
Comparing Hybrid Peer-to-Peer Systems

Beverly Yang Hector Garcia-Molina

Stanford University
Stanford, CA, USA

fbyang, hectorg@cs.stanford.edu

Abstract

“Peer-to-peer” systems like Napster and Gnutella
have recently become popular for sharing infor-
mation. In this paper, we study the relevant is-
sues and tradeoffs in designing a scalable P2P sys-
tem. We focus on a subset of P2P systems, known
as “hybrid” P2P, where some functionality is still
centralized. (In Napster, for example, indexing
is centralized, and file exchange is distributed.)
We model a file-sharing application, developing
a probabilistic model to describe query behav-
ior and expected query result sizes. We also de-
velop an analytic model to describe system perfor-
mance. Using experimental data collected from
a running, publicly available hybrid P2P system,
we validate both models. We then present sev-
eral hybrid P2P system architectures and evaluate
them using our model. We discuss the tradeoffs
between the architectures and highlight the effects
of key parameter values on system performance.

1 Introduction

In a peer-to-peersystem (P2P), distributed computing
nodes of equal roles or capabilities exchange information
and services directly with each other. Various new systems
in different application domains have been labeled as P2P:
In Napster [6], Gnutella [2] and Freenet [1], users directly
exchange music files. In instant messaging systems like
ICQ [3], users exchange personal messages. In systems
like Seti-at-home [9], computers exchange available com-
puting cycles. In preservation systems like LOCKSS [5],
sites exchange storage resources to archive document col-
lections. Every week seems to bring new P2P startups and
new application areas.

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 27th VLDB Conference,
Roma, Italy, 2001

All these companies and startups tout the big advan-
tage of P2P: the resources of many users and computers
can be brought together to yield large pools of information
and significant computing power. Furthermore, because
computers communicate directly with their peers, network
bandwidth is better utilized. However, there are often in-
herent drawbacks to P2P solutions precisely because of
their decentralized nature. For example, in Gnutella, users
search for files by flooding the network with queries, and
having each computer look for matches in its local disk.
Clearly, this type of solution may have difficulty scaling to
large numbers of sites or complex queries. In Napster, on
the other hand, users cannot search for files globally; they
are restricted to searching on a single server that has only
indexed a fraction of the available files.

Our goal is to study the scalability and functionality
of P2P architectures, in order to understand the tradeoffs.
Since we cannot possibly studyall P2P systems at once,
in this our initial paper we focus ondata-sharing, hybrid
P2P systems. The goal of a data-sharing system is to sup-
port search and exchange files (e.g., MP3s) found on user
disks. In a data-sharingpure P2P system, all nodes are
equal and no functionality is centralized. Examples of file-
sharing pure P2P systems are Gnutella and Freenet, where
every node is a “servent” (both a client and a server), and
can equally communicate with any other connected node.

However, the most widely used file-sharing systems,
such as Napster and Pointera [8], do not fit this definition
because some nodes have special functionality. For exam-
ple, in Napster, a server node indexes files held by a set of
users. (There can be multiple server nodes.) Users search
for files at a server, and when they locate a file of inter-
est, they download it directly from the peer computer that
holds the file. We call these types of systemshybrid be-
cause elements of both pure P2P and client/server systems
coexist. Currently, hybrid file-sharing systems have better
performance than pure systems because some tasks (like
searching) can be done much more efficiently in a central-
ized manner.

Even though file-sharing hybrid P2P systems are hugely
popular, there has been little scientific research done on
them (see Section 2), and many questions remain unan-
swered. For instance, what is the best way to organize in-
dexing servers? Should indexes be replicated at multiple
servers? What types of queries do users typically submit in

such systems? How should the system deal with users that
are disconnected often (dial-in phone lines)? How do dif-
ferent query patterns affect performance of systems from
different application domains?

In the paper we attempt to answer some of these ques-
tions. In particular, the main contributions we make in this
paper are:
� We present (Section 3) several architectures for hybrid

P2P servers, some of which are in use in existing P2P
systems, and others which are new (though based on
well-known distributed computing techniques).

� We present a probabilistic model for user queries and
result sizes. We validate the model with data collected
from an actual hybrid P2P system. (Section 4.)

� We develop a model for evaluating the performance of
P2P architectures. This model is validated via exper-
iments using an open-source version of Napster [7].
(Section 5.)

� We provide (Section 6.1) a quantitative comparison of
file-sharing hybrid P2P architectures, based on our query
and performance models. Because both models are val-
idated on a real music-sharing system, we begin experi-
ments by focusing on systems in the music domain.

� We provide (Section 6.2) a comparison of strategies in
domains other than music-sharing, showing how our
models can be extended to a wide range of systems.
We note that P2P systems are complex, so the main chal-

lenge is in finding query and performance models that are
simple enough to be tractable, yet faithful enough to cap-
ture the essential tradeoffs. While our models (described in
Sections 4 and 5) contain many approximations, we believe
they provide a good and reliable understanding of both the
characteristics of P2P systems, and the tradeoffs between
the architectures. Our extended report [24] discusses in fur-
ther detail the steps we took to validate our models.

We also note that the only current, available experimen-
tal data on hybrid P2P systems are in the music-sharing
domain. Hence, because it is important to have a validated
model as a starting point for analysis, our experimental re-
sults in Section 6 begin with scenarios from Napster and
other music-sharing systems. However, the models pre-
sented in this paper are designed to be general, and we
show in Section 6.2 how they are applied to domains be-
yond music-sharing as well.

Finally, note that by studying hybrid P2P systems, we
do not take any position regarding theirlegality. Some
P2P systems like Napster are currently under legal attack
by music providers (i.e., RIAA), because of copyright vi-
olations. Despite their questioned legality, current P2P
systems have demonstrated their value to the community,
and we believe that the legal issues can be resolved, e.g.,
through the adoption of secure business models involving
royalty charging mechanisms. Thus, P2P systems will
continue to be used, and should be carefully studied.

2 Related Work

Several papers discuss the design of a P2P system for a spe-
cific application without a detailed performance analysis.

