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ABSTRACT
Decentralized and unstructured peer-to-peer networks such
as Gnutella are attractive for certain applications because
they require no centralized directories and no precise con-
trol over network topology or data placement. However, the
flooding-based query algorithm used in Gnutella does not
scale; each query generates a large amount of traffic and
large systems quickly become overwhelmed by the query-
induced load. This paper explores, through simulation, var-
ious alternatives to Gnutella’s query algorithm, data repli-
cation strategy, and network topology. We propose a query
algorithm based on multiple random walks that resolves
queries almost as quickly as Gnutella’s flooding method while
reducing the network traffic by two orders of magnitude in
many cases. We also present simulation results on a dis-
tributed replication strategy proposed in [8]. Finally, we
find that among the various network topologies we consider,
uniform random graphs yield the best performance.

Categories and Subject Descriptors
H.3.5 [Information Storage and Retrieval]: [Online In-
formation Services, Data Sharing]

General Terms
Algorithms, Measurement, Performance, Theory

Keywords
peer-to-peer, search, replication, unstructured

1. INTRODUCTION
The computer science community has become accustomed

to the Internet’s continuing rapid growth, but even to such
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jaded observers the explosive increase in Peer-to-Peer (P2P)
network usage has been astounding. Within a few months
of Napster’s [16] introduction in 1999 the system had spread
widely, and recent measurement data suggests that P2P ap-
plications are having a very significant and rapidly growing
impact on Internet traffic [12, 17]. It is important to study
the performance and scalability of these P2P networks.

Currently, there are several different architectures for P2P
networks:

Centralized: Napster and other similar systems have a
constantly-updated directory hosted at central loca-
tions (e.g., the Napster web site). Nodes in the P2P
network issue queries to the central directory server to
find which other nodes hold the desired files. Such cen-
tralized approaches do not scale well and have single
points of failure.

Decentralized but Structured: These systems have no
central directory server, but they have a significant
amount of structure. By “structure” we mean that
the P2P overlay topology (that is, the set of connec-
tions between P2P members) is tightly controlled and
that files are placed not at random nodes but at speci-
fied locations that will make subsequent queries easier
to satisfy. In “loosely structured” systems this place-
ment of files is based on hints; the Freenet P2P net-
work [11] is an example of such systems. In “highly
structured” systems both the P2P network topology
and the placement of files are precisely determined;
this tightly controlled structure enables the system to
satisfy queries very efficiently. There is a growing liter-
ature on highly structured P2P systems which support
a hash-table-like interface; see [18, 23, 20, 26]. Such
highly structured P2P designs are quite prevalent in
the research literature, but almost completely invisi-
ble on the current network. Moreover, it isn’t clear
how well such designs work with an extremely tran-
sient population of nodes, which seems to be a char-
acteristic of the Napster community.

Decentralized and Unstructured: These are systems in
which there is neither a centralized directory nor any
precise control over the network topology or file place-
ment. Gnutella [13] is an example of such designs. The



network is formed by nodes joining the network fol-
lowing some loose rules (for example, those described
in [6]). The resultant topology has certain properties,
but the placement of files is not based on any knowl-
edge of the topology (as it is in structured designs).
To find a file, a node queries its neighbors. The most
typical query method is flooding, where the query is
propagated to all neighbors within a certain radius [6].
These unstructured designs are extremely resilient to
nodes entering and leaving the system. However, the
current search mechanisms are extremely unscalable,
generating large loads on the network participants.

In this paper, we focus on Gnutella-like decentralized, un-
structured P2P systems. We do so because (1) these systems
are actively used by a large community of Internet users [24,
7], and (2) these systems have not yet been subject to much
serious research, except for empirical studies [21, 22].

The goal of this paper is to study more-scalable alterna-
tives to existing Gnutella algorithms, focusing on the search
and replication aspects. We first quantify the poor scaling
properties of the flooding search algorithms. We then pro-
pose, as an alternative, a k-walker random walk algorithm
that greatly reduces the load generated by each query. We
also show that active replication (where the files may be
stored at arbitrary nodes) produces lower overall query load
than non-active node-based replication (i.e., a file is only
replicated at nodes requesting the file). Confirming the re-
sults in [8], we use simulations to show that path replication,
where the file is replicated along the path from the requester
to the provider, yields a close-to-optimal replication distri-
bution. Finally, we show that for unstructured networks,
power-law random graphs are less desirable than uniform
random graphs and so P2P systems should adopt graph-
building algorithms that reduce the likelihood of very-high
degree nodes.

2. METHODOLOGY
It is impossible to model all the dynamics of an Internet-

based P2P system. In this paper, we are not trying to resolve
small quantitative disparities between different algorithms,
but instead are trying to reveal fundamental qualitative dif-
ferences. While our simple models do not capture all aspects
of reality, we hope they capture the essential features needed
to understand the qualitative differences.

2.1 Abstractions
We look at three aspects of a P2P system: P2P network

topology, query distribution and replication. By network
topology, we mean the graph formed by the P2P overlay
network; each P2P member has a certain number of “neigh-
bors” and the set of neighbor connections forms the P2P
overlay network. In this paper when we refer to the “net-
work” we are referring to the P2P network, not the un-
derlying Internet. For simplicity, we assume that the P2P
network graph does not change during the simulation of our
algorithms. By query distribution, we mean the distribution
of query frequencies for individual files. Again, we assume
that this distribution is fixed during our simulations. By
replication, we mean the number of nodes that have a par-
ticular file.1

1We will use replication ratio to mean the percentage of
nodes having the file.

