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ABSTRACT
Conventional keyword search engines are restricted to a given
data model and cannot easily adapt to unstructured, semi-
structured or structured data. In this paper, we propose
an efficient and adaptive keyword search method, called
EASE, for indexing and querying large collections of het-
erogenous data. To achieve high efficiency in processing key-
word queries, we first model unstructured, semi-structured
and structured data as graphs, and then summarize the
graphs and construct graph indices instead of using tradi-
tional inverted indices. We propose an extended inverted in-
dex to facilitate keyword-based search, and present a novel
ranking mechanism for enhancing search effectiveness. We
have conducted an extensive experimental study using real
datasets, and the results show that EASE achieves both high
search efficiency and high accuracy, and outperforms the ex-
isting approaches significantly.

Categories and Subject Descriptors
H.2.8 [Database Applications ]: Miscellaneous

General Terms
Algorithms, Performance, Languages

Keywords
Keyword Search, Indexing, Ranking, Graph Index

1. INTRODUCTION
Keyword search is a proven and widely popular mecha-

nism for querying document systems and the World Wide
Web. Recently, it has even been extensively applied to ex-
tract useful and relevant information from the Internet. Fur-
thermore, the database research community has also recog-
nized the benefits of keyword search and has been introduc-
ing keyword search capability into relational databases [1,
2, 6, 13, 15, 20, 22, 23], XML databases [4, 11, 14, 16, 19,
21, 25, 28] and graph databases [10, 12, 17].

However, the existing web search engines cannot integrate
information from multiple interrelated pages to answer key-
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word queries meaningfully. Next-generation web search en-
gines require link-awareness, or more generally, the capa-
bility of integrating correlative information items that are
linked through hyperlinks. Meanwhile, the efficiency of key-
word search on structured and semi-structured data remains
a challenging problem. This is so because the traditional ap-
proaches have always employed the inverted index to process
keyword queries, which is effective for unstructured data but
inefficient for semi-structured and structured data. This is
because the inverted index is inadequate for identifying the
“best” answers with complex structural information, which
is rather rich in XML documents or relational databases.

To the best of our knowledge, very few existing studies
could be universally applied to unstructured data (e.g., text
documents), semi-structured data (e.g., XML documents),
structured data (e.g., relational databases) and graph data.
Therefore, providing both effective and efficient search abil-
ity over such heterogeneous collections within a single search
engine remains a big challenge. As it is, the structure of
the data, such as the potentially hierarchical embedding in
XML documents, is not fully exploited for answering key-
word queries. It is also not taken into account for result
ranking in most search engines. Consequently, current im-
plementations focus on either IR-style search to meaning-
fully rank the results but ignore the rich structural informa-
tion, or DB-style search to discover answers by identifying
structural relationships but employ a very straightforward
ranking mechanism.

This less-than-ideal situation calls for a framework for in-
dexing and querying over large collections of unstructured,
semi-structured or structured data, and adaptive ranking of
the results retrieved over those heterogeneous data. In this
paper, we propose EASE, an Efficient and Adaptive keyword
SEarch method, as an attempt in that direction. Our work
is in line with the current trend of seamlessly integrating
databases (DB) and information retrieval (IR) techniques
[3, 27]. EASE seamlessly integrates efficient query evalua-
tion and adaptive scoring for ranking results. From the DB
point of view, EASE provides an efficient algorithmic basis
for scalable top-k-style processing of large amounts of het-
erogenous data for the discovery of rich structural relation-
ships. It works by employing an adaptive, efficient and novel
index beyond the inverted index. From the IR viewpoint,
EASE integrates an effective ranking mechanism to improve
search effectiveness.

In our approach, we model unstructured, semi-structured
and structured data as graphs, with nodes being documents,
elements and tuples respectively, and edges being hyper-



links, parent-child relationships (or IDREFS) and primary-
foreign-key relationships respectively. We enable efficient
keyword queries on these heterogenous data by summariz-
ing, clustering the graphs and constructing graph indices.
To facilitate efficient keyword-based query processing, we ex-
amine the issues of indexing and ranking to improve search
quality. To the best of our knowledge, this is the first at-
tempt to efficiently and adaptively process keyword queries
on such heterogenous data, and also the first work to pro-
pose the novel graph index, which is efficient in identifying
rich structural relationships.

Our contributions in this paper are as follows:

• We model unstructured, semi-structured and struc-
tured data as graphs and propose an efficient keyword
search method, EASE, to adaptively process keyword
queries over the heterogenous data. We devise an ef-
fective graph index as opposed to the inverted index,
to improve search efficiency and effectiveness.

• We propose a novel ranking mechanism for effective
keyword search by taking into account both the struc-
tural compactness of answers from the DB viewpoint
and the textual relevancy from the IR point of view.

• We examine the issues of indexing and ranking, and
devise a simple and yet efficient indexing mechanism
to index the structural relationships between the trans-
formed data. The index is amenable to the deployment
of existing top-k ranking methods.

• We have conducted an extensive performance study
using real datasets and various queries with different
characteristics. The results show that EASE achieves
both high search efficiency and accuracy, and outper-
forms existing state-of-the-art methods.

The rest of this paper is organized as follows. We present
the r-radius Steiner graph problem in Section 2. Section 3
introduces a novel graph index. We present a novel scoring
function in Section 4. We examine the issues of indexing and
ranking, and propose an indexing mechanism in Section 5.
Extensive experimental evaluations are provided in Section
6. We review the related work in Section 7 and conclude the
paper with Section 8.

2. ADAPTIVE KEYWORD SEARCH MODEL
2.1 Motivation
2.1.1 Unstructured data

Although many prior studies of keyword search over text
documents (e.g., HTML documents) have been proposed,
they all produce a list of individual pages as results. In the
event that there are no pages that contain all the keywords,
they will return pages with some of the input keywords
ranked by relevancy. Even if two or more interrelated pages
contain all the keywords, the existing methods cannot inte-
grate the pages into one relevant and meaningful answer. For
example, to search for conferences covering the topic of“Data
Integration”held in“Canada” in 2008, one may issue a key-
word query of "Conference 2008 Canada Data Integra-

tion" to a search engine such as GOOGLE. As we all know, the
venue of SIGMOD 2008 is Canada and “Data Integration” is
one of its major research topics. Yet surprisingly, the home-
page of SIGMOD 2008 is neither in the top 10 results nor even
in the first 100 answers. Why? The reason is that SIGMOD
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2008 splits its information into several pages methodically
as shown in Figure 1(a) and Important date contains the
keywords "2008, Conference" while "Data Integration"

is contained in the Call For Paper page. Such data lin-
eage problem also persists in most recently proposed com-
munity information management platforms [5].

Consequently, the existing search engines often include a
number of false negatives due to the limitation of their mod-
els, which take only a list of individual pages as search results
but neglect the fact that interrelated pages linked by hyper-
links may be more meaningful. Yet, this is not an ad hoc
problem but a ubiquitous one over the Internet. As another
example, most researchers organize their homepages accord-
ing to content, as shown in Figure 1(b). Suppose a user
searches for professors who teach a specific course and have
a specified project, and inputs some keywords. Although
there may be no page that contains all input keywords, the
page units composed of Homepage, Project and Course
of some professors may answer this query meaningfully.

The accuracy and lineage of data have recently received
considerable attention, but mainly from a theoretical per-
spective. While existing studies such as Trio [24] extend
conventional data management by incorporating accuracy
and lineage as integral components of both data and queries,
few works are link aware to search text documents over the
Internet and take into consideration the fact that multiple
interrelated pages linked by hyperlinks may be more mean-
ingful. Indeed, the accuracy problem of traditional search
engines is ubiquitous over the Internet. This is so because
most web sites organize their data systematically and rele-
vant data may be separated into different pages but linked
through hyperlinks. Although Li et al. [18] have proposed
a method of retrieving and organizing web pages by “In-
formation Unit”, they model the problem of retrieving web
pages as the minimum-weighted group Steiner tree prob-
lem, which is an NP-hard problem. It is rather difficult to
identify Steiner trees over large graphs. Also, their method
employs a heuristic method to identify the top-k answers,
and it may fall into the local optimal point and fail to reach
the global optimum. In this paper, we propose an effective
search method, EASE, to address the problem.

