GORDER: An Efficient Method for KNN Join Processing

Chenyi Xid Hongjun L& Beng Chin Oo Jing HU

! Department of Computer Science,National University of Singapeiggheny, ooibc, hujing@comp.nus.edu.sg
2Department of Computer Science, Hong Kong University of Science and Technology, luhj@cs.ust.hk

Abstract can be accelerated by including KNN-join as a primitive
operation. For examples,

An important but very expensive primitive op-
eration of high-dimensional databases is the K-
Nearest Neighbor (KNN) similarity join. The op-
eration combines each point of one dataset with
its KNNs in the other dataset and it provides more
meaningful query results than the range similarity
join. Such an operation is useful for data mining
and similarity search.

e In each iteration of the well-known k-means cluster-
ing process, the nearest cluster centroid is computed
for each data point. A data point is assigned to its
new nearest cluster if the previously assigned cluster
centroid is different from the currently computed one.
A KNN-join with k£ = 1 between the data points and
the cluster centroids can thus be applied to find all the

) o nearest centroid for all data points in one operation.
In this paper, we propose a novel KNN-join algo-

rithm, called theGorder (or the G-ordering KNN) e In the first step of LOF [7] (a density-based outlier
join method. Gorderis a block nested |00p join detection methOd), the K-nearest nEIgthI’S for every
method that exploits sorting, join scheduling and point in the input dataset are materialized. This can be
distance computation filtering and reduction to achieved by a single self KNN-join of the dataset.

reduce both 1/0 and CPU costs. It sorts input
datasets into th&-order and applied thesched-
uled block nested loop joion the G-ordered data.
The distance computation reduction is employed
to further reduce CPU cost. It is simple and yet
efficient, and handles high-dimensional data effi-
ciently. Extensive experiments on both synthetic
cluster and real life datasets were conducted, and Compared to the traditional point-at-a-time approach that
the results illustrate that Gorder is an efficient computes the K-nearest neighbors for all data points one

e In the hierarchical clustering method called
Chameleon [18], a KNN-graph (a graph linking
each point of a dataset to its K-nearest neighbors)
is constructed before the partitioning algorithm is
applied to generate clusters. The KNN-join can also
be used to generate the KNN-graph.

KNN-join method and outperforms existing meth- by one, the set oriented KNN-join can accelerate the com-
ods by a wide margin. putation dramatically[4].
In this paper, we study the efficient processing of the
1 Introduction KNN-join. To the best of our knowledge, the MuX KNN-

join [5, 4] is the only up-to-date algorithm specifically de-

K-nearest neighbor joifKNN-join) is a new operation signed for KNN-join. MuX [6] is essentially an R-tree
proposed recently [5]. The operation combines each poingased method designed to satisfy the conflicting optimiza-
of one dataset with its K-nearest neighbors in anothefion requirements of CPU and 1/0 cost. It employs large-
dataset. With its set-a-time nature, KNN'jOin can be Use%ized pages (the hosting page) to optimize 1/O time and
to efficiently support various applications where multidi- yses the secondary structure, the buckets which are MBRs
mensional data is involved. (minimum bounding boxes) of much smaller size, to parti-

In particular, it is identified that many standard algo- tjon the data with finer granularity so that CPU cost can be
rithms in almost all stages of knowledge discovery processeduced.
MuX iterates over theR pages, and foRR page in the
Vided tha the copies are not madis o cisibuted fo diree commercial O Potential KNN-joinable pages are retrieved
vide . H
advantage, the VEDB copyright notice and the title of the publication andthroth. MuX index ort and SearCh.ed for K-nearest nelgh-
its date appear, and notice is given that copying is by permission of thJJOI’S. Since MuX makes use of an index to reduce the num-
Very Large Data Base Endowment. To copy otherwise, or to republishper of data pages retrieved, it suffers as an R-tree based
requires a fee and/or special permission from the Endowment. join algorithm. First, like the R-tree, its performance is
Proceedings of the 30th VLDB Conference, expected to degenerate with the increase of data dimen-
Toronto, Canada, 2004 sionality. Second, the memory overhead of the MuX index




structure is high for large high-dimensional data due to theDefinition 2.1 (KNN-join) Given two data sets R and S,

space requirement of high-dimensional minimum bound-an integer K and the similarity metrigist(), the KNN-join

ing boxes. Both constraints restrict the scalability of theof R and S, denoted &8 x x v S, returns pairs of points

MuX KNN-join method in terms of dimensionality and (p;,g;) such that; is from the outer dataset R amg from

data size. the inner dataset S, ang is one of the K-nearest neighbors
In this paper, we propose a novel KNN-join algorithm, of p;.

the Gorder (or the G-ordering KNN) join methodSorder . L . .

is a block nested loop join method which achieves its ef-Essentially, the KNN-join combines each point of the outer

ficiency by sorting data based on an ordering that endataset R with its K-nearest neighbors from the inner

ables effective join pruning, data blocks scheduling andlataset S. A data point in our study is a multl—d_lmensmnal

distance computation filtering and reduction. It first sorts'€ature vector corresponding to a complex object such as

input datasets into th&-order (an order based on grid), &N image. The distance metric in our consideration is the

so that the the dataset can be partitioned into blocks thdt» Metric, where

are amenable for efficient scheduling for join processing. 1

Then, it applies thecheduled block nested loop jdmfind ) d

the K-nearest neighbors for each block of R data points. dist(p,q) = (Z Ip-i — q.xﬂ’) ;1< p<oo

