Association Rule Mining in Peer-to-Peer Systems

*

Ran Wolff and Assaf Schuster
Technion — Israel Institute of Technology
Email: {ranw,assaf} @cs.technion.ac.il

Abstract

We extend the problem of association rule mining —
a key data mining problem — to systems in which the
database is partitioned among a very large number of
computers that are dispersed over a wide area. Such com-
puting systems include GRID computing platforms, feder-
ated database systems, and peer-to-peer computing envi-
ronments. The scale of these systems poses several difficul-
ties, such as the impracticality of global communications
and global synchronization, dynamic topology changes of
the network, on-the-fly data updates, the need to share re-
sources with other applications, and the frequent failure
and recovery of resources.

We present an algorithm by which every node in the
system can reach the exact solution, as if it were given
the combined database. The algorithm is entirely asyn-
chronous, imposes very little communication overhead,
transparently tolerates network topology changes and
node failures, and quickly adjusts to changes in the data
as they occur. Simulation of up to 10,000 nodes show that
the algorithm is local: all rules, except for those whose
confidence is about equal to the confidence threshold, are
discovered using information gathered from a very small
vicinity, whose size is independent of the size of the system.

1 Introduction

The problem of association rule mining (ARM) in large
transactional databases was first introduced in 1993 [1].
The input to the ARM problem is a database in which ob-
jects are grouped by context. An example would be a list
of items grouped by the transaction in which they were
bought. The objective of ARM is to find sets of objects
which tend to associate with one another. Given two dis-
tinct sets of objects, X and Y, we say Y is associated with
X if the appearance of X in a certain context usually im-

*This work was supported in part by Microsoft Academic Foundation.

plies that Y will appear in that context as well. The output
of an ARM algorithm is a list of all the association rules
that appear frequently in the database and for which the
association is confident.

ARM has been the focus of great interest among data
mining researchers and practitioners. It is today widely
accepted to be one of the key problems in the data mining
field. Over the years many variations were described for
ARM, and a wide range of applications were developed.
The overwhelming majority of these deal with sequential
ARM algorithms. Distributed association rule mining (D-
ARM) was defined in [2], not long after the definition of
ARM, and was also the subject of much research (see, for
example, [2, 5, 15, 7, 8]).

Inrecent years, database systems have undergone major
changes. Databases are now detached from the computing
servers and have become distributed in most cases. The
natural extension of these two changes is the development
of federated databases — systems which connect many dif-
ferent databases and present a single database image. The
trend toward ever more distributed databases goes hand
in hand with an ongoing trend in large organizations to-
ward ever greater integration of data. For example, health
maintenance organizations (HMOs) envision their medical
records, which are stored in thousands of clinics, as one
database. This integrated view of the data is imperative for
essential data analysis applications ranging from epidemic
control, ailment and treatment pattern discovery, and the
detection of medical fraud or misconduct. Similar exam-
ples of this imperative are common in other fields, includ-
ing credit card companies, large retail networks, and more.

An especially interesting example for large scale dis-
tributed databases are peer-to-peer systems. These sys-
tems include GRID computing environments such as Con-
dor [10] (20,000 computers), specific area computing sys-
tems such as SETI@home [12] (1,800,000 computers) or
UnitedDevices [14] (2,200,000 computers), general pur-
pose peer-to-peer platforms such as Entropia [6] (60,000
peers), and file sharing networks such as Kazza (1.8 mil-
lion peers). Like any other system, large scale distributed
systems maintain and produce operational data. However,

in contrast to other systems, that data is distributed so
widely that it will usually not be feasible to collect it for
central processing. It must be processed in place by dis-
tributed algorithms suitable to this kind of computing en-
vironment.

Consider, for example, mining user preferences over
the Kazza file sharing network. The files shared through
Kazza are usually rich media files such as songs and
videos. participants in the network reveal the files they
store on their computers to the system and gain access
to files shared by their peers in return. Obviously, this
database may contain interesting knowledge which is hard
to come by using other means. It may be discovered, for
instance, that people who download The Matrix also look
for songs by Madonna. Such knowledge can then be ex-
ploited in a variety of ways, much like the well known data
mining example stating that “customers who purchase di-
apers also buy beer”.

