables

data stores

query(6, 100)

query(5, 100)

query(4, 100), found !

Figure 2: Example P-Grid

will be available to doublecheck.
One can see that the access method is organized in a peer-

to-peer fashion, i.e. there exists no central database. It
allows requests of the form:

� insert(a; k; v), where a is an arbitrary agent in the
network, k is the key value to be searched for, and v

is a data value associated with the key.

� query(a; k) : v, where a is an arbitrary agent in the
network, which returns the data values v for a corre-
sponding query k.

In [2] we have shown that this access structure satis�es
the following properties.

� There exists an eÆcient decentralized bootstrap algo-
rithm, based on bilateral interactions of agents, which
creates the access structure without central control.
This algorithm is randomized and requires minimal
global knowledge by the agents, namely an agreement
on the key space. The mutual communications basi-
cally lead to a stepwise partitioning of the search space
among agents that interact. Depending on the num-
ber of agents and the maximal number of possible keys,
multiple agents will store data belonging to the same
key, i.e., replicas are generated in the bootstrap.

� The search algorithm consists of forwarding the re-
quests from one agent to the other, according to rout-
ing tables that have been constructed in the bootstrap
algorithm. The search algorithm is randomized as re-
quests are forwarded to a randomly selected reference,
in case multiple references for routing a request exist,
as it is normally the case. The access probability to
di�erent replicas is not uniformly distributed, which is
of importance for the algorithms discussed later.

� All algorithms scale gracefully. In particular, search is
done in O(log n) time when n is the number of agents,
and the storage space required at each agent scales also
as O(log n).

4.3 Local Computation of Trust
We propose a mechanism for computing trust using P-

Grid as storage structure for complaints. Every agent p can
�le a complaint about q at any time. It stores the complaint
by sending messages

insert(a1; key(p); c(p; q)) and insert(a2; key(q); c(p; q))

to arbitrary agents a1 and a2. The insertion algorithm for-
wards the complaints to one or more agents storing com-
plaints about p respectively q. In this way the desired reag-
gregation of the complaint data is achieved.
When an agent wants to evaluate the trustworthiness of

another agent it starts to search for complaints on it. Based
on the data obtained it uses the trust function T to decide
upon trustworthiness.
After an agent has identi�ed the agents that store the

complaints it faces a problem. The agents providing the
data could themselves be malicious. This can be dealt with
by checking in a next step the trustworthiness of the agents,
that store the complaints and so on. Eventually this would
lead to the exploration of the whole network, which is clearly
not what we desire. Therefore we proceed as follows.
We assume that the agents are only malicious with a cer-

tain probability � � �max < 1. Then we con�gure the
storage infrastructure, such that the number r of replicas
satis�es on average �rmax < �, where � is an acceptable fault-
tolerance.
Thus, if we receive the same data about a speci�c agent

from a suÆcient number of replicas we need no further checks.
If the data is insuÆcient or contradictory we continue to
check. In addition, we will also limit the depth of the explo-
ration of trustworthiness of agents to limit the search space,
and might end up in situations, where no clear decision can
be made. These cases should be rare.
An interesting observation relates to the agents that route

the search requests. In fact, if we assume that the network
has unrestricted connectivity (like the Internet), their trust-
worthiness does not play a role with respect to obtaining cor-
rect results. Either agents route a request and help to �nd an
agent storing speci�c complaints, and then we contact that
agent directly, or they don't. Only in networks where the
complete communication needs to be routed through mali-
cious agents (like in a mobile ad-hoc network) this would be
an additional factor to take into account.

5. ALGORITHMS
In the following we describe a speci�c implementation of

the method described before.

