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Abstract

Increasing demand and costs for healthcare, exacerbated by ageing populations and a great

shortage of doctors, are serious concerns worldwide. Consequently, this has generated a great

amount of motivation in providing better healthcare through smarter healthcare systems. Man-

agement and processing of healthcare data are challenging due to various factors that are in-

herent in the data itself such as high-dimensionality, irregularity and sparsity. A long stream of

research has been proposed to address these problems and provide more efficient and scalable

healthcare systems and solutions. In this chapter, we shall examine the challenges in designing

algorithms and systems for healthcare analytics and applications, followed by a survey on var-

ious relevant solutions. We shall also discuss next-generation healthcare applications, services

and systems, that are related to big healthcare data analytics.
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1 Introduction

Large amounts of heterogeneous medical data have become available in various healthcare or-

ganizations and sensors (e.g. wearable devices). Such data, which is called Electronic Health-

care Records (EHR), is the fundamental resource to support medical practice or help derive

healthcare insights. Previously, most of the medical practices were completed by medical pro-

fessionals backed by their experiences, and clinical researches were conducted by researchers

via painstakingly designed and costly experiments. However, nowadays the rapidly increasing

availability of EHR is becoming the driving force for the adoption of data-driven approaches,

bringing the opportunities to automate healthcare related tasks. The benefits may include earlier

disease detection, more accurate prognosis, faster clinical research advance and better fit for

patient management.

While the promise of Big Healthcare Analytics is materializing, there is still a non-negligible

gap between its potential and usability in practice. Heterogeneity, timeliness, complexity, noise

and incompleteness with big data impede the progress of creating value from data. Big Health-

care Analytics is no different in general. To make the best from EHR, all the information in

EHR must be collected, integrated, cleaned, stored, analyzed and interpreted in a suitable man-

ner. The whole process is a data analysis pipeline where different algorithms or systems focus

on different specific targets and are coupled together to deliver an end-to-end solution. It can

also be viewed as a software stack where in each phase there are multiple solutions and the ac-

tual choice depends on the data type (e.g. sensor data or text data) or application requirements

(e.g. predictive models or cohort analysis).

There are mainly two types of EHR data, namely electronic medical records (EMR) and

sensor data. There are two major directions of the advancement of Big Healthcare Analytics

related to EMR data and sensor data respectively. One is to provide better understanding and

interpretation about the basic EMR from hospitals. The key challenges are to detect the specific

characteristics of EMR data and build customized solutions for every phase of the data analysis

pipeline. The other is to benefit from the development of new technologies of sensors (e.g.

capturing devices, wearable sensors, and mobile devices) by getting more medical related data

sources. The key challenges are to support real time data processing and real time predictive

models.

EMR Data: With the development of electronic healthcare information systems, more and more

EMR data is collected from hospitals and ready to be analyzed. EMR data is time series data that

records patients’ visits to hospitals. As shown in Figure 1, EMR data typically includes socio-
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demographic information, patients’ medical history and heterogeneous medical features such

as diagnoses, lab tests, medications, procedures, unstructured text data (e.g., doctors’ notes),

image data (e.g., magnetic resonance imaging (MRI) data) and so on. The effective use of

EMR can be extremely helpful in data analytics tasks such as disease progression modeling,

phenotyping, similar patient and code clustering [54] and so on. However, mining from EMR

data is challenging due to the following reasons. First, EMR data is high-dimensional as a large

number of medical features have to be captured. Second, EMR data is often dirty or incomplete

due to the collection being done over a long period of time; consequently, this data has to be

treated before it can be used. Third, EMR data is typically collected irregularly by hospitals

as patients tend to visit the hospital only when necessary. Consequently, we have to address

challenges such as high-dimensionality, sparsity, noise, missing data, irregularity and bias when

we design analytics solutions.

Unstructured 

text data 

Diagnoses 

Lab Tests Medications 

Procedures 

Image Data 

(such as MRI 

Data) 

Socio-

demographic 

information 

Figure 1: EMR data consisting of structured data, unstructured text data and image data etc.

Sensor Data: With the wide use of sensors in collecting data for monitoring and better response

to the situational needs, sensor signals or data streams are also common in healthcare data. From

a big data perspective, such sensor signals exhibit some unique characteristics. The signals

originate from millions of users and sensor/mobile devices, form an extremely large volume

of heterogeneous data streams in real time. Figure 2 shows example networks with various

sensors/mobile devices, where the data streams are generated.

With the advancement in sensor technology and miniaturization of sensor devices, vari-

ous types of tiny, energy-efficient and low-cost sensors are expected to be widely used for
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improving healthcare [2, 15, 29]. These sensors form wireless networks such as Internet of

Things [21], wearable networks [5] and in-body nano-scale networks [67, 69], and generate

massive and various types of data streams. Monitoring and analyzing such multi-modal data

streams are useful for understanding the physical, psychological and physiological health con-

ditions of patients. For examples, surveillance cameras, microphones, pressure sensors installed

in a house can track the daily activities of elderly people remotely and can help detect falls ∗;

EEG and ECG sensors can capture changes in patient’s emotions and help control the severity

of stress and depression [91, 89, 116]; Carbon nano-tube sensors measuring oxygen satura-

tion and pH of the body, which are bio-markers to react against cancer tissues, help doctors

to manage patients [103, 55]. For many healthcare applications, such data must be acquired,

stored and processed in a real-time manner. However, there are limitations in implementing

the real time processing of enormous data streams with a conventional centralized solution that

does not scale well to process trillions of tuples on-the-fly [21]. Instead, distributed architec-

tures [1, 60, 47, 35, 75, 115] are more amenable to scalability and elasticity to cater to different

workloads.

IoT 
 

Wearable Network 
 

In-Body Network 

Figure 2: Network of interconnected sensors (e.g., mobile phones, cameras, microphones, ambient
sensors, smart watches, smart lenses, skin-embedded sensors [114], intestinal gas capsules [48])
that produce healthcare data streams.

Implementing the next-generation smart healthcare systems, especially those for support-

ing Big Healthcare Analytics, requires us to carefully examine every phase in the data analysis

pipeline, and adjust the methods by modeling the specific medical context. An overview of

existing solutions would be of value to those who want to implement a new solution or applica-

tion. With this in mind, we hereby provide an overview of healthcare data analytics and systems

in this chapter. Based on the different types of EHR data and their characteristics introduced

∗www.toptenreviews.com/health/senior-care
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earlier, we next outline several challenges in big healthcare data analytics and review various

proposals with respect to these challenges in Section 2. Section 3 describes several key steps

for processing healthcare data before doing data analytics. Section 4 presents various health-

care applications and services that can be supported by data analytics, and various healthcare

systems. We summarize and discuss potential directions in Section 5.

2 Challenges

Mining EMR data is challenging because of the following reasons: high-dimensionality, irreg-

ularity, missing data as well as sparsity, noise and bias. Figure 3 shows a real-life patient matrix

to help readers better understand different challenges in EMR data. Each challenge will be

described in detail.

Vascular system, various 

lesions, insertion of 

tenckhoff catheter 

 

𝒕𝟏 𝒕𝟐 𝒕𝟑 𝒕𝟒 𝒕𝟓 𝒕𝟔 𝒕𝟕 𝒕𝟖 

Time 

Sepsis, unspecified 

Hypotension, unspecified 

 Creatinine 

Calcium 

……. 

 Aspirin tablet  

 Glipizide tablet 

……. 

Lab Tests 

Medications 

……. 

Diagnoses 

……. 

Procedures 

Figure 3: EMR data of patients

2.1 High-dimensionality

EMR data typically consists of hundreds to thousands of medical features from multiple sources.

This gives rise to the high-dimensionality problem. To illustrate, in a sample data set from the

real-world longitudinal medical database of National University Hospital, for 10000 patients

over a one year period, there are 4143 distinct diagnosis codes. However, nearly 80% of the

patients have fewer than 10 diagnosis codes and about 70% of them have fewer than four visits

to the hospital, which makes each patient’s feature vector high-dimensional and sparse. Similar

characteristics are observed from public data sets. In a diabetes readmission data set from UCI
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Machine learning Repository†, there are about 900 distinct diagnosis codes, but most patients

are associated with fewer than three diagnosis codes. In a subsample of 10000 patients, extracted

from a data set provided by Centers for Medicare and Medicaid Services (CMS) 2008-2010, we

find nearly 88% of the patients have fewer than four diagnosis codes, although there are 153

distinct diagnosis codes in total.