The large-scale distributed association rule mining
(LSD-ARM) problem is very different from the D-ARM
problem, because a database that is composed of thousands
of partitions is very different from a small scale distributed
database. The scale of these systems introduces a plethora
of new problems which have not yet been addressed by any
ARM algorithm. The first such problem is that in a system
that large there can be no global synchronization. This has
two important consequences for any algorithm proposed
for the problem: The first is that the nodes must act inde-
pendently of one another; hence their progress is specu-
lative, and intermediate results may be overturned as new
data arrives. The second is that there is no point in time in
which the algorithm is known to have finished; thus, nodes
have no way of knowing that the information they possess
is final and accurate. At each point in time, new informa-
tion can arrive from a far-away branch of the system and
overturn the node’s picture of the correct result. The best
that can be done in these circumstances is for each node
to maintain an assumption of the correct result and update
it whenever new data arrives. Algorithms that behave this
way are called anytime algorithms.

Another problem is that global communication is costly
in large scale distributed systems. This means that for
all practical purposes the nodes should compute the result
through local negotiation. Each node can only be famil-
iar with a small set of other nodes — its immediate neigh-
bors. It is by exchanging information with their immediate
neighbors concerning their local databases that nodes in-
vestigate the combined, global database.

A further complication comes from the dynamic nature
of large scale systems. If the mean time between failures
of a single node is 20,000 hours!, a system consisting of

IThis figure is accepted for hardware; for software the estimate is
usually a lot lower.

100,000 nodes could easily fail five times per hour. More-
over, many such systems are purposely designed to sup-
port the dynamic departure of nodes. This is because a
system that is based on utilizing free resources on non-
dedicated machines should be able to withstand sched-
uled shutdowns for maintenance, accidental turnoffs, or an
abrupt decrease in availability when the user comes back
from lunch. The problem is that whenever a node departs,
the database on that node may disappear with it, chang-
ing the global database and the result of the computation.
A similar problem occurs when nodes join the system in
mid-computation.

Obviously none of the distributed ARM algorithms de-
veloped for small-scale distributed systems can manage
a system with the aforementioned features. These algo-
rithms focus on achieving parallelization induced speed-
ups. They use basic operators, such as broadcast, global
synchronization, and a centralized coordinator, none of
which can be managed in large-scale distributed systems.
To the best of our knowledge, no D-ARM algorithm
presented so far acknowledges the possibility of failure.
Some relevant work was done in the context of incre-
mental ARM, e.g., [13], and similar algorithms. In these
works the set of rules is adjusted following changes in the
database. However, we know of no parallelizations for
those algorithms even for small-scale distributed systems.

In this paper we describe an algorithm which solves
LSD-ARM. Our first contribution is the inference that the
distributed association rule mining problem is reducible
to the well-studied problem of distributed majority votes.
Building on this inference, we develop an algorithm which
combines sequential association rule mining, executed lo-
cally at each node, with a majority voting protocol to dis-
cover, at each node, all of the association rules that exist
in the combined database. During the execution of the al-
gorithm, which in a dynamic system may never actually
terminate, each node maintains an ad hoc solution. If the
system remains static, then the ad hoc solution of most
nodes will quickly converge toward an exact solution. This
is the same solution that would be reached by a sequen-
tial ARM algorithm had all the databases been collected
and processed. If the static period is long enough, then
all nodes will reach this solution. However, in a dynamic
system, where nodes dynamically join or depart and the
data changes over time, the changes are quickly and lo-
cally adjusted to, and the solution continues to converge. It
is worth mentioning that no previous ARM algorithm was
proposed which mines rules (not itemsets) on the fly. This
contribution may affect other kinds of ARM algorithms,
especially those intended for data streams [9].

The majority voting protocol, which is at the crux of
our algorithm, is in itself a significant contribution. It re-
quires no synchronization between the computing nodes.

Each node communicates only with its immediate neigh-
bors. Moreover, the protocol is local: in the overwhelming
majority of cases, each node computes the majority — i.e.,
identifies the correct rules — based upon information arriv-
ing from a very small surrounding environment. Local-
ity implies that the algorithm is scalable to very large net-
works. Another outcome of the algorithm’s locality is that
the communication load it produces is small and roughly
uniform, thus making it suitable for non-dedicated envi-
ronments.

