

CS 6203

Advanced Topics in Database
Management Systems

Report: P2P vs Grid Computing

By

Ooi Hong Sain

HT029804y

Acknowledgement

All figures are taken directly from the original works [buyya2000, buyya2002].

Abstract

P2P and Grid computing are emerging as a new paradigm for solving large-scale
problems in science and engineering. Both share a lot of similarities in terms of
sharing, selection, and aggregation of geographically distributed heterogeneous
resources. They are also differing in terms of targeted users and resources. With the
latest advancement of technologies, one may conjectures that both computing systems
may converge at some point. In this paper, we briefly review both computing
platforms and describe a framework that might allow both technologies to be
converged together.

1. Introduction

Recently, two new approaches to distributed computing have gathered must attention
of computing communities: P2P and Grid computing. Both claim to address the
problem of managing the large-scale computation societies (Foster and Iamnitchi). As
both share a lot of similarities, this motivated our study towards comparing P2P and
Grid computing.

Grid (Foster and Kesselman 1999) and Peer-to-Peer (P2P) (Oram 2001) computing
platforms enable the creation of Virtual Organizations through sharing, selection, and
aggregation of geographically distributed heterogeneous resources—such as
computers and data sources—for solving large-scale problems in science, engineering,
and commerce. The resources in these environments are heterogeneous and
geographically distributed. The management of these resources and scheduling in
such a large-scale distributed environment is a complex task.

Both have different requirements in the resource types and targeted users. However,
both appear to have the same final objective that is the aggregation and coordination
of the use of large sets of distributed resources. Based on the initial study (Foster and
Iamnitchi), we found that
1. both technologies are concerned with the same general problem, mainly the

managing of resources shared within the virtual organizations,
2. both take the same general approach in solving the problem, namely the creation

of overlay architecture,
3. each approach has their own advantages and disadvantages as the targeted

resources and users are different,
4. both approaches are likely to be converged over time.

In this study, we first study the similarities and differences between Grid and P2P
computing. In Section 2, we discuss the technological advancements that contribute to
the emerging of both technologies. Both technologies are briefly reviewed and the
comparisons are given. In Section 3, we discuss an economic framework that may
allow both computing platforms to be converged together. This is follow by the
realization of the framework in Section 4. We expressed our own view in the issue of
convergence of P2P and Grid computing. Finally, we conclude at Section 6.

2. P2P and Grid Computing

This section presents an overview of P2P and Grid computing technologies. It
discusses some of the important technological advances that have led to the
emergence of P2P and Grid computing.

P2P and Grid computing are two examples of distributed network computing system.
By distributed, we mean the computing systems are allocated at geographically
distributed regions. For example, the World-Wide Grid testbed consisted of computer
resources that located in five continents: Asia, Australia, Europe, North America, and
South America.

A distributed network computing (NC) system is a virtual computer formed by a set of
heterogeneous computers (including equipments and other resources) linked together
by network. Thus NC is a large scale collection of computing system linked together
with network. With the pervasiveness of the Internet, the distributed network
computing has been scale up to new global level. Thus with proper applications and
tools, it can be used as Internet-size cluster.

The last decade has seen a substantial increase in computer performance. This is
mainly the result of faster hardware and more sophisticated software. Nevertheless,
there are still a lot of problems in the areas of science and engineering, which cannot
be effectively dealt with even using the latest supercomputers. For example, proteins
fold very quickly, as fast as a millionth of a second. However it takes a day to
simulate a nanosecond of folding process in modern computers. In real life, proteins
fold on the tens of microseconds timescale, this means that it would takes 10000 CPU
days to simulate the folding (30 CPU years)(Folding@Home). This type of
large-scale scientific problems has motivated the great amount of work in utilizing the
distributed resources for solving large-scale problems.

We first present the technological advancements that enable P2P and Grid computing.
These technologies are mainly the widespread of the Internet, availability of powerful
computers and high-speed network connections. This is followed by the brief
discussion about P2P and Grid computing. This section ended with the comparison
between these two computing platforms.

2.1 Technological Advancement

The idea of linking computer systems together to solve problem is not a net idea.
Back in the early 1970s, when the computers are first linked by network, the idea of
harnessing unused CPU cycles was born (WWW). For example, scientists at Xerox
Palo Alto Research Center (PARC) developed a program called “worm” that routinely
cruised over 100 linked computer. The program was used to distribute graphic images
and to share computation for realistic computer graphics rendering.

