
Effective Density Queries on Continuously Moving Objects

Christian S. Jensen1

1Department of Computer Science
Aalborg University, Denmark

csj@cs.aau.dk

Dan Lin2 Beng Chin Ooi2 Rui Zhang2

2School of Computing
National University of Singapore, Singapore
{lindan, ooibc, zhangru1}@comp.nus.edu.sg

Abstract

This paper assumes a setting where a population of ob-
jects move continuously in the Euclidean plane. The posi-
tion of each object, modeled as a linear function from time
to points, is assumed known. In this setting, the paper stud-
ies the querying for dense regions. In particular, the pa-
per defines a particular type of density query with desirable
properties and then proceeds to propose an algorithm for
the efficient computation of density queries. While the al-
gorithm may exploit any existing index for the current and
near-future positions of moving objects, the Bx-tree is used.
The paper reports on an extensive empirical study, which
elicits the performance properties of the algorithm.

1 Introduction

1.1 Motivation and Background

Continuing advances in consumer electronics, mobile
communications, and positioning technologies combine to
render it increasingly realistic to assume that entire pop-
ulations of users of mobile services, termed moving ob-
jects, can be tracked accurately. These developments of-
fer a foundation for the delivery of increasingly sophisti-
cated location-enabled mobile services. Motivated by this
scenario, one line of research aims to provide appropriate
data management foundations that enable the provisioning
of efficient services. Proposals exist for the efficient compu-
tation of, e.g., window queries and nearest neighbor queries
on moving objects (e.g., [7, 8]).

In this paper, we study the querying for dense regions,
regions with a high concentration of moving objects. The
objective is to find regions in space along with associated
points in time where the regions have a density that ex-
ceeds a given threshold. Figure 1 illustrates an example
where three square-shaped windows compose the answer to
a density query. The density query may have applications

Figure 1. An example of density query results

in a range of areas. In traffic management systems, density
queries may be used for identifying regions with potential
for congestion and traffic jams.

Density querying for moving objects was first consid-
ered by Hadjieleftheriou et al. [3]. They define the Region
Density as: density(R, ∆t) = min∆t N/area(R), where
min∆t N is the minimum number of objects inside R at
any time during ∆t and area(R) is the area of R. They
define the Period Density Query as: given N moving ob-
jects, a horizon H , and thresholds α1, α2, and ρ, find re-
gions R = {r1, ..., rk} and associated maximal time inter-
vals ∆t = {δt1, ..., δtk|δti ⊂ [tnow, tnow + H]} such that
α1 ≤ area(ri) ≤ α2 and density(ri, δti) > ρ (where tnow

is the current time, i ∈ [1, k], and k is the query answer
cardinality).

For the applications we envision, finding dense regions
for a period of time appears to be less useful than simply
finding dense regions for a point in time. For example, once
a traffic jam occurs in some region, all the objects around
the region will slow down, and their velocities will change
dramatically. As a result, predicting the density at following
timestamps according to the original velocities reported for
the objects does not seem to be of much value. Therefore,
we focus on the identification of dense regions as of a time
tq ∈ [tnow, tnow + H] that is given as a parameter to the
density query.

Hadjieleftheriou et al. [3] find the general density-based
queries difficult to answer efficiently and hence turn to sim-

1

plified queries. Specifically, they partition the data space
into disjoint cells, and the simplified density query report
cells, instead of arbitrary regions, that satisfy the query con-
ditions. This scheme may result in what we term answer
loss. Consider the example shown in Figure 2 where each
cell (of solid lines) is a unit square and the density thresh-
old ρ is 3. There actually exists a dense region (the dashed
square) in the center of the space, but the simplified query
reports no regions. In our density query definition, we guar-
antee that there is no answer loss.

Figure 2. An example of answer loss

We proceed to formulate the problem setting and define
the notions of density, dense region, and effective density
query.

1.2 Problem Statement

We assume that a population of moving objects exists,
where each object is capable of transmitting its current lo-
cation to a central server. A moving object transmits a new
location to the server when the deviation between its real lo-
cation and its server-side location exceeds a threshold, dic-
tated by the services to be supported. In general, the devia-
tion between the real location and the location assumed by
the server tends to increase as time passes. In keeping with
this, we define a maximum update time (U) as a problem
parameter. This quantity denotes the maximum time dura-
tion in-between two updates of the position of any moving
object.

We model the position of a moving object as a linear
function from time points to points in two-dimensional Eu-
clidean space. The position of a moving object at time t,
x̄(t), is thus given by a triple (x̄, v̄ , tupd) of parameters as
follows: x̄(t) = x̄ + v̄(t − tupd), where x̄ and v̄ are the
two-dimensional position and velocity, respectively, of the
object at the latest update time tupd and t ≥ tupd.

The motivation for this choice of modeling is threefold.
First, the extent of a moving object is typically considered
to be of little relevance for the query type we are consider-
ing. Second, studies of real positional information obtained
from GPS receivers installed in cars show that representing
positions as linear functions of time reduces the numbers
of updates needed to maintain a reasonable accuracy by as
much as a factor of three in comparison to using constant
functions [2]. Linear functions are thus much better than

constant functions. Third, several indexing techniques exist
that index this representation and which can be reused.

With this general data setting in place, we proceed to de-
fine the density query.

Definition 1 (Density): The density of a region R at a time
t is the number of objects in the region at time t divided by
the area of the region.

Definition 2 (Dense Region): A region is dense at time t if
its density at time t is higher than a density threshold ρ.