2.1.2 Semi-structured, Structured and Graph Data
Traditional studies of keyword search over semi-structured

data always compute LCAs (lowest common ancestors) or
its variants [11, 28] of content nodes which directly contain



input keywords and take the subtrees rooted at LCAs as
answers. However, the problem as to which subtrees are
more meaningful for answering the keyword queries remains
open. This is because it is not a straightforward task to
decide which subtrees with meaningful and complementary
elements besides the content nodes should be used as results
in order to meaningfully expand their answerability.

Prior works [2] of keyword search over structured data
always identify connected trees with minimal cost in the
labeled graph as answers. Called Steiner trees, they have
nodes which are tuples in the database and links which are
primary-foreign-key relationships. The trees are identified
with the use of an approximation to the Steiner tree prob-
lem. However, it is fairly difficult to extract all the Steiner
trees in a large graph, which is NP-hard [2]. Moreover, the
Steiner tree problem is difficult to adapt for complicated
graph databases [10], e.g., complex biological databases, as
it only discovers simple tree structures but cannot identify
the more meaningful graph structures with rich structural
relationships, such as circles. Although Guo et al. [10] have
proposed data topology search to improve search effective-
ness, their method is constrained by the input of only two
keywords.

Traditionally, the inverted index is employed to answer
keyword queries. It has been shown to be effective for text
and document-based retrieval. However, it is inadequate for
supporting keyword queries over structured, semi-structured
and graph data because it is fairly difficult to identify the
“best” answers that capture rich structural relationships
through the inverted index. To address the above-mentioned
issues, we propose an effective graph index to improve search
performance in this paper.

2.2 r-Radius Steiner Graph Problem
EASE models unstructured data (e.g., text documents),

semi-structured data (e.g., XML databases) and structured
data (e.g., relational databases) as graphs, where the nodes
are respectively documents, elements and tuples, and the
edges are respectively hyperlinks∗, parent-child relationships
(or IDREFS) and primary-foreign-key relationships. The
advantage is obvious as EASE addresses the problem of key-
word search over graph data. We now formally define the
problem of modeling heterogenous data as graphs.

Inspired by the Steiner tree problem [2], we introduce the
Steiner graph problem. However, graphs with a larger di-
ameter (which is defined as the longest distance between
any two nodes in a graph) are not so meaningful and rel-
evant to queries as users are generally frustrated by large
and complex graphs. Consequently, we introduce the r-
radius Steiner graph problem, which is a more interesting
and challenging problem of identifying meaningful Steiner
graphs with acceptable sizes. To formally describe this prob-
lem, we first present several concepts as follows.

Definition 1. (Centric Distance) Given graph G and
any node v in G, the centric distance of v, denoted as CD(v),
is the maximal value among the distances between v and any
node u in G, i.e., CD(v)=maxu∈G{D(v, u)}, where D(v, u)
denotes the distance between v and u, i.e., the length of the
shortest path between v and u.

∗
There may be a large number of hyperlinks among pages on the

Web; however, to extract more meaningful and relevant answers, we
can only consider the hyperlinks between pages in the same domain.

Table 1: A publication database

Authors PapersAuthor-Paper
AID PID

Paper-Reference
PID

Schema

citedPID

Authors Paper-Reference Author-Paper

AID Name
a1 J. Shanmugasundaram
a2 L. Guo
a3 V. Hristidis
a4 Y. Papakonstantinou
a5 A. Balmin

PID citedPID
p1 p2
p2 p3
p3 p4
p4 p5
p5 p6

AID PID
a1 p1
a1 p2
a2 p1
a3 p4
a3 p5
a4 p5
a4 p6
a4 p7
a5 p6

Papers
PID Title

p1 Topology Search over Biological Databases
p2 XRANK: Ranked Keyword Search over XML Documents
p3 Bidirectional Expansion for Keyword Search on Graphs
p4 Finding top-k Answers in Keyword Proximity Search
p5 Efficient IR-Style Keyword Search over Relational Databases
p6 Keyword Proximity Search on XML Graphs
p7 DISCOVER: Keyword Search in Relational Databases

p3

p4 p5 p6 p7

a3 a4 a5

p1 p2

a1 a4a2

Figure 2: The graph model for the publication
database in Table 1

Definition 2. (Radius) The radius of a graph G, de-
noted as R(G), is the minimal value among the centric dis-
tances of every node in G, i.e., R(G)=minv∈G{CD(v)}. G
is called an r-radius graph if the radius of G is exactly r.

Definition 3. ( r-Radius Steiner Graph) Given an r-
radius graph G and a keyword query K. Node ω in G is called
a content node if ω directly contains some input keywords in
K. Node s in G is called a Steiner node if there exist two
content nodes, u and v, and s is on the path u!v (s may be
u or v), where u!v denotes a path between u and v. The
subgraph of G composed of the Steiner nodes and associated
edges is called an r-radius Steiner graph. The radius of an
r-radius Steiner graph may be smaller than r but cannot be
larger than r.

Obviously, we can take the r-radius graphs that contain all
or a portion of the input keywords as answers, as the r-radius
graphs are very compact and meaningful, and also contain
some relevant and complementary nodes for expanding their
answerability. Moreover, r-radius Steiner graphs are more
concise since non-Steiner nodes are excluded. Although we
can take either r-radius graphs or r-radius Steiner graphs
as answers of keyword search over graph data, we adopt the
latter option in this paper.

However, it is very difficult to identify all r-radius Steiner
graphs from a large graph, and hence, we will introduce an
effective index later to improve the efficiency of extracting r-
radius Steiner graphs. Here, to better explain our proposal,
we give a running example as described in Example 1.



Table 2: Summary of notation
Notation Descriptions

G a graph
|G| the number of nodes in G
SG a Steiner graph
K an input keyword query
M the adjacency matrix w.r.t. G
Mr the r-th power of M

N r
i (or N r

vi
) {vj |Mr

ij=1}
Gr

i (or Gr
vi

) the subgraph of G composed of the nodes in N r
i

vi!vj there is a path between vi and vj

D(vi, vj) the distance of vi and vj

CD(v) maxu∈G{D(v, u)}
R(G) the radius of G and R(G)=minv∈G{CD(v)}

vi!dvj vi!vj and D(vi, vj)≤d
Gi£Gj Gi is a subgraph of Gj (or Gj is a super-graph of Gi)
GiCGj Gi£Gj and Gi 6=Gj

S(Gi,Gj) the similarity between Gi and Gj

Example 1. Consider the database in Table 1. We model
it to a graph G as illustrated in Figure 2. D(a1,a3)=4,
CD(p2)=5 and R(G)=4. Given a query “ IR,Hristidis” on
the database in Table 1, we compute the Steiner graph com-
posed of p4,p5 and a3 with associated edges between them as
an answer. This differs from the Steiner tree (i.e., p5−a3) of
prior studies, which can cause the loss of meaningful infor-
mation, especially in databases with complicated structures.

We now formally state the r-radius Steiner graph problem
for identifying the most relevant subgraphs with acceptable
sizes to answer keyword queries over graph data.

The r-Radius Steiner Graph Problem: Given a graph
G and an input keyword query K, the r-Radius Steiner
Graph Problem is to find all the r-radius Steiner graphs
in G, which contain all or a portion of the input keywords in
K, ranked by relevancy with K.

As users are usually interested in the top-k answers, we
mainly discuss how to identify top-k r-radius Steiner graphs
with the highest scores.