With the success of the Internet together with the availability of powerful computers
and high-speed network technologies as low-cost commodity components, the
computing landscape start to change. These technology opportunities have led to the

possibility of using wide-area distributed computers for solving large-scale problems.
Since 1990, with the maturation and ubiquity of the Internet and Web technologies
together with the powerful computers and high-speed networks, distributed computing
scaled up to a new global level. The availability of powerful PCs and workstations,
and high-speed networks (e.g., Gigabit Ethernet) enable the emergence of clusters for
high performance computing (HPC). The combination of the Internet and the clusters
within many organizations has prompted the exploration of aggregating distributed
resources for solving large scale problems of multi-institutional interest. This has led
to the emergence of computational Grids and P2P networks for sharing distributed
resources. The Grid community is generally focused on aggregation of distributed
high-end machines such as clusters, whereas the P2P community (e.g.,
SETI@Home(SETI@Home)) is looking into sharing low-end systems, such as PCs
connected to the Internet and contents (e.g., exchange music files via Napster(Napster)
networks).

2.2 P2P Computing

P2P is a class of applications that takes advantage of resources -- storage, CPU cycles,
and human presence -- available at the edges of the Internet (Shirky 2000). One
unique characteristic of P2P applications is that P2P nodes must operate outside the
DNS system and have significant or total autonomy from central servers. This is
because accessing these decentralized resources means operating in an environment of
unstable connectivity and unpredictable IP addresses. Another characteristic is that it
eliminates the need for servers and allows all computers to communicate and share
resources as equals. This is what makes P2P distinctive.

The P2P acronym technically stands for peer-to-peer. TechWeb (TechWeb) defines
P2P as:

“From user to user. Peer-to-peer implies that either side can initiate a session
and has equal responsibility. Peer-to-peer is a somewhat confusing term, because
it has always been contrasted to a central system that initiates and controls
everything. But in practice, two users on a peer-to-peer system often require
data from a third computer. For example, the infamous Napster file sharing
service was always called a "peer-to-peer network," but its use of a central server
to store the public directory made it both centralized and peer-to-peer. The two
major categories of peer-to-peer systems are file sharing and CPU sharing.”

Based on the above definition, P2P applications can be classified into two categories:
P2P network and P2P computing. P2P network defines a communication environment
that allows all desktop and laptop computers in the network to act as servers and
share their files with all other users on the network. P2P networks are quite common
in small offices that do not use a dedicated file server. In such cases, only specific
folders in each machine are made sharable for read access only (not write access).

One the other hand, P2P computing focuses on sharing CPU resources across a
network so that all machines function as one large supercomputer. It allows unused
CPU capacity in any of the machines to be allocated to the total processing job
required. In a large enterprise, hundreds or thousands of desktop machines are sitting
idle at any given moment. Even when a user is reading the screen and not typing or
clicking, it constitutes idle time. These unused processing cycles could be put to use
on large computational problems. Likewise, the millions of users accessing the
Internet create trillions of wasted machine cycles every minute that could be put to
other use (see SETI@HOME).

2.3 Grid Computing

The Grid takes its name from an analogy with the electrical power grid that provides
consistent, pervasive, dependable, transparent access to electricity, irrespective of its
source. The motivation for computational Grids was initially driven by large-scale,
resource (computational and data) intensive scientific applications that require more
resource than a single computer (PC, workstation, supercomputer, or cluster) could
provide in a single administrative domain. A Grid enables the sharing, selection, and
aggregation of a wide variety of geographically distributed resources including
supercomputers, storage systems, data sources, and specialized devices owned by
different organizations for solving large-scale resource intensive problems in science,
engineering, and commerce. (Buyya 2002)

With grid computing, an organization can transform its distributed and
difficult-to-manage systems into a large virtual computer that can be set loose on
problems and processes too complex for a single computer to handle efficiently. The
problems to be solved can involve data processing, network bandwidth, or data
storage. The systems linked in a grid might be in the same room, or distributed across
the globe; they might be running different operating systems on many hardware
platforms; they might even be owned by different organizations. Regardless of the
depth of a grid's resources, what is appears to all grid users is a very large virtual
computer. (Computing)

The major purpose of a Grid is to gather resources to solve large-scale problems; the
main resources grid computing is designed to give access to include (but are not
limited to):

• Computing/processing power
• Data storage/networked file systems
• Communications and bandwidth
• Application software

Since the concept of putting grids into real-world practice is still relatively new,
another good way to describe a grid is to describe what it isn't. The following entities
are not grids:

• Cluster
• Network-attached storage device
• Scientific instrument
• Network

Each might be an important component of a grid, but by itself, doesn't constitute a
grid.

2.4 Comparing Grid and P2P Computing

P2P and Grid computing share a lot of similarities, both allow the sharing, selection,
and aggregation of geographically distributed resources (virtual organization). The
main difference between P2P and Grid computing is that The Grid community is
generally focused on aggregation of distributed high-end machines such as clusters,
whereas P2P community is looking into sharing low-end systems, such as PCs
connected to the Internet (e.g. SETI@Home) or contents (file sharing via Napster
networks).