Gorder is efficient due to the following factors: (1) It in- i=1

herits the strength of the block nested loop join in bein.g,:Or demonstration purposes, we shall use the most com-
able to reduce random reads. (2) It prunes away UNpromisyonly used metric, the square &f, (the Euclidean dis-

ing data blocks from probing to save both I/O and simi-ance) The proposed technique can be adapted to bfher
larity computation costs by exploiting the property of the ,atrics such as the Manhattan distante)(and the max-

G-ordered data. (3) It utilizestao-tiers partitioning strat-  1,,m distance L.o) straightforwardly. In the rest of the
egyto optimize I/O and CPU time separately. (4) It reducespaper, we use R to symbolize the outer dataset and S the
distance computational cost by pruning redundant compus,ner dataset.

tation based_ the_ distance of fewer dimensions. KNN-join has following properties:
Our contributions can be summarized as follows.
1. Itis asymmetric, thatis, x x vy S < S X kN R).
The reason is that the K-nearest neighbor is asymmet-
ric.

e We developed a novel algorith@orderfor an impor-
tant operation KNN-join, that requires no index for the
source data sets.

. 2. The cardinality of the answer set of a KNN-join is pre-
e A comprehensive performance study was conducted dictable, since a KNN-join returns K-nearest neigh-
experimentally that indicates the efficiency, scalability bors for each point of R.

and robustness of the proposed algorithm.
3. The distance from each point in R to its nearest neigh-

Note that it is widely recognized that most high- bors is unknown apriori

dimensional indexes do not scale up well, and in fact, many
perform worse than sequential scan when the dimensionaProperty 2 makes KNN-join more useful than another simi-
ity is high. KNN join further escalates the complexity and larity join — the range-join in situations where a good range
search cost of a high-dimensional index. We therefore de= cannot be determined easily. The range-join returns pairs
veloped the join method based on the block nested loopf points from two data sets with their similarity distance
join, however, enhanced it with sorting, data schedulingnot exceeding a given value. One of the difficulties to use
and distance computation filtering and reduction to attairsimilarity range-join in real application is that the distribu-
good KNN-join performance. tion of data points are often unknown and giving an appro-
The remainder of the paper is organized as follows priate similarity distance threshold between points is rather
Section 2 defines the KNN-join problem and investigatesdifficult, if not impossible. As such the results of similarity
its properties and reviews some related work. Section 3ange-join are somehow unpredictable that requires appli-
presents the algorithm Gorder, including its data scheduleations run on trial-and-error basis.
ing and distance computation pruning and reduction tech- Property 3 inherits the difficulty of the nearest neigh-
nigues to optimize the both I/O and CPU time. A cost anal-bor query. In order to filter unnecessary distance compu-
ysis is also given. Section 4 describes a performance studwtion, popular algorithms based on an index such as the
and presents the experimental results. Finally, Section R-tree [12] (the RKV [14, 23] and the HS [23]) compute

concludes the paper. the MinDist (minimum distance between the query point
o and a node of the R-tree) and choose to traverse the node
2 Preliminary with the minimum MinDist first. The MinDist is also com-

21 KNN Join pared with the pruning distance (the distance between the

' guery point and its Kth nearest neighbor candidate). Nodes
In this section, we define the KNN-join problem formally with MinDist greater than the pruning distance is pruned
and identify its properties. away.



Nearest neighbor search, which is I/O bound, has been -
. .. . . .. principal
well studied. KNN-join raises new challenges, just as join component 2,0,

to selection in relational databases. We have two starting %3 o °

points as the devising of the KNN-join algorithm. . compg;‘;fal' s N2, "’w’i, -
1) indexed-based multiple KNN query (index nested |, & i ' (}‘%Zf'g& *

loop join) L3 IR AR A

2) block sequential search (block nested loop join).
Both have its strength and weakness. The index-based
multiple KNN query is optimized for the CPU cost, how-

(a) Original Data Space (b) Principal Component Space

ever, introduces tremendous I/O time because of large num- Segment cell identification

ber of random accesses[5]. In addition, as a well-known ID <3, 7>

fact, the index often fails in high-dimensional space, where ~l T T 0T,

; : N i " e LA

it performs worse off than sequential scan. On the contrary, N " 3 (AR o

the block sequential search is optimized for I/O time. How- §© # 5 W “

ever, without any distance computation pruning, the CPU g ﬁ Y S \ O \ e

cost is enormous and the number of distance computation Em e? LA - ik AT ? o

is |R| - |S|. Gorder optimizes the block nested loop join S| et TS

with efficient data scheduling and distance computation fil- | SRR

tering. 1 2 3 4 5 6 7 Segment
For ease of discussion, in the following, we assume that dimension 1 ID

the data space is a unit hyperciybe1]. (c) Grid Order

2.2 Related Work Figure 1: lllustration of G-ordering.

Apart from the MuX join method introduced in the intro-

chtlon, we S.ha.” briefly review existing work on similarity _ theG-ordering It is a block nested loop method which
join. Most existing techniques have been proposed to sup-

port the similarityrange-join (also known as the distance achieves its efficiency by exploiting sorting, data schedul-

