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ABSTRACT
Deep learning has recently become very popular on ac-
count of its incredible success in many complex data-
driven applications, including image classification and
speech recognition. The database community has worked
on data-driven applications for many years, and there-
fore should be playing a lead role in supporting this new
wave. However, databases and deep learning are differ-
ent in terms of both techniques and applications. In this
paper, we discuss research problems at the intersection
of the two fields. In particular, we discuss possible im-
provements for deep learning systems from a database
perspective, and analyze database applications that may
benefit from deep learning techniques.

1. INTRODUCTION
In recent years, we have witnessed the success of

numerous data-driven machine-learning-based ap-
plications. This has prompted the database com-
munity to investigate the opportunities for integrat-
ing machine learning techniques in the design of
database systems and applications [29]. A branch of
machine learning, called deep learning [22, 18], has
attracted worldwide interest in recent years due to
its excellent performance in multiple areas including
speech recognition, image classification and natural
language processing (NLP). The foundation of deep
learning was established about twenty years ago in
the form of neural networks. Its recent resurgence is
mainly fueled by three factors: immense computing
power, which reduces the time to train and deploy
new models, e.g. Graphic Processing Unit (GPU)
enables the training systems to run much faster
than those in the 1990s; massive (labeled) training
datasets (e.g. ImageNet) enable a more comprehen-
sive knowledge of the domain to be acquired; new
deep learning models (e.g. AlexNet [20]) improve
the ability to capture data regularities.

Database researchers have been working on sys-

tem optimization and large scale data-driven ap-
plications since 1970s, which are closely related to
the first two factors. It is natural to think about
the relationships between databases and deep learn-
ing. First, are there any insights that the database
community can offer to deep learning? It has been
shown that larger training datasets and a deeper
model structure improve the accuracy of deep learn-
ing models. However, the side effect is that the
training becomes more costly. Approaches have been
proposed to accelerate the training speed from both
the system perspective [5, 19, 9, 28, 11] and the the-
ory perspective [45, 12]. Since the database commu-
nity has rich experience with system optimization,
it would be opportune to discuss the applicability
of database techniques for optimizing deep learn-
ing systems. For example, distributed computing
and memory management are key database tech-
nologies. They are also central to deep learning.

Second, are there any deep learning techniques
that can be adapted for database problems? Deep
learning emerged from the machine learning and
computer vision communities. Recently, it has been
successfully applied to other domains, like NLP [13].
However, few studies have been conducted using
deep learning techniques for database problems. This
is partially because traditional database problems
— like indexing, transaction and storage manage-
ment — involve less uncertainty, whereas deep learn-
ing is good at predicting over uncertain events. Nev-
ertheless, there are problems in databases like knowl-
edge fusion [10] and crowdsourcing [27], which are
probabilistic problems. It is possible to apply deep
learning techniques in these areas. We will discuss
specific problems like querying interface, knowledge
fusion, etc. in this paper.

The rest of this paper is organized as follows: Sec-
tion 2 provides background information about deep
learning models and training algorithms; Section 3
discusses the application of database techniques for
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Figure 1: Stochastic Gradient Descent.

optimizing deep learning systems. Section 4 de-
scribes research problems in databases where deep
learning techniques may help to improve perfor-
mance. Some final thoughts are presented in Sec-
tion 5.

2. BACKGROUND
Deep learning refers to a set of machine learn-

ing models which try to learn high-level abstrac-
tions (or representations) of raw data through mul-
tiple feature transformation layers. Large training
datasets and deep complex structures enhance the
ability of deep learning models for learning effec-
tive representations for tasks of interest. There are
three popular categories of deep learning models ac-
cording to the types of connections between layers
[22], namely feedforward models (directed connec-
tion), energy models (undirected connection) and
recurrent neural networks (recurrent connection).
Feedforward models, including Convolution Neural
Network (CNN), propagate input features through
each layer to extract high-level features. CNN is
the state-of-the-art model for many computer vi-
sion tasks. Energy models, including Deep Belief
Network (DBN) are typically used to pre-train other
models, e.g., feedforward models. Recurrent Neu-
ral Network (RNN) is widely used for modeling se-
quential data. Machine translation and language
modeling are popular applications of RNN.