Current Grids provide many services to moderate-sized communities (mostly
scientific communities) and emphasize the integration of substantial resources
(high-end resources) to deliver nontrivial qualities of service within an environment
of at least limited trust. In contrast, current P2P systems deal with many more
participants (e.g., hundreds of thousands in Napster) but offer limited and
specialized services such as file-sharing. P2P systems have been less concerned
with qualities of service, and have made few if any assumptions about trust. This
is mostly due to the dynamic nature of the networks; as each user can join and leave
the system at any time (Foster and Iamnitchi).

3. Grid Architecture for Computational Economy (GRACE)
In this section, an economic framework for managing resources and scheduling
applications in Grid computing environments is presented. The framework is
proposed as a solution to the challenges in Grid computing environments. The
motivation of such an approach is due to the success of economic models for
exchanging and regulating goods, services, and resources used in the real world.
Several real world economic models such as commodity market, posted prices,
bargaining and tendering are discussed.

3.1 The requirements of economic-based approach

In addition to normal resources management problems such as site autonomy, policy
extensibility, online control, and heterogeneous substrate, the economic-based
approach also introduced new issues such as resource trading and quality of
service-bases scheduling. Thus to address some of these issues, the framework must
support the following:

 An information and market directory (publications)
 Models for representing value of resources (pricing)
 Economic models and negotiation protocols
 Regulatory agencies (mediators)
 Accounting, billing, and payment mechanisms
 Users’ Quality of Services

To allow resource owners and consumers to express their requirements and facilitate
the realization of their goals, the following mechanisms are required:
– Value expression
– Value translation
– Value enforcement

The value expression is a mechanism that allows both parties to express their
requirements, valuations, and objectives. The value translation is a mechanisms used
by the scheduling policies to translate the values into resource allocations. Finally, the
enforcement of selection and allocation of differential services, and dynamic
adaptation to changes in the availability at runtime is handled by the value
enforcement mechanism.

For example, the users can specify the deadline and budget constraints along with
optimization parameters [value expression]. Then the client application provides
strategies for choosing appropriate resources [value translation] and dynamically
adapt to changes in resource availability at runtime to meet user requirements [value
enforcement]. On the other hand, the resource owners specify the prices to increase
system utilization together with protocols that help them offer competitive services
[value expression]. The Grid resource schedulers will allocate the resources [value
translation] and allocate the resources during reserved time [value enforcement].

3.2 GRACE

GRACE was proposed around year 2000 to address the resource management
challenges (Buyya, Abramson et al. 2000; Buyya, Abramson et al. 2001; Buyya,
Stockinger et al. 2001). The challenges include site autonomy, heterogeneous
substrate, policy extensibility, resource allocation or co-allocation, online control,

resource trading, and quality of service based scheduling. Most of the problems are
already solved in currently available Grid system, such as Globus (Foster and
Kesselman 1997), Legion (Grimshaw and Wulf 1997), and Condor (Litzkow, Livny et
al. 1988). The GRACE framework was proposed to address the two remaining issues:
resource trading and quality of service-based scheduling. Furthermore, to reduce the
duplication of works, GRACE uses existing technologies such as Globus, and Legion,
and develops other services on top of these technologies.

The architecture of GRACE is given in Figure 1. The architecture is designed in such
as way that it is generic enough to accommodate different real world economic
models. The models are used for resource trading and determining the service access
cost. The key components of GRACE include:
– Grid user with applications

• Sequential, parametric, parallel, or collaborative applications
– User-level middleware

• Programming environment
• Grid Resource Brokers

– Core Grid Middleware
• Services resources trading and coupling distributed wide are resources

– Grid Service Providers

Figure 1. A framework of GRACE

There are two important players in GRACE, the resource owners and consumers. The
resource owners are organizations or individuals that agreed to contribute their
resources, such as personal computers, clusters, super-computers, storage systems,
data sources, and other specialized devices. They are known as Grid Service Providers
(GSPs) under GRACE. On the other hand, the resource consumers are those who

utilized the resources to solve their problems. They are represented by Grid Resource
Broker (GRB) which acts the consumer’s representative.

Both parties have their own expectations and strategies for being part of the
environment. Basically, the resource consumers adopt the strategy of solving their
problems based on their budget and deadline. Thus the consumers will choose the
providers that best meet their requirements. The resource owners adopt the strategy of
obtaining the best possible return on their investment. Thus they are more likely try to
offer a competitive service access cost in order to attract consumers.

In order to allow both parties to express their requirements, some tools and
mechanisms are needed. In GRACE, the consumers interact with GRB to express
their requirements such as the budget and deadline. The budget defines the price that
the consumers willing to pay for solving their problems, while the deadline defines
the time frame by which they need the results. To resemble real world economic
models, the negotiation protocols are also needed. This allows the consumers to trade
between the deadline and budget requirements and steer the computations accordingly.
The GSPs need tools for expressing their pricing schemes and mechanisms that can
help them to maximize resources utilization and their profits.