13 They can be brocly clasied o e cate-£9 870 SH1ce comoutaor ecton, B nour
gories. In the first category, the join methods utilize |ndex-.it sorts the input datasefandS based on th&-ordering

ing structures, and examples include the R-tree Spatial Jo% the second phase (line 2), it performs sitaeduled block

(RSJ) [8], the breadth first R-tree join [15], the incremen- T -
: . V. nested loop joiron the G-ordered data and outputs the join
tal distance join [13] and the MuX range-join [6]. These results. We describe the algorithm in detail in this section.

methods traverse the indexes of R and S synchronously
and form joining 'pfairs according to the lower bounding Algorithm 1 GorderKNN(R, S)
property of the minimum bounding rectangle (MBR). The Input:
second category of techniques are hash-based. Exampleéo .
include the Spatial Hash Join [20] and the Partition-base R_an_dS. are two data sets.

Spatial Merge Join [21] which partition the data space into escrlptlon..

buckets and perform the join on pairs of buckets in a re- 1 G-OrderingR ands;

cursive manner. The major drawback of such techniques2 JoinGrid_OrderedData(z, 5);

is that the data replication rate grows quickly as dimen-

sionality increases. The third category of techniques are

sort-based. The Multi-dimensional Spatial Join (MSJ) [19],3.1  G-ordering

GESS [10], and the Epsilon Grid Order (EGO)[3] all be-

long to this category. [13] introduced the method to useln relational databases, sorting is used not only to arrange
the incremental distance join to support the distance semihe tuples according to an order, but to group tuples with
join (similar to the KNN-join) directly by discarding pairs the same value on the joining attribute together to facilitate
reported by the distance join. However, due to the difficultyprocessing based on partitions. Similarly in Gorder, we
in pre-determining the search radius in the KNN-join, thedesign an ordering based on grid called @®rderingto
direct application of range-join algorithms to the KNN-join group nearby data points together, so that instteeduled

or the implementation of KNN-join as iterative range join block nested loop joiphase we can identify the partition

is inefficient and 1/0 expensive. of a block of G-ordered data and schedule it for join.
As illustrated in Figure 1, the G-ordering has two steps
3 Gorder — the PCA (principal component analysis) transformation

and theGrid Order sorting.
We now introduce Gorder KNN-join, a simple yet efficient ~ The first step of G-ordering performs the principal com-
KNN-join algorithm based on ordering according to grid ponent analysis [17] on the input datasets R and S together



and transform the original data into the principal compo-the G-ordered data B, if

nent space. PCA captures the variance in the dataset and

determines the directions along which the data exhibit high (1) visa <Vm-sa

variance. After PCA processing, most of the information (2) visj=vms; Vji<a

in the original space is condenses into the first few dimen- . ! ) )

sions along which the variances in the data distribution aré&iterally, a is the first dimension that, .s; < v.s; (1 <
the largest. The first principal component (or dimensiony < d). i i

accounts for as much of the variability in the data as possi- "€ bounding box ofB is represented by the low-
ble, and each succeeding component accounts for as mudft Point E =< ey, ...eqa > and high-right point T =

of the remaining variability as possible. <ti,nta >

The secondary step of G-ordering sorts R and S into the 1
Grid Order. The Grid Order applies a grid onto the data e = { g”l'sk -1 if lt; sksa
space and partitions it intty rectangular cells, wherkis if - a

(c) is an illustration of a two-dimensional space partitioned Y-Sk T if 1sks<a
by a 7x7 grid. Cell length of the grid can be equal or vari- 1 if k>a
able. In the following discussions, we assume the cells are The properties of the G-ordered data are used effectively
of same length; for the simplicity of presentation, while  in Gorder for join scheduling and distance computation re-
the methods can be easily generalized to the grid with variguction. Property 1 implicates that the partial distance of
able cell length. the first k dimensions between two points can approximate
We define theidentification vectorof cell as ad-  the real distance effectively and Property 2 will be used to
dimensional vector = < si,...,54 >, Wheres; is the  measure the similarity of two blocks of G-ordered data and
segment number to which the cell belongs on dtiedi-  schedule the data for joining.
mension. Based on the identification vector of the cell, the
cells can be ordered lexicographically as illustrated in Fig-3 5 gcheduled Block Nested Loop Join
ure 1.
TheGrid Orderis defined as below. In the second phase of Gorder, G-ordered data of R and
S are examined for joining. The join stage of Gorder is
Definition 3.1 (Grid order <, ) Given a grid which par- ~ characterized by two properties. First, Gorder employs the
titions the d-dimensional data space intly rectangular ~ two-tier partitioning strategyto optimize the I/O time and
cells, pointsp,, <, pn if and onlyw,, < v,, wherev,, CPU time separately. Secondarily, it schedules the data for

the number of segments per dimension of the grid. Figure 1
e = {

(vn) is the cell surrounding poing, , . joining in order to optimize the KNN processing.
vm < un if and only if a dimensiork exists that, The first-tier partitioning is optimized for 1/O time.
Up .Sk < Up.Si anduy,.s; = vy.s5, forvj < k. Gorder partitions the G-ordered input datasets into blocks

consisting of several physical pages. Suppose we allocate

Essentially, the grid order is to sort the data points ac+,. andn, buffer pages for the data ¢t and.S, we parti-
cording to the cell surrounding the point, so after the section R andS$ into blocks of the allocated buffer sizes. The
ond phase of G-ordering, points within the same cell areylocks of R are loaded into memory sequentially and itera-
grouped together. tively one block at a time and th® blocks are loaded into

The G-ordered data exhibit two interesting properties: memory in the sequence scheduled based on their similar-
ity to the R data in buffer. This loading of multiple pages
at a time is efficient in terms of I/O time as it significantly
reduces seek overhead. In addition, in order to optimize
the KNN processing, it schedules theblocks so that the
'S blocks that are most likely to yield nearest neighbors
can be loaded into memory and joined wittdata in buffer
early.