Before deploying a deep learning model, the model
parameters involved in the transformation layers
need to be trained. The training turns out to be a
numeric optimization procedure to find parameter
values that minimize the discrepancy (loss function)
between the expected output and the real output.
Stochastic Gradient Descent (SGD) is the most widely
used training algorithm. As shown in Figure 1,
SGD initializes the parameters with random val-
ues, and then iteratively refines them based on the
computed gradients with respect to the loss func-
tion. There are three commonly used algorithms
for gradient computation corresponding to the three
model categories above: Back Propagation (BP),
Contrastive Divergence (CD) and Back Propaga-
tion Through Time (BPTT). By regarding the lay-
ers of a neural net as nodes of a graph, these algo-
rithms can be evaluated by traversing the graph in
certain sequences. For instance, the BP algorithm
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Figure 2: Data flow of Back-Propagation.

is illustrated in Figure 2, where a simple feedfor-
ward model is trained by traversing along the solid
arrows to compute the data (feature) of each layer,
and along the dashed arrows to compute the gradi-
ent of each layer and each parameter (W and b).

3. DATABASES TO DEEP LEARNING
In this section, we discuss the optimization tech-

niques used in deep learning systems, and research
opportunities from the perspective of databases.

3.1 Stand-alone Training
Currently, the most effective approach for im-

proving the training speed of deep learning mod-
els is to use Nvidia GPU with the cuDNN library.
Researchers are also working on other hardware,
e.g. FPGA [21]. Besides exploiting advancements
in hardware technology, operation scheduling and
memory management are two important components
to consider.

3.1.1 Operation Scheduling
Training algorithms of deep learning models typ-

ically involve expensive linear algebra operations as
shown in Figure 3, where the matrix W1 and W2
could be larger than 4096∗4096. Operation schedul-
ing is to first detect the data dependency of oper-
ations and then place the operations without de-
pendencies onto executors, e.g., CUDA streams and
CPU threads. Take the operations in Figure 3 as an
example, a1 and a2 in Figure 3 could be computed
in parallel because they have no dependencies. The
first step could be done statically based on dataflow
graph or dynamically [3] by analyzing the orders of
read and write operations. Databases also have this
kind of problems in optimizing transaction execu-
tion [44] and query plans. Those solutions should
be considered for deep learning systems. For in-
stance, databases use cost models to estimate query
plans. For deep learning, we may also create a cost



Figure 3: Sample operations from a deep
learning model.

model to find an optimal operation placing strategy
for the second step of operation scheduling given a
fixed computing resources including executors and
memory.

3.1.2 Memory Management
Deep learning models are becoming larger and

larger, and already occupy a huge amount of mem-
ory space. For example, the VGG model [32] can-
not be trained on normal GPU cards due to mem-
ory size constraints. Many approaches have been
proposed towards reducing memory consumption.
Shorter data representation, e.g. 16-bit float [7] is
now supported by CUDA. Memory sharing is an
effective approach for memory saving [3]. Take Fig-
ure 3 as an example, the input and output of the
sigmoid function share the same variable and thus
the same memory space. Such operations are called
‘in-place’ operations. Recently, two approaches were
proposed to trade-off computation time for mem-
ory. Swapping memory between GPU and CPU
resolves the problem of small GPU memory and
large model size by swapping variables out to CPU
and then swapping back manually[8]. Another ap-
proach drops some variables to free memory and re-
computes them when necessary based on the static
dataflow graph[4].

Memory management is a hot topic in the database
community with a significant amount of research
towards in-memory databases [35, 46], including lo-
cality, paging and cache optimization. To elaborate
more, the paging strategies could be useful for de-
ciding when and which variable to swap. In addi-
tion, failure recovery in databases is similar to the
idea of dropping and recomputing approach, hence
the logging techniques in databases could be con-
sidered. If all operations (and execution time) are
logged, we can then do runtime analysis without the
static dataflow graph. Other techniques, including
garbage collection and memory pool, would also be
useful for deep learning systems, especially for GPU
memory management.

3.2 Distributed Training
Distributed training is a natural solution for ac-

celerating the training speed of deep learning mod-
els. The parameter server architecture [9] is typi-
cally used, in which the workers compute parameter
gradients and the servers update the parameter val-
ues after receiving gradients from workers. There
are two basic parallelism schemes for distributed
training, namely, data parallelism and model par-
allelism. In data parallelism, each worker is as-
signed a data partition and a model replica, while
for model parallelism, each worker is assigned a par-
tition of the model and the whole dataset. The
database community has a long history of work-
ing on distributed environment, ranging from par-
allel databases [23] and peer-to-peer systems [37]
to cloud computing [25]. We will discuss some re-
search problems relevant to databases arising from
distributed training in the following paragraphs.