3.2.1 Grid Resource Broker (GRB)

The resource broker acts as the middle man between the consumer and resources
using middleware services. It presents the Grid to the consumer as a single and
unified resource. This facilitates the adoption of previous technologies into GRACE
framework. The following are major components in GRB:

 Job Control Agent (JCA)
 Schedule Advisor (Scheduler)
 Grid Explorer (GE)
 Trade Manager (TM)
 Deployment Agent (DA)

The GRB is responsible for resource discovery, resource selection, binding of
software, data, and hardware resources, initiating computations, and adapting to the
changes in Grid resources. These services are carried out by the components in GRB.
The JCA is a persistent control engine responsible for managing a job through the
system. Together with scheduler, it coordinates schedule generation, handles creation
of jobs and maintains the job status. It interacts with the users/clients, scheduler and
deployment agent. The scheduler is responsible for resource selection and job
assignment with the help of scheduler through schedule generation. It is also
responsible for resource discovery with the help of GE. The scheduler is used to
ensure the user requirements are met. The GE is the main component responsible for
resource discovery. It interacts with the Grid Information Server to retrieve and

identify the list of authorized and available machines, and keeping track of the
resources status. The TM works based on the requirements of the consumer. It uses
the resource selection scheme generated by scheduler (based on user’s requirements)
to identify the resource access costs and negotiation protocols for trading with GSPs.
The DA is responsible for the activation of jobs on the selected resources and updates
the job status to JCA.

3.2.2 Grid Service Provider (GSP)

The GSPs specifically deal with the following components along with other services
provided by Grid toolkits such as Globus and Legion:

 Grid Market Directory
 Grid Trade Server
 Pricing Policies
 Resource Accounting and Charging

The service providers publish their services through the GMD as normal businessmen
publish their products and services at yellow pages.

3.2.3 Negotiation protocols

The negotiation protocols define the rules and format for exchanging commands
between a trade manager and a trade server. The negotiation protocols play an
important role in helping the resource owners and resource consumers to achieve their
specific goals. Figure 2. shows a sample multilevel negotiation process when trading
for the cost of resource access.

Figure 2. Negotiation Protocol

The Deal Template (DT) is used as a template for TM to specify resource
requirements. The structure of the DT is given in Figure 2. The contents of DT can be
changed during the negotiation process. The negotiation process between TM and TS
continues until one of them indicates that its offer is over. Then the other party will
decide whether to accept or reject the deal. If accepted, both work on what is specified
in the DT.

3.3 Pricing

In an economic model, the resources consumed by the user applications need to be
charged for usage fees. A simple pricing scheme such as fixed price model can be
employed, but it may not work well when users place QoS demands that vary with
application and time. Many works have been done in this area, the pricing schemes
based on different parameter include:

 A flat price model
 Competitive economic model
 Usage timing, period and duration
 Demand and supply
 Loyalty of customers
 Bulk purchase

3.3.1 Services items to be charged

User applications have different resource requirements depending on the nature of the
algorithms used in solving problems. Some applications are CPU intensive while
others can be I/O intensive or combination. Some applications required large amount
of memory or storage. These are all the items that can be chargeable. Therefore, in
GRACE, the consumption of the following resources needs to be charged:

 CPU (including user time and system time)
 Memory
 Storage used
 Network bandwidth consumption
 Specialize devices
 Software and libraries accessed

Consumption of other resources can also be charged. The information about the
services available and its corresponding charges can be obtained from the Grid
Market Directory. The access to each of these entities can be charged individually or
in combination. The pricing will be dependent on the strategies adopted by the service
providers.

3.3.2 Payment Mechanisms

The resources consumed by the consumers need to be accounted and charged. Thus
various payment mechanisms must be supported. The payment mechanisms supported
by GRACE include:

 Prepaid
 Postpaid
 Pay as you go
 Grants based

The consumers can purchase resource access credits through any of the above
schemes. Each GSP can maintain this by using system such as QBank or GridBank to
mediate payment mechanisms. This approach reduces the great burden on the
consumers and service providers in a large-scale Grid environment. Using this
approach, the GRB inform the GSPs about the consumer GridBank account details for
which they can charge directly or users can pay by other electronic cash systems such
as:

 NetCheque (Neuman and Medvinsky 1995)
 NetCash (Medvinsky and Neuman 1993)
 Paypal (Paypal)

Such payment mechanisms satisfy the diverse requirements of consumers and service
providers and can be easily integrated into GRACE.

3.4 Economic models in GRACE

GRACE is a generic economic framework that is capable of accommodating different
models that are used in human economies. In this section, some models are discussed
and their implementations are given. For each of the economic models, the economic
model theory, its parameters and strategies are also presented.