Dealing with very high-dimensional data is challenging, as it introduces more parameters

into the model, making the model much more complex. Also, high-dimensional data is highly

likely to be associated with noise and sparsity problems. To address the high-dimensionality

problem, there are two main categories of dimensionality reduction methods, namely feature

selection and feature extraction ‡.

2.1.1 Feature Selection

Feature selection is the process of selecting a subset of relevant predictive features for model

construction [34]. Common feature selection methods include filter methods, wrapper methods

and embedded methods [34]. Filter methods select significant features independent of models.

These methods will rank the features according to their relations to the predicted features and

are usually univariate. Filter methods are computationally efficient and robust to over-fitting but

the relations between features are neglected. Different from filter methods, wrapper methods

take the relationships between features into consideration. A predictive model will be built to

evaluate the combinations of features and a score will be assigned to each set of feature com-

binations based on the model accuracy. Wrapper methods take a much longer time since they

need to search a large number of combinations of features. Also, if the data is not enough, this

method will have over-fitting problem. Embedded feature selection methods shift the process of

feature selection into the building process of the model. Embedded methods have the advantage

of the previous two methods, fast and robust to over-fitting as well as considering relationships

between features. Unfortunately, these methods are not generic as they are designed for spe-

cific tasks with certain underlying assumptions. For healthcare analytics, univariate analysis

and stepwise regression are widely adopted. These two methods belong to filter methods and

wrapper methods respectively.

In [68], a univariate analysis as well as a multivariate logistic regression with stepwise for-

ward variable selection are implemented to perform feature selection. Among the initial 20 or

so manually selected features, five of them are finally found to be significantly associated with

readmission within 30 days for a population of general medicine patients in Singapore and are

†https://archive.ics.uci.edu/ml/datasets/Diabetes+130-US+hospitals+for+years+1999-2008
‡http://www.kdd.org/kdd2016/topics/view/dimensionality-reduction
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included in the final model. These features include age, Charlson comorbidity index, white cell

count, serum albumin and number of emergency department (ED) visits in previous 6 months.

In [53], a modified stepwise logistic regression is performed to do feature selection in order

to predict heart failure readmissions. In this work, with the help of domain experts, 95 condi-

tion categories (CC), two demographic variables (age and gender) and two procedure codes are

included as candidate features. After feature selection, 37 features are considered in the final

model. In [106], a backward stepping feature selection method is used to select significant fea-

tures for the final model. 48 patient-level and admission-level features are collected from 4812

patients that are discharged in Ontario. Among these variables, only 4 of them, namely, length

of stay in days, acute (emergent) admission, comorbidity (Charlson comorbidity index score) as

well as number of ED visits during previous 6 months, are finally found out to be significant to

the readmission prediction task.

2.1.2 Feature Extraction

Apart from feature selection methods, we may perform feature extraction to learn low-dimensional

latent representations of original features to reduce dimensionality. The main idea of feature

extraction is to embed original features in a lower-dimensional space where each dimension

corresponds to a combination of original features. Compared to the features derived by feature

selection methods, the features learned by feature extraction are much more difficult to inter-

pret. There are mainly two categories of feature extraction methods, depending on whether

the transforming methods are linear or non-linear. Linear transforming methods may struggle

in discovering complex non-linear relationships between the original features while non-linear

transforming methods are much more difficult to optimize and are more likely to be trapped in

local optima.

In [57], Gaussian process regression is used to infer longitudinal probability densities for

uric acid sequences. Following this transforming step, an auto-encoder is then used to infer

meaningful features from the transformed probability densities. When configuring the hidden

layer of the deep learning model, the dimension of the hidden layer could be set smaller than

the visible layer so as to avoid learning the identity transformation.

In [105], a modified Restricted Boltzmann Machine (RBM) is trained to embed medical

objects in a low-dimensional vector space which works as a new representation for the raw

high-dimensional medical feature vector. This new low-dimensional representation is then used

for assessing suicide risk.

In addition to learning non-linear low-dimensional hidden representations using deep learn-

ing models, dimensionality reduction can also be achieved through principal component analysis
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(PCA). A stochastic convex sparse PCA method is developed in [7] to effectively perform sparse

PCA on EMR data so that the derived representation is both low-dimensional and interpretable.

2.2 Irregularity

Irregularity is one of the bothersome characteristics of EMR data and provides challenges for

EMR data analytics. Irregularity is caused by the fact that patients will only have EMR data

recorded when they visit the hospital. As a consequence, patients’ EMR data is organized into

a “longitudinal patient matrix” where one dimension represents various medical features and

the other is time [118, 108], and the consecutive patients’ EMR records will be scattered within

uneven-spaced time spans. Moreover, for different patients, the granularity of medical records

varies significantly and the time periods between visits also vary a lot.

Generally, there are three categories of methods to alleviate this irregularity issue. The

details are demonstrated as follows.

2.2.1 Use of Baseline Features

The first kind of methods is to utilize patients’ “baseline” features (i.e., the data recorded when

patients visit the hospital to perform examinations for the first time) for EMR data analytics

tasks.

For instance, baseline MRI scans [100] are used to predict patients’ clinical scores includ-

ing Mini-Mental State Examination (MMSE), Dementia Rating Scale (DRS), Auditory Verbal

Learning Test (AVLT) and Alzheimer’s disease Assessment Scale - Cognitive Subtest (ADAS-

Cog). In this work, a relevance vector regression, a novel sparse kernel method in a Bayesian

network, is employed. Similarly, patients’ baseline MRI features (together with baseline MMSE

features, and some demographic features) [27] are used to predict the one-year changes in the

MMSE feature. The whole process entails data collection and extraction from MRI data, fea-

ture dimensionality reduction via PCA, prediction of future MMSE changes via robust linear

regression modelling. In [107], the association between patients’ baseline features and changes

in severity-related indicators is examined via linear mixed-effects models and the baseline fea-

tures are used to predict the conversion time from amnestic mild cognitive impairment (aMCI)

to Alzheimer’s disease via Cox proportional hazards models. In [95], a risk score based on

patients’ baseline features and demographic features is proposed to predict the probability of

developing Type 2 diabetes. Specifically, a multivariate Cox regression model is used to assign

weights to different variables. In [26], Alzheimer’s disease patients’ baseline features are used

to predict their probability for different class memberships representing different severity levels
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based on a multivariate ordinal regression model using Gaussian process that is implemented in

a Bayesian network.

Another line of research focuses on multi-task learning [14]. Several works [119, 117, 80]

choose Alzheimer’s disease patients as the cohort and predict their future severity in terms of

MMSE values and ADAS-Cog values in multiple timepoints. The prediction in each timepoint is

modeled as a regression task. These works utilize patients’ baseline features and employ multi-

task learning to capture the relationships between tasks (i.e. the prediction tasks in multiple

future timepoints), where all these tasks are trained together with constraints on the changes

within consecutive timepoints. However, there are several minor differences between these

two methods. Besides predicting patients’ future severity, [119] manages to select a common

set of features that are significant to all prediction tasks via a l2,1-norm penalty term. [117]

extends [119] in that it not only selects a common set of features for all tasks, but also selects

task-specific bio-markers via a l1-norm penalty term. [80] proposes a further improvement of

regression performance to consider the consistency for prediction utilizing multi-modal data

(i.e., multiple sources/forms of medical features), and handles the missing data in both modality

data and label data via an adaptive matrix factorization approach.

The prediction performance of this category may be limited by only making use of baseline

features. This is due to under-utilization of time-related features. Since patients’ health con-

ditions tend to change along with time, it is of vital importance to utilize as many time-related

features available as possible other than just baseline features. Another limitation specific to

multi-task learning methods is that they can only deal with linear relationships among features.

However, in the medical area, relationships between medical features, relationships between

medical features and labels can be quite complicated and may not be described using simple

linear relationships.

2.2.2 Data Transformation

In regularly sampled series, lots of successful algorithms have been developed. However, there

remain many challenging problems in handling irregular data. In the medical area, we are faced

with longitudinal, irregularly collected EMR data. To alleviate this problem, some existing

works organize patients’ EMR data along with time and have divided such longitudinal data

into “windows”. For instance, in [110], a probabilistic disease progression model based on

Markov jump process is proposed to model the transition of disease states for Chronic Obstruc-

tive Pulmonary Disease (COPD) patients. The EMR data is processed by segmenting the time

dimension into non-overlapping windows (i.e., encounters) with a length of 90 days, and the

regularly reorganized data is then used for further modelling and analysis.
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Similarly, in [18], two kinds of features are used: daily recorded features and static features.