5.1 Checking Complaints
When an agent p evaluates the trustworthiness of an agent

q, it retrieves from the decentralized storage complaint data
by submitting messages query(a; key(q)) to arbitrary agents
a. In order to obtain multiple referrals it will do this repeat-
edly, say s times. As a result it obtains a set

W = f(cri(q); cfi(q); ai; fi) j i = 1; : : : ; wg

where w is the number of di�erent witnesses found, ai is
the identi�er of the i-th witness, fi is the frequency with
which witness ai is found and s =

Pw
i=1 fi. cri(q) and cfi(q)

are the number of complaints, that according to witness ai
agent q has received respectively �led. Di�erent frequencies

fi indicate that not all witnesses are found with the same
probability due to the non-uniformity of the P-Grid struc-
ture. In practice this variations can be rather large. This
non-uniformity impacts not only query messages but also
storage messages. Thus witnesses found less frequently will
probably also not receive as many storage messages when
complaints are �led. Thus the number of complaints they
report will tend to be too low. Therefore we normalize the
values by using the frequencies observed during querying.
The following function compensates for the variable proba-
bility of an agent to be found,

cr
norm
i (q) = cri(q)(1� (

s� fi

s
)s); i = 1; : : : ; w

and analoguously for cfnormi (q). The factor 1� (s�fi
s

)s cor-
responds to the probability of not �nding witness i in s

attempts. If fi is high this probability is low and vice versa,
which leads to the desired compensation e�ect. We ignore
the witnesses that are found only once as any conclusion
about the probability of their occurrence would be too un-
reliable.
Once multiple of these values are given, a decision crite-

rion is needed to decide when to consider an agent trustwor-
thy. It is based on the trust measure T and on the experi-
ences an agent p has made. Thus p keeps a statistics of the
average number of complaints received and complaints �led,
cravgp and cfavgp , aggregating all observations it makes over
its lifetime.
Based on these values we use then the following function

to decide whether an agent is trustworthy, where 1 repre-
sents trust and -1 mistrust.

decidep(cr
norm
i (q); cfnormi (q)) =

if

cr
norm
i (q)cfnormi (q) � (

1

2
+

4
p
cr

avg
p cf

avg
p

)2cravgp cf
avg
p

then 1 else � 1

This criterion is a heuristics. It is based on the argument
that, if an observed value for complaints exceeds the general
average of the trust measure too much, the agent must be
dishonest. The problem is the determination of the factor,
by which it may exceed the average value at most.
To determine this factor we performed a probabilistic anal-

ysis, which we can describe here only informally because of
space limitations. We model agent interactions as Poisson
processes. In each interaction cheating occurs with a cer-
tain probability, depending on the cheating probability of
the participating agents. From that we derive upper and
lower Cherno� bounds for the deviation of the total num-
ber of complaints on an agent from the expected number
of complaints. Comparing the lower bound for a malicious
agent with the upper bound for an honest agent we can de-
termine the optimal value for distinguishing the two types
of agents considering their total number of complaints. This
results in an equation which cannot be solved in closed form.
Therefore we determine an approximate solution function,
which has been used in the decision function decidep.

5.2 Exploring Trust
By obtaining the number of complaints in the way de-

scribed an agent can now start to assess trust. The simplest
strategy is to take a majority decision and in case of a tie
return "undecided".

/* p is the agent assessing trust
q is the agent to be assessed
l is the limit on the recursion depth of
exploration of witnesses

The result of the algorithm can be

1 = trustworthy
0 = no assessment possible

-1 = not trustworthy */

ExploreTrustSimple(p, q)

W = GetComplaints(q);
/* using the P-Grid */
/* returns a number of witnesses and the
normalized number of complaints they report */

update statistics with W;

s = SUM(i = 1..|W|, decide(cr_i, cf_i));

IF s > 0 RETURN 1
ELSE IF s < 0 RETURN -1 ELSE RETURN 0

This strategy does not include the checking of the wit-
nesses. Therefore we consider also a more sophisticated pro-
cedure in the following.