The idea of applying economics to resource management in distributed systems such
as Grid and P2P computing is not a new idea. Several researches have been done in
this area, for example, Spawn (Waldspurger, Hogg et al. 1992), Popcorn (Nisan,
London et al. 1998), and Java Market (Amir, Awerbuch et al. 1998). These works
have been help in understanding the potential benefits of market-based systems.
Unfortunately, many of them were limited to experimental simulations. Furthermore,
the systems were implemented using monolithic approach, this make them hard to be
scale up. Some expect the users to develop resource-aware applications explicitly for
their platforms using their own programming interface (e.g., Spawn and Popcorn). As
a consequent, developing applications for such platforms are difficult as users have to
address both the application development and resource allocation issues concurrently.

This problem can be overcome by separating the application development and
resource management issues and is used in GRACE.

3.4.1 Commodity Market

In commodity market model, resource owners specify their service price and charge
users according to the amount of resource they use. The service price can either be flat
or variable depending on the resource supply and demand. The service providers can
adopt different strategies to increase the resource utilization, thus mixture of flat and
variable price models can be used. In general economic model, the services are priced
in such a way that there exists equilibrium between supply and demand.

In flat price model, the price is fixed for a certain period. It remains the same
irrespective to the service quality and is not influenced by the supply and demand. On
the other hand, in variable price model, the price changes very often based on supply
and demand changes. When the demand increases or supply decreases, the service
providers can increase the service prices until the supply and demand return to their
equilibrium state again. Basically, the pricing schemes in a commodity market model
can include:

 Flat fee
 Usage duration
 Subscription
 Demand and supply-based

The resource owners publish their prices and rules in the GMD service (as shown in
Figure 3). This is similar real world businessmen publish their products and services
through yellow pages. This is performed through the help of GTS.

The price specification may take the following form,
Price(owner_id, peak_price, offpeak_price, up_highdemand, down_lowdemand,
holiday_price)

The owner_id is used to identify the resource owner, which may be same as Grid-ID.
The price can be specified for peak period, say, between 9am to 6pm on working days
and for off peak period. The price also be increased when there is high demand, or
decreased when the demand is low. For example, the price can be reduced when the
system load is less than 50% at any given time.

Figure 3. Commodity Market Model

To execute user applications on the Grid, the following steps are performed by the
GRB:
1. The GRB identifies service providers (GSPs)
2. It identifies suitable resources and establishes their prices
3. It selects resources that meet user’s objectives and requirements.
4. It uses resource services for job processing and issues payments as agreed.

3.4.2 Posted Price Model

The posted price model is similar to the commodity market model, except that special
offer prices are used to attract consumers. This strategy can be used by new service
providers to establish their market share or motivate users to consider using cheaper
slots. In this model, the posted prices are used directly by GRB as they are generally
cheaper compared to regular prices.

In general, the posted price offers will have usage conditions. For example, during
holiday periods, demand for resources is likely to be limited. In this case, the GSPs
can post tempting offers or prices to attract users to increase resource utilization.

Figure 4. Posted Price Model

The steps in executing applications in posted price model are:
1. GSPs post their special offers and associated conditions in GMD
2. GRB looks at GMD to identify if any of these posted services available and fits

its requirements
3. GRB enquires GSP for availability of the posted services
4. Other steps are similar to the steps used in commodity market model

3.4.3 Bargaining Model

In previous two models, the prices are fixed by the service providers. The consumers
pay the access fees based on the agreed pricing scheme. There is no negotiation
process in these models. In the bargaining model, GRB bargains with GSPs for lower
access price and higher usage duration. Both parties have their own objectives and
they negotiate with each other as long as their objectives are met. The process is
illustrated in Figure 5.

Figure 5. Bargaining Model

For example, the GRB might start with a very low price and GSPs with a higher price.
They both negotiate until they reach mutual agreeable price or one of them decided to
stop the negotiation. The negotiation is depended on the consumer requirements, such
as deadline and budget. In some situations, the GRB may take risk and negotiate for
cheaper prices as much as possible and discharge some expensive machines. This will
be resulted in low utilization of resources, so the corresponding GSPs might be
willing to reduce their service prices to attract consumers instead of wasting the
resources.

3.4.4 Tender/Contract-Net Model

Tender/Contract-Net model is based on the real world tender and contract model. It is
also one of the most widely used models for service negotiation in a distributed
environment for solving problems. The main advantage of this model is that it helps
in finding an appropriate service provider to work on a particular task. The process is
given in Figure 6.