Note that a part of space that contains one dense region
is likely to contain many such regions. Most of these may
overlap substantially, as illustrated in Figure 3(a). Report-
ing all such regions is not helpful. We proceed to propose
an effective density query that only reports non-overlapping
regions. The resulting answer set clearly identifies regions
of high density, as shown in Figure 3(b).

(b)(a)

Figure 3. Overlapping versus non-overlapping
regions in a density query

Definition 3 (Effective Density Query): Find all dense re-
gions at time t that satisfy the following conditions:

1. Any reported region is constrained to a certain shape
and an area range.

2. No two regions in the result overlap.

3. Any dense region in the argument data is in the result,
or is represented in the result by a region that overlaps
with it.

The first condition provides mechanisms for ensuring that
meaningful answers are reported. For example, an arbitrar-
ily small region that contains one point object is infinitely
dense, but makes little sense as a result. Therefore, we may
want to specify a lower bound of the area of the result re-
gions. Similarly, we may want to limit the region area so
that it is not too large. Also not all shapes of result regions
may be desirable. Imagine a (space filling) curve that goes
through all the point objects. Therefore the user may require
the dense regions to be squares, circles, etc. The second con-
dition guarantees that a non-redundant result is produced.
The third condition guarantees that the query result contains

2

evidence of any dense region in the data, ensuring that query
results do not suffer from answer loss.

We purposefully define the effective density query so that
different, but equally valid and useful, results may be pro-
duced for the same data argument and query parameters. An
algorithm implementing the query may exploit this flexibil-
ity. For convenience, we abbreviate the term effective den-
sity query to density query in the sequel.

We assume that the time parameter tq of a density query
Q is not earlier than the current time and that it only reaches
at most W time units into the future. Thus, with iss(Q)
being the time that query Q is issued, iss(Q) ≤ tq ≤
iss(Q) + W . The lower bound indicates that we are not
considering past data. The assumption that an upper bound
exists is considered reasonable. Updates are inherently fre-
quent, making it meaningless to look too far into the future.

Finally, define time horizon H = U+W as the maximum
duration of time that the representation of a moving object
can be queried. Figure 4 illustrates the relationships among
parameters U , W and H . We can see that H represents
how far into the future a query may reach. In other words,
a technique for computing the density query support queries
that reach up to H time units from the update of an object
into the future.

H=U+W

t upd timeiss(Q)

W

U

Figure 4. Problem parameters

1.3 Contributions

This paper provides a definition of the density query for
moving objects that avoids answer loss. Based on this defini-
tion, the paper proposes a specialization of the density query
that returns useful answers and is amenable to efficient com-
putation.

The paper then proposes an algorithm that aims to pro-
cess the resulting density query efficiently. The algorithm
utilizes temporal histograms of counters for each partition
in a partitioning of the data space. These histograms help
prune the majority of regions in an initial filtering phase of
the query processing. As the histograms consume substan-
tial storage space, which in turn increases I/O, techniques
are proposed that use the Discrete Cosine transform (DCT)
to compress the histograms. This compression incurs very
few errors in the answer set, but offers space savings of up
to 90%, which also reduces I/O.

The paper also reports on extensive empirical studies of
the behavior of the proposed algorithm. The results suggest
that the algorithm offer an improvement of a factor of 4 in
terms of I/O, compared to a naive algorithm. The results also
indicate that although we reduce the storage usage greatly
by using DCT, the answers are still highly accurate. It is
shown that it is easy to trade a small number of false negative
answers for performance.

The rest of the paper is organized as follows. Section 2
reviews related work. Section 3 describes the framework.
Section 4 presents our algorithm used to realize the frame-
work. Section 5 reports the experimental results. Section 6
concludes the paper.

2 Related Work

Any index for moving objects that supports predictive
window queries is able to answer density queries by using
our framework as presented

As will become clear in Section 3 any index for moving
objects that supports predictive window queries may be used
by our proposal for computing the density query. Represen-
tative indexes include the TPR-tree (Time-Parameterized R-
tree) family of indexes (e.g., [14, 15]) and transformation-
based indices such as STRIPES [12], which supports effi-
cient updates and queries at the expense of higher space re-
quirements, and the Bx-tree [4], which uses the B+-tree to
manage moving objects efficiently. We employ the Bx-tree
as our underlying index structure.

Several proposals [9, 10, 11] exist for the computation
of spatio-temporal aggregation queries, which are similar
to density queries in some sense, since density queries also
need to know the numbers of objects inside certain ranges.
However, a key difference is that the query ranges are given
for aggregation queries, while density queries must locate
ranges that satisfy the density threshold.

Existing clustering algorithms can represent the most
dense areas by, e.g., the centers of the clusters. As good ex-
amples, Yiu and Mamoulis [16] cluster objects at a certain
timestamp; and Li et al. [6] cluster moving objects, but at
the expense of high maintenance costs. These techniques do
not meet the requirements posed by density queries. They
are unable to identify those regions with a density higher
than the specified threshold that are not given by the cluster
centers, or they are not effective in tracking the continuously
changing positions of moving objects.

The most closely related work is by Hadjieleftheriou et
al. [3]. As mentioned in Section 1.1, their definition permits
query results not to include evidence of all dense regions.
They propose three algorithms: (a) coarse grid, (b) lossy
counting, and (c) dense cell filter. However, none of these
are applicable to our definition due to the answer-loss prob-
lem.

3

3 The MODQ Framework

As a precursor to considering the processing of density
queries, we constrain the general setting for density queries
as presented in Section 1.2 with the objective of rendering
the query processing manageable. We term this setting the
Moving Object Density Query (MODQ) framework.