3.2.1 Communication and Synchronization
Given that deep learning models have a large

set of parameters, the communication overhead be-
tween workers and servers is likely to be the bottle-
neck of a training system, especially when the work-
ers are running on GPUs which decrease the com-
putation time. In addition, for large clusters, the
synchronization between workers can be significant.
Consequently, it is important to investigate efficient
communication protocols for both single-node mul-
tiple GPU training and training over a large clus-
ter. Possible research directions include : a) com-
pressing the parameters and gradients for trans-
mission [30]; b) organizing servers in an optimized
topology to reduce the communication burden of
each single node, e.g., tree structure [15] and AllRe-
duce structure [42] (all-to-all connection); c) using
more efficient networking hardware like RDMA [5].

3.2.2 Concurrency and Consistency
Concurrency and consistency are critical concepts

in databases. For distributed training of deep learn-
ing models, they also matter. Currently, both declar-
ative programming (e.g., Theano and TenforFlow)
and imperative programming (e.g., Caffe and SINGA)
have been adopted in existing systems for concur-
rency implementation. Most deep learning systems
use threads and locks directly. Other concurrency
implementation methods like actor model (good at
failure recovery), co-routine and communicating se-
quential processes have not been explored.

Sequential consistency (from synchronous train-
ing) and eventual consistency (from asynchronous
training) are typically used for distributed deep learn-



Table 1: Summary of optimization techniques used in existing systems as of July 2016.
SINGA Caffe Mxnet TensorFlow Theano Torch

1. operation scheduling X x X - - x
2. memory management d+a+p i d+s p p -
3. parallelism d + m d d + m d + m - d + m
4. consistency s+a+h s/a s+a+h s+a+h - s
1. x: not available: X: available 2. d: dynamic; a: swap; p: memory pool; i: in-place operation; s: static;

3. d: data parallelism; m: model parallelism; 4. s: synchronous; a: asynchronous; h:hybrid; -: unknown

ing. Both approaches have scalability issues [38].
Recently, there are studies for training convex mod-
els (deep learning models are non-linear and non-
convex) using a value bounded consistency model [41].
Researchers are starting to investigate the influence
of consistency models on distributed training [15,
16, 2]. There remains much research to be done on
how to provide flexible consistency models for dis-
tributed training, and how each consistency model
affects the scalability of the system, including com-
munication overhead.

3.2.3 Fault Tolerance
Databases systems have good durability via log-

ging (e.g., command log) and checkpointing. Cur-
rent deep learning systems recover the training from
crashes mainly based on checkpointing files [11].
However, frequent checkpointing would incur vast
overhead. In contrast with database systems, which
enforce strict consistency in transactions, the SGD
algorithm used by deep learning training systems
can tolerate a certain degree of inconsistency. There-
fore, logging is not a must. How to exploit the SGD
properties and system architectures to implement
fault tolerance efficiently is an interesting problem.
Considering that distributed training would repli-
cate the model status, it is thus possible to recover
from a replica instead of checkpointing files. Ro-
bust frameworks (or concurrency model) like actor
model, could be adopted to implement this kind of
failure recovery.

3.3 Existing Systems
A summary of existing systems in terms of the

above mentioned optimization aspects is listed in
Table 1. Many researchers have extended Caffe [19]
with ad hoc optimizations, including memory swap-
ping and communication optimization. However,
the official version is not well optimized. Similarly,
Torch [6] itself provides limited support for distributed
training. Mxnet[3] has optimization for both mem-
ory and operations scheduling. Theano [1] is typi-
cally used for stand-alone training. TensorFlow [11]
has the potential for the aforementioned static op-

timization based on the dataflow graph.
We are optimizing the Apache incubator SINGA

system [28] starting from version 1.0. For stand-
alone training, cost models are explored for runtime
operation scheduling. Memory optimization includ-
ing dropping, swapping and garbage collection with
memory pool will be implemented. OpenCL is sup-
ported to run SINGA on a wide range of hardware
including GPU, FPGA and ARM. For distributed
training, SINGA (V0.3) has done much work on
flexible parallelism and consistency, hence the fo-
cus would be on optimization of communication and
fault-tolerance, which are missing in almost all sys-
tems.