For example, reference [1] describes the Freenet project
which was designed to provide anonymity to users and to
adapt to user behavior. Reference [12] describes a sys-
tem that uses the P2P model to address the problems of
survivability and availability of digital information. Refer-
ence [15] describes a replicated file-system based on P2P
file exchanges.

Adar and Huberman conducted a study in [10] on user
query behavior in Gnutella, a “pure” P2P system. How-
ever, their focus was on the implications of “freeloading”
on the robustness of the Gnutella community. There was no
quantitative discussion on performance, and the study did
not cover hybrid P2P systems.

Performance issues in hybrid file-sharing P2P systems
have been compared to issues studied in information re-
trieval (IR) systems, since both systems provide a lookup
service, and use inverted lists. Much work has been done
on optimizing inverted list and overall IR system perfor-
mance (e.g., [17, 25]). However, while the IR domain
has many ideas applicable to P2P systems, there are dif-
ferences between the two types of systems such that many
optimization techniques cannot be directly applied. For ex-
ample, IR and P2P systems have large differences in update
frequency. Large IR systems with static collections may
choose to rebuild their index at infrequent intervals, but
P2P systems experience updates every second, and must
keep the data fresh. Common practices such as compres-
sion of indexes (e.g., [18]) makes less sense in the dynamic
P2P environment. While some work has been done in in-
cremental updates for IR systems (e.g., [11, 23]), the tech-
niques do not scale to the rate of change experienced by
P2P systems.

Research in cooperative web caching (e.g., [13, 19])
has also led to architectures similar to the ones studied in
this paper. However, performance issues are very differ-
ent due to several key differences in functionality and con-
text. First, most web caches search by key (i.e., URL),
making hash-based cooperative web caches more effective
than hash-based P2P systems, which allow multi-term key-
word queries. Second, URL “queries” in web caches map
to exactly one result, whereas queries in file-sharing sys-
tems return multiple results. Third, there is no concept of
logins or downloads in web caching, which is a large part
of P2P system performance. Fourth, bandwidth consumed
by transferring a page from cache to client is an important
consideration in cooperative web caching, but not in P2P
systems. Finally, user behavior in the Web context is fairly
well understood, whereas we will see that user behavior in
P2P systems vary widely depending on system purpose.

Several of the server architectures we present in the next
section either exist in actual P2P systems, or draw inspira-
tion from other domains. In particular, the “chained” ar-
chitecture is based on the OpenNap [7] server implemen-
tation, and resembles the “local inverted list” strategy [20]
used in IR systems, where documents are partitioned across
modes and indexed in subsets. The “full replication” ar-
chitecture uses the NNTP [16] approach of fully replicat-
ing information across hosts, and a variation of the archi-
tecture is implemented by the Konspire P2P system [4].

Figure 1:System Components and Messages

The “hash” architecture resembles the “global inverted list”
strategy [20] used in IR systems, where entire inverted lists
are partitioned lexicographically across nodes. Finally, the
“unchained” architecture is derived from the current archi-
tecture in use by Napster [6].

3 Server Architecture

We begin by describing the basic concepts in a file-sharing,
hybrid P2P system, based on the OpenNap [7] implementa-
tion of a file-sharing service.1 We then describe each of the
architectures in terms of these concepts. Figure 1 shows the
components in the basic hybrid P2P system and how they
interact.

General Concepts. There are three basic actions sup-
ported by the system: login, query and download.

On login, a client process running on a user’s computer
connects to a particular server, and uploads metadata de-
scribing the user’s library. Alibrary is the collection of
files that a user is willing to share. Themetadatamight
include file names, creation dates, and copyright informa-
tion. The server maintains an index on the metadata of its
client’s files. For now, we assume the index takes the form
of inverted lists [21]. Every file’s metadata is considered a
document, with the text of the file name, author name, and
so on, being its content. The server also maintains a table of
userconnection information, describing active connections
(e.g., client IP address, line speed).2 By logging on, the
user is now able to query its server, and is allowing other
users to download her files.

A system may contain multiple servers, but a user is
logged in and connected to only one server, itslocal server.
To that user, all other servers are consideredremote servers.
From the perspective of one server, users logged on to it di-
rectly are itslocal users. Depending on the architecture,
servers may index the library information of both local and
remote users.

A query consists of a list of desired words. When a
server receives a query, it searches for matches in its in-
dex. The server sets a maximum number of results to re-
turn for any query, and a query is said to besatisfiedif the
maximum number of results are returned. A query is pro-
cessed by retrieving the inverted lists for all its words, and
intersecting the lists to obtain the identifiers of the match-

1We are not following the exact protocol used by OpenNap, but rather
use a simplified set of actions that represent the bulk of the activity in the
system.

2Often, clients use dial-in connections, so their IP address can vary
from connection to connection.

Parameter Name Default Description
FilesPerUser 168 Average files per user library
FracChange .1 Average percent of a user’s library

that is changed offline
WordsPerFile 10 Average words per file title
WordsPerQuery 2.4 Average keywords per query
CharPerWord 5 Average characters per word
QueryPerUserSec .000833 Average number of queries per

second per user
QueryLoginRatio .45 Ratio of queries to logins per

second per user
QueryDownloadRatio .5 Ratio of queries to downloads

per second per user
ActiveFrac .05 Percent of the total user population

that is active at any given time
�f 100 Inverse frequency skew (Section 4)
r 4 Query skew to occurrence skew

ratio (Section 4)

Table 1:User-Defined Parameters

ing documents (user files). Clearly, other query and index-
ing schemes are possible (e.g., relational queries), and we
discuss how to evaluate these schemes with our models in
Section 6.2.

The user examines query results, and when she finds a
file of interest, her client directly contacts the client holding
the file, anddownloadsthe file. After a successful down-
load, or after a file is added through some other means, the
client notifies the local server of the new addition to the
library. The local server will add this information to its in-
dex. The local server is also notified when local files are
deleted. Depending on architecture, remote servers may
also be notified of the addition/deletion of local files.

Upon logoff, the local server updates the index to in-
dicate that the user’s files are no longer available. Again,
remote servers may have to update their indices as well, de-
pending on architecture. The options for handling logoffs
are discussed in the next subsection.