In this framework, we constrain the dense regions to be
square-shaped and of certain sizes. We maintain all moving
objects in an index structure. During query processing, we
first partition the data space into equal-sized, square-shaped
cells of the smallest size that satisfies the query constraint.
Then we issue window queries that explore these cells, and
we report the dense regions found.

Note that a dense region is not necessarily a cell in the
partitioning—it might instead intersect with cell partitions,
as does the dashed, square region in Figure 2. Therefore we
may need to issue a window query that is defined by two or
more adjacent cells. By exploring all cells (and maybe all
combinations of two or more adjacent cells), we are able to
report evidence of all dense regions.

While the framework applies to dense regions of a range
of sizes, we focus on finding dense regions of one size in
this paper.

4 Density Computation

4.1 Overview

If we process the density query straightforwardly using
window queries on the index, we are likely to end up issuing
too many window queries. Instead, we propose a two-phase
algorithm that efficiently computes the density query as state
in the previous section.

The algorithm relies on certain information that needs to
be maintained. We maintain a counter that records the num-
ber of objects for each cell at point in time. As each ob-
ject is updated, we calculate the trajectory of the object and
obtain the cells it intersects during the query time window
[tnow, tnow + H]. For each (cell, time) pair of a cell inter-
sected and the time of intersection, we increase the corre-
sponding counter by one (in case of deletion, we decrease
the counter).

At the same time, the object is maintained and updated
in an index structure. This index may well be maintained
already for other types of queries, such as window and near-
est neighbor queries, so the major space overhead is that of
the space for maintaining the counters. When the numbers
of cells and time windows are large, the number of counters
needed is huge. We describe a method to efficiently main-
tain them in a compressed fashion in Section 4.2.

Next, query processing consists of two phases:

1. The filtering phase: We use the counters to quickly

prune the cells that are surely not in the answer set and
produce a set of candidate cells for the next phase.

2. The refinement phase: To extract the final answers
from the candidate cells obtained in the filtering phase,
we issue window queries corresponding to the cells on
the index and this way determines the actual positions
of the objects in the cells. Then we can determine the
dense regions. Without loss of generality, we exploit
the Bx-tree [4] to maintain the moving objects.

The query processing algorithm are given in Section 4.3.

4.2 Density Histogram

We maintain a two-dimensional density histogram (DH)
equal sized, square cells, where each cell contains a counter
of the number of objects in the cell at all times in [tnow

, tnow + H]. The DH is the main structure used for the
filtering phase. As we need to maintain a histogram for a
long time period for each cell, the total memory use may b
prohibitively large. Moreover, if the DH is stored on disk,
substantial I/O is needed to maintain it and use it during
query processing. Therefore, it is critical to reduce the size
of the DH. We propose to use the Discrete Cosine Trans-
form (DCT) [13] for compression. The detailed algorithm
and analysis are as follows.

4.2.1 Histogram Construction

For each cell, the number of objects in the cell varies across
time, but the number is not likely to change greatly for ad-
jacent time points. We thus view the time-varying count in
each cell for a time range as a signal s(t), and we then per-
form the Discrete Cosine Transform (DCT) on s(t). As the
DCT is a good approximation of the Karhunen-Loève Trans-
form (KLT) [13], the first few components of the DCT of s
carry the major information in s. We store only the first few
(typically 10–20%) components and discard the rest. We
can restore the s(t) by inverse DCT when we maintain the
histograms or use them for query processing.

The DCT of a signal s(t) of length H is also a signal
G(k), of length H . The transform is defined as follows:

G(k) = c(k)

H−1
X

t=0

s(t) cos
π(2t + 1)k

2H
where (1)

c(0) =
p

1/H, c(k) =
p

2/H, and k = 0, 1, ..., (H − 1)

The inverse DCT is defined as follows:

s(t) =

H−1
X

k=0

c(k)G(k) cos
π(2t + 1)k

2H
, t = 0, 1, ..., (H− 1) (2)

Figure 5 shows an example of transform between the sig-
nal and the DCT.

4

DCT

0 t1 t2 t3 t +H0t4 t0 t1 t2 t3 t +H0t4

5

Number of objects

2

4

6

9
8

lifespan

time

Number of objects

lifespan

timet

Figure 5. An example of the DCT

After trimming some components of the DCT, the re-
stored signal s′(t) differs from s(t) because of the informa-
tion loss. Therefore, the results of the query is approximate.
However, the DCT has the good property that even though
we trim off a great portion of the components, the difference
between s′(t) and s(t) is still quite small.

Note that the difference between s′(t) and s(t) may be
positive or negative, that is, s′(t) may overestimate or un-
derestimate s(t). As a result, we may get both false pos-
itives and false negatives when we choose candidate cells
for further examination in the refinement phase. False posi-
tive candidate cells increase the query processing cost, while
false negatives would cause answer loss (although the loss
could be very small). To avoid false negatives, we may add
something to s′(t) so that s′(t) is guaranteed to overestimate
s(t). We derive the bound of s(t) − s′(t) next. We assume
that we use the first g coefficients of the DCT to compress
and trim the remaining ones.

s(t)− s′(t) =
H−1
X

k=g

c(k)G(k) cos
π(2t + 1)k

2H

=
p

2/H

H−1
X

k=g

G(k) cos
π(2t + 1)k

2H

≤
p

2/H

H−1
X

k=g

|maxH−1

k=g {G(k)} cos π(2t + 1)k

2H
|

≤
p

2/HmaxH−1

k=g {|G(k)|}
H−1
X

k=g

| cos π(2t + 1)k

2H
| (3)

where t = 0, 1, ..., (H − 1) and maxH−1

k=g {|G(k)|} denotes
the maximum absolute value of G(k) for k = g, ..., H − 1.
Therefore if we estimate s(t) by s′(t), the error bound Eb is
given as follows.