#nodes total avg. node std. max median
#links degree dev. degree degree

PLRG 9230 20599 4.46 27.9 1746 1

Random 9836 20099 4.09 1.95 13 4

Gnutella 4736 13022 5.50 10.7 136 2

Grid 10000 19800 3.96 0.20 4 4

Table 1: Key statistics of the network topologies

Our assumption of fixed network topology and fixed query
distributions are obviously gross simplifications. However,
for the purpose of our study, if one assumes that the time to
complete a search is short compared to the time of change in
network topology and in query distribution, results obtained
from these settings are still indicative of performance in real
systems.

We use four network topologies in our study:

• Power-Law Random Graph (PLRG): this is a 9230-
node random graph. The node degrees follow a power-
law distribution: when ranked from the most con-
nected to the least connected, the i’th most connected
node has ω/iα neighbors, where ω is a constant. Once
the node degrees are chosen, the nodes are connected
randomly; see [3]. Many real-life P2P networks have
topologies that are power-law random graphs [14].

• Normal Random Graph (Random): a 9836-node ran-
dom graph generated by a modified version of GT-ITM
topology generator [5].

• Gnutella graph (Gnutella): the Gnutella network topol-
ogy, as obtained in October 2000. The graph has 4736
nodes.2 Its node degrees roughly follow a two-segment
power-law distribution, as shown in Figure 1.

• Two-Dimensional Grid (Grid): a two-dimension (100x
100) grid. We choose this simple graph for comparison
purposes.

Node degree information of the four graphs are shown in
Figure 1. and are also summarized in Table 1.

We assume that there are m objects of interest. (In this
paper we use the terms “file” and “object” interchangeably.)
Let qi be the relative popularity, in terms of the number
of queries issued for it, of the i’th object. The values are
normalized:

m�

i=1

qi = 1 (1)

We investigate the following distributions:

• Uniform: all objects are equally popular.

Uniform : qi = 1/m (2)

• Zipf-like: object popularity follows a Zipf-like distribu-
tion. Studies have shown that Napster, Gnutella and
Web queries follow Zipf-like distributions [4, 21].

Zipf-like : qi ∝ 1/iα (3)

2Cautions are taken when we choose metrics and parameters
in our analysis and simulations to account for the difference
in network sizes.
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Figure 1: Distribution of node degrees in the four network topology graphs. Note that we use log scale for
PLRG and Gnutella, and linear scale for Random and Grid.

We assume each object i is replicated on ri nodes, and
the total number of objects stored in the network is R.

m�

i=1

ri = R (4)

We consider several static replication distributions: 3

• Uniform: all objects are replicated at the same number
of nodes.

Uniform : ri = R/m (5)

• Proportional: the replication of an object i is pro-
portional to the query probability of the object. If
only nodes requesting an object store the object, then
the replication distribution is usually proportional to
query distribution.

Proportional : ri ∝ qi (6)

• Square-root: replication of an object i is proportional
to the square root of its query probability qi. The rea-
son for this distribution is discussed in [8] and reviewed
in Section 5.

Square-root : ri ∝
√

qi (7)

3We assume static replication when we study various search
methods. We’ll look at dynamic replication when we inves-
tigate different replication strategies.

A simulation, in the static case, is determined by the
combination of query distribution and replication distribu-
tion. When the replication is uniform, the query distribu-
tion is irrelevant (since all objects are replicated by the same
amount, the search times are equivalent). When the query
distribution is uniform, all three replication distributions are
equivalent. Thus, there are only three relevant combina-
tions of query distribution and replication distribution: uni-
form/uniform, Zipf-like/proportional, and Zipf-like/square-
root.

2.2 Metrics
Performance issues in real P2P systems are extremely

complicated. In addition to issues such as load on the net-
work, load on network participants, and delays in getting
positive answers, there are a host of other criteria such as
success rate of the search, the bandwidth of the selected
provider nodes, and fairness to both the requester and the
provider. It is impossible for us to use all of these criteria
in evaluating search and replication algorithms.

Instead, we focus on efficiency aspects solely, and use
the following simple metrics in our abstract P2P networks.
These metrics, though simple, reflect the fundamental prop-
erties of the algorithms.

• User aspects:

– Pr(success): the probability of finding the queried
object before the search terminates. Different al-



gorithms have different criteria for terminating a
search, leading to different probabilities of success
under various replication distributions.

– #hops: delay in finding an object as measured
in number of hops. We do not model the actual
network latency here, but rather just measure the
abstract number of hops that a successful search
message travels before it replies to the originator.

• Load aspects:

– #msgs per node: overhead of an algorithm as
measured in average number of search messages
each node in the P2P network has to process. The
motivation for this metric is that in P2P systems,
the most notable overhead tends to be the pro-
cessing load that the network imposes on each
participant. The load, usually interrupt process-
ing or message processing, is directly proportional
to the number of messages that the node has to
process.

– #nodes visited: the number of P2P network par-
ticipants that a query’s search messages travel
through. This is an indirect measure of the im-
pact that a query generates on the whole network.

– percentage of message duplication: calculated as
(total #msgs - #nodes visited)/total #msgs.

– peak #msgs: to identify hot spots in the network,
we calculate the number of messages that the bus-
iest node has to process for a set of queries.

• Aggregate performance: for each of the above mea-
sures, which are per-query measures, we calculate an
aggregate performance number, which is the perfor-
mance of each query convoluted with the query prob-
ability. That is, if the performance measure for object
i is a(i), then the aggregate is � i qi ∗ a(i).