Most hybrid file-sharing P2P systems offer other types
of services to users other than just file sharing, such as chat
rooms, hot lists, etc. These services are important in build-
ing community and keeping users attached to the main ser-
vice. However, for our study we do not consider the effects
of these activities on the system, as our experiments show
that they do not significantly contribute to the workload.

As we discuss and study our hybrid P2P architectures,
we will introduce a number of descriptive parameters. We
show all parameters and their base values in Table 1, Ta-
ble 2, and Table 3, even though many of the parameters
and their values will be described in later sections. Base
values for the parameters were determined by statistics col-
lected from a live OpenNap system [24]. Parameters are
divided into user-dependent parameters (Table 1) – those
parameters that describe characteristics of user behavior,
system parameters (Table 2) – those parameters that deter-
mine available system resources, and derived parameters
(Table 3) – those parameters that are derived from other
user and system parameters. The last derived parameter,
UsersPerServer, is the value we want to maximize for each
server. Our performance model calculates the maximum
users per server supportable by the system, given all other

Parameter Name Default Description
LANBandwidth 80 Mb/s Bandwidth of LAN connection in Mb/s
WANBandwidth 8 Mb/s Bandwidth of WAN connection in Mb/s
CPUSpeed 800 MHz Speed of processor in MHz
NumServers 5 Number of servers in the system.
MaxResults 100 Maximum number of results returned

for a query
User-Server WAN The type of network connection
Network between users and servers
Server-Server LAN The type of network connection
Network between servers

Table 2:System-Defined Parameters

Parameter Name Description
ExServ Expected number of servers needed to satisfy a query
ExTotalResults Expected number of results returned by all servers
ExLocalResults Expected number of results returned by the local server
ExRemoteResults Expected number of results returned by remote servers
UsersPerServer Number of users logged on to each server

Table 3:Derived Parameters

parameters.

Batch and Incremental Logins. In current hybrid P2P
systems, when a user logs on, metadata on her entire library
is uploaded to the server and added to the index. Similarly,
when she logs off, all of her library information is removed
from the index. At any given time, only the libraries of
connected, or active, users are in the index. We call this
approach thebatchpolicy for logging in. While this pol-
icy allows the index to remain small and thereby increases
query efficiency, it also generates expensive update activity
during login and logoff.

An alternative is anincrementalpolicy where user files
are kept in the index at all times. When a user logs on,
only files that were added or removed since the last logoff
are reported. If few user files change when a user is of-
fline, then incremental logins save substantial effort during
login and logoff. (The parameterFracChangetells us what
fraction of files change when a user if offline.) However,
keeping file metadata ofall users requires filtering query
results so that files belonging to inactive users are not re-
turned. This requirement creates a performance penalty on
queries. Also notice that in some architectures, the incre-
mental policy requires that a user must always reconnect to
the same server. This restriction may be a disadvantage in
some applications.

Chained Architecture. In this architecture, the servers
form a linear chain that is used in answering queries. When
a user first logs on, only the local server adds library meta-
data to its index; remote servers are unaffected. When a
user submits a query, the local server attempts to satisfy the
query alone. However, if the local server cannot find the
maximum number of results, it will forward the query to a
remote server along the chain. The remote server will re-
turn any results it finds back to the first server, which will
then forward the results to the user. The local server contin-
ues to send the query out to the remaining remote servers in
the chain until the maximum number of results have been
found, or until all servers have received and serviced the

query. In this architecture, logins and downloads are fast
and scalable because they affect only the local server of a
user. However, queries are potentially expensive if many
servers in the chain are needed to satisfy the query.

Full Replication Architecture. Forwarding queries to
other servers can be expensive: each new server must pro-
cess the query, results must be sent to the originating server,
and the results must be merged. The full replication archi-
tecture avoids these costs by maintaining on each server a
complete index of all user files, so all queries can be an-
swered at a single server. Even with incremental logins,
users can now connect to any server. The drawback, how-
ever, is that all logins must now be sent to every server, so
that every server can maintain their copy of the index (and
of the user connection information). Depending on the fre-
quency ratio of logins to queries, and on the size of the in-
dex, this may or may not be a good tradeoff. If servers are
connected by a broadcast network, then login propagation
can be more efficient.

Hash Architecture. In this scheme, metadata words are
hashed to different servers, so that a given server holds the
complete inverted list for a subset of all words. We assume
words are hashed in such a way that the workload at each
server is roughly equal. When a user submits a query, we
assume it is directed to a server that contains the list of at
least one of the keywords. That server then asks the re-
maining servers involved for the rest of the inverted lists.
When lists arrive, they are merged in the usual fashion to
produce results. When a client logs on, metadata on its files
(and connection information) must be sent to the servers
containing lists for the words in the metadata. Each server
then extracts and indexes the relevant words.

This scheme has some of the same benefits of full repli-
cation, because a limited number of servers are involved in
each query, and remote results need not be sent between
servers. Furthermore, only a limited number of servers
must add file metadata on each login, so it is less expen-
sive than full replication for logins. The main drawback of
the hash scheme is the bandwidth necessary to send lists
between servers. However, there are several ways to make
this list exchange more efficient [22].

Unchained Architecture. The “unchained” architecture
simply consists of a set of independent servers that do not
communicate with each other. A user who logs on to one
server can only see the files of other users at the same local
server. This architecture, currently used by Napster, has
a clear disadvantage of not allowing users to see all other
users in the system. However, it also has a clear advantage
of scaling linearly with the number of servers in the system.
Though we cannot fairly compare this architecture with the
rest (it provides partial search functionality), we still study
its characteristics as a “best case scenario” for performance.

4 Query Model
To compare P2P architectures, we need a way to estimate
the number of query results, and the expected number of
servers that will have to process a query. In this section we

describe a simple query model that can be used to estimate
the desired values.

We assume a universe of queriesq1; q2; q3; :::. We define
two probability density functions over this universe:
� g – the probability function that describes query popular-

ity. That is,g(i) is the probability that a submitted query
happens to be queryqi.