Eb =
p

2/HmaxH−1

k=g {|G(k)|}
H−1
X

k=g

| cos π(2t + 1)k

2H
| (4)

Before trimming the coefficients from the DCT of s(t), we
get maxH−1

k=g {|G(k)| and store it with the g remaining coef-

ficients; and
∑H−1

k=g | cos(π(2t+1)k/2H)| can be calculated
on the fly, giving us the error bound. To guarantee no false
negatives, we just need to add the error bound to s′(t). How-
ever, this increases the number of false positives and hence

increases the query processing cost. In some applications,
we may be willing to trade a small number of false nega-
tives for better performance.

To capture the degree to which we are willing to toler-
ate false negatives, we introduce the parameter error factor
ef ∈ [0, 1] that can be specified by the user. We then esti-
mate s(t) by s′(t) + ef · Eb. When ef = 1, we guarantee
no false negatives. As ef decreases, the probability of false
negatives increases, and when ef = 0, we estimate s(t) by
s′(t). In the experiments reported in Section 5, there are no
false negatives in most of the cases, even when ef = 0.

4.2.2 Histogram Maintenance

A location update contains the old and new information of
a moving object, including the position, velocity and the
time when these apply. When such an update is received,
we compute both the old and new trajectories of the object.
Then we adjust the DCT functions in the cells that the mov-
ing object passes by.

The adjustment comprises three steps. First, we unwrap
the DCT function, i.e., we compute the number of mov-
ing objects during each time point within the lifespan of
the function. The second step treats deletion and insertion
differently. For a deletion, we simply decrease the num-
ber of moving objects by one during the period that the
old trajectory intersects with the cell and then modify the
start time of the lifespan of the function to the current time.
For an insertion, we set the lifespan from the current time
tnow to tnow + H , and initialize the number of moving ob-
jects exceeding the old period to zero. Then we increase the
number of moving objects during the intersection period by
one. Third, we calculate new DCT functions for the affected
cells.

Algorithm DH maintenance(Po(x, v, t), Pn(x, v, t))
Input: Po and Pn are the old and new object, respectively

1. compute the trajectory of Po during [Po.t,Po.t + H]
2. Lo ← list of cells intersected by Po

3. compute trajectory of Pn during [Pn.t,Pn.t + H]
4. Ln ← list of cells passed by Pn

5. L← Lo

S

Ln

6. for each cell in L do
7. set the start time of lifespan to current time
8. V ← value list of DCT function in its lifespan
9. if there is a deletion in this cell then
10. decrease corresponding value in V by one
11. if there is an insertion in this cell then
12. set the end time of lifespan to Pn.t + H
13. extend V to Pn.t + H , adding value 0
14. increase the corresponding value in V by one
15. compute new DCT function from V
end DH maintenance.

Figure 6. DH maintenance algorithm

5

Figure 6 summarizes the maintenance algorithm. First,
note that deletion and insertion may affect the same cell if
the new trajectory does not deviate much from the old one.
In such a situation, we only unwrap and recompute the DCT
functions of the cell once, since we do the deletion and in-
sertion together in the second step. Second, the lifespan we
maintain is no longer than H , either in the deletion or in the
insertion. This makes it possible to use the same number of
parameters to represent the DCT function.

To exemplify, Figure 7(a) depicts an original DCT func-
tion of a cell before updates, and Figures 7(b) and (c) illus-
trate an independent deletion and an insertion in this cell. As
shown in Figure 7(b), an object intersecting the cell during
time t2 to t3 is deleted, and hence, counters at correspond-
ing time points are decreased by one. Figure 7(c) shows an
insertion of an object at time t1. The lifespan of the function
is then changed to [t1, t1 + H]. The trajectory of this object
intersects with the cell from time t4 to t1 +H , and hence the
corresponding counters are increased by one.

time0 t1 t2 t3 t +H0t4 0t t +H03t2t1t 4t

deletion time

2

8
8

5 5
4

(b) Deletion

time

Number of objects

lifespan

0t 3t2t1t 4t t +H0 t +H1

insertion time

8

5

9

1

5

3

6

(c) Insertion

time

Number of objects

lifespan

(a) Original DCT

5

2

4

6

9
8

lifespan

Number of objects

t

Figure 7. Maintenance in DH

4.3 Query Processing

4.3.1 The Filtering Phase

The filtering phase aims to identify areas that may possibly
contain answers to the density query. The output of this step
is a list of grid cells of sizes one to four times larger than the
query window size. This is because the dense squares may
intersect with one to four cells, as shown in Figure 8 (the
shaded areas represent dense squares).

41 2 3

Figure 8. Intersection between the final an-
swer and DH cells

We examine the cells of the DH in the order from left to
right and top to bottom. The algorithm is shown in Figure 9.

Given a query window R and a query threshold ρ, we
have Nmin = R · ρ, which is the minimum number of ob-
jects that should occupy a dense square. This way, we trans-

Algorithm Density query(ρ,R, tq)
Input: threshold ρ, query window R, query time tq

1. Nmin ← R · ρ
2. for each cell in the space do
3. Nb ← number of objects in the cell at tq

4. if Nb > Nmin then
5. report this cell as a final answer
6. else
7. Ns ← number of objects in square S4

// S4 consists of four cells
8. if Ns ≥ Nmin then
9. flag ← true
10. for each combination of two cells S2 do
11. N2 ← the density in the two cells
12. if N2 ≥ Nmin then
13. invoke Refinement(S2, ρ,R, tq)
14. if an answer is found then
15. modify histogram
16. flag ← false
17. if flag then
18. invoke Refinement(S4, ρ, R, tq)
19. if an answer is found then
20. modify histogram
end Density query.