These two kinds of features are exploited to distill knowledge from deep learning models (in-

cluding Stacked Denoising Auto-encoder and Long Short-Term Memory (LSTM)) by making

use of Gradient Boosting Trees.

In [62], training data is processed by resampling to an hourly rate, where the mean mea-

surement is applied in each hourly window. The application task is to classify 128 medical

diagnoses employing a LSTM model [40] to capture the dynamic patterns in input features. In

[16], the dynamic changing trends are captured using an alternative approach. After preprocess-

ing data into overlapping “windows”, the occurrence of a certain disease is predicted based on

Multi-Layer Perceptron (MLP) with prior domain knowledge.

While transforming irregular data into regular time series allows us to employ some efficient

methods (such as linear algebra) directly, we need to be aware of the side effects associated

with such method. For instance, the resampling method may possibly lead to the sparsity and

missing data problems because for some features, there could be no observations during certain

time windows. Moreover, by dividing longitudinal data into windows, the model may be less

sensitive to capturing short-time feature patterns.

2.2.3 Direct Use of Irregular Data

Contrary to the methods mentioned above, there are approaches that make use of medical fea-

tures with irregular, accurate time information directly. In [86], the computation of LSTM model

is adapted by incorporating the time spans between consecutive medical features to handle the

irregularity. The proposed model is applied to model disease progression, recommend inter-

ventions and predict patients’ future risks. Similarly, models based on Gated Recurrent Units

(GRU) [19] have been proposed which simultaneously consider the masking and time dura-

tions between consecutive medical features in a decay term [17]. Through this decay term, the

proposed method is designed to handle irregular data directly.

This category of methods demonstrates the possibility of fully utilizing available data. How-

ever, when parameterizing time between consecutive medical features, these methods model the

decay term using a heuristic method, such as a monotonically non-increasing function based on

logarithm or a parametric method to learn time weight matrix [86]. Such heuristic methods may

cause either under-parameterization or over-parameterization.
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2.3 Missing Data and Data Sparsity

Typically, missing EMR data can be caused by either insufficient data collection or lack of

documentation. In data collection problem, patients are not checked specifically for a certain

medical feature. In documentation problem, patients are checked for a certain feature, but either

their outcomes are negative, which means that they are not needed to be documented, or the

outcomes are positive but are not recorded due to human errors [112]. The missing data problem

is further exacerbated by data sparsity due to the fact that most patients only pay a few visits

to the hospital, and in most visits, only a couple of medical features are recorded. Fortunately,

missing data and sparsity problems share many common techniques for solving them.

In [93], various imputation methods for handling missing data are described and broadly

categorized into two categories. The first category is under the missing at random assumption,

including methods from simple ones such as case deletion, mean imputation, to the advanced

ones such as maximum likelihood and multiple imputation. The second category is under the

assumption of missing not at random, which mainly includes selection models and pattern-

mixture models.

In [18], a simple imputation strategy is adopted in solving missing temporal features: for

features with binary values, the majority value is used for filling; for features with numerical

values, the mean values are used for imputation. In [62], the forward-filling and back-filling

method is proposed to fill the missing data during a resampling process. For a feature that is

totally missing, the clinically normal value suggested by medical experts is used instead.

Apart from solving the missing data problem through imputation in preprocessing phase, a

recent work [17] addresses missing data by incorporating two missing patterns: masking and

time duration inside the objective function of the deep learning model structure. The proposed

method is designed to capture the informative missing EMR data.

For sparsity, the above-mentioned missing data imputation methods, such as mean imputa-

tion, forward-filling and back-filling, are also widely used to get a dense patient matrix in order

to solve the sparsity problem. Matrix densification/completion is another method to solve the

sparsity problem [118]. The basic idea of matrix completion is to recover unknown data from

a few observed entries. The algorithm assumes that the completed data for each patient has the

factorization form of two matrices. Thus the data can be completed by multiplying these two

derived matrices to densify the raw patient matrix.

2.4 Noise

EMR data is usually noisy due to various reasons, such as coding inaccuracies, inconsistent
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naming conventions, etc. Many machine learning researchers tend to learn latent representations

to derive more robust representations in order to solve this problem. These methods include

Gaussian regression models, topic models or factorization-based methods. A Gaussian process

regression is proposed in [57] to transform the raw noisy data (uric acid sequences) into a

continuous longitudinal probability density function. This transforming step assumes that each

uric acid sequence is a set of possibly noisy samples taken from the source function. Afterwards,

instead of operating on the noisy raw data, an auto-encoder takes the mean vector of the learned

Gaussian distribution to derive hidden representations. In [39], the noise problem is resolved

by learning meaningful medical concepts (or phenotypes) in the form of tensors. Its insight is

to map raw EMR data into medical concepts, learn latent bases of the raw data and perform

predictive tasks in the latent space. Similar to [39], [111] factorizes the raw patient tensor into

several interaction tensors, each representing a phenotype. Experimental results suggest that this

method is robust to noise because it not only depends on the observed tensor but also on various

other constraints to derive the phenotype tensors. Another latent variable model to solve the

noise problem is proposed in [88], which leverages a topic modeling technique to handle noise

in the raw EMR data by modelling the relationships between observations that are implicit in

the raw data.

2.5 Bias

Bias is also an outstanding characteristic of EMR data, which is regarded as a non-negligible

issue in healthcare data analytics [87, 37, 41, 42]. Bias is often considered as biased sampling,

which means that the sampling rate is dependent on patients’ states, and also dependent on doc-

tors’ judgment on patients. Consequently, patients are sampled more frequently when ill, but are

sampled less frequently when comparatively healthier [42]. Other sources of bias include (i) the

same patient may visit different healthcare organizations for medical help and different organi-

zations do not share information between each other; (ii) patients fail to follow up in the whole

medical examination process; (iii) the recorded data in one specific healthcare organization is

incomplete [37].

In [87], bias in the lab tests of EMR data is modeled by examining the relationships between

concrete lab test values and time intervals between consecutive tests, and exploiting the lab test

time patterns to provide additional information. Furthermore, different lab test time patterns

are identified so that they can be separately modeled when EMR analytics and experiments are

performed. The limitation of this method is that it can only model the bias based on coarse-

grained patterns, and the intra-pattern biases remain to be unsolved.

The influence of time parametrization in EMR data analytics is studied in[42], in which
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three methods of parameterizing time are compared: sequence time (i.e., the sequence of mea-

surements’ occurrences after a specified start time), clock time (i.e., the absolute time of mea-

surements) and an intermediate warped time which is a trade-off between the previous two.

The study finds that the sequence time could perform the best among three methods, per-

haps due to clinicians’ tendency to change sampling rate according to patients’ severity. How-

ever, the proposed time parameterization methods are heuristic in nature and may cause under-

parameterization or over-parameterization.

2.6 Knowledge Base

Over the years, a large number of knowledge sources in the healthcare domain have been built

and maintained to provide people with easy access to comprehensive medical information.

Common knowledge sources include International Classification of Diseases (ICD-9 or ICD-

10) for diagnoses, Healthcare Common Procedure Coding System (HCPCS) for procedures,

Logical Observation Identifiers Names and Codes (LOINC) for laboratory tests. Besides, Uni-

fied Medical Language System (UMLS) maintains useful relationship knowledge, and Lab Tests

online explains the relationships between lab tests. Incorporating structured medical knowledge

provides a good basis to construct intelligent predictive models, which can then be used to im-

prove healthcare data analytics in terms of interpretability and predictive ability. In [111], exist-

ing medical knowledge is incorporated into the tensor factorization algorithm in order to derive

more fine-grained phenotypes. In particular, the algorithm can derive different sub-phenotypes

which fall into a broader phenotype. This can help to stratify patients into more specific sub-

groups.

Since knowledge has been successfully incorporated into deep learning models in natural

language processing field [9], many deep learning researchers are heading towards incorporat-

ing existing medical knowledge into deep learning models in order to improve interpretability

as well as performance of the model. In [16], medical ontology knowledge is incorporated into

the MLP as the regularization term so as to improve the performance of the model. A similar

approach is developed in [105], in which structural smoothness is incorporated into the RBM

model via a regularization term. Its basic underlying assumption is that two diseases which

share the same parent in the taxonomy are likely to possess similar characteristics.