ExploreTrustComplex(p, q, l)

IF l<=0 RETURN 0 ELSE

W = GetComplaints(q);
update statistics with W;

IF |W| = 0 RETURN 0;

IF |W| = 1
t = ExploreTrustComplex(p, a_1, l-1)

IF t = 1 RETURN decide(cr_1, cf_1)
ELSE RETURN 0;

IF |W| > 1
s = SUM(i = 1..|W|, decide(cr_i, cf_i));
IF s > 1 RETURN 1

ELSE IF s < 1 RETURN -1
ELSE

FOR i = 1..|W|
IF ExploreTrustComplex(p, a_i, l-1) < 1

W := W \ {entry i of W};

/* eliminate non-trusted witnesses */

s = SUM(i = 1.. |W|, decide(cr_i, cf_i));

IF s > 0 RETURN 1
ELSE IF s < 0 RETURN -1 ELSE RETURN 0

The underlying assumption for this algorithm is that the
probability � that an agent is not trustworthy is higher than

the tolerance for a wrong assessment, i.e. � � �, but that
two witnesses giving the same assessment are acceptable,
i.e. �2 < �. Therefore in case of a single witness it always
needs to be checked. Similarly, if the absolute value of di�er-
ence between negative and positive assessments is smaller or
equal 1, the witnesses need to be checked. If after the check
a majority decision can be made, it is accepted.

6. EVALUATION
In the simulations we evaluate the reliability of the trust

assessments made. We take into account three important
factors. The size and nature of the agent population, the
amount of resources used for trust assessment and the ex-
perience of agents from interacting with other agents. Our
basic assumption was, that relatively few agents cheat. But
we would like to understand better what "few" means. In
addition, we compare the simple and complex algorithm for
trust assessment.

6.1 Simulation Setting
We have implemented the algorithm using the computer

algebra package Mathematica. We chose an agent commu-
nity of 128 agents. For storage we use binary keys of length
5 and 4 to address agents, i.e. on average thus 4 respectively
2 replicas of the occuring complaints on and by agents are
generated. We use for all experiments the same P-Grid in
order to exclude e�ects emerging from variations within the
P-Grid structure.
We compare agent populations including k = 4; 8 : : : ; 32

cheaters. We consider two kinds of cheater populations. In
the �rst population all cheaters cheat uniformly with prob-
ability 1

4
. In the second population, which is more realis-

tic, the cheaters cheat with variable probability of 1

i
, for

i = 1; : : : k for cheater i. This population includes many
agents which cheat very rarely and should thus be hard to
identify.
The experiment proceeds as follows.

1. A P-Grid for the chosen key length 4 or 5 is built.

2. We perform 6400 and 12800 random interactions, i.e.,
each agent has on average 100 respectively 200 inter-
actions with another agent. During that phase com-
plaints are stored in the P-Grid whenever two agents
meet and at least one of them is dishonest and is cheat-
ing in that meeting according to its individual cheating
probability.

3. The trust assessment is performed. 4 honest agents
evaluate the trustworthiness of 100 randomly chosen
agents among the remaining 124 agents. The random
selection is done in order to exclude any e�ects re-
sulting from a speci�c order in which the agents are
assessed and statistical information is built from that
assessment. For example, checking only honest agents
in the beginning would make the assessment more sen-
sitive for subsequent malicious agents, whereas if only
malicious agents are assessed at the beginning, they
could be overtrusted. The agents performing the as-
sessment query the network 15 times in order to ob-
tain data from witnesses. In the trust assessment mali-
cious agents serving as witnesses cheat again according
to their individual cheating probability. In that case

they return random numbers, when being asked as a
witness.

The simulations return the number of correct, undecided
and incorrect assessments made, distinguishing among hon-
est and cheating agents.

6.2 Results
First, we evaluate the quality of the trust assessment for

each parameter setting by aggregating all 100 assessments
of all the 4 assessing agents for all 8 cheater population sizes
(8; : : : ; 32). The aggregation function is

(uhonest + 2 � wcheaters)

total

where uhonest is the number of assessments made, where
the assessed agent was honest, but no decision was made,
and wcheaters is the number of assessments made, where the
agent was malicious, but was assessed as being honest.
The rationale for this function is that undecided cases are

considered as cheaters. This corresponds to a cautious strat-
egy, assuming that trusting a cheater is potentially more
harmful than missing an opportunity for interacting with
an honest agent. Thus also the weight for wcheaters is set to
2.
This allows us to make a �rst rough judgement of the

quality of the algorithm for each parameter setting. For the
cheater population with constant cheating probability of 1