Figure 9. Density query algorithm

form the density threshold ρ to the number of objects Nmin.
Then, for each cell, we compute the number of objects it
contains at the query time tq . If it contains at least Nmin ob-
jects, it is added to the final answer list directly. Otherwise,
we check the square consisting of four cells and having the
current cell at the top left corner. If this square has less than
Nmin objects, it is obvious that this square does not contain
any dense square. We can safely prune the current cell and
set the tags of combinations of any cells in this square to
false (i.e., we need not take into account these combinations
next time).

If the number of objects in the square is larger than Nmin,
we check the density of each cell in this square and report
those cells satisfying the density threshold themselves. In
the remaining cells, we check the cells of types 2 and 3 as
shown in Figure 8. If the number of objects in the combi-
nations is no smaller than Nmin, we pass them to the re-
finement phase. Only when all three types of cells fail to
contain any final answer, we pass the whole square to the
refinement phase. Each time we get an answer from the re-
finement phase, we decrease the number of objects in the
corresponding cells.

To avoid overlaps among final reported ranges, the area
covered by the answer is tagged and will not be considered
during the following search. We also adopt heuristics to help
speed up the processing. As shown in Figure 10, in one
square, cells of types 2 and 3 are not allowed to coexist; the
fourth type of cell is not allowed to coexist with any other

6

4 and 32 and 3 4 and 1 4 and 2

Figure 10. Conflicting types of cells

type of cell. Once an answer of one type is confirmed, we
do not need to search the conflicting type.

4.3.2 The Refinement Phase

We introduce a new structure, which we term an object
pool, that temporarily stores information for the objects in
retrieved cells at the query time.

The refinement phase needs to obtain the objects in each
candidate area. The algorithm first checks whether any part
of a given candidate area has ever been retrieved. If this
is the case, we load the objects from the object pool and
tag this part. Then a general window query covering the
untagged parts of the candidate area is issued on the index.
We store the newly retrieved objects in the object pool.

After obtaining objects, algorithms that differ only
slightly are applied to the different types of cells in order
to identify final answers. There are cells of types 2, 3, and 4.

For cells of type 2, we sort the positions of the objects
according to their x coordinates. Then we count the num-
ber of objects every l length units (l is the query window
size) along the x axis until the count reaches or exceeds the
threshold Nmin, which means we have identified an answer.
We handle the cells of type 3 similarly to those of type 2,
except that we sort the object positions along the y axis this
time. For type 4 cells, we first sort the object positions along
the x axis. When we count the number of objects every
l length units along the x axis, we maintain an array that
stores the number of objects along the y axis. As the start-
ing point of the counting moves forward, we decrease the
corresponding values in the array. Once we obtain a count
that reaches or exceeds Nmin, we will check along the y axis
as in the case of type 2.

Objects in the top-left cell are discarded from the object
pool since this cell may not be accessed any more according
to our scan order. Therefore, the object pool only needs to
store up to a row of cells. Moreover, each time we identify
an answer, we remove the objects in the answer set from the
object pool.

The detailed algorithm is shown in Figure 11.

5 Experimental Study

5.1 Experimental Settings

All the experiments were run on a 2.6G Pentium IV desk-
top with 1 Gbyte of memory. The page size is 4K.

Algorithm Refinement(S, ρ, R, t)
Input: candidate area S, density threshold ρ

query window R, query time t

1. Nmin ← R · ρ, Sr ← φ, L1 ← φ
2. for each cell B in S do
3. if the cell B has been retrieved then
4. load objects from object pool to L1

5. Sr ← Sr

S

B
6. L2 ←WindowQuery(S − Sr, t)
7. L← L1

S

L2

8. l←
√

R
9. if S is of type 2 or 4 then
10. sort objects in L along x-axis
11. project objects to x-axis
12. else
13. sort objects in L along y-axis
14. project objects to y-axis
15. N ← the number of objects within each l length
16. if any N larger than Nmin then
17. if S is not of type 4 then
18. report an answer
19. else
20. project objects to y-axis
21. M ← number of objects within each l length
22. if any M larger than Nmin then
23. report an answer
end Refinement.

Figure 11. Refinement algorithm

We employ the Bx-tree [4] as the index for the refinement
phase. It has three phases and a node capacity of 200 entries.
An LRU page buffer of 50 pages is used [5], with the internal
nodes of a tree being pinned in the buffer.

The space domain is 1000× 1000 units. The datasets are
generated using an existing data generator, where objects
move in a network of two-way routes that connect a given
number of uniformly distributed destinations [14]. Objects
start at random positions on routes and are assigned at ran-
dom to one of three groups of objects with maximum speeds
of 0.75, 1.5, and 3. Whenever an object reaches one of the
destinations, it chooses the next target destination at ran-
dom. Objects accelerate as they leave a destination, and they
decelerate as they approach a destination. In most experi-
ments, the average interval between two successive updates
of an object equals 60 time units. Unless noted otherwise,
the number of moving objects is 100,000.

The query workload is 100 density queries. Each query
has three parameters: (i) the density threshold ρ; (ii) the
squared-shaped query window side length l; and (iii) the
prediction lengths ql. The query cost is measured in terms
of CPU time and I/O.

The parameters used are summarized in Table 1, where
values in bold denote the default values used.