3. EASE: AN ADAPTIVE SEARCH METHOD
The efficiency and advantages of using inverted indices

for facilitating the computation of the “best” answers for
online keyword queries are well recognized. However, the
inverted indices are not effective for discovering the much
richer structural relationships existing in databases with com-
plicated structures [10]. It is therefore important to be able
to efficiently and effectively discover these structural rela-
tionships, and index them for fast and accurate response.
Intuitively, a straightforward way is to enumerate all the
combinations of keywords, compute the corresponding r-
radius Steiner graphs for each combination, and index these
graphs. However, it is prohibitively expensive to discover
all these structures since the number of combinations of all
keywords in real databases is very large.

Consequently, we propose an effective strategy to discover
a portion of the r-radius graphs such that the number of
which is proportional to the number of nodes in the graph,
and we only need to index and materialize these graphs.
More importantly, all of the r-radius graphs can be effec-
tively identified through the indexed ones. In a later sec-
tion, we will address the issue of extracting r-radius Steiner
graphs on the fly by removing non-Steiner nodes from the
corresponding indexed r-radius graphs.

Table 3: Adjacency matrix of the graph for the pub-
lication databases

(a) M
a1 p1 a2 p2 p3 p4 a3 p5 a4 p6 p7 a5

a1 1 1 0 1 0 0 0 0 0 0 0 0
p1 1 1 1 1 0 0 0 0 0 0 0 0
a2 0 1 1 0 0 0 0 0 0 0 0 0
p2 1 1 0 1 1 0 0 0 0 0 0 0
p3 0 0 0 1 1 1 0 0 0 0 0 0
p4 0 0 0 0 1 1 1 1 0 0 0 0
a3 0 0 0 0 0 1 1 1 0 0 0 0
p5 0 0 0 0 0 1 1 1 1 1 0 0
a4 0 0 0 0 0 0 0 1 1 1 1 0
p6 0 0 0 0 0 0 0 1 1 1 0 1
p7 0 0 0 0 0 0 0 0 1 0 1 0
a5 0 0 0 0 0 0 0 0 0 1 0 1

(b) M2

a1 p1 a2 p2 p3 p4 a3 p5 a4 p6 p7 a5

a1 1 1 1 1 1 0 0 0 0 0 0 0
p1 1 1 1 1 1 0 0 0 0 0 0 0
a2 1 1 1 1 0 0 0 0 0 0 0 0
p2 1 1 1 1 1 1 0 0 0 0 0 0
p3 1 1 0 1 1 1 1 1 0 0 0 0
p4 0 0 0 1 1 1 1 1 1 1 0 0
a3 0 0 0 0 1 1 1 1 1 1 0 0
p5 0 0 0 0 1 1 1 1 1 1 1 1
a4 0 0 0 0 0 1 1 1 1 1 1 1
p6 0 0 0 0 0 1 1 1 1 1 1 1
p7 0 0 0 0 0 0 0 1 1 1 1 0
a5 0 0 0 0 0 0 0 1 1 1 0 1

p3

p4p1 p2

a1 a4a2

p3

p1 p2

a1 a4a2

G2
p1 G2

p2

Figure 3: Two 2-radius graphs

3.1 Adjacency Matrix
In order to efficiently extract r-radius graphs from a given

graph G(R(G)≥r)†, we introduce the concept of Adjacency
Matrix, M=(mij)n×n, with respect to G, which is an n×n
boolean matrix. In M, the element mij is 1, iff, there
is an edge between vi and vj in G, i.e., vi!1vj , where
vi(vj) denotes the node at the i-th(j-th) row or column in
M while vi!dvj denotes that there is a path between vi

and vj with distance no larger than d; otherwise, mij is 0
(mii is always 1). Iteratively, mr

ij=1, iff, vi!rvj , where

Mr=

r︷ ︸︸ ︷
M× · · · ×M=(mr

ij)n×n. To ease the discussion that
follows, we summarize the notation we use in Table 2.
Mr is said to be the r-th power of M. N r

i ={vj |Mr
ij=1}

is the set of nodes which have a path to vi with distance no
larger than r. Gr

i denotes the subgraph of G with respect to
the i-th row of Mr, which is composed of the nodes in N r

i

and the associated edges. Gr
vi

(N r
vi

) can be interchangeably
employed instead of Gr

i (N r
i ) if there is no ambiguity. We use

Gi£Gj to denote that Gi is a subgraph of Gj (equivalently,

†
Without loss of generality, we suppose G is a connected graph, the

radius of which is no smaller than r, i.e., R(G)≥r. Even if G is
an unconnected graph, we can decompose it into a set of connected
graphs and thus EASE can adapt to the unconnected graphs.



Gj is also called a super-graph of Gi). GiCGj denotes that
Gi is a proper subgraph of Gj , i.e., GiCGj and Gi 6=Gj . |G|
denotes the number of nodes in G.

Example 2. We can construct the adjacency matrix of
the graph in Figure 2 as illustrated in Table 3. We note
that v1=a1, v2=p1, v3=a2 and v4=p2. N 2

2 =N 2
p1={a1,p1,

a2,p2,p3} and N 2
4 =N 2

p2={a1,p1,a2,p2,p3,p4}. The two sub-
graphs G2

2(G2
p1) and G2

4(G2
p2) are illustrated in Figure 3.

To effectively extract r-radius graphs according to the ad-
jacency matrix, we provide Lemma 1 to help determine the
subgraphs in G that are r-radius graphs.

Lemma 1. Given a graph G(R(G)≥r>1), ∀i,1≤i≤|G|, Gr
vi

is an r-radius graph, if, ∀vk∈N r
vi

, N r
vi
6⊆N r−1

vk
.

Proof. As all the nodes in N r
vi

connect to vi and all
the nodes with distances no larger than r to vi are in N r

vi
,

the nodes in N r
vi

and the edges associated with them can
construct a subgraph of G, Gr

vi
. We need to prove R(Gr

vi
)=r.

We first prove that R(Gr
vi

)≤r.

∀u∈N r
vi

, D(vi, u)≤r according to the definition of Mr,
and thus CD(vi)=maxu∈Gr

vi
{D(vi, u)}≤r. Hence, based on

Definition 2, we haveR(Gr
vi

)=minv∈Gr
vi
{CD(v)}≤CD(vi)≤r.

We then prove that R(Gr
vi

)≥r.

∀vk∈N r
vi

, asN r
vi
6⊆N r−1

vk
, there must exist a node uk, uk∈N r

vi

and uk /∈N r−1
vk

, thus D(vk, uk)≥r (otherwise, if D(vk, uk)<r,

uk∈N r−1
vk

, which contradicts uk /∈N r−1
vk

). Thus, ∀vk∈N r
vi

,
we have CD(vk)=maxu∈Gr

vi
{D(vk, u)}≥D(vk, uk)≥r in Gr

vi
.

Accordingly, R(Gr
vi

)=minvk∈Gr
vi
{CD(vk)}≥r.

Therefore, R(Gr
vi

)=r and Gr
vi

is an r-radius graph.

As formalized in Lemma 1, we can determine whether the
subgraph Gr

vi
with respect to the i-th row of Mr is an r-

radius graph. For example, G2
p2 is a 2-radius graph while

G2
a2 is not as N 2

a2⊆N 1
p1 as shown in Table 3.

In order to extract all of the r-radius Steiner graphs from
G, we must prove that any r-radius Steiner graph in G cor-
responds to a subgraph Gr

vi
, and we provide Theorem 1 for

extracting r-radius Steiner graphs.

Theorem 1. Suppose {SGr
1,SGr

2,...,SGr
p} is the set of the

r-radius Steiner graphs with respect to a graph G(R(G)≥r)
and a keyword query, ∀1≤j≤p, ∃1≤i≤|G|, SGr

j £ Gr
vi

holds.

Proof. ∀SGr
j , there must exist a corresponding r-radius

graph Grj according to Definition 3, such that SGr
j£Grj .