4

the results are as follows.

replicas interactions decision alg. quality

2 100 simple 0.0537
2 200 simple 0.0587
4 100 simple 0.0515
4 200 simple 0.0478
2 100 complex 0.0578
2 200 complex 0.0587
4 100 complex 0.0190

4 200 complex 0.0228

The results show that only the combination of using a
larger number of replicas and the complex decision criterion
substantially increases the quality of the assessments. The
di�erences among the other assessments are not substan-
tial, though their general quality is rather good, i.e. only
a very low fraction of the total number of assessments lead
to wrong decisions (we can think of the quality measure as
a probability of making an error weighted by the expected
cost of doing so).
For the cheater population with variable cheating proba-

bility the results where obviously not as reliable as the many
cheaters with very low cheating probability become diÆcult
to distinguish from the honest agents.

replicas interactions decision alg. quality

2 100 simple 0.1478
2 200 simple 0.0637
4 100 simple 0.1300
4 200 simple 0.0700
2 100 complex 0.1618
2 200 complex 0.0684
4 100 complex 0.2047
4 200 complex 0.0556

In contrast to the pevious result, for the cheater popu-
lation with variable cheating probability the number of in-

teractions, corresponding to the experience of the agents,
becomes essential. Among those assessments again the ones
made using the combination of the larger number of replicas
and the complex decision criterion are the best, though the
di�erence there is not as substantial.
Next we give the detailed results in case of optimal pa-

rameter settings for the di�erent malicious agent popula-
tions. We denote ccheat as the number of cheaters correctly
identi�ed, ucheat as the number of cheaters for which no
decision is made, wcheat as the number of cheaters which
are wrongly assessed, and analogously chon, uhon and whon

for the honest agents. For malicious agents with constant
cheating probability we get.

cheaters ccheat ucheat wcheat chon uhon whon

4 24 0 0 376 0 0
8 20 0 0 379 1 0
12 39 1 0 357 2 1
16 52 0 0 343 5 0
20 100 0 0 289 6 5
24 125 3 0 252 18 2
28 110 2 0 272 10 6
32 137 3 0 243 9 8

For malicious agents with variable cheating probability we
get.

cheaters ccheat ucheat wcheat chon uhon whon

4 4 0 0 396 0 0
8 8 0 0 391 1 0
12 35 1 0 361 3 0
16 60 0 0 338 2 0
20 109 2 5 284 0 0
24 48 2 26 319 3 2
28 93 5 18 283 1 0
32 55 3 30 304 8 0

One can see that the method works almost perfectly in
the case of constant cheating probability up to a quite large
cheater population. In fact, with 32 cheaters already 1

4
of

the whole population cheats. When comparing with the de-
tailed results using the simple assessment algorithm (which
we omit for space reasons) one can see that the main advan-
tage of using the complex assessment algorithm is the ability
to resolve many more of the undecided cases. For the case
of variable cheating probability the method is quite robust
up to 20 agents. For larger numbers of agents an increas-
ing fraction of agents that cheat rarely will be considered as
honest.
One might remark that in the experiments the number

of experiences made by each agent is of the same order of
magnitude as the agent population itself, such that a form
of global knowledge is acquired. In fact, we made the sim-
ulations with a relatively low number of agents in order
to keep the computational cost of the simulation low. We
ran the same experimental setting with 1024 agents, where
32; 64; : : : ; 256 of them are cheating with constant proba-
bilty 1

4
and where each agent has also only 200 encounters.

The results are of the same quality with a quality factor
of 0.02825. This indicates that there exists no (substantial)
dependency in the method between the total population size
and the amount of experience a single agent collects. This
is not unexpected as long as the agent population is built
up in a uniform manner.

Summarizing, the experimental evaluations con�rm by
large what we expected from the method. They show that a
detection of cheating agents is in fact possible in a pure peer-
to-peer environment based on a fully decentralized method.