Figure 6. Tender/Contract-Net Model

In this model, the following steps are used by consumers to find suitable service
provider (contractor):
1. GRB announces it requirements and invites GSPs for bids
2. Interested GSPs evaluate the announcement and respond by submitting their bids
3. GRB evaluates bids and awards the contract to most appropriate GSPs
4. Both parties communicate privately and utilizing the resources

On the other hand, the following steps are used by the service providers (contractors):
1. Receive tender announcements
2. Evaluate service requirements and its corresponding capability
3. Respond with bid
4. Deliver service if bid is accepted
5. Report results and charge the consumers according to agreed bid

Another advantage of this model is that if the selected GSP is unable to deliver a
satisfactory service, then GRB can looks for services of other GSPs.

Due to the heterogeneity of Grid environments, this protocol has some disadvantages.
For example, a task may be awarded to less capable GSP if a more capable GSP is
busy at award time. Furthermore, the GSP may not be able to respond to the bid at the
time if the resources are already occupied or the requirements are not appropriate.

3.4.5 Other Models

As mentioned earlier, GRACE is a generic framework that capable of accommodating
different economic models. Other proposed economic models for GRACE include
auction, bid-based proportional resource sharing model, cooperative bartering model
and monopoly models.

The auction model supports one-to-many negotiation, between a service provider and
many consumers. The auctioneer sets the rules of auction, which are acceptable to
both the consumers and the providers, and the auction starts. In bid-based proportional
resource sharing model, the percentage of resource share allocated to the user
application is proportional to the bid value of a particular consumer. In cooperative
bartering model, a cooperative computing environment is formed. Those who are
contributing their resources to the environment can get access to the resources. In
monopoly model, there exist cases where a single GSP dominates the market, for
example, it is a single service provider of a special service. In this model, the
consumers cannot influence the price of the service and have to use the price set by
the GSP.

4. Nirmod-G Grid Resource Broker

This section presents the Nimrod-G Grid resource broker as an example of realization
of GRACE. The architecture is generic enough to leverage services provided by
various Grid middleware such as Globus, Legion, and Condor. This helps in reducing
the development time. Furthermore, it also allows uniform access to diverse resources,
managed by different Grid middleware.

Nirmod-G is a computational economy-based Grid resource management and
scheduling system that supports deadline- and budget-constrained algorithms for
scheduling parameter sweep applications (parameter studies) on distributed resources
(Buyya, Abramson et al. 2000). It provides a simple declarative parametric modeling
language for expressing parametric experiments. This allows one to create
parameter-sweep applications. For example, the domain experts (application-specific
experts) can easily create a plan for the application and use the Nirmod-G broker to
handle all the issues related to resource managements and execution. The resource
management and scheduling algorithms are based on economic principles (as a
realization of GRACE framework).

4.1 Architecture

A diagram of high-level architecture and component of Nirmod-G is given in Figure 7.

The components include:
 A persistent task farming engine (TFE)
 A grid explorer
 A resource trading manager
 A schedule advisor
 A dispatcher and actuators
 Agents for managing execution of jobs

Figure 7. High-Level Diagram for Nirmod-G Architecture

The Nimrod-G resource broker is responsible for determining the requirements that a
user application places on the Grid and performing resource recovery, scheduling,
dispatching jobs, job execution and return the results to user application. The TFE is a
persistent and programmable job control agent that manages and controls the user
applications. It is responsible for managing the execution of parameterized application
jobs. It coordinates resource trading, scheduling, data staging, execution and gathering
results from remote Grid nodes to the user’s home transparently. The programmable
capability of TFE enables the creation and “plug-in” of user-defined scheduling
policies and customization of the problem-solving environments.

The scheduler consists of a Grid explorer for resource discovery, a schedule advisor
and a resource trading manager. It is responsible for resource discovery, resource
trading, resource selection, and job assignment. The GE interacts with GMD to
retrieve a list of authorized and available machines and their costs. The resource
trading manager is responsible for keeping rack of resource status information and
trades for resource access costs. The schedule advisor is backed with resource

selection algorithm for selection of resources that meet the deadline and budget
constraints.

The dispatcher and actuator are used for deploying agents on Grid resources. The
dispatcher triggers appropriate actuators depending on middleware service to deploy
agents on Grid resources and assign one of the resource-mapped jobs for execution.
For example, a Globus-specific actuator is required for Globus resources.

The agent is responsible for setting up the execution environment on the selected
resources. It transfers the code and data to the remote machine, starts the job on the
assigned resource and returns the results back to the TFE. The agent also records the
amount of resource consumed during the job execution. This helps the scheduler to
evaluate the resource performance and change the schedule accordingly.

4.2 Scheduling Algorithms

The integration of computational economy into the scheduling algorithm greatly
influences the selection of computational resources that meet the user requirements.
The users should be able to submit their applications together with requirements. The
scheduling algorithm should be able to process the application on the Grid on the
user’s behalf and try to complete the assigned work within a given budget and
deadline.