7

Parameter Setting

Page size 4K
Buffer number 50
Node capacity 200
Max update interval 60, 120, 240
Density threshold 0.8, 0.9, 1.0, 1.1, 1.2
Max prediction length 30
Query window size 20, 25, 50
Number of queries 100
Dataset size 100K, . . . , 1M
Number of destinations in dataset 50, 100, 200, 300

Table 1. Parameters and their values

5.2 DCT Compression Accuracy

First, we look at a representative result of the DCT com-
pression of the histograms. We execute 100 density queries
with query window size of 25 in a 100K dataset. Figure 12
shows the actual numbers of objects (s(t)) and the restored
numbers of objects from the DCT compression (s′(t), which
we term the DCT compression in the sequel) in cells of den-
sity 0.8 and 1.2, respectively, as a function of elapsed time.
We see that the curves for the predicted number of objects

0

100

200

300

400

500

600

700

800

900

1000

0 10 20 30 40 50 60 70 80 90

N
um

be
r

of
 m

ov
in

g
ob

je
ct

s

Time unit

input, rho = 0.8
output, rho = 0.8

input, rho = 1.2
output, rho = 1.2

Figure 12. DCT compression accuracy

match the curves for the actual number of objects very well.
Next, we evaluate the accuracy of the DCT compression

using two metrics, the rates of false positives and false neg-
atives, while varying the number of DCT coefficients used,
elapsed time, and the error factor ef . The rate of false pos-
itives indicates the percentage of squares in the answer set
that have lower density than the given threshold, and the rate
of false negatives is the percentage of squares that are miss-
ing in the answer set to the total number of correct answers.
The correct answers are obtained by using the histograms
without compression by DCT.

5.2.1 Effect of the Number of DCT Coefficients

First, we investigate the effect of the number of DCT coeffi-
cients. We create a density histogram of 100K data at time 0,
and then issue 100 square density queries of size 25, predic-

tion length in the range [0, 30], and density threshold equal
to 0.8, 1.0, and 1.2, respectively.

Figure 13 shows the rates of false positives and negatives
for varying numbers of DCT coefficients. As expected, the

0%

10%

20%

30%

40%

1 5 10 15 20 25

Number of coefficients

E
rr

or
 r

at
e

(%
)

rho = 0.8 (positive)

rho = 1.0 (positive)

rho = 1.2 (positive)

rho = 0.8 (negative
rho = 1.0 (negative)

rho = 1.2 (negative)

Figure 13. False positives and negatives for
varying DCT coefficients

more DCT coefficients we used, the better the accuracies of
the results. Both types of errors virtually disappear when the
number of DCT coefficients exceeds 10. The results suggest
that our method is highly accurate while saving about 90%
of the space (the original DCT has 90 coefficients).

In addition, the DCT functions work well when the den-
sity threshold is large. When the density threshold is close
to the average density, both types of error increase since a
small deviation in the DCT function may wrongly report or
prune many squares.

5.2.2 Effect of Time

We use 20 DCT coefficients in the following experiments.
The density histogram and the index of 100K objects are
created at time 0 and are then maintained until time 240.
To avoid frequent transformations between the DCT and the
real data, we employ the batch update technique where each
batch contains 1,000 updates. After each maximum update
interval (60 time units), density queries with the same pa-
rameters as in the previous experiment are issued. Figure 14

0%

3%

6%

9%

12%

15%

0 60 120 180 240

Time units

E
rr

or
 r

at
e

(%
)

rho = 0.8 (positive)

rho = 1.0 (positive)

rho = 1.2 (positive)

rho = 0.8 (negative

rho = 1.0 (negative)

rho = 1.2 (negative)

Figure 14. False positives and negatives with
elapsed time

8

plots the false positives and negatives.
We observe that the false positive decrease to 0% as time

passes, while the false negatives approach 10%. This is be-
cause the DCT compression underestimates the real number,
resulting in fewer false positives, but also missing answers.
Moreover, new coefficients are computed based on existing
ones, leading to an increasing underestimation.

5.2.3 Effect of the Error Factor
Figure 15(a) and (b) show the false positives and the query
I/O cost, respectively, for varying error factors and numbers
of DCT coefficients.

0%

10%

20%

30%

40%

50%

60%

1 5 10 15 20 25
Number of coefficients

F
al

se
 p

os
iti

ve
 (

%
)

ef = 0
ef = 0.25
ef =0.5
ef = 1

(a) False positives

0

500

1000

1500

2000

2500

1 5 10 15 20 25
Number of coefficients

IO
 c

os
t

ef = 0
ef = 0.25
ef =0.5
ef = 1

(b) Query I/O cost

Figure 15. Effect of the error factor and DCT
coefficients

The false positives decrease as the number of DCT coeffi-
cients increases—with more coefficients, the DCT becomes
more accurate. We also observe that when the error factor
in creased, the false positives also increase. This behavior is
expected since the error factor indicates how much we over-
estimate the number of objects. When we guarantee no false
negatives, that is ef = 1, the false positives are at about
50% when using only one DCT coefficient, but decrease to
about 20% when additional coefficients are used (but still
significantly smaller than the total number).

The actual false positives for these experiments are at 0%.
This means that we may need to overestimate to guarantee
no false negatives, although the actual numbers of false neg-
atives are very low, even when we do not overestimate at all.
The query I/O cost shown in Figure 15(b) exhibits a similar
trend to that for the false positive. This is because the more
the false positives, the more times we need to search the
index, which increases the I/O. Similarly, there is a trade-
off between the error factor and query I/O. When we use a
smaller error factor, that is, larger probability of false nega-
tives, we obtain better query performance.

5.3 Density Queries

We proceed to evaluate the efficiency of the density query
processing algorithm while varying different parameters.
We start by showing an example of the results of a density
query.