2.3 Simulation Methodology
For each set of simulations, we first select the topology

and the query/replication distributions. For each object
i with replication ri, we generate numPlace different sets
of random replica placements (each set contains ri random
nodes, on which to place the replicas of object i). For each
replica placement, we randomly choose numQuery different
nodes from which to initiate a query for object i. Then,
for each query, we simulate the searching process using the
designated search method. We can run the simulation for
each query independent of other queries because the object
replication is fixed, and hence running all the queries con-
currently is the same as running each one separately and
then summing the results.

Statistics are collected from the numPlace × numQuery
queries. For the results we present in this paper, numPlace
= 10 and numQuery = 100, resulting in 1000 different queries
for each object. This ensures small standard deviation in
our results.4 We then calculate the aggregate results for the
above metrics.

4Due to space limitation we do not present standard devia-
tions associated with the averages, except to point out that
the standard deviation data do not change the conclusions
in the paper.

As a final note about our abstractions and metrics, we
stress that they omit a lot of issues, including the true
dynamics of node coming and going in the network, the
message delays in the network, the actual load on a net-
work node for processing and propagating messages, etc.
However, these models help us understand the fundamental
properties of various search and replication algorithms.

3. LIMITATIONS OF FLOODING
One of the major load issues in P2P networks is the load

on individual network participants. Typically, the partici-
pants are PCs at home or office, and are used for normal
work and entertainment. If a PC has to handle many net-
work interrupts when it joins the P2P network, the user will
be forced to take the PC off the P2P network to get “real”
work done. This in turn limits the size and the usefulness
of the P2P network. Unfortunately, the flooding search al-
gorithm used in Gnutella exacerbates this problem.

Gnutella uses TTL(Time-To-Live) to control the number
of hops that a query can be propagated. However, choosing
the appropriate TTL is not easy. If the TTL is too high, the
node unnecessarily burdens the network. If the TTL is too
low, the node might not find the object even though a copy
exists somewhere.

Figure 2 shows the probability of success and average per-
node message overhead of flooding as TTL increases. The
search is for an object that is replicated at 0.125% of the
nodes. We can see from the figures that different TTLs
are needed in different network topologies. And the values
differ for different replication ratios. Unfortunately, since in
practice the replication ratio of an object is unknown, users
have to set TTLs high to ensure success of the query.

Another problem with flooding is that, there are many
duplicate messages introduced by flooding, particularly in
high connectivity graphs. By duplicate messages we mean
the multiple copies of a query that are sent to a node by
its multiple neighbors. Duplicate queries are pure overhead;
they incur extra network interrupt processing at the nodes
receiving them but do not contribute to increased chance of
finding the object. Duplication detection mechanisms are
always needed in flood-style search so that duplicate mes-
sages are detected and not forwarded. However, even with
this duplicate suppression the number of duplicate messages
in flooding-style algorithms can be excessive, and the prob-
lem worsens as the TTL increases.

Figure 3 shows the percentage of duplicate messages and
the number of unique nodes visited as TTL increases. As we
can see, when TTL increases, the number of unique nodes
visited increases, but the percentage of duplicate messages
also increases.

These limitations mean that flooding incurs considerable
message processing overhead for each query, increasing the
load on each node as the network expands and the query
rate increases, to the point that a node can be so loaded
that it has to leave the network. Other researchers have
also noted the limitations of flooding [19].

Our simulations also show that Power-Law random graphs
and Gnutella style graphs are particularly bad with flood-
ing. The presence of highly connected nodes mean that its
duplication ratios are much higher than those in the random
graph, because many nodes’ neighbors overlap. In fact, for
flooding, the random graph would be the best topology be-
cause in a truly random graph the duplication ratio (likeli-
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hood that the next node already received the query) is the
same as the fraction of nodes visited so far, as long as that
fraction is small.

The random graph is also better for load distribution
among its nodes. In the random graph, the maximum load
on any one node is logarithmic to the total number of nodes
that the search visits. In contrast, the high degree nodes
in PLRG and Gnutella graphs have much higher load than
other nodes. Due to space constraints we omit the data on
peak # of messages here.

4. FINDING BETTER SEARCH METHODS
Our first try is to address the TTL selection problem.

4.1 Expanding Ring
One might suggest asking nodes to check with the original

requester before forwarding the query to neighbors. How-
ever, this approach can lead to message implosion at the
requester node. Hence, we do not adopt this approach.

Instead, we can use successive floods with increasing TTLs.
A node starts a flood with small TTL, If the search is not
successful, the node increases the TTL and starts another
flood. The process repeats until the object is found. We
expect this method to perform particularly well when hot
objects are replicated more widely than cold objects, which

is likely the case in practice. This method is called “expand-
ing ring.”

To understand how well expanding ring works, we measure
the average stopping TTL for searches to objects with in-
creasing replication ratios. In our simulations the expanding
ring starts with TTL=1, and expands the TTL linearly by
2 each time. Figure 4 shows the results for various topolo-
gies. As we can see, expanding ring successfully reins in
the TTL as the object’s replication ratio increases. While
searches for objects with low replication ratio need TTLs
larger than 5, the searches stop at TTL of 1 or 2 when the
object replication is over 10%.

We also record the average number of messages a node
has to process (Figure 4). Comparing the message overhead
between flooding and expanding ring, we can see that, for
objects that are replicated at 0.125% of the nodes, even
if flooding uses the best TTL for each network topology,
expanding ring still halves the per-node message overhead.