2 Problem Definition

The association rule mining (ARM) problem is tradi-
tionally defined as follows: Let I = {i1,%2,...,%m} be
the items in a certain domain. An itemset is some sub-
set X C I. A transaction ¢ is also a subset of I associ-
ated with a unique transaction identifier I D. A database
DB is a list that contains |DB]| transactions. Given an
itemset X and a database DB, Support (X, DB) is the
number of transactions in DB which contain all the items
of X, and Freq(X,DB) = Support(X,DB) /|DB).
For some frequency threshold 0 < MinFreq < 1, we
say that an itemset X is frequent in a database DB if
Freq(X,DB) > MinFreq and infrequent otherwise.
For two distinct frequent itemsets X and Y, and a con-
fidence threshold 0 < MinConf < 1, we say the rule
X = Y is confident in DB if Freq(X UY,DB) >
MinConf - Freq(X,DB). We will call confident rules
between frequent itemsets correct and the remaining rules
false. The solution for the ARM problem is R [DB], the
list of all the correct rules in the given database.

When the database is dynamically updated, that is,
transactions are added to it or deleted from it over time,
we denote D B; the database at time ¢. Now consider that
the database is also partitioned among an unknown number
of share nothing machines (nodes); we denote the partition
of node v at time ¢ DB}. Given an infrastructure through
which those machines may communicate data, we denote
[u], the group of machines reachable from u at time ¢. We
will assume symmetry, i.e., v € [u], < u € [v],. Never-
theless, [u], may or may not include all of the machines.
The solution to the large-scale distributed association rule
mining (LSD-ARM) problem for node u at time ¢ is the set
of rules which are correct in the combined databases of the
machines in [u],; we denote this solution R [u],.

Since both [u], and DBy of each v € [u], are free to
vary with time — so does R [u],. It is thus imperative that
u calculate not only the eventual solution but also approx-
imated, ad hoc, solutions. We term R [u], the ad hoc solu-
tion of node v at time ¢. It is common practice to measure
the performance of an anytime algorithm according to its

T | Rlu],nR[u], | |R[u]~tﬂﬁl[u]t|
[Rlul, | [Rlul,

We require that if both [u], and DBy of each v € [u],
remain static long enough, then the approximated solution
R[u], will converge to R [u],. In other words, both the
precision and the recall of u converge to a hundred percent.

Throughout this work we make some simplifying as-
sumptions. We assume that node connectivity is a forest
— for each u and v there could be either one route from u
to v or none. Trees in the forest may split, join, grow, and
shrink, as a result of node crash and recovery, or depar-
ture and join. We assume the failure model of computers
is fail-stop, and that a node is informed of changes in the
status of adjacent nodes.

recal , and its precision:

3 An ARM Algorithm for Large-Scale Dis-
tributed Systems

As previously described, our algorithm is comprised
of two rather independent components: Each node exe-
cutes a sequential ARM algorithm which traverses the lo-
cal database and maintains the current result. Addition-
ally, each node participates in a distributed majority voting
protocol which makes certain that all nodes that are reach-
able from one another converge toward the correct result
according to their combined databases. We will begin by
describing the protocol and then proceed to show how the
full algorithm is derived from it.

3.1 LSD-Majority Protocol

It has been shown in [11] that a distributed ARM algo-
rithm can be viewed as a decision problem in which the
participating nodes must decide whether or not each item-
set is frequent. However, the algorithm described in that
work extensively uses broadcast and global synchroniza-
tion; hence it is only suitable for small-scale distributed
systems. We present here an entirely different majority
voting protocol — LSD-Majority — which works well for
large-scale distributed systems. In the interest of clarity
we describe the protocol assuming the data at each node is
a single bit. We will later show how the protocol can easily
be generalized for frequency counts.

As in LSD-ARM, the purpose of LSD-Majority is to
ensure that each node converges toward the correct major-
ity. Since the majority problem is binary, we measure the
recall as the proportion of nodes u whose ad hoc solution
is one when the majority in [u], is of set bits, or zero when
the majority in [u], is of unset bits. The protocol dictates
how nodes react when the data changes, a message is re-
ceived, or a neighboring node is reported to have detached
or joined.