5.3.1 An Example of the Density Query

Figure 16(a) shows a snapshot of the dataset with 50 des-
tinations in the simulated road network. Given a density

(a) Data space (b) Dense squares

Figure 16. Density query example

query with query window size 25 and density threshold 1.0,
Figure 16(b) shows the density query result (denoted by
squares) obtained. The algorithm identifies all the dense re-
gions.

5.3.2 Histogram versus Non-Histogram

This experiment evaluates the pruning effectiveness of the
DH. We compare our method, which uses the DH, with
a straightforward method as described in Section 3, which
uses the MODQ framework and the same refinement algo-
rithm as in our histogram-based algorithm, but does not use
histograms and the two-phase query algorithm (we simply
call it the non-histogram algorithm). To locate the region
of the required density, the non-histogram algorithm exe-
cutes a series of window queries covering the whole space,
where each window query covers a square consisting of four
cells. As they use the same refinement algorithm, the CPU
times used by the two algorithms are similar. Therefore, we
mainly compare their query I/O costs.

Figure 17(a) shows the average number of I/O operations
per density query for varying density thresholds. Our algo-
rithm improves over the non-histogram at a factor of 4 in
terms of I/O cost.

0

500

1000

1500

2000

2500

3000

0.8 0.9 1 1.1 1.2

Density

IO
 c

os
t

Histogram

Non-Histogram

(a) Histogram versus non-histogram

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.8 0.9 1 1.1 1.2

Density

F
al

se
 n

eg
at

iv
e

(%
)

DCF

MODQ

(b) The MODQ versus the DCF

Figure 17. Comparison with non-histogram
and the DCF

9

5.3.3 The MODQ versus the DCF
We also compare our algorithm with the dense cell filter
(DCF) algorithm [3], which exhibits the best performance
among other algorithms. Due to the different definitions
of the density query, the DCF is not able to identify dense
squares across cells. Figure 17(b) shows the percentages of
lost answers for the DCF and our algorithm. We can see that
the number of lost answers of the DCF increases quickly as
the density threshold increases. This is because the num-
ber of correct answers decreases as the density threshold in-
creases, with the effect that there are relatively more lost
answers. As expected, our algorithm has no answer loss.

5.3.4 Effect of Density Threshold and Query Size

Next, we investigate the effect of the density threshold and
the query window size. Since the cost of the refinement
phase always dominates the cost of a query, in order to study
the behavior of the filter and refinement algorithms indepen-
dently on the index structure, we partition density query the
cost into the window query cost (I/Os) and in-memory pro-
cessing cost (CPU time), and then plot them separately.

Figure 18(a) and (b) measure the density query perfor-
mance in the same 100K dataset for varying density thresh-
olds and query window sizes. Figure 18(a) shows the win-

0

100

200

300

400

500

600

700

800

900

1000

0.8 0.9 1 1.1 1.2

Density

IO
 c

os
t

QWIN 20

QWIN 25

QWIN 50

(a) Query I/O cost

0

0.1

0.2

0.3

0.4

0.5

0.8 0.9 1 1.1 1.2

Density

In
-m

em
or

y
pr

oc
es

si
ng

 ti
m

e
(s

) QWIN 20

QWIN 25

QWIN 50

(b) In-memory processing time

Figure 18. Effect of density threshold and
query size

dow query I/O cost per density query. The I/O cost decreases
as the density threshold increases. The reason for this behav-
ior is as follows.

When the density threshold is close to the average density
(about 0.5 for a query window size of 25), the pruning abil-
ity of the filtering phase decreases. This is so because most
regions of the data space have average density. Even if the
density of one cell is lower than the threshold, its combina-
tion with other cells still have high probability of satisfying
the density threshold. Hence, many window queries are is-
sued in the refinement phase, which results in higher query
cost. When the density threshold is high, the filtering phase
can prune cells that have few objects. Thus, the total win-
dow query cost is smaller. Moreover, we observe that the
query cost decreases as the query window becomes larger.
This is because the number of answers is smaller for larger

query windows; hence, fewer window queries are issued in
the refinement phase.

Figure 18(b) shows the corresponding in-memory pro-
cessing cost. The trends are similar to those seen for the
window query I/O cost. The reasons for this behavior are
similar to those given for the I/O cost.

5.3.5 Effect of Database Size

To test the scalability of our technique, we performed the
density query while varying the number of moving objects
from 100K to 1M. We fix the density threshold at 0.8 and use
a query window size of 25. Figure 19(a) and (b) show the

0

1000

2000

3000

4000

5000

6000

100K 300K 500K 700K 900K
Number of moving objects

IO
 c

os
t

MODQ

(a) Query I/O cost

0

1

2

3

4

5

6

7

8

9

100K 300K 500K 700K 900K
Number of moving objects

In
-m

em
or

y
pr

oc
es

si
ng

 ti
m

e
(s

)

MODQ

(b) In-memory processing time

Figure 19. Effect of database size

window query I/O cost and the in-memory processing cost
per density query, respectively. We observe that both the
I/O cost and the in-memory processing cost grow linearly as
the number of moving objects increases. This is because the
average density in each cell increases as the number of mov-
ing objects increases. More regions that satisfy the density
requirements need to be checked.

5.3.6 Effect of Data Distribution

We evaluate the density query performance for different data
distributions by using numbers of destinations in the simu-
lated route network in the range from 50 to 300. The fewer
the destinations, the more skewed the dataset becomes. Fig-
ure 20(a) and (b) plot the query I/O cost and in-memory pro-
cessing cost, respectively. We observe that the query costs
of the 50- and 100-destination datasets are higher than those
of the 200- and 300-destination datasets. This is because

0
100
200
300
400
500
600
700
800
900

1000

0.8 0.9 1 1.1 1.2
Density

IO
 c

os
t

100 Destinations
200 Destinations
300 Destinations
50 Destinations

(a) Query I/O cost

0

0.1

0.2

0.3

0.4

0.5

0.8 0.9 1 1.1 1.2
Density

In
-m

em
or

y
pr

oc
es

si
ng

 ti
m

e
(s

) 100 Destinations
200 Destinations
300 Destinations
50 Destinations

(b) In-memory processing time

Figure 20. Effect of data distribution

10

skewed data tend to result in high density in more regions so
that more queries in the index are needed.