We then prove that ∃Gr
vi

, Grj £Gr
vi

.
As Grj is an r-radius graph, there must exist a node vi∈Grj

and CD(vi)=r. Since for any node u∈Grj , D(vi, u)≤r, thus
u must be in the node set of Gr

vi
(i.e., N r

vi
) according to the

definitions of Gr
vi

and Mr. Hence, all the nodes in Grj must
be in Gr

vi
. Thus, Grj £Gr

vi
.

Hence, SGr
j£Grj £Gr

vi
.

Based on Theorem 1, we can extract r-radius Steiner
graphs through the adjacency matrix. To facilitate efficient
retrieval of r-radius graphs, we construct a novel graph index.
The entries of the graph index are terms contained in the
graph and each entry preserves the r-radius graphs that con-
tain the term. To construct the graph index, we first extract
r-radius graphs as stated in Lemma 1, then for each term
ki, we keep the set of all r-radius graphs that contain ki,
denoted as Iki , i.e., Iki={Gr

vj
|Gr

vj
contains ki}.

To process a keyword query K={k1,k2,...,km}, we first re-
trieve the set Iki of those r-radius graphs which contain
ki based on the graph index, and then union every Iki to
compute ∪m

i=1Iki , which is the set of r-radius graphs that
contain all or a portion of the keywords in K‡. Finally, we
extract the r-radius Steiner graphs by removing the non-
Steiner nodes from the corresponding r-radius graphs, and
rank the results to return the top-k answers.

Given an r-radius graph Gr and its content nodes, c1,c2,...,cq,
which directly contain some of the input keywords, we com-
pute the Steiner nodes and construct the corresponding r-
radius Steiner graph as follows:

i) Compute P(ci), the set of those nodes which have a
path to ci in Gi, i.e., P(ci)={u|u!ci in Gi}, where
Gi is the subgraph of Gr, by removing the nodes in
{c1,c2,...,ci−1,ci+1,...,cq} and the associated edges.

ii) Extract the set of Steiner nodes in Gr, P, where P=
∪q

i=1∪q
j=i+1(P(ci)∩P(cj))∪{c1,c2,...,cq}.

iii) Construct the r-radius Steiner graph, i.e., the sub-
graph of Gr, which is composed of the nodes in P and
the associated edges.

Example 3. Consider the database described in Table 1,
we obtain its adjacency matrixM and computeMr as shown
in Table 3 (r is set to 2 in the remaining examples through-
out this paper). Subsequently, we derive the r-radius graphs,
e.g., Gr

p1 and Gr
p2 based on the second and fourth rows of Mr

respectively, which are illustrated in Figure 3. We note that
Gr

p1¢Gr
p2. To answer the keyword query " Shanmugasundaram,

Guo,XRANK", we first retrieve the r-radius graphs, Gr
p1 and

Gr
p2, which contain the three keywords, based on the graph

index, and then extract the corresponding r-radius Steiner
graphs, i.e., the circled subgraphs as illustrated in Figure 3,
by removing the non-Steiner nodes.

From Example 3, we observe that some r-radius graphs
are contained in others. As a further illustration, we get
the following expressions from the graph in Figure 2: i)
Gr

a2¢Gr
a1=Gr

p1¢Gr
p2; ii) Gr

a3¢Gr
p4; iii) Gr

a5¢Gr
p6=Gr

a4¢Gr
p5; and

iv) Gr
p7¢Gr

p6=Gr
a4¢Gr

p5. Consequently, it is sufficient for us
just to keep the graphs Gr

p2,Gr
p3,Gr

p4 and Gr
p5 in the graph

index. We shall address this problem next.

3.2 Maximal r-Radius Graph
To avoid maintaining redundant overlapping r-radius graphs

in the graph index, we introduce the concept of maximal r-
radius graph in this section.

Definition 4. (Maximal r-Radius Graph) Given a graph
G and an r-radius subgraph Gr

vi
in G, Gr

vi
is called a maximal

r-radius subgraph if there is no other r-radius subgraph that
contains Gr

vi
.

Based on Definition 4, we only need to keep the max-
imal r-radius graphs in the graph index to minimize stor-
age without affecting the search results. This is because all
other r-radius graphs can be reconstructed from their cor-
responding super-graphs. For example, Gr

p2,Gr
p3,Gr

p4 and Gr
p5

are maximal r-radius graphs and will be kept in the graph
index while other graphs, e.g., Gr

p1 and Gr
a4, can be recon-

structed when necessary.
In fact, the maximal r-radius graphs can be directly ex-

tracted from Mr, as captured by Lemma 2 below.
‡
If we consider “AND” predicate, we merge Iki

to compute ∩m
i=1Iki

,
which is the set of r-radius graphs that contain all keywords.



Table 4: Graph similarities
Gr

p2 Gr
p3 Gr

p4 Gr
p5

Gr
p2 1 5/8 3/10 1/6

Gr
p3 - 1 5/9 4/11

Gr
p4 - - 1 2/3

Gr
p5 - - - 1

Lemma 2. Given a graph G(R(G)≥r), ∀i,1≤i≤|G|, Gr
vi

is
a maximal r-radius graph if ∀k∈{t|Mr

it=1,N r
t 6=N r

i }, N r
i 6⊂N r

k .

Proof. We first prove that Gr
vi

is an r-radius graph.

i) ∀k∈{t|Mr
it=1, N r

t 6=N r
i }, as N r

i 6⊂N r
k , there must exist

uk, uk∈N r
i and uk 6∈N r

k , and thus we have D(vk, uk)>r (oth-
erwise, if D(vk, uk)≤r, uk must be in N r

k , which contradicts
uk 6∈N r

k ). Hence, CD(vk)=maxu∈Gr
vi
{D(vk, u)}≥D(vk, uk)>r.

ii) ∀j∈{t|Mr
it=1, N r

t =N r
i }, asR(G)≥r, CD(vj)=r in Gr

vi
.

Thus, ∀vk∈Gr
vi

, CD(vk)≥r and CD(vi)=r. Hence, we have
R(Gr

vi
)=minvk∈Gr

vi
{CD(vk)}=r, and Gr

vi
is an r-radius graph.

We then prove that Gr
vi

must be a maximal r-radius graph.

As ∀k∈{t|Mr
it=1, N r

t 6=N r
i }, N r

i 6⊂N r
k , there cannot exist

another r-radius graph that is a super-graph of Gr
vi

. Thus,
Gr

vi
must be a maximal r-radius graph.

There are still some overlaps between different maximal
r-radius graphs. For example, Gr

p2 and Gr
p3 both contain the

nodes, a1,p1,p2,p3 and p4. To further reduce storage and
improve search performance, we introduce a technique for
clustering the maximal r-radius graphs in Section 3.3.

3.3 Graph Partitioning
Conventional Steiner tree based methods [2] typically need

to traverse the graph initializing from the content nodes to
identify the Steiner trees with the minimal cost. They have
to maintain the whole graph in memory, which is not prac-
tical for large graphs. To alleviate the problem, we propose
a graph partitioning based method to achieve the needed
search efficiency.

We cluster r-radius graphs so that we can partition the
graph to facilitate identifying r-radius graphs. We first clus-
ter the r-radius graphs and then partition the whole graph
based on the clusters. Each cluster corresponds to a portion
of the graph. Clustering maximal r-radius graphs has the
following salient advantages: (i) We only need to maintain
a physical graph for each cluster while all the maximal r-
radius graphs only preserve their nodes instead of the corre-
sponding overlapping graphs. This avoids the incurrence of
huge storage, and is similar to the views on top of underlying
physical tables in RDBMS, in which clusters correspond to
physical tables while maximal r-radius graphs correspond
to views. (ii) We only need to retrieve the corresponding
relevant graph partitions instead of maintaining the whole
graph in order to identify the r-radius graphs.