� f – the probability density function that describes query
“selection power”. In particular, if we take a given file in
a user’s library, with probabilityf(i) it will match query
qi.

For example, iff(1) = 0:5, and a library has 100 files, then
we expect 50 files to match queryq1. Note that distribution
g tells us what queries users like to submit, whilef tells us
what files users like to store (ones that are likely to match
which queries).

Calculating ExServ for the Chained Architecture. Us-
ing these two definitions we now computeExServ, the ex-
pected number of servers needed in a chained architecture
(Section 3) to obtain the desiredR = MaxResultsresults.
Let P (s) represent the probability that exactlys servers,
out of an infinite pool, are needed to returnR or more re-
sults.

The expected number of servers is then:

ExServ =

kX
s=1

s � P (s) +

1X
s=k+1

k � P (s) (1)

wherek is the number of servers in the actual system. (The
second summation represents the case where more thank
servers from the infinite pool were needed to obtainR re-
sults. In that case, the maximum number of servers,k, will
actually be used.)

In [24] we show that this expression can be rewritten as:

ExServ = k�

k�1X
s=1

Q(s �UsersPerServer� FilesPerUser):

HereQ(n) is the probability thatR or more query matches
can be found in a collection ofn or fewer files. Note that
n = s� UsersPerServer� FilesPerUseris the number of
files found ons servers.

To computeQ(n), we first computeT (n;m), the prob-
ability of exactlym answers in a collection of exactlyn
files. For a given queryqi, the probability ofm results can
be restated as the probability ofm successes inn Bernoulli
trials, where the probability of a success isf(i). Thus,
T (n;m) can be computed as:

T (n;m) =

1X
i=0

g(i)

��
n
m

�
(f(i))m(1� f(i))n�m

�
:

Q(n) can now be computed as the probability that we
do not get0; 1; ::: orR� 1 results in exactlyn files, or

Q(n) = 1�

R�1X
m=0

T (n;m):

Calculating Expected Results for Chained Architecture.

Next we compute two other values required for our eval-
uations,ExLocalResultsand ExRemoteResults, again for
a chained architecture.ExLocalResultsis the expected
number of query results from a single server, whileExRe-
moteResultsis the expected number of results that will be
returned by a remote server. The former value is needed,
for instance, to compute how much work a server will per-
form as it answers a query. The latter value is used, for
example, to compute how much data a server receives from
remote servers that assist in answering a query.

Both values can be obtained if we computeM(n) to be
the expected number of results returned from a collection
of n files. Then,ExLocalResultsis simplyM(y), where
y = UsersPerServer� FilesPerUser. Similarly, the ex-
pected total number of results,ExTotalResults, isM(k � y).
ThenExRemoteResultsis ExTotalResults - ExLocalResults
=M(k � y)�M(y).

In [24] we show thatM(n) =
1X
i=0

g(i)

�
R�

R�1X
m=0

�
n
m

�
(f(i))m(1�f(i))N�m(R�m)

�
:

Calculating Expected Values for Other Architectures.
So far we have assumed a chained architecture. For full
replication,ExServis trivially 1, since every server con-
tains a full replica of the index at all other servers. Be-
causeExServis 1, all results are local, and none are re-
mote. HenceExRemoteResults= 0, andExLocalResults =
ExTotalResults= M(N), whereM is defined above, and
N = k� UsersPerServer� FilesPerUseris the number of
files in the entire system.

For the unchained architecture,ExServis trivially 1,
since queries are not sent to remote servers.ExRe-
moteResults= 0 and ExLocalResults= M(n), where
n =UsersPerServer� FilesPerUseris the number of files
at asingleserver.

Finally, for the hash architecture, againExRemoteRe-
sults= 0 andExLocalResults= M(N), since all the re-
sults are found at the server that the client is connected to.
ExServis more difficult to calculate, however. The prob-
lem again takes the form of equation (1), but now the prob-
ability P (s) that exactlys servers are needed to to return
R or more results is equal to the probability that exactly
s servers containw inverted lists, wherew is the number
of words per query. Finding this probability is the same as
finding the probability thatw balls being assigned to ex-
actly s bins, a well-known probability problem. We refer
the reader to [24] for a complete solution.

Distributions for f and g. While we can use anyf andg
distributions in our model, we have found that exponential
distributions are computationally easier to deal with and
provide accurate enough results in the music domain. Thus,

we assume for now thatg(i) = 1

�g
e
�

i
�g . Since this func-

tion monotonically decreases, this means thatq1 is the most
popular query, whileq2 is the second most popular one,
and so on. The parameter�g is the mean. If�g is small,
popularity drops quickly asi increases; if�g is large, pop-

0 20 40 60 80 100 120
0.5

0.6

0.7

0.8

0.9

1

Number of Results

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

observed frequency distr.
fitted frequency distr.

fitted 1−Q(n) (.9464)

observed 1−Q(n) (.9350)

fitted M(n) (14.8200)

observed M(n) (14.7518)

Figure 2: Observed and Fitted Frequency Distributions of Re-
sults in OpenNap

ularity is more evenly distributed. Similarly, we assume

thatf(i) = 1

�f
e
�

i
�f . Note that this assumes that popular-

ity and selection power are correlated. In other words, the
most popular queryq1 has the largest selection power, the
second most popular queryq2 has the second largest power
and so on.

From this point on, we will express�g asr � �f , where
r is the ratio�g=�f . For a given query popularity distribu-
tion g, asr decreases toward0, selection powerf becomes
more evenly distributed, and queries tend to retrieve the
same number of results regardless of their popularity.

Section 6.2 describes how the query model behaves with
different distributions forf andg.

Validation of Query Model. Using data obtained from a
live OpenNap P2P system, we were able to experimentally
validate our query model with the given assumptions. We
were also able to give qualitative and quantitative evidence
to support the assumption of correlated exponential distri-
butions forf andg. Due to lack of space, we must refer
the reader to [24] for a full description of our experiments
and validation process. Here, we only describe briefly the
results of the model validation.