2. Given a block of G-ordered data B containing The large block size reduces disk seek time, however,
points DlyeeePrms we can calculate mounding box as a side eﬂ:ect, |t may intrOdL.Jce additional CPU COS.t .due
which covers all points in that block by examining the t0 redundant pair-wise checking of tuples for KNN-join.
first pointp; and last poinp,,, of the ordered data. To overcome such a problem, we introduce the second-tier

partitioning in memory. Theecond-tier partitioningseg-
To compute thdounding boxwe first calculate thac-  ments the R and S data in memory into blocks of much
tive dimensionj3] of the G-ordered data. smaller size (the sub-blocks). The optimized size of the
sub-block is 20-50 data points according to our experiment
Definition 3.2 (Active Dimension of the G-order Data)  results. Again, similarity of two blocks data of R and S is
Assume/; (v,,) is the identification vector of the cell sur- used to schedule the join sequence and filter distance com-
rounding p: (p,,), dimensiona is theactive dimensiorof  putation between blocks of data.

1. Suppose we have two poinisand ¢ in the dataset
in the original d-dimensional space. Let.(qx) de-
note the projection of the point (¢) on the firstk
dimensions after G-ordering. Because the first few di
mensions are most importartst(px, g, ) can be very
near to the actual distance betwegeandgq [9].



We measure the similarity of two blocks of G-ordered Algorithm 2 Join Grid_OrderedData(R, .S)
data by the distance between theaunding boxesAs pre-  |nput:

sented in Section 3.1, tHeounding boof a block of G- R and S are two G-ordered data sets that have been
ordered data can be computed by examining the first and  partitioned into blocks.
last points of the G-ordered data. Description:
L o . 1: for eachblock B, € R do
Definition 3.3 (MinDist of G-ordered Data) The mini- 2. ReadBlock,);
mum distance of two blocks of G-ordered d&taand B, 3 SortBIocks(ﬁ’B’ );
denoted as MinDisfg,., B,) is defined as the minimum dis- 4j for each B e’ NToiprunedS B,) do
tance between their bounding boxes. : N ) e
5: ReadBlock(,);
d 6: MemoryJoin(B,., By);
MinDist(B,,B,) = > _dj 7. OutputKNN(B,);
k=1
dr — b 0 1 Algorithm 2 outlines the scheduled block nested loop
k = maz(by — u, 0) @) join algorithm of Gorder. It loads blocks dt into mem-

bi, = max(B,.ex, Bs.er); ur, = min(By.tg, Bs,tr) ory sequentially (lines 1-2). For th®8 block in memory
) L B,, S blocks are sorted in the increasing order of their
For blocks with same MinDist, they are sorted by the gistance toB, (line 3)! At the same time, blocks with
MaxDist. MinDist(B,, B,) greater than the pruning distancef
are pruned (pruning strategy 2). That is, only the remain-
Definition 3.4 (MaxDist of G-ordered Data) The maxi-  ing blocks are loaded into memory one by one (lines 4-5).
mum distance of two blocks of G-ordered dataand Bs,  With each pair ofR and S block, we join them in mem-
denoted as MaxDisk,, B;) is defined as the maximum ory by calling functionMemoryJoin (line 6). After all

distance between their bounding boxes. unpruneds blocks are processed wifB,, the KNN candi-
4 date sets for points iB,. are output as the join results (line
MazDist(By, By) = 3 (ug — by)? -
k=1 Algorithm 3 MemoryJoin(,., Bs)
b, = min(B,.ex, Bs.ex); ur = max(B,.tg, B, ty) Input:

B, and B; are two blocks fromR and.S respectively.
A direct observation is that MinDist is a lower bound Description:
to the distance of any two points from blocks of R and S 1. Divide B, B, into sub-blocks;
respectively. The following corollary follows this observa- ;. for each sub-blockB’. € B, do

tion directly. 3. SortBlocks@,, BL);

i , . . for each sub-blockB, € NotPrunedB;, B..) do
Corollary 3.1 For point p,. in block B,. and pointp, in for each poinp, € B’ do

4
o . X 5:

block Bs, MinDist(B,, Bs) is a lower bound to the dis- 6: if MinDist(B’, B') < PrunDistp,) then
7
8

tance betweep, andp;, that is, for each poinp, € B do

Vp, € By,ps € Bs, MinDist(B,, B,) < dist(pr, ps) ComputeDistfs, p,,dg,);