5.4 Maintenance Cost

Finally, we evaluate the maintenance cost of our
histogram-based algorithm while varying the length of the
maximum update interval U (the query prediction length is
fixed at 30). We create the index at time 0 and then perform
object updates for the duration of a maximum update in-
terval. Figure 21 shows the average maintenance cost per
insertion or deletion. We observe that the average main-

0

0.01

0.02

0.03

0.04

0.05

60 120 240

Maximum update interval

H
is

to
gr

am
 u

pd
at

e
tim

e
(m

s)
 MODQ

Figure 21. Maintenance cost

tenance cost increases as the maximum update interval in-
creases. The reason is that each update of an object incurs
updates on the cells that its trajectory intersects. As the max-
imum update interval increases, the length of the trajectory
increases, and therefore the maintenance cost also increases.

6 Conclusion and Research Directions

This paper assumes a setting where a population of
objects—with positions represented by liner functions of
time—move continuously in the Euclidean plane. In this
setting, the paper studies the querying for dense regions.
In particular, the paper defines a particular type of den-
sity query that eliminates answer loss. To render the query
more amenable to efficient computation, while still return-
ing meaningful results, the paper specializes the setting to
consider square queries of fixed size.

The paper then proceeds to propose a two-phase filter-
and-refinement algorithm that computes such queries effi-
ciently. This algorithm uses a density histogram for the fil-
ter step that, for each cell in a uniform grid covering the
data space, records the time varying count of objects that in-
tersect the cell. This count is approximated, and thus com-
pacted, by the use of the discrete cosine transform. Results
of an extensive experimental study is reported that yields
insight into the performance behavior of the algorithm. In
particular, the results indicate that the algorithm is efficient
for the ranges of parameter settings considered.

Several promising directions for future work exist, one
being to consider dense regions of different sizes. It is con-
venient to extend the current algorithm to support cells of
size 2n. Another direction is to support regions of more gen-
eral shapes, e.g., convex regions.

Acknowledgments This work is supported by the
SpADE (A SPatio-temporal Autonomic Database Engine
for location-aware services) [1] project, which studies the
provisioning of mobile users with location-based data, e.g.,
traffic data, maps, and points of interest.

Christian S. Jensen is also an adjunct professor at Agder
University College, Norway.

References

[1] Spade. http://spade.ddns.comp.nus.edu.sg/spade.

[2] A. Civilis, C. S. Jensen, J. Nenortaitė, and S. Pakalnis. Effi-
cient tracking of moving objects with precision guarantees. In
Proc. MobiQuitous, pp. 164–173, 2004.

[3] M. Hadjieleftheriou, G. Kollios, D. Gunopulos, and V. J. Tso-
tras. On-line discovery of dense areas in spatio-temporal
databses. In Proc. SSTD, pp. 306–324, 2003.

[4] C. S. Jensen, D. Lin, and B. C. Ooi. Query and update efficient
B+-tree based indexing of moving objects. In Proc. VLDB,
pp. 768–779, 2004.

[5] S. T. Leutenegger and M. A. Lopez. The effect of buffering
on the performance of R-trees. In Proc. ICDE, pp. 164–171,
1998.

[6] Y. Li, J. Han, and J. Yang. Clustering moving objects. In Proc.
KDD, pp. 617–622, 2004.

[7] M. F. Mokbel, T. M. Ghanem, and W. G. Aref. Spatio-
temporal access methods. IEEE Data Eng. Bull., 26(2): 40–49,
2003.

[8] B. C. Ooi, K. L. Tan, and C. Yu. Fast update and efficient
retrieval: an oxymoron on moving object indexes. In Proc.
Int. Web GIS Workshop, Keynote, 2002.

[9] D. Papadias, P. Kalnis, J. Zhang, and Y. Tao. Efficient OLAP
operations in spatial data warehouses. In Proc. SSTD, pp. 443–
459, 2001.

[10] D. Papadias and Y. Tao. Range aggregate processing in spa-
tial databases. TKDE, 16(12): 1555–1570, 2004.

[11] D. Papadias, Y. Tao, P. Kalnis, and J. Zhang. Indexing spatio-
temporal data warehouses. In Proc. ICDE, pp. 166–175, 2002.

[12] J. M. Patel, Y. Chen, and V. P. Chakka. Stripes: An effi-
cient index for predicted trajectories. In Proc. ACM SIGMOD,
pp. 637–646, 2004.

[13] K. R. Rao and P. Yip. Discrete cosine transform: algorithms,
advantages, applications. Academic Press Professional, 1990.

[14] S. Saltenis, C. S.Jensen, S. T. Leutenegger, and M. A. Lopez.
Indexing the positions of continuously moving objects. In
Proc. ACM SIGMOD, pp. 331–342, 2000.

[15] Y. Tao, D. Papadias, and J. Sun. The TPR*-tree: An opti-
mized spatio-temporal access method for predictive queries.
In Proc. VLDB, pp. 790–801, 2003.

[16] M. L. Yiu and N. Mamoulis. Clustering objects on a spatial
network. In Proc. ACM SIGMOD, pp. 443–454, 2004.

11