Figure 2 shows the observed cumulative frequency dis-
tribution of the number of results returned for a sample of
16958 queries submitted to an OpenNap system, as well as
the best-fit cumulative distribution derived from our query
model. As seen from the two curves, the observed and
derived distributions match very closely. In addition, we
can also see that the observed values forQ(1) andM(n)
(wheren is the number of files at the server) match closely
with the derived values ofQ(1) andM(n). Hence we con-
clude that the query model can predict well the actual query
behavior of hybrid P2P systems, given the assumptions and
the correct parameter values. The fitted parameter values
derived from this experiment are�f = 400 andr = 10.

5 Performance Model

In this section, we describe the performance model used to
evaluate the architectures. We begin by defining our system
environment and the resources our model will consider. We
then present the basic formulas used to calculate the cost of

Action Formula for CPU instructions

Batch Login/off 152817:6 � FilesPerUser+ 200000
Batch Query (4000 + 3778) � ExTotalResults+ 100000 � ExServ

+2000 � ExRemoteResults
Batch Download 222348
Incr. Login/off 77408:8 � FilesPerUser� FracChange+ 200000
Incr. Query (4000 + 3778=ActiveFrac) � ExTotalResults

+100000 � ExServ+ 2000 � ExRemoteResults
Incr. Download 222348

Table 4:Formulas for cost of actions in CPU instructions

actions in the system. Finally, we illustrate how we put the
parameters and costs together to model the performance of
the chained architecture. Because of space limitations, we
are only able to give detailed examples of just a portion of
what our model covers. For a complete description, please
refer to [24].

System Environment and Resources.In our model, we
assume the system consists ofNumServersidentical server
machines. The machines are connected to each other via a
broadcast local area network (LAN), for example, if they
all belong to the same organization, or through a point-to-
point wide area network (WAN). Similarly users may be
connected to servers via LAN or WAN. Our system can
model any of the four combinations; let us assume for the
examples in the remainder of the section that servers are
connected to each other via LAN, and to users via WAN.

We calculate the cost of actions in terms of three system
resources: CPU cycles, inter-server communication band-
width, and server-user communication bandwidth. If users
and servers are all connected via the same network (e.g., the
same LAN), then the last two resources are combined into
one. For the time being, we do not take I/O costs into con-
sideration, but assume that memory is cheap and all indexes
may be kept in memory. Memory is a relatively flexible re-
source, and depends largely on the decisions of the system
administrator; hence, we did not want to impose a limit on
it. Later in Section 6.1, we will discuss the memory re-
quirements of each architecture, and point out the tradeoffs
one must make if a limit on memory is imposed.

Table 2 lists the default system parameter values used in
our performance analysis. The bandwidth values are based
on commercial enterprise level standards, while the CPU
represents current high-end commodity hardware.Num-
Serversand MaxResultswere taken from the OpenNap
chain settings.

CPU Consumption. Table 4 lists the basic formulas for
the cost of actions in CPU instructions, for the simple ar-
chitecture. In this table, we see that the cost of a query is a
function of the number of total and remote results returned,
the cost of logging on is a linear function of the size of the
library, and the cost of a download is constant. The coeffi-
cients for the formulas were first estimated by studying the
actions of a typical implementation, and by roughly count-
ing how many instructions each action would take. For ex-
ample, in the formula for batch query cost, we estimated
that the startup overhead at each server is due mostly to the
cost of an in-memory transaction, which is listed in [14] as

Action Formula

Batch Login 42 + (75 + WordsPerFile� CharPerWord)
�FilesPerUser

Incr. Login 42 + (46 + WordsPerFile� CharPerWord)
�FilesPerUser� FracChange

Query WordsPerQuery� CharPerWord+ 100
QueryResponse 90 + WordsPerFile� CharPerWord
Download 81 + WordsPerFile� CharPerWord

Table 5:Formulas for cost of actions in bytes

roughly 100000 instructions. When it was hard to estimate
the costs of actions, we ran measurement tests using simple
emulation code. Finally, we experimentally validated the
overall formulas against our running OpenNap server. The
performance predicted by our formulas matched relatively
well the actual values, at least for the chained architecture
(batch policy) that OpenNap implements. For additional
details on the validation process, see [24].

To calculate the cost of actions in incremental mode, we
use the same formulas derived for batch mode, but incor-
porate the changes in the underlying action. Servicing a
query in incremental mode has the same formula and coef-
ficients as in batch mode, except that onlyActiveFracof the
elements in the inverted lists pertain to files that are owned
by currently active users, and all other elements cannot be
used to answer the query. As a result, the cost of reading
list elements per returned result needs to be divided byAc-
tiveFrac.

The CPU cost of actions may also vary depending on
architecture. In both the unchained and full replication ar-
chitectures, the formula for batch and incremental query
costs are exactly the same; however,ExServ= 1 andExRe-
moteResults= 0 always. In the hash architecture, there is an
additional cost of transferring every inverted list at a remote
server to the local server. Hence, the coefficient describing
the cost of list access per returned result is increased.

Network consumption. Table 5 lists formulas for the cost,
in bytes, of the messages required for every action in the
chained architecture. The coefficients come directly from
the Napster network protocol, user-defined parameters, and
a number of small estimates.

For example, when logging on, a client sends a Login
message with the user’s personal information, an AddFile
message for some or all files in the user’s library, and possi-
bly a few RemoveFile messages if the system is operating
in incremental mode. The Napster protocol defines these
three messages as:
� Login message format:(MsgSize MsgType<user>
<passwd><port> ” <version>” <link-speed>).

� AddFile message format: (MsgSize MsgType
” <filename>” <md5> <size> <bitrate>
<frequency><time>).

� RemoveFile message format: (MsgSize MsgType
<filename>).
Using the user-defined parameter values in Table 1, and

estimating 10 characters in a user name and in a password,
7 characters to describe the file size, and 4 characters to
describe the bitrate, frequency, and time of an MP3 file,

the sizes of the Login, AddFile and RemoteFile messages
come to 42 bytes, 125 bytes, and 67 bytes, respectively.
When a client logs on inbatchmode, a single Login mes-
sage is sent from client to server, as well asFilesPerUser
AddFile messages.3 Average bandwidth consumption for
payload data is42+168�125 = 21042 bytes. When a client
logs on in incremental mode, a single Login message is
sent from client to server, as well as approximatelyFilesPe-
rUser � FracChange�0:5 AddFile messages, and the same
number of RemoveFile messages. Average bandwidth con-
sumption is therefore42+168�0:1�0:5(125+67) = 1654:8
bytes.