3 Key Steps for Processing

Before EHR data (including EMR data and sensor data) is input into various models for anal-

ysis, data needs to go through several steps of processing. Figure 4 illustrates the pipeline for
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big data analysis [45, 22]. Firstly, EHR data needs to be recorded, accessed and acquired. Sec-

ondly, obtained raw EHR data is probably heterogeneous, composed of structured data, free-text

data (such as doctors’ notes), image data (such as MRI images) and sensor data. Hence, data

extraction is of great concern for further analysis. Furthermore, data cleansing is needed to

remove inconsistencies and errors, and data annotation with medical experts’ assistance con-

tributes to effectiveness and efficiency of this whole process from acquisition to extraction and

finally cleansing. Thirdly, data integration is employed to combine various sources of data, such

as different hospitals’ data for the same patient. Finally, processed EHR data is modeled and

analyzed, and then analytics results are interpreted and visualized. In this section, several key

steps for processing EHR data, namely, data annotation, data cleansing, data integration and

data analytics/modelling are described in detail respectively.

Acquisition 
Extraction/ 

Cleaning/ 

Annotation 

Integration Analytics/ 

Modeling 

Interpretation/ 

Visualization 

Figure 4: The big data analysis pipeline [45]

3.1 Data Annotation

Incompleteness is the leading data quality issue when using EHR data to build a learning

model [10], since many study variables have missing values to various degrees. The uncer-

tainty of EHR data can be resolved by model inference using various learning techniques [110].

However, the rationale of most healthcare problems can be too complex to be inferred by ma-

chines simply using limited EHR data. In such cases, enriching and annotating EHR data by

medical experts are the only choice to help the machine to interpret EHR data correctly.

The acquisition of supervised information requires annotations by experts, resulting in a

costlier exploitation of data. To reduce the cost involved in data annotation, voluminous research

works have been conducted. In general, most of the research issues belong to active learning,

which aims to only annotate those important data instances while inferring others and thereby

the total number of annotated data is significantly reduced. The key idea of active learning is that

learning algorithms can achieve higher accuracy with fewer training labels if they can choose

the data from which they learn. The general solutions of active learning include reducing the

uncertainty in training models [59], differentiating hypotheses which are consistent with the

current learning set (i.e. Query-By-Committee) [97, 78, 102], maximizing the expected model
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change after receiving a new sample [96], minimizing the expectation [90] or variance [20] of

the empirical loss, maximizing the information density among the whole query space [96] and

etc.

However, in current status, all these methods have limitations in real healthcare applications.

The fundamental reason is that the supervised information in some complex analytics tasks may

be hard to be quantified by a human. Since most easy annotating tasks can usually be well

recognized by simply using machine efforts, the required tasks for expert annotation are usually

complex jobs such as inference flow in a medical concept graph. These categories of supervised

information can hardly be annotated via quantified labels which are well studied in the active

learning community and integrated to the healthcare analytics system.

3.2 Data Cleansing

In this section, we discuss the importance of data cleansing for EHR data (including EMR data

and sensor data). As mentioned in Section 2.4, EMR data is typically noisy due to several rea-

sons, for example, coding inaccuracies, erroneous inputs, etc. Before raw EMR data is ready for

use, we should develop data cleansing techniques. This requires us to understand the healthcare

background of the dirty EMR data and work with domain experts to achieve better cleansing

performance. Data cleansing is quite challenging when we consider sensor data. Data from

sensor/mobile devices is inherently uncertain due to lack of precisions, failures of transmissions

and instability of battery life, etc. Thus, it is essentially required to (i) identify and remove

inaccurate, redundant, incomplete and irrelevant records from collected data and (ii) replace or

interpolate incorrect and missing records with reasonably assigned values. These processes are

expected to improve data quality assessed by its accuracy, validity and integrity, which lead to

reliable analytics results.

3.3 Data Integration

Data integration is the process of combining heterogeneous data from multiple sources to pro-

vide users with a unified view. [36, 32, 25] explore the progress that has been made by the

data integration community and some principles, as well as theoretical issues, are introduced

in [58, 24].

Data integration techniques for EMR data and sensor data have different characteristics. For

EMR data, we need to integrate heterogeneous EMR data from different sources including struc-

tured data such as diagnoses, lab tests, medications, unstructured free-text data like discharge

summary, image data like MRI, etc. Different from EMR data, sensor data is generated by var-
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ious types of sensor/mobile devices at different sampling rates. The heterogeneity of abundant

data types brings another challenge when we integrate data streams due to a tradeoff between the

data processing speed and the quality of data analytics. The high degree of multi-modality in-

creases the reliability of analytics results, but it requires longer data processing time. The lower

degree of multi-modality will improve data processing speed but degrade the interpretability of

data analytics results. The efficient data integration helps reduce the size of data to be analyzed

without dropping the analytics performance (e.g., accuracy).

3.4 Data Analytics and Modelling

After the three processing steps described above, we focus on EHR data analytics and modelling

part. We have proposed a healthcare analytics framework as shown in Figure 5. This frame-

work is composed of four phases which can give a better representation of medical features,

and exploit the intrinsic information in EHR data and therefore, benefit further data analytics

performance. The key idea for each phase is demonstrated as follows.

EHR 

Regularization 

Medical Feature 

Representation 

Medical Feature 

Regularization 

Medical 

Knowledge 

Support 

Figure 5: Our healthcare analytics framework

EHR Regularization: In this step, we focus on transforming the EHR data into a multivariate

time series, solving the problems of irregularity, missing data and data sparsity, and bias as

discussed in Section 2. The output of this phase is an unbiased, regularly sampled EHR time

series.

Medical Feature Representation: In this phase, we aim to represent the medical features to

reflect their feature-time relationships. To be specific, we learn for each medical feature whether

this feature has influence after a certain time period and which features it poses influence on.

Medical Feature Regularization: After regularizing EHR data into a more suitable format for

analytics and representing features to reveal underlying relationships, we now turn to re-weight

medical features for better analytics results. This re-weighting can be achieved by trading-off

features’ confidence and significance and differentiating common/rare, significant/noisy fea-

tures.
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Medical Knowledge Support: In this phase, we propose to instil medical knowledge into typ-

ical machine learning and deep learning models for better analytics performance. This will

involve finding the best structures to represent existing medical knowledge (i.e., domain knowl-

edge) and developing the model training scheme using such knowledge.

4 Healthcare Applications

This section presents several healthcare applications, services and systems that are supported by

data analytics in EMR data and sensor data. Figure 6 illustrates some of them using EMR data.

4.1 Applications for EMR Data

4.1.1 Clustering

Clustering can help detect similar patients or diseases. Since the raw healthcare data is not clean,

there are usually two kinds of approaches for researchers to derive meaningful clusters. The first

approach tends to learn robust latent representations first, followed by clustering methods while

the other approach adopts probabilistic clustering models which can deal with raw healthcare

data effectively. In [105], diseases are first embedded into 200-dimension using a modified RBM

model, eNRBM model. These latent 200-dimension hidden vectors are then projected into 2D

space using t-SNE. In this 2D space, we can see several meaningful groups consisting of related

diagnoses and procedures. Similar to [105], [79] embeds raw patient vectors into latent vectors

using a modified RBM, then patient clustering is performed on these latent vectors. Experi-

ments show some groups of patients are closely related to a specific disease condition (say Type

I diabetes). [98] identifies multivariate patterns of perceptions using cluster analysis. Five dif-

ferent patient clusters are finally identified and statistically significant inter-cluster differences

are found. In [72], a probabilistic clustering model is applied for multi-dimensional, sparse

physiological time series data. It shows that different clusters of patients have large differences

in mortality rates. Moreover, this clustering model can be used to construct high-quality pre-

dictive models. Similarly, in [94], a probabilistic sub-typing model is proposed to cluster time

series of clinical markers in order to identify homogeneous patient subgroups.

4.1.2 Phenotyping

Computational phenotyping has become a hot topic recently and has attracted the attention of a

large number of researchers because it can help learn robust representations from sparse, high-

dimensional, noisy raw EMR data. It has several kinds of forms including (i) rules/algorithms
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Figure 6: An illustration of some applications using EMR data analytics. From medical history, we
can perform patient clustering, code clustering and phenotyping tasks, while regarding prediction
of patients’ future, we can do disease progression modeling and 30-day readmission prediction [53].

that define diagnostic inclusion criteria (ii) latent factors or latent bases for medical features

[49].

Traditionally, doctors regard phenotyping as rules that define diagnostic or inclusion criteria.