To meaningfully cluster r-radius graphs, we first define
the similarity between any two graphs and then cluster the
maximal r-radius graphs based on their similarities.

Definition 5. (Graph Similarity) Given two maximal
r-radius subgraphs Gr

i and Gr
j in a given graph, their graph

similarity, S(Gr
i ,Gr

j ), is
|Nr

i ∩Nr
j |

|Nr
i ∪Nr

j |
, where N r

i and N r
j denote

the node sets of Gr
i and Gr

j respectively.

A bigger overlap between the nodes of the two graphs
implies a larger graph similarity between them, and con-
sequently, a higher probability that they will be clustered

p3

p4 p5 p6 p7

a3 a4 a5

p1 p2

a1 a4a2

Gr
p2 + Gr

p3 (cluster1) Gr
p4 + Gr

p5 (cluster2)

Figure 4: Two clusters

together. It is obvious that the graph similarity scales well
with the number of overlapping nodes. Moreover, given two
maximal r-radius subgraphs, employing the number of their
overlapping nodes is sound as the edges associated with the
overlapping nodes are also the same. In addition, we note
that the graph similarity preserves the following properties:

• Symmetry. S(Gi,Gj)=S(Gj ,Gi);

• Positivity. 0≤S(Gi,Gj)≤1, for any Gi and Gj ;

• Reflexivity. S(Gi,Gj)=1 iff Gi=Gj ;

which indicate that graph similarity is a good metric to eval-
uate the similarity between any two graphs. Based on the
graph similarity, we can now cluster the maximal r-radius
subgraphs by employing an existing method such as the K-
mean, K-medoids and EM algorithms.

To effectively compute the graph similarity between two
maximal r-radius graphs, we introduce Lemma 3.

Lemma 3. Given two maximal r-radius subgraphs w.r.t.

Mr, Gr
i and Gr

j , S(Gr
i ,Gr

j ) =
|{k|Mr

ik=1 and Mr
jk=1}|

|{k|Mr
ik

=1 or Mr
jk

=1}| .

Following Lemma 3, we can compute the graph similar-
ity based on the adjacency matrix, which is much easier to
manipulate than the original graphs.

Example 4. Consider the database in Table 1, we note
that the four graphs Gr

p2,Gr
p3,Gr

p4 and Gr
p5 are the maximal

r-radius graphs. We can compute their graph similarities as
shown in Table 4 based on the adjacency matrix in Table
3. If we cluster the four maximal r-radius graphs into two
clusters, Gr

p2 and Gr
p3 will fall into the same cluster while Gr

p4

and Gr
p5 will be in another cluster as illustrated in Figure 4.

On the other hand, if we cluster them into three clusters,
Gr

p4 and Gr
p5 will fall into the same cluster while Gr

p2 and Gr
p3

are in the other two clusters respectively.

To summarize, given a graph, we first obtain its adjacency
matrix M and compute Mr. We then extract the maxi-
mal r-radius graphs according to Lemma 2 and compute the
graph similarities between any two maximal r-radius graphs
based on Lemma 3. Subsequently, we cluster the graphs by
employing the existing K-means algorithm and partition the
graph. Finally, we construct the graph index to materialize
the maximal r-radius graphs. To illustrate, we consider the
example below, which computes the set of r-radius Steiner
graphs that contain all or a portion of the input keywords.

Example 5. Given the database in Table 1 and a keyword
query " DISCOVER,Relational,Database,Papakonstantinou",
we first retrieve the keyword lists based on the graph in-
dex (Table 5). We then derive the set of {Gr

p2 ,Gr
p3 ,Gr

p4 ,Gr
p5},



Table 5: Graph index
Terms r-radius graphs : Iki

Database Gr
p2

,Gr
p3

,Gr
p4

,Gr
p5

DISCOVER Gr
p5

Papakonstantinou Gr
p4

,Gr
p5

Relational Gr
p3

,Gr
p4

,Gr
p5

where each graph contains some input keywords. Gr
p5 con-

tains all of the input keywords. Finally, we refine the max-
imal r-radius graphs on top of the corresponding graph par-
titions (instead of traversing the whole graph) to obtain the
r-radius Steiner graphs. For instance, we can get SGr

p5 by
removing the non-Steiner nodes, e.g., p3,p4,a3 and a5, from
Gr

p5 , as shown in Figure 5.

4. RANKING FUNCTIONS
In this section, we first discuss how to meaningfully rank

r-radius Steiner graphs and identify the top-k answers based
on the existing proposals. Next, we propose a new measure
based on the structural compactness between content nodes
and the structural relevancy between input keywords with
respect to an r-radius Steiner graph.

4.1 TF • IDF-based IR Ranking
The basic idea of the ranking method used in the exist-

ing literature, such as [15, 20, 22], is to first assign each
r-radius graph a score using a standard IR-ranking formula
(or its variants), and then combine the individual scores us-
ing a score aggregation function, such as SUM, to obtain the
final score. For example, the TF·IDF-based IR-style ranking
function weights an r-radius Steiner graph by considering
textual relevancy in IR literature, which takes into account
term frequency (tf), inverse document frequency (idf) and
normalized document length (ndl). tf and idf are well em-
ployed to rank documents in the IR literature while ndl is
used to normalize document length as a longer document
has a higher likelihood to contain many more keywords. We
can compute the three parameters as follows:

ntf(ki,G) = 1 + ln(1 + ln(1 + tf(ki,G))) (1)

idfki = ln
N + 1

Nki + 1
(2)

ndlG = (1− s) + s ∗ tlG
avgtl

(3)

where tf(ki,G) in Equation 1 denotes the term frequency of
ki in G; N and Nki in Equation 2 respectively denote the
number of maximal r-radius graphs and the number of those
maximal r-radius graphs that contain ki. tlG in Equation 3
denotes the total number of terms in G and avgtl is the aver-
age number of terms among all such r-radius graphs while s
is a parameter taken from IR literature, which has been ex-
tensively discussed and typically set to 0.2 [20]. We combine
the three parameters to evaluate the document relevancy be-
tween an input keyword ki and a given Steiner graph SG, de-
noted as ScoreIR(ki,SG) as formalized in Equation 4, where
G is the corresponding r-radius graph w.r.t. SG §.

ScoreIR(ki,SG) =
ntf(ki,G) ∗ idfki

ndlG
(4)

Based on the textual relevancy of ki in SG, we compute
the overall score between an input keyword query K and SG
by summing up ScoreIR(ki,SG), as shown in Equation 5.
§
ntf(ki,SG)=ntf(ki,G); tf(ki,SG)=tf(ki,G) for each input keyword ki.

p3

p4 p5 p6 p7

a3 a4 a5

p5 p6 p7

a4

(a) G2
p5 (b) SG2

p5

Figure 5: G2
p5 and SG2

p5

ScoreIR(K,SG) =
∑

ki∈K
ScoreIR(ki,SG) (5)

Although the TF·IDF-based ranking methods are efficient
for textual documents, they are inefficient for semi-structured
and structured data. From the IR perspective, traditional
textual relevancy is important. However, due to our use
of graph in modeling, the ranking of graph data becomes
equally if not more important, and the structural compact-
ness of r-radius Steiner graphs is the essence of the compar-
ison. This is so because identifying rich structural relation-
ships should be at least as important as discovering more
keywords, and in some cases, even more crucial. Therefore,
we propose a novel ranking function by incorporating struc-
tural compactness from the DB point of view.