Based on Corollary 3.1, we have following pruning  The memory join algorithm is shown in Algorithm 3.
strategies: Both R-block andS-block are divided into sub-blocks (line
L : . 1). For eachR sub-block B!, the S sub-blocks are ar-
L MmDZSt(BT.’BS) ~ pruning d|§tance op, Bs ranged according to their distance Bj.. Pruning strat-

does not contain any points belonging to the k-nearesty, "> s a5ain used to pruning thosesub-blocks with

neighbors of the poinp, and therefore the distance \inpist(p’, B') greater than the pruning distance Bf.
computation betweep and points 'n.Bs can'be fil-  Those unpruned sub-blocks participate the join witR
tered. Pruning distance of a poiptis the distance sub-blocks one by one (lines 4-5). To joland S sub-
betweerp and its Kth nearest neighbor candidate. Ini- block B’ and B/, each data poinp, in B'. is compared
tially, itis oo. with B.. For each poinp, in B., we examine whether
2. If MinDist(B,,B,) > pruning distance oB,, B, M|nD|st(B;,B;_) is greater thaln the pruning @stancq;gf
does not contain any points belonging to the k-nearestf true, by pruning strategy 13; cannot contain any points

neighbors of any points i®,., and hence the join of . )
B gndB n by pr ned \7N The prunin Jdi tan INote that after the G-ordering, the bounding box for each block of S
ra s Can be pruned away. € pruning distance,q kept in in memory, so the sorting doesn't require any disk accesses. The

of an R b_|OC_k is the maximum pruning distance of the memory for recording the bounding boxes is very limited as there are only
R points inside. a small number of blocks.




that are K-nearest neighbors pf and so theB. can be
skipped (lines 6-7). Otherwise, functi@@omputeDist is
called forp, and each data poipt in B/ (line 8). Function
ComputeDist, as described in the following subsection, in-
serts those, with dist(p,,ps) smaller than the pruning
distance of,. into the KNN candidate set gf.. d,” is the
distance between the bounding boxeBafand B, on the
a-th dimensior?, wherea = min(B..a, B..q).

3.3 Distance Computation

Distance computation reduction is important for optimiza-
tion of CPU time because of the complexity of the distance

metric and the high-dimensional data.

The bounding boxes of the G-ordered data has som
special properties which we can utilize for distance com-

putation reduction.

Property 3.1 The edge of the bounding box of a block G-
ordered dataB extends the full domain from 0 to 1 on di-
mensionj (j > B.«), whereB.« is the active dimension
of B.

This property is directly observable from the compu-
tation of bounding box Therefore, when we compute
the similarity of two blocks of G-ordered data, we only
need to take the first dimensions into account, where
a=min(B;.a, By.a) and By.a (Bs.«) is the active dimen-
sion B; (B2). As a result, the computation of MinDist and
MaxDist are reduced to:

MinDist(Bl, BQ) = A7\4Z'71DZ.515(BL()57 BZ,(X)
MaxDist(By, By) = MaxDist(By o, Ba,o) +d — «

B« (B2,q) is the projection ofB; (B) on the firsta
dimensions.

The next important property of theounding boxs as
follows:

Property 3.2 The projection of the bounding box of a
block of G-ordered data B containing. points pi,...pm
on the firstB.ao — 1 dimensions is corresponding to a grid
cell in the firstB.ae — 1 dimensions.

The reason is, according to the definitionGrid Order, p;
<ge=g Pm & V1 <..< vy, Whereyy, is the cell surround-
ing pointp,. Based on the definition alctive dimension
V.85 = Um.s; (Vj < B.a), soO we haves;.s; = ...
Um.8; (Vj < B.a).

This property indicates that the projection of all points
in a block of G-ordered data B on the fiBta — 1 dimen-
sions are within one grid cell in the firdg?.a. — 1 dimen-
sions. Hence, for any poingsandq from B; and B re-
spectively, MinDist(B1,q—1, Ba2,a—1) can be used to ap-
proximate the distance between the projectiom @ind ¢
on the firsta — 1 dimensions when the grid is of fine gran-
ularity. The approximated distance is the low bound of th
real distance. That is,

2Refer to Equation 1 in Definition 3.3.

~
~

MinDist(By,q—1,B2,a-1) dist(pa—1,qa—1)-
pa—1 (qa—1) is the projection o (g) on the firsta — 1
dimensions.

Based on the above two properties, we now are able to
define the pruning strategy based on the approximate dis-

tance as formalized by the following corollary.

the
if

Corollary 3.2 For any point p and ¢ from

G-ordered blocks B, and B, respectively,
MinDist(Br,a-1,Bs,a-1) + dist(pra iy, ¢qary) (@ <
d) is greater than the pruning distance @f ¢
cannot be a K-nearest neighbor candidateppfwhere«

=min(B,.a, Bs.a) andpy; ;1 (q44,53) is the projection op
gq) on the dimensions fromto j.