Network usage between servers varies depending on the
architecture. For example, for login, the unchained archi-
tecture has no inter-server communication, so the required
bandwidth is 0. Servers in the chained architecture send
queries between servers, but not logins, so again, the band-
width is 0. With the full replication architecture, all servers
must see every Login, AddFile and RemoveFile message.
If servers are connected on a LAN, then the data messages
may be broadcast once. If the servers are connected on
a WAN, however, then the local server must send the mes-
sagesNumServers�1 times. Similarly, in the hash architec-
ture, if servers are connected via LAN, then the messages
may be broadcast once. If the servers are connected via
WAN, however, then the AddFile messages should only be
sent to servers storing lists for words contained in the name
of the file. Calculating the expected number of servers
to receive an AddFile message is analogous to calculating
ExServdescribed in Section 4.

Modeling Overall Performance of an Architecture. Af-
ter deriving formulas to describe the cost of each action,
we can put everything together to determine how many
users are supportable by the system. Our end goal is to
determine a maximum value forUsersPerServer. To do
this, we first calculate the maximum number of users sup-
portable by each separate resource, assuming infinite re-
sources of the other two types. Then, to find the overall
UsersPerServer, we take the minimum across the three re-
sources. We cannot directly directly calculate the maxi-
mum UsersPerServerfor a particular resource, however,
because the amount of resource consumed is a complex
function of UsersPerServer. Instead, we use the iterative
secant method for zero-finding, where we guess two val-
ues for the parameter, calculate consumed resources for
each of these guesses, and interpolate a new value for
UsersPerServerwhere zero resource is unused, which is
maximum capacity. Please see [24] for an example.

6 Experiments

In this section, we present the results of our performance
studies. We first study music sharing systems today (Sec-
tion 6.1), and then focus on the performance of systems in
other domains, which may have different query character-
istics from music-sharing applications (Section 6.2). For

3Yes, a separate message is sent to the server for each file in the user’s
library. This is inefficient, but it is the way the Napster protocol operates.

each experiment we will highlight the important conclu-
sions and give a condensed, high-level explanation for the
results. For a more detailed discussion of results, and to
view the results of the full range of experiments we con-
ducted, please refer to [24].

Throughout the performance comparisons, the metric of
performance is the maximum number of users each server
can support. Hence, we concern ourselves with through-
put, and not response time. Unless otherwise specified, de-
fault values for parameters (see Tables 1, 2, and 3) were
used during evaluation. Note that several of these parame-
ters could be better represented as a distribution, which we
replace with the mean. Since we wish to see the relative
performance of the systems in terms of average through-
put, rather than precise performance numbers, such a sim-
plification is tolerable. For brevity, we will refer to the
chained architecture as CHN, the full replication architec-
ture as FR, the hash architecture has HASH, and the un-
chained architecture as UNCH. Because each architecture
can be implemented using one of two login policies, we re-
fer to the combination of a particular architecture and pol-
icy as a “strategy”. For example, “batch CHN” is the strat-
egy where the chained architecture is implemented using
the batch login policy. There are a total of 8 strategies.

6.1 Music-Sharing Today

We begin by evaluating performance of systems with be-
havior similar to that of music-sharing systems today (e.g.,
Napster, OpenNap), described by default user and sys-
tem parameter values listed in Tables 1 and 2. Fig-
ure 3 shows the overall performance of the strategies
over various values ofQueryLoginRatio. For example, at
QueryLoginRatio= 1, incremental FR can support 54203
users per server, whereas batch FR can only support 7281
users per server. The dashed line represents the experi-
mentally derived value ofQueryLoginRatiofor OpenNap.
Figure 4 shows the expected number of results per query
for each of the strategies shown in Figure 3, assuming
that MaxResults= 100. As QueryLoginRatioincreases,
the number of logins per second decreases, meaning more
users can be supported by the system, thereby making more
files available to be searched. As a result, whenQuery-
LoginRatio increases, the expected number of results in-
creases as well.

From this experiment, we can make several important
conclusions:
� Incremental strategies outperform their batch counter-

parts. In particular, incremental CHN and UNCH have
the best performance and are recommended in this sce-
nario. Currently, the incremental policy is not used by
music-sharing systems, but it should clearly be consid-
ered (see end of section for memory considerations).

� Batch UNCH is the strategy that most closely describes
Napster’s architecture. As seen in the figures, surpris-
ingly, adding chaining to the servers (switching from
UNCH to CHN) does not affect performance by much,
but returns significantly more results. Assuming the cost
of maintaining a LAN between the servers is acceptable,

batch CHN is clearly recommended over batch UNCH.
� Most policies are very sensitive toQueryLoginRationear

our measured value of 0.45. Small changes inQuery-
LoginRatiocan significantly increase or reduce the max-
imum number of users supported by the system, thereby
making capacity planning difficult. This sensitivity is
especially important to consider if large increases in
QueryLoginRatioare expected in the future when user
network connections become more stable (see [24]).

Memory Requirements Thus far, we have evaluated the
strategies assuming that there was enough memory to hold
whatever indexes a server needed. We will now take a
closer look at the memory requirements of each strategy.

Figure 5 shows the memory requirement in bytes of the
various strategies, as a function of the number of users.
Please refer to [24] for a description on how memory usage
is calculated. Here, we assumeActiveFrac= .1, to keep all
architectures within roughly the same scale. Clearly, the
batch strategies are far more scalable than the incremental
strategies. For example, when there are 10000 users in the
system, batch CHN requires .35 GB of memory, while in-
cremental CHN requires 10 times that amount. Also, CHN
requires the least amount of memory, while FR requires
the most. However, it is important to note that memory
requirement is a function of several parameters, most im-
portantlyNumServersandActiveFrac. As NumServersde-
creases, FR requires proportionally less memory. On the
flip side, asNumServersincreases, FR also requires propor-
tionally more memory. Likewise, incremental strategies re-
quire 1/ActiveFracas much memory as batch. As connec-
tions become more stable andActiveFracincreases, mem-
ory required by incremental strategies will decrease inverse
proportionally, until it is much more comparable to batch
memory requirements than it currently is. Furthermore,
as memory becomes cheaper and 64-bit architectures be-
comes widespread, memory limitations will become much
less of an issue than it is now.