The nodes communicate by sending messages that con-
tain two integers: count, which stands for the number of
bits this message reports, and sum which is the number
of those bits which are equal to one. Each node u will
record, for every neighbor v, the last message it sent to v —
{sum™, count™} — and the last message it received from
v — {sum®™, count”™}. Node u calculates the following
two functions of these messages and its own local bit:

AY = s% + Z sum®™ — X\ (c” + Z count””)

vu€EE" vu€EEY

A" = sum™ + sum®™ — X (count™ + count”™)

Here E" is the set of edges colliding with u, s is the value
of the local bit, and c* is, for now, one. A% measures the
number of access set bits u has been informed of. A™?
measures the number of access set bits u and v have last
reported to one another. Each time s“ changes, a message
is received, or a node connects to v or disconnects from v,
AY is recalculated; A%? is recalculated each time a mes-
sage is sent to or received from v.

Algorithm 1 LSD-Majority
Input for node u: The set of edges that collide with it £,
A bit s* and the majority ratio A.
Output: The algorithm never terminates. Nevertheless, at
each point in time if A* > 0 then the output is 1, otherwise
itis 0.
Definitions: A" = s +) p.sum®™ —
A (c” + D pucEe count””), A = sum® + sum® —
A (count™ + count®)
Initialization: For each vu € EY set sum, count®,
sum®, count®’ to 0. Setc¥ = 1.
On edge vu recovery : Add vu to E*.
count’™, sum?, count? to 0.
On failure of edge vu € E*: Remove vu from E*.
On message {sum, count} received over edge vu: Set
sum® = sum, count’™ = count
On change in 5%, edge failure or recovery, or the receiv-
ing of a message:
For each vu € E*
If count®’ + count’™ = 0and A* >0

or count™’ + count’ > 0 and either A¥Y < 0 and
A% > A% or A% > (0 and A% < A%

Set sum*? = s% + sum™% and count*?’ =

wuAvuEEY

wuAvuE B
Send {sum™, count*’} over vu to v

Set sum?Y,

c* + count®t

Each node performs the protocol independently with
each of its immediate neighbors. Node u coordinates

its majority decision with node v by maintaining the
same A"Y value (note that A%Y A'") and making
certain that A*? will not mislead v into believing that the
global majority is larger than it actually is. As long as
A% > A" > (Qand AY > AY* > 0, there is no need
for 4 and v to exchange data. They both calculate the
majority of the bits to be set; thus, the majority in their
combined data must be of set bits. If, on the other hand,
A¥ > A" then v might mistakenly calculate AY > 0
because it has not received the updated data from u. Thus,
in this case the protocol dictates that u send v a message,

{Su + Zwu;’:vueE" Sumwu7 c + Zwu;ﬁquE“ count"“‘}
Note that after this message is sent, A*Y = A%,

The opposite case is almost the same. Again, if 0 >
A% > A% and 0 > AY* > AV, then no messages are
exchanged. However, when A% > A%? the protocol dic-
tates that u send v a message calculated the same way. The
only difference is that when no messages were sent or re-
ceived, v knows, by default, that A* < 0 and u knows that
AY < 0. Thus, unless A¥ > 0, u does not send mes-
sages to v because the majority bits in their combined data
cannot be set.

The pseudocode of the LSD-Majority protocol is given
in Algorithm 1. It is easy to see that when the protocol
dictates that no node needs to send any message, either
AY > 0 for all nodes v € [u],, or AV < 0 for all of
them. If there is disagreement in [u],, then there must be
disagreement between two immediate neighbors, in which
case at least one node v must send data, which will cause
count™ + count’™ to increase. This number is bounded
by the size of [u],; hence, the protocol always reaches con-
sensus in a static state. It is less trivial to show that the
conclusion they arrive at is the correct one. This proof is
too long to include in this context.

In order to generalize LSD-Majority for frequency
counts, c” need only to be set to the size of the local
database and s" to the local support of an itemset. Then,
if we substitute MinFreq for A, the resulting protocol
will decide whether an itemset is frequent or infrequent in
[u],. Deciding whether a rule X = Y is confident is also
straightforward using this protocol: ¢* should now count
in the local database the number of transactions that in-
clude X, s* should count the number of these transactions
that include both X and Y, and A should be replaced with
MinConf.

Deciding whether a rule is correct or false requires that
each node run two instances of the protocol: one to decide
whether the rule is frequent and the other to decide whether
it is confident. Note, however, that for all rules of the form
A = B\ A, only one instance of the protocol should be
performed to decide whether B is frequent.