Algorithm 4 ComputeDist (p, ¢, d2,)
Input:
p, q are two data points fronB3,. and B, respectively.
d?, is the distance between the bounding boxe&pf
and B, on thea-th dimensior?
Description:
1: pdist := MinDist(B,, Bs) — do?:
2. for k:=atod do

3. pdist :=pdistHp.z; — q.71)%;

4. if pdist > pruning distance of then

5: Pruneg;

6: pdist := pdist — (MinDist(B,, By) — da>);
7: for k:==1toa-1 do

8. pdist :=pdist+{p.zx — q.71)%

9: if pdist > pruning distance gb then

10: Pruneg;
11: Insertq into the KNN candidate set of;

Algorithm 4 outlines the algorithm in reducing distance
computation. It calculates\finDist(B, -1, Bs,a—-1)
from MinDist(B,, Bs) first (line 1). Then, it accumu-
lates the distance betwegandqg from dimensiory, where
a=min(B,..«a, Bs.a) (lines 2-5). Wheneverdist is greater
than the pruning distance @f ¢ cannot be one of the K-
nearest neighbors gfand can be pruned away (lines 4-5).
If ¢ cannot be pruned by the approximation distance, we re-
move the approximation factor (line 6) and calculate their
real distance (lines 7-10). Hfist(p, q) is smaller than the
pruning distance op, ¢ is inserted into the KNN candidate
set ofp.

3.4 Analysis of Gorder

The Gorder algorithm produces KNN-join results correctly.
Firstly, the MinDist of two blocks of G-ordered data is the
low bound to the distance of any two points from these two
blocks respectively (Corollary 3.1). Secondly, Gorder only
skips the S blocks (sub-blocks) whose MinDist from the R
block (sub-blocks) is greater than the pruning distance of R

®block (sub-blocks). Finally, the reduced distance computa-

tion only prunes away S data points that are not one of the
K-nearest neighbors of a R point (Corollary 3.2). Hence,



for all blocks of R data, Gorder finds the correct K-nearest Parameter Default Setting

neighbors. number of nearest neighbor’} 10

Now we analyse the I/O and CPU cost of Gorder. Sup+t buffer size around 10% of total
pose the number of R (S) data pagesVis (V,). In the sizeofRand S
G-ordering phase, the PCA transformation needs to per-sjze of R data in buffer around 20% of buffer

form the sequential scan of R and S twice. The cost iI$ humber of segments per dimensioh 32
2(N, + Ny). Suppose that there are B buffer pages avail;
able in memory, the sorting step of the G-ordering requires

N, N,
2NT (’7109313-‘ + 1) + 2NS (’VIOQB 13-‘ + 1)

page accesses using the external merge sort algorithm [22]. < > (\/> [T )

buffer page size 8192

Table 1: Default parameter values.

VAE (&) (5)

In the scheduled block nested loop jgphase, suppose v = sphere

we allocaten,. buffer pages to R data and buffer pages
to S data. The I/O cost is

whereM,. (M,)is the number of points in the block of R
N+ N N.. (S) data. When we replace,. and M with the number of
RN points in the block (or sub-block) of data R and S, we get

. . 71 (Or 2).
where~, is the selectivity of the S blocks. Consequently,

the total I/O cost in terms of the number of page accesses )
is: 4 Performance Evaluation

2(N, + N,) + +N, + Y= N, -y We conducted extensive experimental study to eyalugte the
+2N, ([lo 1+ T) +2N; ([lo N 4) performance of Gorder and present the results in this sec-
r\|t09B-175 s \[109B-1"5 tion. In the study, we used both synthetic cluster datasets
and real life datasets. The synthetic cluster datasets were
generated using the method described in [16], and the real
life datasets are from UCI KDD data repository [1]. We
used the Corel dataset which contains 64 dimensional fea-
P, P, -7 ture vectors of 30K images, and the Forest FCoverType
dataset which contains 580K records. The original Forest
whereP, (P,) is the number of points of R (S} isthe se- FCoverType dataset has 54 attributes(10 real, 44 binary)
lectivity of distance computation. The PCA processing ofand we used the 10 attributes of real value in the experi-
G-ordering performgN, + N) - d> multiply [11]. How-  ments.
ever, the multiply and comparison operations incurred in We compared Gorder with MuX and simple block
the G-ordering phase are comparatively much less signifinested loop join (NLJ). The MuX join [6, 5] is the current
cant. state-of-art method for the KNN-join processing, which has
We estimate the selectivity ratig; and v, using the been shown to be optimized for both CPU and I/O time and
Minkowski Sum model proposed in [2] and [6] which has that it outperforms the join algorithm based on the R-tree
been shown to be effective in high-dimensional data. (RSJ) significantly.
The experiments were conducted on a Sunfire 4800
server with 750MHz Ultra Sparc Il CPU and connected
: with 2 Sun T3 Disk Array. The buffer allocated for all
Y= Z Z H @iy ‘/s[;h]:re( ) methods is around 10% of the datasets of R and S. Ex-
k=0 \{iy...i€2{0---d-1}} \j=1 tra memory was allocated to MuX for storing the internal
(2)  nodes. The number of nearest neighbor (K) is 10 by default.
The default settings of Gorder are summarized in Table 1.
vk (o) = Tk L gd—k ®) Performance is presented in terms of the elapsed time

The major CPU cost of Gorder is the distance compu-
tation in thescheduled block nested loop jgimase. The
number of distance computation is:

sphere r (d%k + 1) (which includes 1/0 and CPU time), the I/O time and the
distance computation selectivity. The elapsed time and 1/10O
JK-T(d/2+1) 1 _tir_ng of Gorder inc_ludes the time for bot_h G—ordering and
TN, E (4)  joining phases. Time of MuX does not include the index
building time. Distance computation selectivity is calcu-
whereI'(z + 1) = 2I'(z), T'(1) =1, T'(1/2) = /~. lated by the following equation:

Following the analysis in [2], we simplify Equation 2
by approximating théounding boxesvith the hypercube.
Therefore, B[ - |S]

number of point distance computations
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Figure 3: Effect of sub-block size (Corel dataset)

4.1 Evaluation Using Real Datasets of segments per dimension, Gorder (which uses the equi-
#ength grid) becomes as efficient as and even better than
the GorderH (which uses the variable length grid based on
histogram). This indicates the fine-granularity grid makes

Gorder adaptive to the data distribution and eliminates the
need to maintain the histogram.