4. DEEP LEARNING TO DATABASES
Deep learning applications, such as computer

vision and NLP, may appear very different from
database applications. However, the core idea of
deep learning, known as feature (or representation)
learning, is applicable to a wide range of applica-
tions. Intuitively, once we have effective represen-
tations for entities, e.g., images, words, table rows
or columns, we can compute entity similarity, per-
form clustering, train prediction models, and re-
trieve data with different modalities [40, 39] etc.
We shall highlight a few deep learning models that
could be adapted for database applications below.

4.1 Query Interface
Natural language query interfaces have been at-

tempted for decades [24], because of their great de-
sirability, particularly for non-expert database users.
However, it is challenging for database systems to
interpret (or understand) the semantics of natural
language queries. Recently, deep learning models
have achieved state-of-the-art performance for NLP
tasks [13]. Moreover, RNN has been shown to be
able to learn structured output [34, 36]. As one so-
lution, we can apply RNN models for parsing nat-
ural language queries to generate SQL queries, and
refine it using existing database approaches. For
instance, heuristic rules could be applied to correct
grammar errors in the generated SQL queries. The



challenge is that a large amount of (labeled) train-
ing samples is required to train the model. One
possible solution is to train a baseline model with a
small dataset, and gradually refining it with users’
feedback. For instance, users could help correct the
generated SQL query, and these feedback essentially
serve as labeled data for subsequent training.

4.2 Query Plans
Query plan optimization is a traditional database

problem. Most current database systems use com-
plex heuristic and cost models to generate the query
plan. According to [17], each query plan of a para-
metric SQL query template has an optimality re-
gion. As long as the parameters of the SQL query
are within this region, the optimal query plan does
not change. In other words, query plans are in-
sensitive to small variations of the input parame-
ters. Therefore, we can train a query planner which
learns from a set of pairs of SQL queries and opti-
mal plans to generate (similar) plans for new (sim-
ilar) queries. To elaborate more, we can learn a
RNN model that accepts the SQL query elements
and meta-data (like buffer size and primary key) as
input, and generates a tree structure [36] represent-
ing the query plan. Reinforcement learning (like Al-
phaGo [31]) could also be incorporated to train the
model on-line using the execution time and mem-
ory footprint as the reward. Note that approaches
purely based on deep learning models may not be
very effective. In particular, the training dataset
may not be comprehensive to include all query pat-
terns, e.g. some predicates could be missing in the
training datasets. To solve these problems, a better
approach would be to combine database solutions
and deep learning.

4.3 Crowdsourcing and Knowledge Bases
Many crowdsourcing [43] and knowledge base [10]

applications involve entity extraction, disambigua-
tion and fusion problems, where the entity could
be a row of a database, a node in a graph, etc.
With the advancements of deep learning models in
NLP [13], it is opportune to consider deep learn-
ing for these problems. In particular, we can learn
representations for entities and then do entity re-
lationship reasoning [33] and similarity calculation
using the learned representations.

4.4 Spatial and Temporal Data
Spatial and temporal data are common data types

in database systems [14], and are commonly used
for trend analysis, progression modeling and predic-
tive analytics. Spatial data is typically processed by
mapping moving objects into rectangular blocks. If

we regard each block as a pixel of one image, then
deep learning models, e.g., CNN, could be exploited
to extract the spatial locality between nearby blocks.
For instance, if we have the real-time location data
(e.g., GPS data) of moving objects, we could learn a
CNN model to capture the density relationships of
nearby areas for predicting the traffic congestion for
a future time point. When temporal data is mod-
eled as features over a time matrix, deep learning
models, e.g. RNN, can be designed to model time
dependency and predict the occurrence in a future
time point. A particular example would be disease
progression modeling [26] based on historical med-
ical records, where doctors would want to estimate
the onset of certain severity of a known disease.

5. CONCLUSIONS
In this paper, we have discussed databases and

deep learning. Databases have many techniques for
optimizing system performance, while deep learn-
ing is good at learning effective representation for
data-driven applications. We note that these two
“different” areas share some common techniques for
improving the system performance, such as memory
optimization and parallelism. We have discussed
some possible improvements for deep learning sys-
tems using database techniques, and research prob-
lems applying deep learning techniques in database
applications. Let us not miss the opportunity to
contribute to the exciting challenges ahead!
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