The strength of the protocol lies in its behavior when

the average of the bits over [u], is somewhat different than
the majority threshold A. Defining the significance of the

vE[uly

input as = — — 1, we will show in section 4.1 that

Cc
vE[uly
even a minor significance, on the scale of £0.1, is suffi-

cient for making a correct decision using data from just
a small number of nodes. In other words, even a minor
significance is sufficient for the algorithm to become lo-
cal. Another strength of the protocol is that during static
periods, most of the nodes will make the correct major-
ity decision very quickly. These two features make LSD-
Majority especially well-suited for LSD-ARM, in which
the overwhelming majority of the candidates are far from
significant.

3.2 Majority-Rule Algorithm

LSD-Majority efficiently decides whether a candidate
rule is correct or false. It remains to show how candi-
dates are generated and how they are counted in the lo-
cal database. The full algorithm must satisfy two require-
ments: First, each node must take into account not only the
local data, but also data brought to it by LSD-Majority, as
this data may indicate that additional rules are correct and
thus further candidates should be generated. Second, un-
like other algorithms, which produce rules after they have
finished discovering all itemsets, an algorithm which never
really finishes discovering all itemsets must generate rules
on the fly. Therefore the candidates it uses must be rules,
not itemsets. We now present an algorithm — Majority-
Rule — which satisfies both requirements.

The first requirement is rather easy to satisfy. We sim-
ply increment the counters of each rule according to the
data received. Additionally, we employ a candidate gen-
eration approach that is not levelwise: as in the DIC al-
gorithm [4], we periodically consider all the correct rules,
regardless of when they were discovered, and attempt to
use them for generating new candidates.

The second requirement, mining rules directly rather
than mining itemsets first and producing rules when the al-
gorithm terminates, has not, to the best of our knowledge,
been addressed in the literature. To satisfy this requirement
we generalize the candidate generation procedure of Apri-
ori [3]. Apriori generates candidate itemsets in two ways:
Initially, it generates candidate itemsets of size 1: {i} for
every ¢ € I. Later, candidates of size k + 1 are generated
by finding pairs of frequent itemsets of size & that differ by
only the last item — X U{4; } and X U{i2} — and validating
that all of the subsets of X U {1, } are also frequent be-
fore making that itemset a candidate. In this way, Apriori
generates the minimal candidate set which must be gener-
ated by any deterministic algorithm.

In the case of Majority-Rule, the dynamic nature of the

Algorithm 2 Majority-Rule
Input for node u: The set of edges that collide with it E%.
The local database D BY. MinFreq, MinConf, M
Initialization: Set C + {(0 = {i}) foralli € I}
For each r € C set r.sum = r.count = 0, and r.A =
MinFreq
For each » € C and every vu € E“ set r.sum™’ =
r.count™ = r.sum® = r.count’™ =0
Upon receiving {r.id, sum, count} from a neighbor v If
r=(X=Y)¢gCaddittoC. If' = () = X UY) ¢
C add it too.
Set r.sum® = sum, r.count”™ = count
On edge vu recovery: Add vu to E*. For all r € C set
r.sum®’ = r.count® = r.sum® = r.count’™ =0
On failure of edge vu € E*: Remove vu from E*.
Main: Repeat the following for ever
Read the next transaction — 7'. If it is the last one in D B*
iterate back to the first one.
For every r = (X = Y) € C which was generated after
this transaction was last read
If X C T increase r.count
If X UY C T increase r.sum
Once every M transactions
Set R[u], = the set of rules r = (X = Y) € C such
that A¥ (r) > O0andforr’ = (0= X UY) A*(') >0
For every r = (X = Y) € R[u],, such that X = {)
and i € X if v = (X\ {i} = {i}) ¢ C insert r' into
C with r'.sum = r'.count = 0, r'.X = MinConf and
r'.id = unique rule id
For each ¢¢ = (X=>YU{i1}),ec =
(X =Y U{is}) € R[u], such that iy < iy, if
c3 = (X =>YU{11,12}) ¢ CandVizg € Y : r3 =
<X =>YU {il,iQ} \ {13}) S R [U]t, add r3 to C
with r3.sum = r3z.count = 0, r3. X = ry.A and
r3.td = unique rule id
Foreachr = (X = Y) € C and for every vu € E*
If r.count™ + r.count’™ = 0 and A* (r) > 0
or r.count™ +r.count’™ > 0 and either A" (r) < 0
and A™ (r) > A (r)
or A% > (0 and A% (r) < A% (r)
Set r.sum®’ = r.sum + Z
wuAvuEE®