In order for the scheduling algorithm to arrive at an optimal decision, various factors
are needed to be considered. These factors include:

 Resource architecture, configuration, capability, and state
 Resource requirements of an application
 Free or available nodes
 Access speed
 Network bandwidth, load, and latency
 Reliability of resources and connection
 Application deadline
 Resource cost, and others

In Nirmod-G, the applications itself contain a large number of independent jobs
operating on different data sets. A range of scenarios and parameters to be explored
are applied to the program input values to generate different data sets. This resembles
the SPMD (Single Program Multiple Data) computational model. The execution
model essentially involves processing N independent jobs (same program but operates
on different datasets) on M distributed computers.

The execution of the applications on distributed computers may appear straight
forward, but complexity arises when deadline and budget constraints are applied to

the scheduling algorithms. It is hard to guarantee service quality in such environments
as the resources are shared, heterogeneous, geographically distributed and owned by
different organizations having different policies. On top of these, the scheduling
algorithms need to consider the changing load and resource availability conditions in
the Grid in order to achieve performance and at the same time meet the deadline and
budget constraints.

In Nimrod-G, three scheduling algorithms are used:

 Cost optimization
 Time optimization
 Conservative time optimization

Each algorithm works within the time and budget constraints. The role of deadline
and budget constraints in these algorithms is given in Table 1.

Algorithms Time Cost
Cost optimization Limited by deadline Minimize
Time optimization Minimize Limited by budget
Conservative time
optimization

Limited by deadline Limited by budget

Table 1. Schedule Algorithm Based on Deadline and Budget Constraints

The time optimization scheduling algorithm tries to complete the job as quickly as
possible, within the budget available. It is based on the following algorithm:
1. For each resource

a) Calculate the next completion time for an assigned job
b) Taking into account previously assigned jobs and job completion rate

2. sort resources by next completion time
3. assign one job to the resource which the cost per job is less than or equal to the

remaining budget per job
4. repeat above steps until all jobs are performed

On the other hand, the cost optimization scheduling algorithm attempts to complete
the job as economically as possible within the deadline. The algorithm is given as:
1. sort resources by increasing cost
2. for each resource in order

a) assign as many jobs as possible to the resource
b) make sure the assignment is not exceeding the deadline

The conservative time optimization scheduling algorithm tries to complete the job
within the deadline and budget constraints. It tries to ensure that a minimum of “the
budget-per-job” from the total budget is available for each unprocessed job. A
description of the algorithm is as follows:

1. split resources based on cost per job (is less than or equal to the budget per job)
2. for the cheaper resources

a) assign jobs in inverse proportion to the job completion time
3. for the dearer resources

a) repeat all steps until all jobs are performed

5. Convergence of P2P and Grid Computing

Both P2P and Grid Computing share a lot of similarities, they both enable the sharing
of resources through the creation of virtual organizations. We already briefly describe
the main different between P2P and Grid computing. Nevertheless, there are some
overlapped areas in P2P and Grid computing, this is especially true in the area of
scientific computation. For example, the Folding@HOME is similar with other
applications that simulate protein folding running in grid. The methods/platforms used
might be different, but the approach is the same – solving large scale problem with
collection of computing systems together.

With the advances of the technology developments, such as powerful personal
computers and high-speed network connections, one may conjectures that at one point
both P2P and Grid computing will converge together. This is the motivation behind
this study. This might be possible if a proper framework and tools are available to
integrate all currently available Grid middleware and P2P applications.

However, there will be areas that will only limit to particular system. For example, the
illegal file sharing applications will likely be stand alone without converge with other
systems. The developers of such systems will continue their efforts in developing new
applications for this purpose. There will be other grid systems that will limited itself
to certain groups of users as this may include highly advanced equipments and
computing systems, hence trust and security are real issues. For example, the security
agencies may employ their own Grid architecture that will well fit for their own
purpose instead of using the open and general Grid utilities.

6. Conclusion

In this study, we briefly reviewed the two new emerging technologies for next
generation computing, the P2P and Grid computing. They both share some similarities
in terms of sharing the resources. At current stage, due to the targeted users and
resources, there is a clear cut between these two technologies. However, as discussed
above, with the advance of technology, the line is becoming unclear.

We presented a framework that allows both the P2P and Grid computing to be
converged together. This framework is based on the economic models. The motivation
behind this approach is to reward those who contribute to the resources. For P2P
communities, the main reward is able to access files with minimum fees (music files
such as mp3). Using this approach, we may encourage the P2P communities to share
their computer cycles for solving large-scale problems by rewarding them.
Furthermore, under this framework, different computing platforms such as Grid and
P2P computing can be integrated together as shown in Figure 7.

However, no matter how successful the framework is, it is most likely that both
platforms will not converge fully. There will be some specific areas that will remain
specific to each of the computing platform.