To understand the overall impact of expanding rings in a
P2P network, we run a large set of simulations as explained
in section 2.3. The results are shown in the “expanding ring”
column in Tables 2 through 5.

The results show that, despite the successive retries, ex-
panding ring still reduces message overhead significantly com-
pared with regular flooding with a fixed TTL. The savings
are obtained across all query and replication distributions.
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The improvements are also more pronounced for Random
and Gnutella graphs than for the PLRG graph, partly be-
cause the very high degree nodes in PLRG graph reduce the
opportunity for incremental retries in expanding ring.

Expanding ring achieves the savings at the expense of
slight increase in the delays to find the object. As we can
see, for Random, PLRG and Gnutella, the average number
of hops only increases from 2 to 4 in flooding to 3 to 6 in
expanding ring, which we believe is tolerable for users.

Though expanding ring solves the TTL selection problem,
it does not address the message duplication issue inherent in
flooding. Inspection of simulation results shows that the du-
plication contributes significantly to the message overhead,
particularly for PLRG and Gnutella graphs. To reduce mes-
sage duplication, we try a different approach, random walk.

4.2 Random Walks
Random walk is a well-known technique, which forwards

a query message to a randomly chosen neighbor at each step
until the object is found. We call this message a “walker”.

The standard random walk (which uses only one walker)
can cut down the message overhead by an order of magni-
tude compared to expanding ring across the network topolo-
gies. However, there is also an order of magnitude increase
in user-perceived delay.

To reduce the delay we increase the number of “walkers.”.
That is, instead of just sending out one query message, a
requesting node sends k query messages, and each query
message takes its own random walk. The expectation is
that k walkers after T steps should reach roughly the same
number of nodes as 1 walker after kT steps, and indeed
simulations confirm that. Therefore, by using k walkers, we
can expect to cut the delay down by a factor of k.

We experimented with different number of walkers. With
more walkers, we can find objects faster, but also generate
more loads. And when the number of walkers is big enough,
increasing it further yield little reduction in the number of
hops, but significantly increases the message traffic. Usually,
16 to 64 walkers give good results.

Since multiple-walker random walks require a mechanism
to terminate the walks, we experimented with two methods,
TTL and “checking.”. TTL means that, similar to flooding,
each random walk terminates after a certain number of hops.

“Checking” means that a walker periodically checks with
the original requester before walking to the next node. The
checking method still uses a TTL, but the TTL is very large
and is mainly used to prevent loops.

Our simulations show that checking is the right approach
for terminating searches in random walks. The TTL ap-
proach runs into the same TTL selection issue in flooding.
Meanwhile, since there are a fixed number of walkers (typ-
ically 16 to 64), having the walkers check back with the re-
quester will not lead to message implosion at the requester
node. Of course, checking does have overhead; each check re-
quires a message exchange between a node and the requester
node. Further experiments show that checking once at ev-
ery fourth step along the way strikes a good balance between
the overhead of the checking messages and the benefits of
checking.

Tables 2 through 5 compare the discussed search methods
under all combinations of query and replication distribu-
tions for the four network topologies. There are two sets of
columns in each table; the first set are results of the queries
to the top 50% hottest objects, and the second set are results
of all queries.

The results show that, compared to flooding, the 32-walker
random walk reduces message overhead by roughly two or-
ders of magnitude for all queries across all network topolo-
gies, at the expense of slight increase in the number of hops
(increasing from 2-6 to 4-15). The 32-walker random walk
generally outperforms expanding ring as well, particularly
in PLRG and Gnutella graphs.

We also studied an improvement to the above approach
by asking each node to keep state. Each query has a unique
ID and all its k walkers are tagged with that ID. For each
ID, a node remembers the neighbors to which it has for-
warded queries of that ID, and when a new query with the
same ID arrives, the node forwards it to a different neighbor
(randomly chosen). This state keeping accelerates the walks
because walkers are less likely to cover the same route and
hence they visit more nodes. Simulation results, also shown
in the tables, confirm the improvement. Compared with ran-
dom walks without state keeping, random walk with state
keeping shows the biggest improvement in Random and Grid
graphs, reducing message overhead by up to 30%, and re-
ducing number of hops by up to 30%. However, the improve-
ments for PLRG and Gnutella graphs are small. Hence, de-



distribution model 50 % (queries for hot objects) 100 % (all queries)
query/replication metrics flood ring check state flood ring check state

#hops 3.40 5.77 10.30 7.00 3.40 5.77 10.30 7.00
Uniform / #msgs per node 2.509 0.062 0.031 0.024 2.509 0.061 0.031 0.024
Uniform #nodes visited 9220 536 149 163 9220 536 149 163

peak #msgs 6.37 0.26 0.22 0.19 6.37 0.26 0.22 0.19

#hops 1.60 2.08 1.72 1.64 2.51 4.03 9.12 6.66
Zipf-like / #msgs per node 1.265 0.004 0.010 0.010 1.863 0.053 0.027 0.022

Proportional #nodes visited 6515 36 33 47 7847 396 132 150
peak #msgs 4.01 0.02 0.11 0.10 5.23 0.20 0.17 0.14

#hops 2.23 3.19 2.82 2.51 2.70 4.24 5.74 4.43
Zipf-like / #msgs per node 2.154 0.010 0.014 0.013 2.308 0.031 0.021 0.018

Square root #nodes visited 8780 92 50 69 8983 269 89 109
peak #msgs 5.88 0.04 0.16 0.16 6.14 0.12 0.17 0.16