r.sum®" and
r.count™ = r.count + E r.count™"

wuFvuecEv
Send {r.id, r.sum™?, r.count®’} over vu to v

system means that it is never certain whether an itemset is
frequent or a rule is correct. Thus, it is impossible to guar-
antee that no superfluous candidates are generated. Nev-
ertheless, at any point during execution ¢, it is worthwhile
to use the ad hoc set of rules, R [u], to try and limit the
number of candidate rules. Our candidate generation cri-
terion is thus a generalization of Apriori’s criterion. Each
node generates initial candidate rules of the form) = {3}
for each i € I. Then, for each rule) = X € R[u],, it
generates X \ {i} = {i} candidate rules for all i € X.
In addition to these initial candidate rules, the node will
look for pairs of rules in R [u], which have the same left-
hand side, and right-hand sides that differ only in the last
item — X = Y U {i1} and X = Y U {i2}. The node
will verify that the rules X = Y U {i1,i2} \ {is}, for
every i3 € Y, are also correct, and then generate the can-
didate X = Y U{iy, i2}. It can be inductively proved that
if R[u], contains only correct rules, then no superfluous
candidate rules are ever generated using this method.

The rest of Majority-Rule is straightforward. When-
ever a candidate is generated, the node will begin to count
its support and confidence in the local database. At the
same time, the node will also begin two instances of LSD-
Majority, one for the candidate’s frequency and one for its
confidence, and these will determine whether this rule is
globally correct. Since each node runs multiple instances
of LSD-Majority concurrently, messages must carry, in ad-
dition to sum and count, the identification of the rule it
refers to, 7.id. We will denote A" () and A*? () the re-
sult of the previously defined functions when they refer to
the counters and A of candidate r. Finally, .) is the ma-
jority threshold that applies to . We set r.A to MinFreq
for rules with an empty left-hand side and to MinCon f
for all other rules.

The pseudocode of Majority-Rule is detailed in Algo-
rithm 2.

4 Experimental Results

To evaluate Majority-Rule’s performance, we imple-
mented a simulator capable of running thousands of simu-
lated computers. We simulated 1600 such computers, con-
nected in a random tree overlaid on a 40 x 40 grid. We
also implemented a simulator for a stand-alone instance of
the LSD-Majority protocol and ran simulations of up to
10,000 nodes on a 100 x 100 grid. The simulations were
run in lock-step, not because the algorithm requires that
the computers work in locked-step — the algorithm poses
no such limitations — but rather because properties such as
convergence and locality are best demonstrated when all
processors have the same speed and all messages are de-
livered in unit time.

We used synthetic databases generated by the standard

tool from the IBM-quest data mining group [3]. We gener-
ated three synthetic databases — T5.12, T10.14 and T20.16 —
where the number after T is the average transaction length
and the number after I is the average pattern length. The
combined size of each of the three databases is 10,000,000
transactions. Other than the number of transactions the
change we made from the defaults was reducing the num-
ber of patterns. This was reduced so as to increase the pro-
portion of correct rules from one in ten-thousands to one
in a hundred candidates. Because our algorithm performs
better for false rules than for correct ones this change does
not impair out the validity of the results.

4.1 Locality of LSD-Majority and Majority-Rule

The LSD-Majority protocol, and consequently the
Majority-Rule algorithm, are local algorithms in the sense
that a correct decision will usually only require that a small
subset of the data is gathered. We measure the locality of
an algorithm by the average and maximum size of the en-
vironment of nodes. The environment is defined in LSD-
Majority as the number of input bits received by the node
and in Majority-Rule as the percent of the global database
reported to the node, until system stabilization. Our exper-
iments with LSD-Majority show that its locality strongly

depends on the significance of the input: 3 velul, SC: —1.
v€[uly

Figure 1(a) describes the results of a simulation of
10,000 nodes in a random tree over a grid, with various
percentages of set input bits at the nodes. It shows that
when the significance is £0.1 (i.e., 45% or 55% of the
nodes have set input bits), the protocol already has good
locality: the maximal environment is about 1200 nodes
and the average size a little over 300. If the percentage
of set input bits is closer to the threshold, a large portion
of the data would have to be collected in order to find the
majority. In the worst possible case, when the number of
set input bits is equal to the number of unset input bits plus
one, at least one node would have to collect all of the in-
put bits before the solution could be reached. On the other
hand, if the percentage of set input bits is further from the
threshold, then the average environment size becomes neg-
ligible. In many cases different regions of the grid may not
exchange any messages at all. In Figure 1(c) these results
repeat themselves for Majority-Rule.