The first set of experiments evaluates the effect of various . . . .
parameters on the performance of Gorder. With the expec- Comparing the I/O time with the total elapsed tume, we

tation that the real life dataset is usually skewed, we impIe—nOtlce that the 1/O time is much less significant than the

mented the GorderH for comparison purposes. Gorderlgj.U time _(only around .1% Of. the total response_tlme),
applies a grid with variable cell length onto the data spac hich conflrm§ t_he_ benefit OT using the block accessing and
during the G-ordering phase. We compute a equi-width his-hat the KNN-join is CPU c_rmcal due to the I_arge number
togram for each dimension in the PCA transformation stag@nd the complexity of the distance computations.

and partition each dimension into segments with equal - .

number of points inside. We performed the self KNN-join _ Effect of sub-block sizeFigure 3 summarizes the effect

on the datasets. The presented time for GorderH include®l the size of the sub-block on KNN-join processing. In
the time for histogram processing. this experiment, the size of the sub-block is varied from 6 to

480 and we conducted the experiment on the Coral dataset.

Effect of grid granularity We first evaluate the effect As can be observed, the selectivity of distance computa-
of the granularity of the grid by varying the number of seg-tion degrades when the number of points in the sub-block
ments per dimension of the grid from 8 to 128. Figure 2grows. The volume of the sub-block increases when there
presents the results of on the Corel dataset. From the r&re more points in it, and consequently, its pruning ability
sults, we observe that when we increase the number of sepecome ineffective. This is consistent with the cost anal-
ments from 8 to 32, the performance of Gorder improvesysis. However, on the other hand, smaller sub-blocks do

noticeably with a speed-up factor of 0.88. The speed-umot necessarily lead to better elapsed time. We observed
factor of GorderH is 0.12. The reason is that with finerthat when the size of the sub-block increases from 6 to 15,
granularity grid, thebounding boxbounds the data points the performance of Gorder in terms of the elapsed time im-
more tightly. Hence, the MinDist low bound becomes moreproves around 10% despite the slight degeneration of the
accurate and more effective in pruning. An interestingdistance computation selectivity. The reason is that de-

observation is that when we further increase the numbecrease of sub-block size increases the number of sub-blocks

In this set of experiments, we study the performance o
Gorder using the real life KDD dataset.

4.1.1 Study of Parameters of Gorder
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and therefore, introduces more MinDist computations. Saumber of nearest neighbors, the elapsed time of Gorder in-
there is a trade-off between the MinDist computation andcreases moderately, while MuX is more affected by K. The
the point distance computation. The results indicate thatjap of the elapsed time between MuX and Gorder widens
the best setting of the size of sub-block is between 20-50with the increasing K. On average, Gorder outperforms
. MuX with the speed-up factor of around 2 with regard to
Effect of buffer size for R dataNext we study the effect  hq glapsed time. In terms of distance computation selectiv-
of buffer size allocated to R data and present our study iRy, Gorder is better than MuX by the average factor of 1.22.
Figure 4. We fixed the buffer size at around 10% of inputnote that the speed-up of the elapsed time is more signif-
data set and decreased the number of buffer pages for 2, than the improvement of selectivity. This is due to
from 90% of buffer to 10% of buffer. Size of sub-block he gistance computation reduction technique Gorder em-
is 30. Figure 4 shows that as we reduce the buffer sizg|,ys  Gorder uses a subset of dimensions for block simi-
for R, the 1/O time increases quickly with the drop of the |5ty computation and the block similarity is also used to
number of R buffer pages because the reduction in R buffefeqyce point distance computation; hence the speed-up in
size causes the loading time of the S blocks to increasgermg of elapsed time is even better than the reduction of
However, the_ overall performa}nce of Gorder with regard to,selectivity. Figure 5(b) presents the I/O time incurred by
the elapsed time hasn’t been influenced a lot. The reason §iferent methods. Memory allocation of NLJ is the same
when R buffer size shrinks, more S data can be loaded iR gorder. That is, around 20% for R data and 80% for S
buffer and hence, the R data in memory are more likely tQy5t5 Gorder outperforms MuX due to its one time access-
join with the S data that yield real K-nearest neighbors ﬁrstmg one block of data so that the expensive disk seeking
and the selectivity is improved. Therefore, the increase ofjne is saved. Gorder is also more efficient than NLJ be-
the I/O time is absorbed by the decrease of CPUtime.  4,se with the pruning strategy it filters out S blocks that
will not yield KNNs.
4.1.2 EffectofK

We now study the effect of K and compare the performance Figure 6 presents the results on the Forest dataset. Costs

of Gorder with MuX and NLJ. Figure 5 presents the resultsof NLJ are not shown on the graphs because its elapsed

on the Corel dataset when we varied the number of nearesiime is more than 10,000 seconds. Again, Gorder outper-

neighbors K form 5 to 50. forms MuX significantly with the speed-up factor of 2.45
From the results, we observe that with the increase ofn terms of elapsed time.
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4.1.3 Effect of Buffer Size in [16] to generate clustered datasets containing 10 clusters.