4.2 Structural Compactness-based DB Ranking
Intuitively, when an r-radius Steiner graph SG is more

compact, SG is more likely to be meaningful and relevant.
Accordingly, the structural compactness score should be larger.
As such, the compactness of SG should include the following
parameters: i) the structural compactness between content
nodes in SG, and ii) the structural relevancy between input
keywords w.r.t. SG. We note that when the length of a
path between two content nodes is larger, the relevancy be-
tween them is smaller. Further, there may be multiple paths
between two content nodes, and we should consider all of
them. Based on the above rationale, we propose Equation 6
to score the overall structural compactness between any two
content nodes:

Sim(ni, nj) =
∑

ni!nj

1

(|ni ! nj |+ 1)2
(6)

where ni and nj are two content nodes, ni!nj is any
path between ni and nj , and |ni!nj | is the length of
ni!nj . An important feature of Sim(ni, nj) is that it
can be pre-computed and materialized off-line, based on
the fact that SimG(ni, nj)=SimSG(ni, nj) holds as formal-
ized in Lemma 4 below, where G denotes the corresponding
r-radius graph of SG while SimG(ni, nj) and SimSG(ni, nj)
denote the structural compactness between ni and nj in G
and SG respectively. It is clear that we can compute the
overall structural compactness by summing up several mate-
rialized scores. For example, in Figure 5, SimSG2

p5
(a4, p5)=

SimG2
p5

(a4, p5)= 1
(|a4!p5|+1)2

+ 1
(|a4!p6!p5|+1)2

= 1
4
+ 1

9
= 13

36
.

Lemma 4. Given an r-radius graph G and its correspond-
ing Steiner graph SG with respect to a given keyword query,
the following equation holds:

SimG(ni, nj) = SimSG(ni, nj)

where ni and nj are any two content nodes in SG.

Proof. Note that if there is a path from ni to nj in G,
there must be a similar path in SG and vice versa based on
Definition 3. Thus, SimG(ni, nj)=SimSG(ni, nj).



Although the structural compactness between two con-
tent nodes can measure the structural relevancy of r-radius
graphs, it cannot evaluate the structural relevancy among
input keywords, which captures the phrase-based relevancy
between input keywords. It follows that a smaller distance
between input keywords indicates a higher structural rele-
vancy between them. This is particularly so for keywords
in the same node that will represent a phrase. We therefore
propose Equation 7 to capture this parameter.

Sim(< ki, kj > |SG) =
1

|Cki ∪ Ckj |
∑

ni∈Cki
; nj∈Ckj

Sim(ni, nj)

(7)
where Cki denotes the set of all the content nodes that con-
tain ki in SG, and |Cki | denotes the number of nodes in Cki ,
which is used to normalize the structural relevancy between
two input keywords. Consequently, a larger overall struc-
tural compactness score of SG indicates that SG is more
likely to be relevant and meaningful to K.

We note that the structural relevancy between input key-
words has a salient feature that if Sim(<ki,kt>|SG) and
Sim(<kt,kj>|SG) are large, Sim(<ki,kj>|SG) must be also
large and thus ki,kj and kt must be very relevant to each
other w.r.t. SG. Thus, a key feature of structural relevancy
is that we can use the structural relevancy between any two
input keywords to capture the relevancy between all of the
input keywords as illustrated in Equation 8. This feature
can help capture the rich structural information of SG while
the textual relevancy in Equation 5 cannot. Formally, given
a keyword query K={k1,k2,...,km} and an r-radius Steiner
graph SG, the overall structural compactness of SG w.r.t.
K, denoted as ScoreDB(K,SG), can be computed as follows:

ScoreDB(K,SG) =
∑

1≤i<j≤m

Sim(< ki, kj > |SG) (8)

By taking into account both document relevancy from the
IR perspective and structural compactness/relevancy from
the DB perspective to capture structural relationships, we
present a more accurate function for scoring r-radius Steiner
graphs as given in Equation 9.

Score(K,SG) =
∑

1≤i<j≤m

Score(< ki, kj > |SG) (9)

where
Score(< ki, kj > |SG) =Sim(< ki, kj > |SG)∗

(ScoreIR(ki,SG) + ScoreIR(kj ,SG))

(10)

Score(<ki, kj>|SG) measures the overall relevancy score
of <ki, kj> in SG based on the structural compactness/relevancy
and IR scores. Note that, Sim(<ki, kj>|SG) is taken as the
weight of the sum of two IR scores, i.e., ScoreIR(ki,SG) and
ScoreIR(kj ,SG). A larger Sim(<ki, kj>|SG) means that ki

and kj are more relevant w.r.t. SG, and thus, the overall
score of <ki, kj> in SG is expected to be larger.

5. INDEXING
To efficiently identify the top-k answers with the highest

scores, we examine the issues of indexing in this section.
Given any two keywords ki and kj in the graph, and

an r-radius graph SG, the scores of ScoreIR(ki,SG) and
ScoreIR(kj ,SG) in Equation 4 and Sim(<ki, kj>|SG) in Equa-
tion 7 share the key feature that they can be pre-computed
and materialized off-line. Based on this observation, we can
materialize Score(<ki, kj>|SG).

Table 6: EI-Index: an extended inverted index
Keyword Pair <Maximal r-radius Graph, Score>

<Database, DISCOVER> Gr
p5

,1.53

<Database, Papakonstantinou> Gr
p5

,0.38; Gr
p4

,0.19

<Database, Relational> Gr
p5

,0.85; Gr
p3

,0.35; Gr
p4

,0.34

<DISCOVER, Papakonstantinou> Gr
p5

,0.54

<DISCOVER, Relational> Gr
p5

,1.95

<Papakonstantinou, Relational> Gr
p5

,0.57; Gr
p4

,0.28

<· · · , · · ·> · · ·

We devise an extended inverted index (EI-Index) to main-
tain such scores. Different from the traditional inverted in-
dex, the entries of EI-Index are keyword pairs (combinations
of two keywords), and the values of each entry is the maxi-
mal r-radius graphs that contain the keyword pair and the
corresponding scores. For example, we can construct the
EI-Index of the graph in Figure 2 as illustrated in Table 6.

To answer a keyword query K={k1,k2,· · · ,km}, we first
retrieve the maximal r-radius graphs for each keyword pair
<ki, kj> according to EI-Index, and then compute the scores
of every relevant maximal r-radius graph according to Equa-
tion 9. Finally, we rank the results and return the top-k
r-radius Steiner graphs with the highest scores by refining
the corresponding r-radius graphs.

For example, recall the query "DISCOVER, Relational,

Database,Papakonstantinou" in Example 5. We first re-
trieve the relevant maximal r-radius graphs based on EI-
Index and compute the corresponding overall scores. We
then rank them based on such scores, i.e., G5, G4, G3. Fi-
nally, we identify the r-radius Steiner graphs on top of the
corresponding graph partitions.

However, this method needs to first compute the scores for
all relevant maximal r-radius graphs and then rank them.
This leads to low efficiency in the presence of large numbers
of r-radius Steiner graphs. To alleviate the problem, we
introduce an effective technique of progressively identifying
the top-k answers. Note that there are many studies of effec-
tively retrieving top-k answers from multiple inverted lists,
such as Fagin Algorithm (FA) [7] and Threshold Algorithm
(TA) [8]. We can employ such techniques to identify the
top-k answers on top of our EI-Index as follows: Given a key-
word query K={k1, k2, · · · , km}, we can retrieve the inverted
lists composed of relevant r-radius graphs and correspond-
ing scores for every keyword pair according to our EI-Index.
Then, we adopt existing algorithms to progressively iden-
tify the top-k answers. The advantage of our approach is
obvious – we need not discover the structural relationships
by traversing the whole graph. Instead, we first materialize
such rich relationships into our EI-Index off-line, and then
identify the top-k answers according to EI-Index online.

6. EXPERIMENTAL STUDY
We have designed and performed a comprehensive set of

experiments to evaluate the search performance of EASE. We
employed the datasets of DBLife¶, DBLP‖ and IMDB∗∗ to
evaluate EASE on unstructured, semi-structured and struc-
tured data respectively. There were about 10,000 pages in
the DBLife dataset, and the raw file of DBLP was about
400MB. IMDB contained about one million anonymous rat-
ings of approximately 3900 movies made by 6040 users. All
datasets were deposited as per submission requirement.