The task of finding phenotypes is achieved by a supervised task [73]. A number of features are

first chosen by domain experts, then statistical methods such as logistic regression or chi-square

test are performed to identify the significant features for developing acute kidney injury during

hospital admissions. PheKB§ is a phenotype knowledge base that shows many rules for different

diseases and medical conditions. Traditional methods using statistical models are easier to be

implemented and interpreted, but they may require a large amount of human intervention.

Recently, machine learning researchers are working on high-throughput methods to derive

more meaningful phenotypes. These works mainly discover latent factors or bases as pheno-

types. [39] first constructs a three-dimensional tensor which includes patients, diagnoses as

§https://phekb.org/
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well as procedures to represent the raw input data. Then this tensor is split into several interac-

tion tensors and a bias tensor. Each interaction tensor is a phenotype and the non-zero features

in each tensor can be regarded as the features of the corresponding phenotype. [111] is similar

to [39], and it represents phenotypes in the form of interaction tensors. However, different from

[39], it emphasizes on imposing knowledge into the learned phenotypes and proposes to derive

distinct phenotypes. In [118], raw patient data is represented using a two-dimensional longitu-

dinal patient matrix with one axis being time and the other being medical features. Then the

algorithm decomposes this longitudinal patient matrix into a latent medical concept mapping

matrix and a concept evolution matrix. Phenotypes can then be obtained from the latent medical

concept mapping matrix by discovering feature groups inside the matrix. Different from tradi-

tional statistical methods, phenotyping algorithms based on high-throughput machine learning

methods can generate a number of phenotypes at the same time. Moreover, some of the unsu-

pervised algorithms can derive phenotypes which are independent of prediction tasks and are

more general.

Deep learning achieves record-breaking performance in a number of image and speech

recognition tasks for its distinguished ability to detect complex non-linear relations from raw

data and the ability to learn robust high-level abstractions [8, 50]. Since body system itself is

complex and highly non-linear, it may be potential for us to utilize deep learning methods to

perform phenotyping tasks. [57] is an early work that applies deep learning models in com-

putational phenotyping. It first applies Gaussian process regression to transform the uric acid

sequence to a probability density function. Then an auto-encoder is used to learn the hidden rep-

resentations of Gaussian distribution’s mean vectors. The learned weights of the auto-encoder

are regarded as phenotypes and the learned features are also visualized. Similar to [57], [105]

utilizes a simple two-layer unsupervised deep learning model, RBM, to learn hidden represen-

tations of patients’ raw input vectors (aggregated counts of medical features, such as diagnoses,

procedures). Each unit of this RBM’s hidden layer is regarded as a phenotype and this hid-

den vector is then used for clustering and classification tasks. Different from [57] and [105]

which employ an unsupervised model, [16] utilizes a supervised MLP model to extract phe-

notypes from ICU time-series data. In order to visualize MLP’s ability to disentangle factors

of variation, the authors apply tools from causal inference to analyze the learned phenotypes

quantitatively and qualitatively.

4.1.3 Disease Progression Modelling

Disease progression modelling (DPM) is to employ computational methods to model the pro-

gression of a specific disease [76]. With the help of DPM, we can detect a certain disease early

18



and therefore, manage the disease better. For chronic diseases, using DPM can effectively delay

patients’ deterioration and improve patients’ healthcare outcomes. Therefore, we can provide

helpful reference information to doctors for their judgment and benefit patients in the long run.

4.1.3.1 Statistical Regression Methods

Traditionally, many related works employ statistical regression methods for DPM, which can

model the correlation between patients’ medical features and patients’ condition indicators

[27, 95]. Then, via such correlation, we can have access to the progression of patients with

patients’ features. For example, in [95] , an accurate risk score model through a multivariate

Cox regression model is proposed for predicting patients’ probability of developing diabetes

within 5 years. Similarly, in [27], a robust linear regression model is employed to predict clini-

cally probable Alzheimer’s disease patients’ MMSE changes in one year.

Another line of research focuses on “survival analysis”, which is to link patients’ disease

progression to the time before a certain outcome. The linking is accomplished via a survival

function. For instance, in [85], a disease progression model is proposed to predict liver trans-

plant patients’ long-term survival. The objective is to stratify patients into clusters according to

their survival characteristics and then assign different intervention strategies to different patient

clusters. Similarly, in [107], the time of patients’ progression from amnestic mild cognitive

impairment to Alzheimer’s disease is studied.

While statistical regression methods have shown to be efficient due to their simple mod-

els and computation, we should note that this is accomplished with an underlying assumption

that the progression (i.e. medical time-series data) of a disease follows a certain distribution.

However, for real-life applications, this assumption may not be true, and the performance of

statistical regression methods would suffer. Therefore, it could be difficult to generalize such

methods to most clinical applications where the disease progression cannot be abstracted by a

certain simple distribution.

4.1.3.2 Machine Learning Methods

Existing works which employ machine learning methods to solve DPM problem are quite vari-

ous, from graphical models including Markov models [110, 44], to multi-task learning methods

[119, 117, 80] and to artificial neural networks [101].

In [110], a Markov jump process is employed to model COPD patients’ transition behaviour

between disease stages. In [44], a multi-state Markov model is proposed for predicting the

progression between different stages for abdominal aortic aneurysm patients considering the
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probability of misclassification at the same time. Due to the structure as directed graphs, these

methods have the advantages of good causality and interpretability. However, medical experts

need to be involved to determine the causal relationships during model construction.

Another category of methods is to employ multi-task learning. In [119, 117], the DPM

problem is formalized in the multi-task learning setting as predicting patients’ future severity

in multiple timepoints and select informative features of progression. Also with a multi-task

learning method, in [80], the consistency between multiple modalities is considered in the

objective function and missing data problem is handled. The limitations of multi-task learning

methods are two-fold. First, they only make use of medical features corresponding to patients’

first visits to the hospital instead of time-related features. Second, they can only deal with linear

relationships in the model.

4.1.3.3 Deep Learning Methods

In [101], an artificial neural network is employed to predict the recurrence of breast cancer

after surgery. With a deeper neural network than this, deep learning models become more widely

applicable with its great power in representation and abstraction due to its non-linear activation

functions inside. For instance, in [86], a variant of LSTM is employed to model the progression

of both diabetes cohort and mental health cohort. They use “Precision at K” as the metric to

evaluate the performance of models. However, the lack of interpretability is a possible limitation

of these deep learning methods. Furthermore, more training data is of vital significance in order

to improve deep learning models’ performance.

4.1.4 Image Data Analysis

MRI is widely used to form images of the body using strong magnetic fields, radio waves,

and field gradients. Analyzing these images is beneficial for many medical diagnoses and a

wide range of studies focus on MRI image data classification or segmentation tasks. In [52],

a novel classification method that combines both fractal and GLCM features is proven to be

more effective for MRI and CT Scan Medical image classification than previous models which

only utilize GLCM features. A model that combines deep learning algorithms and deformable

models is developed in [3] for fully automatic segmentation of the left ventricle from cardiac

MRI datasets. Experiments show that by incorporating deformable models, this method can

achieve better accuracy and robustness of the segmentation. In [4], a review of recent methods

for brain MRI image segmentation is presented.
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4.2 Applications for Sensor data

4.2.1 Mobile Healthcare

Healthcare for ageing population has become a major focus, especially in developed countries.

Due to the shortage of clinical manpower, there has been a drive toward using ICT (information

and communication technology), called mobile healthcare or mHealth¶. With the advanced tech-

nologies including machine learning and high-performance computing, personalized healthcare

services will be provided remotely, and diagnoses, medications and treatments will be fine-tuned

for individuals on the basis of spatio-temporal and/or psycho-physiological conditions.

Human activity recognition (HAR) is one of the key technologies for mHealth. HAR re-

search is mainly classified into two groups in terms of approaches, namely the video-based

and the wearable device-based. The video-based approach continuously tracks human activities

through cameras deployed in rooms; however, it raises privacy issues and requires the targeted

person to remain within the vicinity of the camera [56]. Moreover, the feature extraction from

the captured video/images requires complex computations for further analytics [28]. Because of

these limitations, there has been a shift towards the use of wearable sensors requiring less data

processing.

Nowadays, the activity recognition is implemented on smart devices for online process-

ing [13, 99, 104] while it is done offline using machine learning tools in backend machines

or servers. It has enabled smart healthcare applications such as fitness assessment [64], life

logging‖, and rehabilitation [74] where the user activities can be tracked anytime and anywhere.