Today, it is likely that system administrators will limit
the memory available on each server. By imposing a limit,
several new tradeoffs come into play. For example, suppose
a 4GB memory limit is imposed on each server, shown by
the dashed line in Figure 5. Now, consider a Napster sce-
nario wherer = 4, �f = 100, andActiveFrac= .1. Say
we determine thatQueryLoginRatio= .75. Our model pre-
dicts that the maximum number of users supported by batch
CHN is 26828, and by incremental CHN is 69708. The
memory required by these two strategies is shown in Fig-
ure 5 by the large ’x’ marks. While incremental CHN can
support over twice as many users as batch CHN, it also re-
quires very large amounts of memory – far beyond the 4GB
limit. If we use the incremental CHN strategy with the 4GB
limit, then our system can only support 12268 users per
server, shown as a large triangle in Figure 5, which is fewer
than the users supported by batch CHN. Hence, batch CHN
is the preferred architecture for this scenario.

However, let us now supposeQueryLoginRatiois .25.
Then, the maximum number of users supported by batch
CHN is 9190, and by incremental CHN is 52088. The

0 1 2 3 4 5
0

1

2

3

4

5

6

7

8

9
x 10

4

Query/Logon Ratio

M
ax

im
um

 U
se

rs
 S

up
po

rt
ed

 (
pe

r
se

rv
er

)

batch CHN
incr. CHN
batch FR
incr. FR
batch HASH
incr. HASH
batch UNCH
incr. UNCH

Figure 3: Overall Performance of
Strategies vs.QueryLoginRatio

0 1 2 3 4 5
75

80

85

90

95

100

Query/Logon Ratio

E
xp

ec
te

d
N

um
be

r
of

 R
es

ul
ts

 (
pe

r
qu

er
y)

batch CHN
incr. CHN
batch FR
incr. FR
batch HASH
incr. HASH
batch UNCH
incr. UNCH

Figure 4:Expected Number of Results

0 2 4 6 8 10

x 10
4

0

0.5

1

1.5

2

2.5
x 10

10

Number of Users

M
em

or
y

R
eq

ui
re

d
(b

yt
es

)

batch CHN
incr. CHN
batch FR
incr. FR
batch HASH
incr. HASH
batch UNCH
incr. UNCH

Figure 5:Memory Requirements

memory required by these two strategies is shown in Fig-
ure 5 by the large ’o’ marks. Again, the amount of memory
required by incremental CHN is far too large for our limit.
However, looking at incremental CHN performance at the
4 GB limit, we find that the 12268 users supported by in-
cremental CHN is greater than the 9190 users supported
by batch CHN. Hence, incremental CHN is still the better
choice, because within the limit, it still has better perfor-
mance than batch CHN.

6.2 Beyond Music: Systems in Other Domains

In Section 4, we describe a query model where, given dis-
tributions for query frequency and query selection power,
we can calculate the expected number of results for a query,
and the expected number of servers needed to satisfy the
query. The model itself is completely general in that it
makes no assumptions about the type of distributions used
for f andg; however, for the purposes of modeling music-
sharing systems and validating the model, we made the
temporary assumption thatf andg are exponential distri-
butions. Implied by this assumption is the additional as-
sumption thatf andg arepositively correlated– that is,
the more popular or frequent a query is, the greater the se-
lection power it has (i.e. the larger the result set).

While we believe that our “music” model can be used in
many other domains, one can construct examples where the
f andg distributions have different properties. Differences
in f andg distributions can be caused by different char-
acteristics of application domains, and/or varying expres-
siveness of queries. For example, if the system supported
complex, expressive relational queries, an obscure query
such asselect * from Product where price> 0 would return
as many results as a common query such asselect * from
Product. In this case, there is very little, if any, correlation
between the popularity of a query and the size of its re-
sult set. We say that such systems haveno correlationdis-
tributions. Another example might be an “archive-driven”
system, where users provide old, archived files online but
keep their current, relevant information offline. This sce-
nario might occur in the business domain where compa-
nies do not want their current data available to the public
or their competitors, but might be willing to provide out-
dated information for research purposes. Because archives

hold historical data, popular queries which refer to recent
times return less data, whereas rare queries which refer to
the past will return more. In this case, there is anegative
correlationbetween query popularity and selection power.

In [24], we show through detailed analysis how the be-
havior of systems with negative and no correlation distri-
butions can in fact be approximated very closely by sys-
tems with positive correlation distributions. Although the
input to the query model, thef andg distributions, are very
different, the output of the model, values forExServand
ExResults, are closely matched. In particular,no correla-
tion distributions are closely approximated by positive cor-
relation distributions wherer = 1, andnegative correla-
tion distributions are closely approximated whenr is very
large. Thus, we can understand the behavior of systems
with negative and no correlation distributions by studying
the performance of systems with a wide range of positive
correlation distributions.

To illustrate, Figure 6 shows CPU performance of each
strategy asr is varied. For comparison, ther value derived
for the OpenNap system is shown by a dotted line in the
figure. In addition, in [24] we presented several “represen-
tative” curves for negative and no correlation distributions,
and determined the best-fit positive correlation approxima-
tions for each. For comparison, ther values derived for the
approximations of the negative and no correlation curves
are also shown in Figure 6 by dotted lines. From this figure,
we can make several observations about the performance of
strategies in different query models:

� With negative correlation distributions, or positive cor-
relation with highr, incremental strategies are recom-
mended. CPU performance of incremental strategies is
usually bound by expensive queries (see [24]), but with
negative correlation or highr, the expected number of
results is very low, thereby making queries inexpensive.