¶
http://dblife.cs.wisc.edu/download/surfaceWeb-2007-07-25.tgz

‖
http://dblp.uni-trier.de/xml

∗∗
http://www.grouplens.org/node/73 (1,000,000 Data Set(5.73 MB))

http://www.grouplens.org/system/files/million-ml-data.tar 0.gz
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Figure 6: Search efficiency on various queries
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Figure 7: Search efficiency with different values of k
Table 7: Queries employed in the experiments

(a) Queries on unstructured data (DBLife)
Query ID Queries

Q1 2007 Conference Data Integration
Q2 XML Relational Keyword Search
Q3 Turkey Conference 2007 Uncertainty Fuzziness
Q4 Berkeley Phone Fax Dataspaces Information Management
Q5 Beijing Conference 2007 Data Integration

(b) Queries on semi-structured data (DBLP)
Query ID Queries

Q6 Information Retrieval Database
Q7 IR Database
Q8 DB IR XML
Q9 XML Relational Keyword Search
Q10 Data Mining Algorithm 2006

(c) Queries on structured data (IMDB)
Query ID Queries

Q11 Lethal Weapon 4 academic
Q12 Police Academy 3 customer
Q13 Halloween 5 college
Q14 Love 45 tradesman
Q15 Robocop 3 college

(d) Queries on heterogenous data
Query ID Queries

Q16 XML Keyword Search 2007
Q17 Dennis Shasha Database Tuning
Q18 Dataspaces 2006 Information Management
Q19 Database Indexing Ranking Search
Q20 Romance Action Educator

The experiments were conducted on an Intel(R) Core(TM)
2.0GHz computer with 2GB of RAM running Windows Vista,
and the algorithms were implemented in Java. We used
MYSQL 5.0.45†† to maintain the graph index. We employed
the threshold algorithm [8] to progressively identify the top-
k answers based on the EI-Index. We compared our approach
with existing state-of-the-art approaches. For the unstruc-
tured data, we compared EASE with DBLife[5] by submit-
ting keyword queries to its interface and InfoUnit[18]. For
the semi-structured data, we compared EASE with SLCA
[28] while for structured data, we compared it with DPBF
[6]. We selected 20 queries as illustrated in Table 7 for test-
ing different aspects of search problems such as the ability
of the methods in capturing data lineage and relationships,
and their search accuracy.

The graph w.r.t. DBLife contains about 10,000 nodes,
which are far fewer than the approximate 1,000,000 nodes of
IMDB and 12,000,000 nodes of DBLP. Note that the graph

††
http://dev.mysql.com/downloads/mysql/5.0.html

w.r.t. IMDB is much denser than that of DBLP, which in
turn is denser than that of DBLife. The elapsed time of in-
dexing DBLife, IMDB and DBLP is respectively 13, 25 and
87 minutes. The sizes of the graph indices of DBLife, IMDB
and DBLP are respectively 128MB, 96MB and 922MB, com-
pared with the data sizes of 131MB, 30MB and 405MB. The
graph index of DBLife is smaller than its data size due to: i)
tokenization for removing tags, and ii) its sparser structure.

6.1 Search Efficiency on Different Datasets
We evaluate the search efficiency of EASE in this section.

We tested every algorithm on the selected queries, identi-
fied the top-100 results and compared their corresponding
elapsed time. Figure 6 summarizes the experimental results.
We observe that EASE always achieves the best performance
for various keyword queries and outperforms the other meth-
ods significantly on different datasets.

On unstructured data, InfoUnit identifies Steiner trees by
traversing the whole graph to discover structural relation-
ships online, which is not as efficient as our method that
materializes rich structural information into the graph in-
dices for facilitating online keyword-based query processing.

On semi-structured data, SLCA has to first identify all the
relevant results, and then ranks them and returns the top-k
answers with the highest scores. In contrast, EASE employs
the threshold based algorithm [8] to progressively identify
top-k answers and thus produces a dramatic improvement
over the existing methods.

On structured data, although DPBF can progressively
compute the top-k answers, it has to discover the struc-
tural information between tuples in different relational ta-
bles online. At the same time, it also needs to identify
the Steiner trees on top of the whole graph. These needs
lead to low efficiency. In contrast, EASE first identifies the
r-radius graphs based on EI-Index and then constructs r-
radius Steiner graphs on top of the corresponding graph par-
titions. These partitions are much smaller than the whole
graph, and the method therefore achieves better search per-
formance and outperforms DPBF significantly.

To better evaluate the selected algorithms, we identified
the top-k answers with different values of k and compared
the corresponding average elapsed time. Figure 7 illustrates
the experimental results obtained. We observe that EASE
outperforms the other methods significantly.

We note that, with the increase of k values, the elapsed
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Figure 9: top-k precision with different values of k
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Figure 10: Search efficiency on heterogenous data

time of InfoUnit and DPBF also increases, but the elapsed
time of EASE varies only slightly (as SLCA cannot progres-
sively identify answers, its elapsed time also varies little).
The elapsed time of InfoUnit and DPBF to return top-100
results is always a little more than that of top-5 while the
elapsed time of EASE remains about the same. This is so
because we adopt the threshold based technique to progres-
sively identify the top-k answers.

6.2 Search Efficiency on Heterogenous Datasets
To evaluate the overall performance of EASE on heteroge-

nous data, we mixed the three datasets and tested EASE on
the combined data. We constructed the graph index on top
of the heterogenous data and employed Q16-Q20 to evaluate
the search efficiency of EASE over heterogenous data. To
better understand the performance of EASE, we first evalu-
ated the elapsed time of identifying the top-100 answers for
every query. We then varied the values of k to evaluate the
average elapsed time. We also provide the elapsed time of
EASE on different datasets as a baseline to show the search
efficiency of EASE over heterogenous data. The results are
summarized in Figure 10. We can see that EASE is still
capable of achieving high search efficiency over heteroge-
nous data and is not much worse off than on homogeneous
datasets. That is, even for a large volume of heterogenous
data, EASE can still effectively identify the top-k answers.

6.3 Search Accuracy on Different Datasets
This section evaluates search accuracy, indicating the frac-

tion of relevant results in the approximate answer that are
correct. We employed the metric, top-k precision, which
measures the ratio of the number of relevant answers among
the first k answers with the highest scores of an algorithm
to k. Answer relevance is judged from discussions of re-
searchers in our database group. Interested readers can test
our algorithm through our deposited demo as per submis-

sion requirement. Moreover, to evaluate the search accu-
racy of the selected algorithms, we identified the top-100
results for every query and compared the corresponding top-
100 precision. Figure 8 illustrates the experimental results
obtained. We observe that EASE achieves much higher preci-
sion than existing methods such as, DBLife, InfoUnit, SLCA
and DPBF on the corresponding datasets.

On unstructured data, as InfoUnit and EASE integrate rel-
evant pages to answer keyword queries, they achieve much
higher precision than DBLife. EASE is better than InfoUnit
because EASE employs a ranking mechanism that takes into
account both the structural compactness of answers from the
DB viewpoint and textual relevancy from the IR viewpoint.
On semi-structured data, r-radius Steiner graphs, alongside
content nodes, also contain some relevant elements, such
as the Steiner nodes, which may expand the answerabil-
ity. They are more meaningful than the subtrees/path-trees
rooted at LCAs (or its variants) of existing methods, which
may miss some relevant information. Thus, EASE yields
higher precision. On structured data, EASE also outper-
forms DPBF in that: (i) r-radius Steiner graphs are more
meaningful than Steiner trees; and (ii) Again, this is due to
the consideration of structural compactness between input
keywords in our ranking function.