Table 2: Static simulation results for Random Graph. The first set of columns are results of queries to the
top 50% most popular objects; the second set of columns are results of all queries. “flood” is flooding with
TTL=8. “ring” is expanding ring. “walk” is 32-walker random walk with checking. “state” is 32-walker
random walk with checking and state keeping. #objects m is 100, average replication ratio is 1.0%, and the
parameter α in the Zipf-like query distribution is 1.20.

distribution model 50 % (queries for hot objects) 100 % (all queries)
query/replication metrics flood ring check state flood ring check state

#hops 2.37 3.50 8.95 8.47 2.37 3.50 8.95 8.47
Uniform / #msgs per node 3.331 1.325 0.030 0.029 3.331 1.325 0.030 0.029
Uniform #nodes visited 8935 4874 147 158 8935 4874 147 158

peak #msgs 510.4 132.7 12.3 11.7 510.4 132.7 12.3 11.7

#hops 1.74 2.36 1.81 1.82 2.07 2.93 9.85 8.98
Zipf-like / #msgs per node 2.397 0.593 0.011 0.011 2.850 0.961 0.031 0.029

Proportional #nodes visited 6969 2432 43 49 7923 3631 136 145
peak #msgs 412.7 58.3 4.9 5.1 464.3 98.9 12.7 11.7

#hops 2.07 2.94 2.65 2.49 2.21 3.17 5.37 4.79
Zipf-like / #msgs per node 3.079 0.967 0.014 0.014 3.199 1.115 0.021 0.020

Square root #nodes visited 8434 3750 62 69 8674 4200 97 103
peak #msgs 496.0 93.7 6.3 6.3 499.6 111.7 8.9 8.4

Table 3: Static simulation results for Power-Law Random Graph (PLRG). The legends are the same as in
Table 2, except that the TTL for “flood” is 5.

distribution model 50 % (queries for hot objects) 100 % (all queries)
query/replication metrics flood ring check state flood ring check state

#hops 2.39 3.40 7.30 6.11 2.39 3.40 7.30 6.11
Uniform / #msgs per node 4.162 0.369 0.051 0.045 4.162 0.369 0.051 0.045
Uniform #nodes visited 4556 933 141 151 4556 933 141 151

peak #msgs 64.9 6.4 1.3 1.2 64.9 6.4 1.3 1.2

#hops 1.60 2.18 1.66 1.66 2.03 3.05 9.39 7.94
Zipf-like / #msgs per node 2.961 0.109 0.021 0.021 3.548 0.423 0.058 0.051

Proportional #nodes visited 3725 357 49 60 4137 810 143 153
peak #msgs 43.8 2.0 0.7 0.8 54.5 7.0 1.6 1.5

#hops 1.88 2.70 2.31 2.15 2.10 3.02 4.61 4.12
Zipf-like / #msgs per node 3.874 0.208 0.027 0.026 4.007 0.302 0.038 0.035

Square root #nodes visited 4404 621 67 80 4479 789 101 114
peak #msgs 62.5 3.8 0.8 0.9 63.8 5.3 1.1 1.1

Table 4: Static simulation results for Gnutella Graph. The legends are the same as in Table 2, except that
the TTL for “flood” is 5.



distribution model 50 % (queries for hot objects) 100 % (all queries)
query/replication metrics flood ring check state flood ring check state

#hops 6.52 19.15 27.95 15.20 6.52 19.15 27.95 15.20
Uniform / #msgs per node 0.472 0.070 0.068 0.041 0.472 0.070 0.068 0.041
Uniform #nodes visited 1692 128 107 128 1692 128 107 128

peak #msgs 0.72 0.18 0.30 0.16 0.72 0.18 0.30 0.16

#hops 1.70 2.32 1.95 1.77 4.71 19.04 33.78 15.14
Zipf-like / #msgs per node 0.321 0.003 0.011 0.010 0.392 0.120 0.082 0.040

Proportional #nodes visited 1398 14 22 28 1533 118 111 121
peak #msgs 0.57 0.02 0.07 0.06 0.64 0.25 0.26 0.16

#hops 2.77 4.64 4.60 3.32 4.31 10.66 15.53 8.22
Zipf-like / #msgs per node 0.437 0.008 0.018 0.015 0.450 0.034 0.041 0.025

Square root #nodes visited 1647 31 34 42 1656 70 67 77
peak #msgs 0.68 0.04 0.10 0.08 0.68 0.10 0.19 0.12

Table 5: Static simulation results for Grid Graph. The legends are the same as in Table 2, except that the
TTL for “flood” is 32.

pending on the implementation overhead of state keeping,
each P2P network should decide separately whether state
keeping is worthwhile.

4.3 Principles of Scalable Search in Unstruc-
tured Networks

Our results show that the k-walker random walk is a much
more scalable search method than flooding. However, per-
haps more important than this conclusion is the understand-
ing we have gained from this exercise. The key to scalable
searches in unstructured network is to cover the right num-
ber of nodes as quickly as possible and with as little overhead
as possible. In unstructured network, the only way to find
objects is to visit enough nodes so that, statistically speak-
ing, one of the nodes has the object. However, in reaching
the required node coverage, one must pay attention to the
following:

• Adaptive termination is very important. TTL-based
mechanism does not work. Any adaptive/dynamic ter-
mination mechanism must avoid message implosion at
the requester node. The checking method described
above is a good example of adaptive termination.

• Message duplication should be minimized. Preferably,
each query should visit a node just once. More visits
are wasteful in terms of the message overhead.