Bibliography
Amir, Y., B. Awerbuch, et al. (1998). A Cost-Benefit Framework for Online Management of a
Metacomputing System. Proceedings of 1st International Conference on Information and
Computational Economy, Charleston, SC, USA.

Buyya, R. (2002). Economic-based Distributed Resource Management and Scheduling for Grid
Computing. School of Computer Science and Software Engineering. Melbourne, Australia, Monash
University. PhD.

Buyya, R., D. Abramson, et al. (2000). An Economy Driven Resource Management Architecture for
Global Computational Power Grids. Proceedings of the 2000 International Conference on Parallel and
Distributed Processing Techniques and Applications (PDPTA 2000), Las Vegas, USA, CSREA Press.

Buyya, R., D. Abramson, et al. (2000). Nimrod-G: An Architecture for a Resource Management and
Scheduling System in a Global Computational Grid. The 4th International Conference on High
Performance Computing in Asia-Pacific Region (HPC Asia 2000), Beijing, China, IEEE Computer
Society Press, USA.

Buyya, R., D. Abramson, et al. (2001). A Case for Economy Grid Architecture for Service-Oriented
Grid Computing. Proceedings of the International Parallel and Distributed Processing Symposium:10th
IEEE International Heterogeneous Computing Workshop (HCW 2001), San Francisco, California, USA,
IEEE CS Press.

Buyya, R., H. Stockinger, et al. (2001). Economic Models for Management of Resources in
Peer-to-Peer and Grid Computing. Proceedings of International Conference on Commercial
Applications for High-Performance Computing, Denver, Colorado, USA, SPIE Press.

Computing, N. t. G., http://www-106.ibm.com/developerworks/grid/newto/.

Folding@Home Scientific Background,
http://www.stanford.edu/group/pandegroup/folding/science.html.

Foster, I. and A. Iamnitchi "On Death, Taxes, and the Convergence of Peer-to-Peer and Grid
Computing." Avaialble at:http://people.cs.uchicago.edu/~anda/papers/foster_grid_vs_p2p.pdf.

Foster, I. and C. Kesselman (1997). "Globus: A Metacomputing Infrastructure Toolkit." International
Journal of Supercomputer Applications 11(2): 115-128.

Foster, I. and C. Kesselman, Eds. (1999). The Grid: Blueprint for a Future Computing Infrastructure.
USA, Morgan Kaufmann.

Grimshaw, A. and W. Wulf (1997). "The Legion Vision of a Worldwide Virtual Computer."
Communications of the ACM 40(1).

http://www-106.ibm.com/developerworks/grid/newto/
http://www.stanford.edu/group/pandegroup/folding/science.html
http://people.cs.uchicago.edu/~anda/papers/foster_grid_vs_p2p.pdf

Litzkow, M., M. Livny, et al. (1988). Condor - A Hunter of Idle Workstations. Proceedings of the 8th
International Conference of Distributed Computing Systems (ICDCS 1988), San Jose, CA, IEEE CS
Press, USA.

Medvinsky, G. and C. Neuman (1993). NetCash: A design for practical electronic currency on the
Internet. Proceedings of 1st the ACM Conference on Computer and Communication Security.

Napster, http://www.napster.com/.

Neuman, C. and G. Medvinsky (1995). Requirements for Network Payment: The NetCheque
Perspective, San Francisco, USA.

Nisan, N., S. London, et al. (1998). Globally Distributed computation over the Internet: The
POPCORN project. International Conference on Distributed Computing Systems (ICDCS98),
Amsterdam, The Netherlands, IEEE CS Press, USA.

Oram, A. (2001). Peer-to-Peer: Harnessing the Power of Disruptive Technologies. USA, O'Reilly Press.

Paypal, http://www.paypal.com.

SETI@Home, http://setiathome.ssl.berkeley.edu/.

Shirky, C. (2000). What is P2P. And What Isn't,
http://www.openp2p.com/pub/a/p2p/2000/11/24/shirky1-whatisp2p.html.

TechWeb, http://www.techweb.com.

Waldspurger, C., T. Hogg, et al. (1992). "Spawn: A Distributed Computational Economy." IEEE
Transactions on Software Engineering 18(2): 103-117.

WWW: A Brief History of the Internet,
http://cse.stanford.edu/class/sophomore-college/projects-01/distributed-computing/html/body_history.h
tml.

http://www.napster.com/
http://www.paypal.com/
http://setiathome.ssl.berkeley.edu/
http://www.openp2p.com/pub/a/p2p/2000/11/24/shirky1-whatisp2p.html
http://www.techweb.com/
http://cse.stanford.edu/class/sophomore-college/projects-01/distributed-computing/html/body_history.html
http://cse.stanford.edu/class/sophomore-college/projects-01/distributed-computing/html/body_history.html

	Advanced Topics in Database Management Systems