From the data analytics perspective, [33] discusses the feature extraction algorithm for

HAR using only a single tri-axial accelerometer. Relevant and robust features are successfully

selected and the data size is reduced; thereby, the processing speed increases without degrading

accuracy.

Retrieved features correspond to activities specify patterns, and the patterns are used for

classification or modelling. Sliding window methods are typically used for static or periodic

activities while sporadic activities can be recognized using template matching approaches [71]

or Hidden Markov Modelling (HMM) [84, 12]. In [83], a deep learning model is designed using

convolutional neural networks and LSTM recurrent neural networks, which captures spatio-

temporal patterns of signals from wearable accelerometers and gyroscopes.

¶www.mobilehealthsummit.ca
‖http://www.sonymobile.com/global-en/apps-services/lifelog
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4.2.2 Environment Monitoring

Another interesting healthcare application integrates chemical sensors [6, 70, 66] for detecting

the presence of specific molecules in the environment. For example, we can collect Pollutant

Standards Index (PSI) data that reflects six pollutants (e.g., sulfur dioxide (SO2), particulate

matter (PM10) and fine particulate matter (PM2.5), nitrogen dioxide (NO2), carbon monoxide

(CO) and ozone (O3)), from individual users and construct a fine-grained pollution map together

with images and location information. The environmental monitoring for haze, sewage water

and smog emission etc. has become a significant worldwide problem. Combined with the

cloud computing technology, a large number of smart mobile devices make a distributed data

collection infrastructure possible, and the recent scalable, parallel, resource efficient, real-time

data mining technologies have enabled smart device-based data analysis [120, 65].

[77] proposes the Personal Environmental Impact Report (PEIR) system that uses location

information sampled from smartphones and calculates personalized estimates of environmental

impact and exposure. The running PEIR system, which runs GPS data collection at mobile

devices and the HMM-based activity classification at servers before computing the PEI values,

is evaluated. A big contribution of their work is that this platform can be used for various targets

such as traffic condition measuring, environmental pollution monitoring, and vehicle emission

estimating.

4.2.3 Disease Detection

Biochemical-sensors deployed in/on the body can detect particular volatile organic compounds

(VOCs). Many studies [92, 23, 11] have unveiled the relationships between VOCs and particular

diseases responding to VOCs, as summarized in Table 1. The big potential of such sensor

devices and the big data analytics of VOCs will revolutionize healthcare both at home and in

hospital.

Developments of nano-sensor arrays and micro electro mechanical systems have enabled

artificial olfactory sensors, called electronic noses [30, 66], as tiny, energy efficient, portable

devices. [30] discusses the essential cause of obesity from over-eating and an intake of high-

calorie food, and presents the way to compute energy expenditure from exhaled breath.

In [51], nano-enabling electrochemical sensing technology is introduced, which rapidly de-

tects beta-amyloid peptides, potential bio-markers to diagnose Alzheimer’s disease, and a tool

is developed to facilitate fast personalized healthcare for AD monitoring.
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Table 1: List of volatile organic compounds related to particular diseases

Volatile organic compound Relevant disease
acetoin, 1-butanol Lung cancer

aceton Diabetes

etan, pentan Asthma

ammonia Hepatic encephalopathy

hydrogen, metan Maldigestion syndrome

toluen Thinner addiction

trimethylamine Renal failure

4.3 Healthcare Systems

Instead of solving individual problems, a number of healthcare systems have been designed and

built to serve as platforms for solving the problems described above. Now we shall discuss

several representative healthcare systems.

HARVEST [38] is a summarizer for doctors to view patients’ longitudinal EMR data at the

point of care. It is composed of two key parts: a front-end for better visualization; a distributed

back-end which can process patients’ various types of EMR data and extract informative prob-

lem concepts from patients’ free text data measuring each concept via “salience weights”.

miniTUBA [113] is designed to assist clinical researchers to employ dynamic Bayesian

networks (DBN) for data analytics in temporal datasets. The pipeline of miniTUBA includes

logging in the website, inputting data as well as managing project, constructing DBN mod-

els, analyzing results and doing prediction in the end. Users can use miniTUBA to discover

informative causal relationships for better inference or prediction.

In [43], a system which focuses on data-driven analytics for personalized healthcare is pro-

posed. The applications supported in this system include analyzing patient similarity, construct-

ing predictive models, stratifying patients, analyzing cohorts and modelling diseases. The target

is to achieve personalized healthcare resource utilization and deliver care services at low costs.

Cohort analysis has a wide range of healthcare applications, such as testing the hypothesis of a

new treatment, seeing how similar patients in a hospital database are doing compared with the

specific indexed patient, etc.

To provide better support for Big Healthcare Analytics, we have been implementing various

software systems that form an end-to-end pipeline from data acquisition and cleansing to visu-

alization. We call the system GEMINI [61], whose software stack is depicted in Figure 7. We

are addressing various healthcare analytics problems, such as phentotyping, disease progressing
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modeling, treatment recommendation etc. We shall introduce each component of our software

stack via the example process of doing EMR data analytics in the following.

+ 
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Figure 7: GEMINI healthcare software stack.

We work on the longitudinal EMR dataset from the National University Hospital. We en-

counter the various challenges as discussed in Section 2; hence, we need to process the data,

through data cleansing and data integration, before we can conduct any data analytics. Even

though we want to automate the processing and relieve the burden on doctors, EMR data cannot

be cleaned and integrated effectively without doctors’ assistance. Hence, we leverage automatic

methods and doctors’ participation with their expertise domain knowledge. DICE is our gen-

eral data cleansing and integration platform that exploits both doctors’ expertise and knowledge

base. Additionally, to assist in the data cleansing and integration, CDAS [63] which is a crowd-

sourcing system, selects meaningful representative tasks for the clinicians to resolve so as to

reduce the overall efforts and costs. Ultimately, we tap onto the clinicians who are the subject

matter experts for their knowledge, without over imposing on their time, to improve the quality

of the data and the analytics process [61, 81].

Due to the value of the data and the need to maintain it for a long period of time, we have

designed and implemented UStore, which is a universal immutable storage system, to store the

data. We process the data in epiC [47], which is a distributed and scalable data processing
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system based on Actor-like concurrent programming model. By separating computation and

communication, this system can process different kinds of data (structured data, unstructured

data and graph data) effectively, and also supports different computation models. However,

epiC provides only database-centric processing and analytics such as aggregation and summa-

rization. In order to provide deep analytics, we have implemented a generic distributed machine

learning/deep learning platform, called Apache SINGA [82, 109]. We are implementing our

deep learning models on top of Apache SINGA for analytics on various diseases.

For behavioural analysis of patients, we employ “cohort analysis” which was originally

introduced in social science [31]. For our applications, we have built CohAna [46], a column-

based cohort analysis engine with an extended relation for modelling user activity data and a

few new operators to support efficient cohort query processing.

To enable the clinicians to visualize the data and analytics results, we have developed iDAT,

an exploratory front-end tool that allows interactive drill down and exploration.

5 Summary and Discussions

In this chapter, we summarize the challenges of Big Healthcare Analytics and their solutions

to relevant applications from both EMR data and sensor data. The challenges mainly consist

of high-dimensionality, irregularity, missing data, sparsity, noise and bias. Besides the basic

model construction for analytics, we discuss four necessary steps for data processing, namely

data annotation, data cleansing, data integration and data analytics/modelling. Based on an ex-

amination of various types of healthcare analytics on both EMR data and sensor data, the data

analytics pipeline is still the foundation for most healthcare applications. However, specific al-

gorithms which are adopted must be adjusted by modelling the unique characteristics of medical

features. With recent advancement in hardware and other technologies, smart healthcare analyt-

ics is gaining traction, and like other application domains, we are likely to experience a sharp

leap in healthcare technologies and systems in the near future.

Next-generation healthcare systems are expected to integrate various types of EHR data and

provide a holistic data-driven approach to predict and pre-empt illnesses, improve patient care

and treatment, and ease the burden of clinicians by providing timely and assistive recommen-

dations. Below, we discuss several applications that are likely to attract attention and interest in

the near future.

Treatment recommendation system for doctors: Through various levels of automation in di-

agnosis model and prognosis prediction, the system may improve the medical treatment process
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in different degrees from helping doctors to make decisions (e.g. visualize cohort information)

to outperforming doctors in treatment planning and recommendation.