• Granularity of the coverage should be small. Each ad-
ditional step in the search should not significantly in-
crease the number of nodes visited. This is perhaps the
fundamental difference between flooding and multiple-
walker random walk. In flooding, an additional step
could exponentially increase the number of nodes vis-
ited; in random walk, it increases only by a constant.

5. REPLICATION: THEORY
Our study in the previous section examined how one should

search for an object, assuming that it is replicated at some
random locations in the network. In certain P2P systems
such as Gnutella, only nodes that request an object make
copies of the object. Other P2P systems such as Freenet
allow for more proactive replications of objects, where an
object may be replicated at a node even though the node
has not requested the object. For such systems, we must
answer the question: how many copies of each object should

there be so that the search overhead for the object is mini-
mized, assuming that the total amount of storage for objects
in the network is fixed? Answers to this question have impli-
cations to non-proactive replication systems as well, because
the information of an object’s location could be proactively
replicated to expedite the searches.

This question has been addressed in great theoretical de-
tail in [8]. Here we review those results and evaluate the
resulting algorithms via simulation. Consider the simple
model used in [8] where there are m objects and n sites(nodes).
Each object i is replicated at ri random (distinct) sites
(recall that R = � i ri), and that object i is requested
with relative rates qi, where we normalize this by setting

� i qi = 1. For convenience, we assume that query and repli-
cation strategies are such that 1 � ri ≤ n and that searches
go on until a copy is found. The other cases are dealt with
in [8], and the conclusions are consistent with, but a bit
messier than, what we present here. Search consists of ran-
domly probing sites until the desired object is found. Thus,
the probability Pr(k) that the object is found on the k’th
probe is given by: Pri(k) = ri

n
(1 − ri

n
)k−1. An object’s

average search size Ai is merely the inverse of the fraction
of sites which have replicas of the object: Ai = n

ri
. We

are interested in the average search size of all the objects:
A = � i qiAi = n � i

qi

ri
. This metric essentially captures

the message overhead of efficient searches.
If there were no limit on ri then clearly the optimal strat-

egy would be to replicate everything everywhere, and all
searches become trivial. Instead, we assume that the aver-
age number of these replicas per site, ρ = R

n
, is fixed and

less than m. The question is how to allocate these R replicas
among the m objects.

The simplest replication strategy is to create the same
number of replicas of each object: ri = R

m
. We call this

uniform replication strategy. In this case the average search
size Auniform is given by:

Auniform =
�

i

qi
m

ρ
=

m

ρ

which is independent of the query distribution.
It is clear that uniformly replicating all objects, even those

that are not frequently queried, is inefficient. A more nat-
ural policy is to replicate proportional to the querying rate:
ri = Rqi. This should reduce the search sizes for the more
popular objects. However, a quick calculation reveals that



the average remains the same:

Aproportional = n
�

i

qi

Rqi
=

m

ρ
= Auniform

Thus, the Proportional and Uniform replication strategies
yield exactly the same average search size, and that average
search size is independent of the query distribution.

Another important metric that captures the load balanc-
ing ability of a replication strategy is utilization rate, Ui =
R qi

ri
. That is, the rate of requests that a replica of object

i serves (the random probing search process implies that
all replicas of the same object have the same utilization
rate). Note that the average utilization over all objects
U = � i riUi/R = 1 is fixed for all replication strategies.
The maximum utilization maxi Ui, however, varies consid-
erably.

The distributions of average search sizes and utilization
rates for an object are quite different between the Uniform
and Proportional strategies. For Uniform replication, all
objects have the same average search size, but replicas have
utilization rates proportional to their query rates. Propor-
tional replication achieves perfect load balancing with all
replicas having the same utilization rate, but average search
sizes vary with more popular objects having smaller average
search sizes than less popular ones. Objects whose query
rates are greater than average (i.e., greater than 1

m
) do bet-

ter with Proportional replication, and the other objects do
better with Uniform replication. Interestingly, the weighted
average of the search sizes over all objects balances out to
be unchanged.

Square-Root Replication Given that Uniform and Pro-
portional have the same average search size, a natural ques-
tion is what is the optimal way to allocate the replicas so
that the average search size is minimized? A simple calcula-
tion (see [8]) reveals that Square-Root replication is optimal;
that is, A is minimized when ri = λ

√
qi where λ = R�

i

√
qi

.

The average search size is

Aoptimal =
1

ρ
(

�

i

√
qi)

2

Table 6 lists properties of the three replication strategies.
Square-Root replication is such that both average search
size and utilization rate vary per object, but the variance in
utilization is considerably smaller than with Uniform, and
the variance in average search size is considerably smaller
than with Proportional.

Uniform Proportional Square-Root

A ρ−1m ρ−1m ρ−1( � i

√
qi)

2

ri R/m qiR R
√

qi/ � j

√
qj

Ai = n/ri ρ−1m (ρqi)
−1 ρ−1 � j

√
qj/

√
qi

Ui = Rqi/ri qim 1
√

qi � j

√
qj

Table 6: Comparing the three replication strategies

5.1 Truncated Pareto Distribution
Assuming q1 ≥ q2 ≥ · · · ≥ qm, let Rm,α be a truncation to

m objects of a Pareto distribution with shape parameter α.
Thus, qi = i−α−1/Bα+1,m (i = 1, . . . , m) , where Bα+1,m is

the normalization factor. With Square-Root replication we
obtain ri/R = i(−α−1)/2/B(α+1)/2,m , average search size

ρAoptimal = (B(α+1)/2,m)2/Bα+1,m

≈

�� � 4αm1−α/(1 − α)2 (α < 1)
ln2 m (α = 1)

4α/(α − 1)2 (α > 1)

We then compute gain factor, Auniform/Aoptimal, of us-

ing Square-Root rather than Uniform or Proportional repli-
cation. For Pareto distribution with α > 1, the optimal
average search size is constant. Thus, the gain factor is
Θ(m). The gain factor is Θ(mα) for Pareto with α < 1 and
θ(m/ ln2 m) for α = 1.