In dealing with large datasets, the KNN-join algorithm
must be efficient in utilizing the limited buffer space. In
this experiment, we study the behavior of the join methodgn this experiment, we shall evaluate the effect of data di-
with respect to buffer sizes. mensionality on the join performance by varying the num-
The study is performed on the Forest dataset and we rever of dimensions from 8 to 64. Figure 8 presents the
duced the buffer size from around 1000 pages (40% of theesults on the 100K clustered datasets. We observe that
dataset size) to around 250 pages (10% of the dataset sizée efficiency of MuX deteriorates with the increasing di-
The buffer size for R was kept at 25 pages. In Figure 7, wenensionality. The reason is that MuX, like the R-tree, its
compare the performance of Gorder and MuX. The resulperformance degenerates with the increase of data dimen-
shows that MuX is more sensitive to the decrease of buffesionality. Figure 8(c) shows the degeneration of distance
size and its elapsed time increases by 23% when the buffegfomputation selectivity of MuX with the increase of the
size decreases from 1000 pages to 250 pages. In compariumber of dimensions. In addition, the cost of similarity
son, performance of Gorder is more stable and degeneratgsmputation of MuX also goes up linearly with the data
by only 10% for the same amount of reduction. Gorder isdimensionality.
therefore more efficient with respect to buffer space. The deterioration of distance computation selectivity
We observe that the reduction in buffer space does nolith the increasing dimensionality is not obvious for
affected the I/0 performance much. The reduction in bufferGorder. In addition, Gorder employs the distance compu-
size reduces the volume of the bounding box and conseation reduction technique to alleviate the distance compu-
quently, leads to the improved effectiveness of the filteringtation cost for high dimensional data. Therefore, Gorder
of S blocks. However, the smaller block size of S intro-is more scalable to high-dimensional data and its perfor-
duces more disk seeking time. As a balance, the I/O timenance gain over MuX widens as the dimensionality grows.
of Gorder is not much affected by the buffer size. The speed-up factor of Gorder over MuX increases from
0.68 at dimensionality of 8 to 2.9 at dimensionality of 64.

4.2.1 Effect of Dimensionality

4.2 Evaluation Using Synthetic Datasets

We study the scalability of Gorder on the synthetic dataseté1 2.2 Effect of Size of Dataset

of various sizes and dimensionalities. Since real life datdn the second experiment, we study the performance be-
set are often clustered and correlated, we utilized methotavior with varying size of datasets. We performed the self
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Figure 9: Effect of data size (16-dimensional clustered datasets)

KNN-join of the clustered data in the 16-dimensional spacenoderately with the increase in S data size. The cost
and varied the dataset size from 10,000 to 1,000,000 obaf MuX goes up comparatively faster, which leads to the
jects. The results are summarized in Figure 9. From thevider performance gap between Gorder and MuX as S
result, Gorder is noted to be the most efficient method fordataset size increases. Furthermore, note that even at S
datasets of various sizes. With the increase of dataset sizsize of 10K and 50k, where the selectivity of MuX is better
the elapsed time of MuX grows faster than Gorder. Thethan Gorder, Gorder is still much faster. With regard to the
speed-up factor of Gorder over MuX ranges from 0.51 toelapsed time, the average speed-up factor of Gorder over
2.6. Note that even for small datasets where the distanckluX is 0.59, which confirms the scalability of Gorder with
computation selectivity of Gorder is higher than MuX, the respect to the data size again.
elapsed time of Gorder is still lower than MuX due to the
use of distance computation reduction technique. 5 Conclusion

From Figure 9 (c), we observe that the distance compu-
tation selectivity improves when the number of data pointsI ; o L R
grows. The reason is that the increase of the number o he K_-nearest ne|ghbor (KNN). similarity join is an
data points densifies the clusters and reduces the distan@R€"ation that combines each point of one data set with its
between a point and its K nearest neighbors. Therefore\\NS in the other data set, and it can be used to facilitate
more points can be filtered from distance computation. Th&@td mining tasks such as clustering, classification and

study demonstrates that Gorder is scalable to large size Gutlier detection. 1t is also capable of providing more

data and has even better performance than MuX for larggeaningful query results than just the range similarity join.
datsets. We proposedGorder, an efficient KNN-join processing

algorithm that exploits sorting, data page scheduling and
: ; distance computation filtering and reduction to reduce both
42.3 Effect of Relative Size of Dataset I/O and CPU costs. We presented our performance study
In the last set of experiments, we joined two datasets obn both synthetic cluster and real life datasets and the
different sizes and studied the effect of the relative sizes omesults confirm that Gorder is efficient and scalable with
the performance of the join algorithms. To study such arregard to both data dimensionality and size, and that it
effect, we fixed the size of R at 100K points and varied theoutperforms existing methods by a significant margin. Our
size of S from 10K to 1,000K so that the relative size of R:Sfuture work is to design the KNN-join algorithm based on
is changed from 10:1 to 1:10. Figure 10 shows the results[24].
Both the elapsed time and I/O time of Gorder increase

n this paper, we have investigated the KNN-join problem.
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