For example, consider query Q7. Its answer should be
the papers about “Database” and “IR”. However, “IR” may
appear in the name of an author, and traditional meth-
ods such as SLCA cannot distinguish the papers entitled
with “Database” and “IR” and the papers with “IR” being a
term of the author and “Database” being a term of the title.
They may mistakenly take the latter as answers, leading to
low search accuracy. As another example, two input key-
words may appear in two different authors of a paper, and
the conventional methods will mistakenly take the two key-
words as an author. EASE ranks the results with structures
that are less compact lower. This is done by means of our
structural relevancy based ranking method. Hence, EASE
achieves much higher precision.

As users are usually interested in top-k answers, we var-
ied different values of k to evaluate the selected algorithms.
The average results of the top-k precision for Q1-Q15 are
illustrated in Figure 9. As expected, EASE consistently
achieved high precision in many queries, which is approxi-
mately 10-30% higher than those of InfoUnit, DBLife, DPBF
and SLCA.
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Figure 11: Search accuracy on heterogenous data

6.4 Search Accuracy on Heterogenous Datasets
To evaluate the robustness of our algorithm, we evaluate

its search accuracy using the heterogenous dataset. We first
evaluated search accuracy by identifying the top-100 results
on various queries, and then varied different values of k to
evaluate the average precision. For a better understanding
of our ranking method, we compared EASE employing IR
ranking parameters (ref. Equation 5) with EASE considering
both DB and IR (ref. Equation 9). Figure 11 summarizes
the experimental results. We observe that EASE(DB+IR)
consistently achieves much higher accuracy than EASE(IR).
This again confirms that TF·IDF based IR ranking cannot
capture the structural relationships effectively.

For example, consider query Q20. Some results on DBLife
dataset will obtain higher IR scores than those on IMDB
dataset as the term frequencies of some documents on DBLife
dataset are larger than those on IMDB dataset. Thus, the
IR based ranking method will rank the results on DBLife
dataset higher. However, in the IMDB dataset, which is a
collection of ratings of movies made by users, the three input
keywords can describe the instances of users with occupa-
tion of Educator scoring the movies with genres of Romance

and Action. Hence, the three keywords are more compact
and highly relevant to IMDB dataset. Our DB+IR ranking
method considers the structural relevancy and ranks the re-
sults on the IMDB dataset higher, and thus achieves much
higher precision. This comparison reflects the effectiveness
and applicability of our proposed ranking mechanism.

6.5 Sensitivity of Indexing
In this section, we evaluate the sensitivity of our indexing

method. We first created the indices on top of the DBLife
dataset, and then inserted 5% additional new irrelevant data
in each step. After each set of insertions, we evaluated EASE
on the updated indices by using queries Q1-Q5. Figure 12
summarizes the effects of insertions on our indexing method.
We observe that the search accuracy of EASE does not de-
grade drastically with the increase of new data. This demon-
strates the robustness and scalability of our method with
respect to data insertions.

7. RELATED WORK
The first area of research related to our work is keyword

search over relational databases by identifying Steiner trees.
As opposed to the traditional Steiner tree based methods,
which identify the structural relationships online, EASE iden-
tifies and materializes the rather rich structural relationships
so as to improve the online processing of keyword queries.

DBXplorer[1], DISCOVER-I[15], DISCOVER-II[13], BANKS-
I [2] and BANKS-II [17] are systems built on top of re-
lational databases. DISCOVER and DBXplorer generate
trees of tuples connected through primary-foreign key rela-
tionships that contain all of the input keywords. BANKS
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identifies connected trees in a labeled graph by using an
approximation of the Steiner tree problem. DISCOVER-II
considers the problem of keyword proximity search in terms
of disjunctive semantics, as opposed to DISCOVER-I which
only considers conjunctive semantics. Kacholia et al. [17]
presented the bidirectional strategy (BANKS-II) to improve
the efficiency of keyword search over graph data. However,
their method still works by identifying Steiner trees from
the whole graph, which is inefficient as it is rather difficult
to identify structural relationships through inverted indices.
Liu et al. [20] proposed a novel ranking strategy to solve the
effectiveness problem for relational databases. It employs
phrase-based and concept-based models to improve search
effectiveness by introducing IR techniques.

More recently, Ding et al. [6] employed dynamic program-
ming (DPBF) to improve the efficiency of identifying Steiner
trees. Guo et al. [10] proposed data topology search to
retrieve meaningful structures from richer structural data,
such as complex biological databases. He et al. [12] proposed
a partition-based method to improve search efficiency with
a novel BLINKS index. Markowetz et al. [23] studied the
problem of keyword search over relational data streams in a
first attempt to answer keyword search over relational data
streams. Luo et al. [22] proposed a new ranking method
that adapts state-of-the-art IR ranking function and prin-
ciples into the ranking trees of joined database tuples. In
addition, Yu et al. [29] studied the problem of relational
data source selection in P2P environments by summarizing
the relationships between keywords in underlying databases.

In terms of keyword search over XML documents, the sub-
trees rooted at the lowest common ancestors (LCAs) of con-
tent nodes have been proposed as answers. As an extension
of LCA, SLCA, Multiway-SLCA, XSeek and GDMCT have
recently been proposed to answer keyword queries over XML
documents in [28], [25], [21] and [14] respectively. SLCA
[28] can avoid the false positives of LCA but it does so at
the expense of false negatives. Multiway-SLCA [25] offers a
search paradigm in support of keyword search beyond the
traditional AND semantics, including both AND and OR
boolean operators. GDMCT [14] returns grouped connected
trees as answers but it still needs to traverse the whole graph
to identify answers by employing the inverted index. XSeek
[21] generates return nodes which can be explicitly inferred
from keywords or dynamically constructed according to en-
tities in the data that are relevant to the search.

XRANK [11] and XSEarch [4] are systems facilitating key-
word search for XML documents, and they return connected
subtrees as answers for keyword queries. XRANK presents
a ranking method, where for a given tree T containing all
the keywords, a score is assigned to T with an adaptation
of PageRank for XML documents. XSEarch focuses on se-
mantics and the ranking of results; during execution, it uses
an all-pairs interconnection index to check the connectivity



between nodes. XKeyword [16] is a system that offers key-
word proximity search over XML documents that conform
to an XML schema. However, it needs to compute candi-
date networks and thus is constrained by schemas. TopX
[26] is a prototype search engine for the ranked retrieval of
XML, but it processes XML queries with support for XPath
axes but not the more simple keyword queries, and it can-
not adapt to relational databases. Graupmann et al. [9]
presented the SphereSearch engine to provide unified ranked
retrieval on heterogeneous XML and Web data. However, it
is orthogonal to our method in that: i) it does not support
relational databases and it transforms HTML documents
into XML, and ii) it depends on its own query language
to discover structural relationships and thus is not a pure
keyword based search method. Chaudhuri, Ramakrishnan
and Weikum [3] point out a number of interesting research
opportunities for integrating DB and IR technologies. In
[27], Weikum provides a summary of the existing DB and
IR techniques and discusses the difficulties, opportunities
and challenges of combining DB and IR.

8. CONCLUSION
In this paper, we have proposed an efficient and adaptive

keyword search method, EASE, to answer keyword queries
over unstructured, semi-structured and structured data. EASE
seamlessly integrates the efficient query evaluation of DB
and the adaptive scoring models of IR for the ranking of
results. EASE models heterogenous data as graphs and pro-
cesses keyword queries on the graphs. To the best of our
knowledge, this is the first attempt to efficiently and adap-
tively process keyword queries on heterogenous data. We
have proposed summarizing and clustering the graphs, and
devised effective graph indices to materialize structural re-
lationships for fast and accurate response. To facilitate ef-
ficient keyword-based query processing, we have examined
the issues of indexing and ranking by taking into account
both the structural compactness of r-radius graphs from the
DB point of view and textual relevancy from the IR view-
point. Finally, we have conducted an extensive performance
study to evaluate the efficiency and effectiveness of our ap-
proach using real datasets. The experimental results show
that EASE achieves both high search efficiency and quality
for keyword search over heterogenous data, and significantly
outperforms the existing methods.
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