Figure 5 helps visualize the different properties of the
three replication strategies. Both Uniform and Square-Root
allocate to popular objects less than their “fair share” and to
less popular objects more than their “fair share” of replicas,
but Square-Root does so to a lesser extent. The variance in
average search sizes of different objects with Square-Root is
considerably smaller than with Proportional. The maximum
utilization rate with Square-Root, is much lower than with
Uniform (although larger than Proportional which provides
optimal load balancing).

5.2 Achieving Square-Root Replication
Assume that each query keeps track of the search size,

each time a query is finished, the object is copied to a num-
ber of sites proportional to the number of probes. This
means that on average the i’th object will be replicated c n

ri

times each time a query is issued (where c is an arbitrary
constant). Thus, the number of copies ri can be roughly
described by the differential equation ṙi = qic

n
ri

, where ṙi is

the time derivative of ri.
If we look at the ratio of two objects, ask how the loga-

rithm of this quantity changes, we find that, setting zi,j =
ln ri

rj
, we have ż = cn(

qj

r2
j

− qi

r2
i

). Thus, Square-Root repli-

cation, ri = λ
√

qi is a fixed point of this equation. This
heuristic calculation suggests that perhaps replicating pro-
portional to the number of sites probed would yield Square-
Root replication.

Our analysis above makes some implicit assumptions on
the the deletion of replicas, that is, replicas disappear over
time and new replicas are created. The steady state is
achieved when the creation rate equals the deletion rate. To
achieve this, the lifetimes of replicas must be independent of
object identity or query rate. Examples of deletion processes
that have this independence are: assigning fixed lifetimes (or
lifetimes from a fixed distribution) for each replica, subject
replicas at each site to First In First out (FIFO) replace-
ment, or perform random deletions. Usage-based replace-
ment policies such as Least Recently Used (LRU) or Least
Frequently Used (LFU) do not have this independence prop-
erty. These policies could impede the Square-Root scheme:

Note that unlike Freenet’s replication algorithm, the repli-
cation strategies studied here do not attempt to cluster cer-
tain group of objects in certain regions of the network. In
other words, they do not produce any correlation between
routing and object locations, or, “structure,” in the P2P
network.

6. REPLICATION: EVALUATION
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Figure 5: Uniform, Proportional, and Square-Root strategies on a truncated Pareto distribution

We observe that there are two replication strategies that
are easily implementable. One is “owner replication”, where,
when a search is successful, the object is stored at the re-
quester node only. The other is “path replication”, where,
when a search succeeds, the object is stored at all nodes
along the path from the requester node to the provider node.
Owner replication is used in systems such as Gnutella. Path
replication is used in systems such as Freenet.

The analysis in the previous section suggests that square-
root replication distribution is needed to minimize the over-
all search traffic, and an object should be replicated at the
number of nodes that is proportional to the number of probes
that the search required. If a P2P system uses the k-walker
random walk as the search algorithm, then on average, the
number of nodes between the requester node and the provider
node is 1/k of the total nodes visited. Path replication in
this system should result in square-root distribution.

However, path replication tends to replicate objects to
nodes that are topologically along the same path. To un-
derstand how this impacts the overall search traffic, we also
study a third replication algorithm, “random replication.”
In random replication, once a search succeeds, we count the
number of nodes on the path between the requester and
the provider, p, then randomly pick p of the nodes that the
k walkers visited to replicate the object. “Random replica-
tion” is harder to implement, but the performance difference
between it and path replication highlights the topological
impact of path replication.

We design a set of dynamic simulations to study the per-
formance of the three replication strategies in the Random
graph network topology. A simulation starts by placing the
m distinct objects randomly into the network. Then the
Query Generator starts to generate queries according to a
Poisson process with average generating rate at 5 queries
per second. The query distribution among the m objects
follows Zipf-like distribution with a given α value. The α
value for the results presented here is 1.20. (We also ran
simulations with α = 0.80 and α = 2.40. The results are
similar.) For each query, a node (that doesn’t have the re-
quested object yet) is randomly chosen to start the query.
For the search method, we use the 32-walker random walk
with state keeping, with checking at every fourth step. Each
node can store at most objAllow objects (40 in our simula-
tions). The replacement policy is Random Deletion. “Snap-
shots” are taken for every 2,000-query chunks. To allow for
enough “warming up” process, we run each simulation for
10,000 seconds, and look at the later part of the simulation.
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Figure 7: Cumulative distribution of the number of
hops under the three replication strategies.

For each replication strategy, we examine:

• what kind of replication ratio distribution does the
strategy generate?

• what is the average number of messages per node in a
system using the strategy?

• what is the distribution of number of hops in a system
using the strategy?

Figure 6 shows log-log plots of the distribution of replica-
tion ratios under path replication and random replication.
We also plot the distribution that is the square root of the
query distribution. Confirming our theoretical predictions,
the results show clearly that both path replication and ran-
dom replication generates replication ratios that are quite
close to square-root of query ratios.