� With no correlation distributions, or positive correlation
with low r, batch strategies outperform incremental (ex-
cept for FR). This is because whenr is low, the expected
number of results is very high, thereby making queries
expensive and incremental performance poor. Batch FR
performs so poorly because of expensive logins.

� CHN and HASH show greater improvement than FR as
r increases. FR, which has poor login performance but

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2

2.5

3
x 10

5

r

M
ax

im
um

 U
se

rs
 S

up
po

rt
ed

 (
pe

r
se

rv
er

)

batch CHN
incr. CHN
batch FR
incr. FR
batch HASH
incr. HASH

no correlation

OpenNap

negative correlation

Figure 6:CPU Performance of Strategies vs. Query Model Pa-
rameterr

excellent query performance, is least affected by a de-
crease inExResultscaused by an increase inr. Hence,
its performance improves the least asr increases.

7 Conclusion

In this paper, we studied the behavior and performance of
hybrid P2P systems. We developed a probabilistic model
to capture the query characteristics of these systems, and
an analytical model to evaluate the performance of various
architectures and policies. We validated both models using
experimental data from actual hybrid P2P systems. Finally,
we evaluated and compared the performance of each strat-
egy. A summary of our findings (including results in our
extended report [24]) for each architecture and policy are
as follows:
� In our opinion, thechainedarchitecture is the best strat-

egy for today’s music-sharing systems, and will continue
to be unless network bandwidth increases significantly,
or user interests become more diverse. This architecture
has fast, scalable logins and requires the least amount
of memory. However, query performance can be poor if
many servers are involved in answering a single query.

� The full replication architecture has good potential in
the future when network connections will be more sta-
ble and memory is cheaper. The architecture performs
comparatively well in applications where user interests
are diverse, and when result sets are relatively large.

� Thehasharchitecture has very high bandwidth require-
ments. Hence, it is the best choice only if network
bandwidth increases significantly in the future, or in sys-
tems where it is not necessary for servers to exchange
large amounts of metadata (e.g., systems supporting only
single-word queries such as search by key or ID).

� The unchained architecture is generally not recom-
mended because it returns relatively few results per
query and has only slightly better performance than other
architectures. It is only appropriate when the number of
results returned is not very important, or when no inter-
server communication is available.

� The incremental policy is recommended in systems
with negative correlation (e.g., historical or “archive-
driven” systems), and performs best when sessions are
short and network bandwidth is limited.

Acknowledgments. We would like to thank Daniel
Paepcke for administrating relations with the OpenNap net-
work used for our studies.

References
[1] Freenet Home Page. http://freenet.sourceforge.com/.
[2] Gnutella Development Home Page.

http://gnutella.wego.com/.
[3] ICQ Home Page. http://www.icq.com/.
[4] Konspire Home Page. http://konspire.sourceforge.com/.
[5] LOCKSS Home Page. http://lockss.stanford.edu/.
[6] Napster Home Page. http://www.napster.com/.
[7] OpenNap Home Page. http://opennap.sourceforge.net/.
[8] Pointera Home Page. http://www.pointera.com/.
[9] SETI@home Home Page. http://setiathome.ssl.berkely.edu/.

[10] Eytan Adar and Bernardo A. Huberman.
Free Riding on Gnutella. http://www.firstmonday.dk/-
issues/issue510/adar/index.html, September 2000.

[11] Eric W. Brown, James P. Callan, and W. Bruce Croft. Fast
incremental indexing for full-text information retrieval. In
Proc. of 20th Intl. Conf. on Very Large Databases, pages
192–202, September 1994.

[12] Brian Cooper, Arturo Crespo, Hector Garcia-Molina. Im-
plementing a reliable digital object archive.4th European
Conf. on Digital Libraries, September 2000.

[13] Sandra Dykes.Cooperative Web Caching: A Viability Study
and Design Analysis. PhD thesis, University of Texas at San
Antonio, 2000.

[14] Jim Gray and Andreas Reuter.Transaction Processing:
Concepts and Techniques. Morgan Kauffman Publishers,
Inc., San Mateo, 1993.

[15] R. Guy, P. Reicher, D. Ratner, M. Gunter, W. Ma, and
G. Popek. Rumor: Mobile data access through optimistic
peer-to-peer replication. InER’98 Workshop on Mobile
Data Access, 1998.

[16] Brian Kantor, Phil Lapsley. Network News Transfer Proto-
col. RFC 977, February 1986.

[17] A. Moffat and J. Zobel. Self-indexing inverted files for fast
text retrieval. ACM Transactions on Information Systems,
14(4):349–379, October 1996.

[18] Anh NgocVo and Alistair Moffat. Compressed inverted
files with reduced decoding overheads. InProc. of the 21st
Intl. Conf. on Research and Development in Information Re-
trieval, pages 290–297, August 1998.

[19] Michael Rabinovich, Jeff Chase, and Syan Gadde. Not all
hits are created equal: Cooperative proxy caching over a
wide area network. InProc. of the 3rd Intl. WWW Caching
Workshop, June 1998.

[20] B. Ribeiro-Neto and R. Barbosa. Query performance for
tightly coupled distributed digital libraries.3rd ACM Conf.
on Digital Libraries, pages 182–190, June 1998.

[21] G. Salton. Information Retrieval: Data Structures and Al-
gorithms. Addison-Wesley, Massachussetts, 1989.

[22] Anthony Tomasic.Distributed Queries and Incremental Up-
dates in Information Retrieval Systems. PhD thesis, Prince-
ton University, 1994.

[23] Anthony Tomasic, Hector Garcia-Molina, and Kurt Shoens.
Incremental update of inverted list for text document re-
trieval. In Proc. of the 1994 ACM SIGMOD Intl. Conf. on
Management of Data, pages 289–300, May 1994.

[24] Beverly Yang and Hector Garcia-Molina.
Comparing Hybrid Peer-to-Peer Systems. Technical
report, Stanford University, February 2001. Available at
http://dbpubs.stanford.edu/pub/2000-35.

[25] J. Zobel, A. Moffat, and R. Sacks-Davis. An efficient index-
ing technique for full-text database systems. In18th Intl.
VLDB Conf., pages 352–362, August 1992.