7. CONCLUSIONS
To summarize, we have identi�ed the questions to be ad-

dressed when trying to �nd a solution to the problem of
trust assessment based on reputation management in a de-
centralized environment. We have introduced and analyzed
a simple, yet robust method that shows that a solution to
this problem is feasible.
Having introduced our approach, allows us to provide a

more detailed comparison to related approaches. If we com-
pare our approach with that from [8], the approach closest
to ours, we can identify the following major qualitative dif-
ferences:
First, in our approach data about the observed behavior

about all other agents and from all other agents is made di-
rectly available for evaluating trustworthiness using the local
trust computation. This allows to compute directly the ex-
pected outcome respectively risk involved in an interaction
with an agent, and makes the level of trust directly depen-
dent on the expected utility of the interaction. This also
easily allows to adapt the computation of the trust values
to changing requirements or for exploiting additional con-
text information. In contrast, in [8] an abstract measure for
trust is made available. Only trust values, but no observa-
tion data, is made available to other agents by propagation
along referral chains. The trust values are qualitative in na-
ture and satisfy due to their construction certain desireable
properties, like symmetry, transitivity or self-reinforcment.
They allow to locate cheaters in the limiting case, but no
detailed, quantitative risk assessments.
Second, more importantly, the approach in [8] has dif-

�culties to scale for large numbers of agents, similarly as
other, related approaches. Every agent has to be able to
provide referrals on the trustworthiness of any other agent
in order to make the approach working. Although the au-
thors remain unclear with respect to the implementation,
either this requires the storage of trust information for all
other agents at each agent, or the propagation of requests
for referral through the whole network (or some combina-
tion of the two). In the �rst case the approach cannot scale
in storage space for large agent populations, in the second
case the communication cost is high and the approach would
experience similar problems by ooding the network with
messages, as Gnutella does.
The ultimate litmus test is of course to directly compare

the approaches in a simulation setting and to evaluate, which
trust management system leads to the best performance un-
der the same resource consumption. This is part of future
work.
As our approach is a �rst contribution to this problem,

a number of other issues for future research remain open.
First, we see a need for more extensive evaluations of the
method over a wider parameter range and using more de-
tailed evaluation criteria. Second, probabilistic analysis are
to be made which analyse the underlying probabilistic pro-
cesses and eventually lead to more precise methods. We
made already �rst steps into that direction which lead in
particular to a formal justi�cation of the decision criterion
used in the algorithm. Third, we plan to incorporate these

mechanisms into actually existing P2P applications, like �le
sharing systems, and thus to improve their quality for the
users and to obtain feedback on practicability.

8. REFERENCES
[1] A. Abdul-Rahman and S. Hailes: Supporting Trust in

Virtual Communities Proceedings of the 33rd Hawaii
International Conference on System Sciences, 2000.

[2] K. Aberer: P-Grid:A self-organizing access structure
for P2P information systems Proc. of the Ninth
International Conference on Cooperative Information
Systems (CoopIS 2001), 2001.

[3] E. Adar and B. A. Huberman: Free riding on Gnutella
Technical report, Xerox PARC, 10 Aug. 2000.

[4] D. Clark: Face-to-Face with Peer-to-Peer Networking.
IEEE Computer, January 2001.

[5] S.Marsh: Formalising Trust as a Computational
Concept Ph.D. Thesis, University of Stirling, 1994.

[6] S. Ratnasamy, P. Francis, M. Handley, R. Karp, S.
Shenker: A Scalable Content-Addressable Network
Proc. of the ACM SIGCOMM, 2001.

[7] I. Stoica, R. Morris, D. Karger, F. Kaashoek, H.
Balakrishnan: Chord: A Scalable Peer-To-Peer Lookup
Service for Internet Applications Proc. of the ACM
SIGCOMM, 2001.

[8] Bin Yu and Munindar P. Singh: A Social Mechanism of
Reputation Management in Electronic Communities
Proc. of the 4th International Workshop on
Cooperative Information Agents, Matthias Klusch,
Larry Kerschberg (Eds.), Lecture Notes in Computer
Science, Vol. 1860, Springer, 2000.