Table 7 lists the average number of messages a node has
to process during the simulation. The result shows clearly
the benefit of square-root distribution on reducing search
traffic. Path replication and random replication reduces the
overall message traffic by a factor of three to four. Hence,
proactive replication such as path or random replication can
improve the scalability of P2P systems significantly.

Much of the traffic reduction comes from reducing the
number of hops it takes to find an object. Figure 7 shows
the cumulative hop distribution for all queries under the
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Figure 6: Distribution of replication ratios under Path replication and Random replication.

Owner Replication Path Replication Random Replication
avg #msgs per node 56542.6 19155.5 14463.0

factor of improvement 1 2.95 3.91

Table 7: Message traffic of different replication strategies.

three replication strategies. Path replication and random
replication clearly outperform the owner replication; for ex-
ample, the percentage of queries that finish within four hops
are 71% for owner replication, 86% for path replication and
91% for random replication.

The results also show that random replication improves
upon the path replication. Thus, the topological effects
of replicating along the path do hurt performance some-
what. Hence, if the implementation is not overly complex,
a P2P system should adopt random replication instead of
path replication.

7. RELATED WORK
As mentioned in the Introduction, there are several dif-

ferent kinds of P2P networks. The highly structured P2P
networks, such as CAN [18], Chord [23], Past [20], and
Tapestry [26], all use precise placement algorithms and spe-
cific routing protocols to make searching efficient. How-
ever these systems have not been widely deployed, and their
ability to operate with extremely unreliable nodes has not
yet been demonstrated. Moreover, they cannot deal with
partial-match queries.

There are also many loosely structured P2P networks.
Freenet [11], Free Haven [10], Mojo Nation [15] are but
a few examples of this rapidly growing list. Many of them
are storage systems that can protect the anonymity of both
authors and readers. Some systems, such as Free Haven
and Mojo Nation, focus on the trust, reputation manage-
ment and security issues in Peer-to-Peer systems. Most of
these loosely structured P2P networks use either directories
or placement hints to improve the scalability of the search
process. However, centralized directories don’t scale well
and placement hints don’t handle partial-match queries.

An interesting paper by Adamic et al. [1] studies random-
walk search strategies in power-law networks, and finds that
by modifying walkers to seek out high degree nodes the

search performance can be greatly increased. However, such
strategies greatly reduce the scalability of the search algo-
rithm, which is our focus and not the subject of [1], because
then almost all queries are sent to the very high degree
nodes, making them bear the burden of almost the entire
query load of the network.

The random walk search style is used in Freenet as well.
There, the walk is guided; each node uses hints to help it
choose which node to forward the query to. It also uses
only one “walker”. [9] also studies ways to provide hints
by building routing indices. In comparison, our focus is on
unstructured network, where hints are not available.

Several search techniques for unstructured networks are
discussed in [25]: iterative deepening, directed BFS and lo-
cal indices. The first scheme is similar to the expanding
ring scheme we examine here. Their work focuses on search
techniques only and does not study replication strategies.

We found a wealth of information on Gnutella at web sites
such as www.openP2P.com and gnutella.wego.com. We are
also aware of a number of published research studies on the
Gnutella network. For example, the freeloader phenomenon
is examined in [2], and the topology and query distribu-
tion are studied in [21, 14]. However, none of these papers
address the issue of better search algorithms or replication
algorithms.

8. CONCLUSIONS AND FUTURE WORK
This paper reports our simulation and modeling studies

of several search algorithms and replication strategies for
decentralized, unstructured peer-to-peer networks.

From simulation studies, we have learned that scalable
search algorithm designs for such networks should consider
three properties: adaptive termination, minimizing message
duplication, and small granularity of coverage. The flooding
algorithm being used in Gnutella does not satisfy any of the
properties. We show that it generates a lot of network traf-



fic and does not scale well. The expanding ring approach
improves the flooding algorithm by using an adaptive ter-
mination mechanism. It can find data reasonably quickly
while reducing the network traffic substantially, sometimes
by an order of magnitude. The k-walker random walk with
checking approach can find data more quickly while reducing
the traffic further by another order of magnitude, because it
reduces the granularity of coverage by using a fixed number
of random walkers.

We reviewed the calculations in [8] that show that, for a
fixed average number of replicas per node, square-root repli-
cation distribution is theoretically optimal in terms of mini-
mizing the overall search traffic. The simulations presented
here demonstrate the effectiveness of the square-root repli-
cation policy and illustrated how it can be achieved in prac-
tice. We simulated owner, path and random replications,
with the k-walker random walk with state keeping. Since
path and random replications lead to square-root replica-
tion distribution, their overall message traffic is about four
times less than the owner replication approach.

We have also learned from our simulation studies that
uniformly random graphs are better for searching and data
replication. The high degree nodes in power-law random
graph and the current Gnutella network bear much higher
load than average and introduce more duplication overhead
in searches. The results imply that it is better to use P2P
network building algorithms that form a uniformly random
network topology.

This study is our first step towards understanding the
properties of scalable search algorithms, replication strate-
gies, and network topologies for decentralized, unstructured
peer-to-peer networks. There are still many open issues to
study. It would be useful to model various search algorithms
with certain network topologies and study them analytically.
The k-walker random walk with checking and state keep-
ing has a lot of rooms to improve. Also, for the various
replication strategies, we show that Square-Root replication
minimizes the average search size, while Proportional repli-
cation achieves optimal load balance. It would be interesting
to study the tradeoff between the two metrics, and see how
the tradeoff can be achieved in a distributed system.
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