Treatment explanation system for patients: Doctors may not have sufficient time to explain

treatment plans to the patients in detail or may not be able to express clearly to the patients. An

automatic treatment explanation system may be able to improve patient treatment compliance as

well as the transparency of healthcare. Further, patients can review the plans anytime anywhere.

Real-time surgical operation suggestion: Lots of emergency situations may happen during

surgical operations. Armed with real-time sensors and reinforcement learning models, the ma-

chine may be able to deliver a better contingency plan in a much shorter time and with more

accurate decision making.

Data-driven drug combination study: Drug combination discoveries used to be considered as

a hard problem due to the insufficiency of clinical data. An integrated system with better EHR

data analytics may be able to quantify the effect of drug combinations and also discover more

valuable drug combination patterns. This study can be very useful for personalized medicine

recommendations, which can further help to provide a more effective healthcare.

We are looking forward to more clinical advances and healthcare products being brought to

the table by both the data science and medical communities. After all, with more data and higher

computational capacity, deep analytics can lead to deeper insights and hence better decisions.
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[19] K. Cho, B. Van Merriënboer, C. Gulcehre, et al. Learning phrase representations using

rnn encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078,

2014.

[20] D. A. Cohn. Neural network exploration using optimal experiment design. In NIPS,

1994.

[21] R. Cort, X. Bonnaire, O. Marin, et al. Stream processing of healthcare sensor data:

studying user traces to identify challenges from a big data perspective. In Proceedings of

the 4th International Workshop on Body Area Sensor Networks, 2015.

[22] B. Cui, H. Mei, and B. C. Ooi. Big data: the driver for innovation in databases. National

Science Review, 1(1):27–30, 2014.

[23] A. G. Dent, T. G. Sutedja, and P. V. Zimmerman. Exhaled breath analysis for lung cancer.

Journal of thoracic disease, 5:S540, 2013.

28



[24] A. Doan, A. Halevy, and Z. Ives. Principles of data integration. Elsevier, 2012.

[25] X. L. Dong and D. Srivastava. Big data integration. In Data Engineering (ICDE), 2013

IEEE 29th International Conference on, pages 1245–1248, 2013.

[26] O. M. Doyle, E. Westman, A. F. Marquand, et al. Predicting progression of alzheimers

disease using ordinal regression. PloS one, 9(8):e105542, 2014.

[27] S. Duchesne, A. Caroli, C. Geroldi, et al. Relating one-year cognitive change in mild

cognitive impairment to baseline MRI features. Neuroimage, 47(4):1363–1370, 2009.

[28] A. S. Evani, B. Sreenivasan, J. S. Sudesh, et al. Activity recognition using wearable

sensors for healthcare. In Proceedings of the 7th International Conference on Sensor

Technologies and Appplications, 2013.

[29] L. Filipe, F. Fdez-Riverola, N. Costa, et al. Wireless body area networks for healthcare

applications: Protocol stack review. International Journal of Distributed Sensor Net-

works, 2015:1:1–1:1, 2015.

[30] J. W. Gardner and T. A. Vincent. Electronic noses for well-being: Breath analysis and

energy expenditure. Sensors, 16(7):947, 2016.

[31] N. D. Glenn. Cohort analysis. Sage, 2005.

[32] D. Gomez-Cabrero, I. Abugessaisa, D. Maier, A. Teschendorff, M. Merkenschlager,

A. Gisel, E. Ballestar, E. Bongcam-Rudloff, A. Conesa, and J. Tegnér. Data integra-

tion in the era of omics: current and future challenges. BMC Systems Biology, 8(2):1–10,

2014.

[33] P. Gupta and T. Dallas. Feature selection and activity recognition system using a single

triaxial accelerometer. IEEE Transactions on Biomedical Engineering, 61(6):1780–1786,

2014.

[34] I. Guyon and A. Elisseeff. An introduction to variable and feature selection. Journal of

machine learning research, 3:1157–1182, 2003.

[35] M. Haghighi, P. Woznowski, N. Zhu, et al. Agent-based decentralised data-acquisition

and time-synchronisation in critical healthcare applications. In Proceedings of the IEEE

2nd World Forum on Inernet of Things, 2015.

29



[36] A. Halevy, A. Rajaraman, and J. Ordille. Data integration: The teenage years. In Pro-

ceedings of the 32Nd International Conference on Very Large Data Bases, pages 9–16,

2006.

[37] W. R. Hersh, M. G. Weiner, P. J. Embi, et al. Caveats for the use of operational electronic

health record data in comparative effectiveness research. Medical care, 51:S30–S37,

2013.

[38] J. S. Hirsch, J. S. Tanenbaum, S. Lipsky Gorman, et al. Harvest, a longitudinal pa-

tient record summarizer. Journal of the American Medical Informatics Association,

22(2):263–274, 2014.

[39] J. C. Ho, J. Ghosh, and J. Sun. Marble: high-throughput phenotyping from electronic

health records via sparse nonnegative tensor factorization. In Proceedings of the 20th

ACM SIGKDD international conference on Knowledge discovery and data mining, pages

115–124, 2014.

[40] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation,

9(8):1735–1780, 1997.

[41] G. Hripcsak and D. J. Albers. Next-generation phenotyping of electronic health records.

Journal of the American Medical Informatics Association, 20(1):117–121, 2013.

[42] G. Hripcsak, D. J. Albers, and A. Perotte. Parameterizing time in electronic health record

studies. Journal of the American Medical Informatics Association, 22(4):794–804, 2015.

[43] J. Hu, A. Perer, and F. Wang. Data driven analytics for personalized healthcare. In

Healthcare Information Management Systems, pages 529–554. Springer, 2016.

[44] C. H. Jackson, L. D. Sharples, S. G. Thompson, et al. Multistate markov models for

disease progression with classification error. Journal of the Royal Statistical Society:

Series D (The Statistician), 52(2):193–209, 2003.

[45] H. Jagadish. Challenges and opportunities with big data, 2012.

[46] D. Jiang, Q. Cai, G. Chen, et al. Cohort query processing. Proceedings of the VLDB

Endowment, 10(1), 2017.

[47] D. Jiang, G. Chen, B. C. Ooi, et al. epic: an extensible and scalable system for processing

big data. Proceedings of the VLDB Endowment, 7(7):541–552, 2014.

30



[48] K. Kalantar-Zadeh, C. K. Yao, K. J. Berean, et al. Intestinal gas capsules: A proof-of-

concept demonstration. Gastroenterology, 150(1):37–39, 2016.

[49] D. C. Kale, Z. Che, M. T. Bahadori, et al. Causal phenotype discovery via deep networks.

In AMIA Annual Symposium Proceedings, pages 677–686, 2015.

[50] A. Karpathy and L. Fei-Fei. Deep visual-semantic alignments for generating image de-

scriptions. arXiv preprint arXiv:1412.2306, 2014.

[51] A. Kaushik, R. D. Jayant, S. Tiwari, et al. Nano-biosensors to detect beta-amyloid for

alzheimer’s disease management. Biosensors and Bioelectronics, 80(15):273–287, 2016.

[52] R. Korchiyne, S. M. Farssi, A. Sbihi, R. Touahni, and M. T. Alaoui. A combined method

of fractal and GLCM features for MRI and CT scan images classification. arXiv preprint

arXiv:1409.4559, 2014.

[53] H. Krumholz, S.-L. Normand, P. Keenan, et al. 30-day heart failure readmission measure

methodology. Technical report, Yale University/Yale-New Haven Hospital Center for

Outcomes Research And Evaluation (YNHH-CORE), 2008.

[54] Z. Kuang, J. Thomson, M. Caldwell, et al. Computational drug repositioning using con-

tinuous self-controlled case series. arXiv preprint arXiv:1604.05976, 2016.

[55] S. Kumar, M. Willander, J. G. Sharma, et al. A solution processed carbon nanotube

modified conducting paper sensor for cancer detection. Journal of Materials Chemistry

B, 3:9305–9314, 2015.

[56] O. D. Lara and M. A. Labrador. A survey on human activity recognition using wearable

sensors. IEEE Communications Surveys and Tutorials, 15(3):1192–1209, 2013.

[57] T. A. Lasko, J. C. Denny, and M. A. Levy. Computational phenotype discovery using

unsupervised feature learning over noisy, sparse, and irregular clinical data. PloS one,

8(6):1–13, 2013.

[58] M. Lenzerini. Data integration: A theoretical perspective. In Proceedings of the 21st

ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS

’02, pages 233–246. ACM, 2002.