Further analysis — Figure 1(c) — show that the size of a
node’s environment depends on the significance in a small
region around the nodes. I.e., if the inputs of nodes are
independent of one another then the environment size will
be random. This makes our algorithms fair: nodes’ perfor-
mance is not determined by its connectivity or location but
rather by the data.

(a). Worst, ge and best envir sizes
6000 T

5000 [
4000 [
3000

2000

1000 l l
0 " . : 1 . [1

10 20 30 4045505560 70 80 90

Environment size

(b). 40% set bits

(c). Locality of T20.16 on a 40 by 40 grid, vs. rule significance

Worst-case
9 | .

Percent of DB gathered
@
]

Percentage of set bits

Rule significance

Figure 1. The locality of LSD-Majority (a) and of Majority-Rule (c) depends of the significance. The
distribution of environment sizes (b) depends on the local significance and is hence random.

4.2 Convergence and Cost of Majority-Rule

In addition to locality, the other two important char-
acteristics of Majority-Rule are its convergence rate and
communication cost. We measure convergence by cal-
culating the recall — the percentage of rules uncovered —
and precision — the percentage of correct rules among all
rules assumed correct — vis-a-vis the number of transac-
tions scanned. Figure 2 describes the convergence of the
recall (a) and of the precision (b). In (c) the convergence
of stand-alone LSD-Majority is given, for various percent-
ages of set input bits.

To understand the convergence of Majority-Rule, one
must look at how the candidate generation and the major-
ity voting interact. Rules which are very significant are
expected to be generated early and agreed upon fast. The
same holds for false candidates with extremely low sig-
nificance. They too are generated early, because they are
usually generated due to noise, which subsides rapidly as
a greater portion of the local database is scanned; the con-
vergence of LSD-Majority will be as quick for them as
for rules with high significance. This leaves us with the
group of marginal candidates, those that are very near to
the threshold; these marginal candidates are hard to agree
upon, and in some cases, if one of their subsets is also
marginal, they may only be generated after the algorithm
has been working for a long time. We remark that marginal
candidates are as difficult for other algorithms as they are
for Majority-Rule. For instance, DIC may suffer from the
same problem: if all rules were marginal, then the number
of database scans would be as large as that of Apriori.

An interesting feature of LSD-Majority convergence is
that the number of nodes that assume a majority of set bits
always increases in the first few rounds. This would result
in a sharp reduction in accuracy in the case of a majority
of unset bits, and an overshot, above the otherwise expo-
nential convergence, in the case of a majority of set bits.

This occurs because our protocol operates in expanding
wavefronts, convincing more and more nodes that there is
a certain majority, and then retreating with many nodes be-
ing convinced that the majority is the opposite. Since we
assume by default a majority of zeros, the first wavefront
that expands would always be about a majority of ones.
Interestingly enough, the same pattern can be seen in the
convergence of Majority-Rule (more clearly for the preci-
sion than for the recall).

Figure 3 presents the the communication cost of LSD-
Majority vis-a-vis the percentage of set input bits and of
Majority-Rule vis-a-vis rule significance. For rules that
are very near the threshold, a lot of communication is re-
quired, on the scale of the grid diameter. For significant
rules the communication load is about ten messages per
rule per node. However, for false candidates the commu-
nication load drops very fast to nearly no messages at all.
It is important to keep in mind that we denote every pair of
integers we send a message. In a realistic scenario, a mes-
sage will contain up to 1500 bytes, or about 180 integer
pairs.

5 Conclusions

We have described a new distributed majority vote pro-
tocol — LSD-Majority— which we incorporated as part of an
algorithm — Majority-Rule — that mines association rules
on distributed systems of unlimited size. We have shown
that the key quality of our algorithm is its locality — the fact
that information need not travel far on the network for the
correct solution to be reached. We have also shown that the
locality of Majority-Rule translates into fast convergence
of the result and low communication demands. Commu-
nication is also very efficient, at least for candidate rules
which turn out not to be correct. Since the overwhelm-
ing majority of the candidates usually turn out this way,
the communication load of Majority-Rule depends mainly

Recall

Average number of per node messages

(a). Average recall for T5.12, T10.14 and T20.16 (b). Precision for T5.12, T10.14 and T20.16

/ \ P i ' (c). Convergence on 10,000 nodes, vs. percentages of set bits
O, | A 100 = - T
o | ~
0.8 // 0.8

e b

[@?