[59] D. D. Lewis and W. A. Gale. A sequential algorithm for training text classifiers. In

Proceedings of the 17th Annual International ACM SIGIR Conference on Research and

31



Development in Information Retrieval, SIGIR ’94, pages 3–12, New York, NY, USA,

1994. Springer-Verlag New York, Inc.

[60] Q. Lin, B. C. Ooi, Z. Wang, et al. Scalable distributed stream join processing. In Pro-

ceedings of the 2015 ACM SIGMOD International Conference on Management of Data,

pages 811–825, 2015.

[61] Z. J. Ling, Q. T. Tran, J. Fan, et al. GEMINI: An integrative healthcare analytics system.

Proceedings of the VLDB Endowment, 7(13):1766–1771, 2014.

[62] Z. C. Lipton, D. C. Kale, C. Elkan, et al. Learning to diagnose with lstm recurrent neural

networks. arXiv preprint arXiv:1511.03677, 2015.

[63] X. Liu, M. Lu, B. C. Ooi, et al. CDAS: a crowdsourcing data analytics system. Proceed-

ings of the VLDB Endowment, 5(10):1040–1051, 2012.

[64] J. W. Lockhart, T. Pulickal, and G. M. Weiss. Applications of mobile activity recognition.

In ACM Conference on Ubiquitous Computing, pages 1054–1058, 2012.

[65] J. W. Lockhart, G. M. Weiss, J. C. Xue, et al. Design considerations for the wisdm

smart phone-based sensor mining architecture. In Proceedings of the 5th International

Workshop on Knowledge Discovery from Sensor Data, pages 25–33, 2011.

[66] P. Lorwongtragool, E. Sowade, N. Watthanawisuth, et al. A novel wearable elec-

tronic nose for healthcare based on flexible printed chemical sensor array. Sensors,

14(10):19700, 2014.

[67] V. Loscrı́, L. Matekovits, I. Peter, et al. In-body network biomedical applications: From

modeling to experimentation. IEEE Transactions on Nanobioscience, 15(1):53–61, 2016.

[68] L. L. Low, K. H. Lee, M. E. Hock Ong, et al. Predicting 30-day readmissions: per-

formance of the lace index compared with a regression model among general medicine

patients in singapore. BioMed research international, 2015, 2015.

[69] D. Malak and O. B. Akan. Molecular communication nanonetworks inside human body.

Nano Communication Networks, 3(1):19–35, 2012.

[70] C. Manjarrs, D. Garizado, M. Obregon, et al. Chemical sensor network for ph monitoring.

Journal of Applied Research and Technology, 14(1):1–8, 2016.

32



[71] J. Margarito, R. Helaoui, A. M. Bianchi, et al. User-independent recognition of sports

activities from a single wrist-worn accelerometer: A template-matching-based approach.

IEEE Transactions on Biomedical Engineering, 63(4):788–796, 2016.

[72] B. M. Marlin, D. C. Kale, R. G. Khemani, et al. Unsupervised pattern discovery in

electronic health care data using probabilistic clustering models. In Proceedings of the

2nd ACM SIGHIT International Health Informatics Symposium, pages 389–398, 2012.

[73] M. E. Matheny, R. A. Miller, T. A. Ikizler, et al. Development of inpatient risk stratifica-

tion models of acute kidney injury for use in electronic health records. Medical Decision

Making, 30(6):639–650, 2010.

[74] A. McLeod, E. M. Bochniewicz, P. S. Lum, et al. Using wearable sensors and machine

learning models to separate functional upper extremity use from walking-associated arm

movements. Physical Medicine and Rehabilitation., 97(2):224–231, 2016.

[75] N. Q. Mehmood, R. Culmone, and L. Mostarda. A flexible and scalable architecture

for real-time ANT+ sensor data acquisition and nosql storage. International Journal of

Distributed Sensor Networks, 12(5), 2016.

[76] D. Mould. Models for disease progression: new approaches and uses. Clinical Pharma-

cology & Therapeutics, 92(1):125–131, 2012.

[77] M. Mun, S. Reddy, K. Shilton, et al. Peir, the personal environmental impact report, as

a platform for participatory sensing systems research. In Proceedings of the 7th Interna-

tional Conference on Mobile Systems, Applications, and Services, pages 55–68, 2009.

[78] I. Muslea, S. Minton, and C. A. Knoblock. Selective sampling with redundant views. In

AAAI/IAAI, pages 621–626, 2000.

[79] T. D. Nguyen, T. Tran, D. Phung, et al. Latent patient profile modelling and applica-

tions with mixed-variate restricted boltzmann machine. In Pacific-Asia Conference on

Knowledge Discovery and Data Mining, pages 123–135, 2013.

[80] L. Nie, L. Zhang, Y. Yang, et al. Beyond doctors: Future health prediction from mul-

timedia and multimodal observations. In Proceedings of the 23rd ACM international

conference on Multimedia, pages 591–600, 2015.

[81] B. C. Ooi, K. L. Tan, Q. T. Tran, et al. Contextual crowd intelligence. ACM SIGKDD

Explorations Newsletter, 16(1):39–46, 2014.

33



[82] B. C. Ooi, K.-L. Tan, S. Wang, et al. SINGA: A distributed deep learning platform. In

Proceedings of the 23rd ACM International Conference on Multimedia, pages 685–688,

2015.

[83] F. J. Ordez and D. Roggen. Deep convolutional and lstm recurrent neural networks for

multimodal wearable activity recognition. Sensors (Basel, Switzerland), 16(1):115, 2016.

[84] F. J. Ordonez, G. Englebienne, P. de Toledo, et al. In-home activity recognition: Bayesian

inference for hidden markov models. IEEE Pervasive Computing, 13(3):67–75, 2014.

[85] R. K. Pearson, R. J. Kingan, and A. Hochberg. Disease progression modeling from

historical clinical databases. In Proceedings of the eleventh ACM SIGKDD international

conference on Knowledge discovery in data mining, pages 788–793, 2005.

[86] T. Pham, T. Tran, D. Phung, et al. Deepcare: A deep dynamic memory model for pre-

dictive medicine. In Pacific-Asia Conference on Knowledge Discovery and Data Mining,

pages 30–41, 2016.

[87] R. Pivovarov, D. J. Albers, J. L. Sepulveda, et al. Identifying and mitigating biases in ehr

laboratory tests. Journal of biomedical informatics, 51:24–34, 2014.

[88] R. Pivovarov, A. J. Perotte, E. Grave, et al. Learning probabilistic phenotypes from

heterogeneous ehr data. Journal of biomedical informatics, 58:156–165, 2015.

[89] S. R. and C. L. Stress detection using physiological sensors. IEEE Computer, 48(10):26–

33, 2015.

[90] N. Roy and A. McCallum. Toward optimal active learning through monte carlo estimation

of error reduction. ICML, Williamstown, pages 441–448, 2001.

[91] M. Salai, I. Vassnyi, and I. Ksa. Stress detection using low cost heart rate sensors. Journal

of Healthcare Engineering, 2, 2016.

[92] Y. Sasaya and T. Nakamoto. Study of halitosis-substance sensing at low concentration

using an electrochemical sensor array combined with a preconcentrator. IEEE Journal of

Transactions on Sensors and Micromachines, 126, 2006.

[93] J. L. Schafer and J. W. Graham. Missing data: our view of the state of the art. Psycho-

logical methods, 7(2):147, 2002.

34



[94] P. Schulam, F. Wigley, and S. Saria. Clustering longitudinal clinical marker trajectories

from electronic health data: Applications to phenotyping and endotype discovery. In

Proceedings of the 29th AAAI Conference on Artificial Intelligence, pages 2956–2964,

2015.

[95] M. B. Schulze, K. Hoffmann, H. Boeing, et al. An accurate risk score based on an-

thropometric, dietary, and lifestyle factors to predict the development of type 2 diabetes.

Diabetes care, 30(3):510–515, 2007.

[96] B. Settles and M. Craven. An analysis of active learning strategies for sequence labeling

tasks. In Proceedings of the Conference on Empirical Methods in Natural Language

Processing, EMNLP ’08, pages 1070–1079, Stroudsburg, PA, USA, 2008. Association

for Computational Linguistics.

[97] H. S. Seung, M. Opper, and H. Sompolinsky. Query by committee. In Proceedings of the

Fifth Annual Workshop on Computational Learning Theory, COLT ’92, pages 287–294,

New York, NY, USA, 1992. ACM.
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