06 / c 06 =
=] =) -

a zZ

/ 8 5

04 i T 04 M
/ g B

i/ a

Y | s
0.2 i/ 1 02 | i

i/ L J e
j 120 ; 120 90% -~
0Lt 0 0 I I |
0.01 0.1 1 10 100 0.01 0.1 1 10 100 1 10 100 1000
Number of database scans Number of database scans Steps

Figure 2. Convergence of the recall and precision of Majority-Rule, and of LSD-Majority.

(a). Per node messages regarding a rule vs. rule significance (b). Max, avg, and min per node messages vs. percentage of set bits
80 T T T 80 T T —
70 - g 70t
60 | 2 60 f
-]
50 | H 3 50
g
40 « 40
S
30 | 3 30
:E,
20 | H { Z20f
or St i w La L] 10 - I [l 1
0 0 fmmman . m N PN 0
-1 -0.5 0 0.5 1 10 20 30 4045505560 70 80 90
Rule significance Percentage of set bits

Figure 3. Communication characteristics of Majority-Rule (a), and of LSD-Majority (b). Each mes-
sage here is a pair of integers.

on the size of the output — the number of correct rules. [7] E.-H. S. Han, G. Karypis, and V. Kumar. Scalable parallel
That number is controllable via user supplied parameters, data mining for association rules. IEEE Transactions on
namely MinFreq and MinConf. Knowledge and Data Engineering, 12(3):352 — 377, 2000.

[8] J.-L. Lin and M. H. Dunham. Mining association rules:
Anti-skew algorithms. In Proceedings of the 14th Int’l.

References Conference on Data Engineering (ICDE’98), pages 486—

493, 1998.
[9] G. S. Manku and R. Motwani. Approximate frequency

[1] R. Agrawal, T. Imielinski, and A. N. Swami. Mining as-
counts over data streams. In Proceedings of the 28th Inter-

sociation rules between sets of items in large databases.

In Proc. of the 1993 ACM SIGMOD Int’l. Conference on national Confer?nce on Very Large Data Bases (VLDB'02),

Management of Data, pages 207-216, Washington, D.C., Hong Kong, Chma, August 2002.

June 1993. [10] T. C. Project. http://www.cs.wisc.edu/
[2] R. Agrawal and J. Shafer. Parallel mining of association condor/. L . .

rules. IEEE Transactions on Knowledge and Data Engi- [11] A. Schuster and R. Wolff. Communication-efficient dis-

neering, 8(6):962 — 969, 1996 tributed mining of association rules. In Proc. of the 2001

ACM SIGMOD Int’l. Conference on Management of Data,

pages 473 — 484, Santa Barbara, California, May 2001.
[12] Seti@home. http://setiathome.ssl.

berkeley.edu/.
[13] S. Thomas and S. Chakravarthy. Incremental mining of
constrained associations. In HiPC, pages 547-558, 2000.
United devices inc. http://www.ud.com/home.htm.

data. SIGMOD Record, 6(2):255-264, June 1997.) [15] M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li. Par-

[5] D. Cheung, J. Han, V. Ng, A. Fu, and Y. Fu. A fast dis- allel algorithms for discovery of association rules. Data

tributed algorithm for mining association rules. In Proc. of Mining and Knowledge Discovery, 1(4):343-373, 1997.
1996 Int’l. Conf. on Parallel and Distributed Information

Systems, pages 31 — 44, Miami Beach, Florida, December
1996.
[6] Entropia. http://www.entropia.com.

[3] R. Agrawal and R. Srikant. Fast algorithms for mining as-
sociation rules. In Proc. of the 20th Int’l. Conference on
Very Large Databases (VLDB’94), pages 487 — 499, Santi-
ago, Chile, September 1994.

[4] S. Brin, R. Motwani, J. Ullman, and S. Tsur. Dynamic
itemset counting and implication rules for market basket [14]

