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Abstract— Mapping mashups are emerging Web 2.0 applica-
tions in which data objects such as blogs, photos and videos from
different sources are combined and marked in a map using APIs
that are released by online mapping solutions such as Google
and Yahoo Maps. These objects are typically associated with
a set of tags capturing the embedded semantic and a set of
coordinates indicating their geographical locations. Traditional
web resource searching strategies are not effective in such an
environment due to the lack of the gazetteer context in the tags.
Instead, a better alternative approach is to locate an object by
tag matching. However, the number of tags associated with each
object is typically small, making it difficult for an object to
capture the complete semantics in the query objects.

In this paper, we focus on the fundamental application of
locating geographical resources and propose an efficient tag-
centric query processing strategy. In particular, we aim to find
a set of nearest co-located objects which together match the
query tags. Given the fact that there could be large number of
data objects and tags, we develop an efficient search algorithm
that can scale up in terms of the number of objects and tags.
Further, to ensure that the results are relevant, we also propose a
geographical context sensitivegeo-tf-idf ranking mechanism. Our
experiments on synthetic data sets demonstrate its scalability
while the experiments using the real life data set confirm its
practicality.

I. I NTRODUCTION

In Web 2.0, users are free to upload diverse kinds of
resources and mark them in the map to indicate their relevance
to the area using open map APIs. Such a large amount
of user-contributed materials constitute a luxuriant spatial
database that can provide immense mining opportunities. In
this paper, we focus on the fundamental application of locating
geographical resources.

The topic of detecting geographic locations [8], [17], [16],
[1], [12], [14], [2] has been well studied in recent years. Ef-
fective location detecting technique has significant commercial
potential and can assist the search engine in classifying and
indexing the web resources to improve the relevance of the
returned results. It also plays an important role in providing
the customers with local personalized services. Existing work
tackles this problem by mining and extracting phrases that
contain geographical context in web documents or with the aid
of hyperlink structures and query logs when the geographical
context is not clear. The ambiguities on the location names are
eliminated via NLP or IR technique to assign the correct scope
so that the term such as “Washington” appearing in “Denzel
Washington” will not be treated as a location name. Despite
considerably high accuracy, traditional methods still face with
new challenges in the Web 2.0 environment:

• Various types of resources exist in the spatial database.
Existing search engines pay particular attention to
gazetteer terms derived from web documents. However,
other multimedia resources, such as photos and videos,
are not associated with such terms inherently. Without
the geographical context, traditional approaches may not
work well.

• Current geographic information systems typically rely
on the gazetteer information published by authorized
communities. In Web 2.0, users have contributed huge
amounts of useful contents collaboratively. A prominent
example is Wikipedia, the most widely used online
encyclopedia. There are abundant implicit geographic
information embedded and they should be fully exploited.

In this paper, we propose to adopt tagging as a way to build
a uniform data model for the mapped resources within the
context of our Marcopolo system[6]. In Web 2.0, tagging is a
popular means to annotate various resources, including news,
blogs, speeches, photos and videos. Users are encouraged to
add extra textual terms as semantic description or summariza-
tion for the objects. With human intelligence involved, the tags
are well phrased so that much cost can be saved from handling
term ambiguities. For example, “Denzel Washington” will be
treated as a basic unit automatically without applying NLP or
IR techniques. Although documents are essentially different
from other media in textual context, tagging provides a means
to build a uniform model to eliminate the difference:

Definition 1 (Uniform Mapped Resource Model):Let S be
the d-dimensional geographical space andT be the
tag space. Each objecto can be represented aso =
[ref, c1, ..., cd, t1, ..., tn] where [c1, ..., cd] ∈ S, ti ∈ T and
ref is the reference to the object itself.

Based on this data model, the problem of locating mapped
resources is essentially a spatial tag matching problem. Given a
query object, we aim to find a spatial location that best matches
the associated tags. Such a query also has great potential for
location service providers. The service can be considered as
a new type of mapped resource and represented in the form
of tags. For example, fans of Apple’s products can submit
“applestore subway” to locate a retailer store near the subway
for convenient purchase of the products. Figure I illustrates the



spatial distribution of these two tags in New York City.1 We
can observe from the figure that Apple Store Fifth Avenue,
which is located to the south-east of the Central Park is a
location that gives a good match.

Finding co-locating tags in spatial databases remains an
ongoing research problem. Traditional approaches of keyword
search in spatial databases[10], [9], [7] are seeking for a
mapped resource matching all the query tags. However, the
number of tags associated with each object is typically small,
making it difficult to find a complete match. On the other hand,
these methods ignore the fact that spatially close resources
could be belonging to the same object and are related to each
other. For example, news about “New York City airplane river
crash” could be marked by users around the crash location in
the Hudson River and photos of “Statue of Liberty” are likely
to be uploaded around the Liberty Island. Therefore, instead
of looking for one-to-one match, we allow one query object
to match multiple spatially correlated objects as long as the
union of their tags can match all the query tags.

In our earlier work [18], themCK(m closest keywords)
query is defined for finding a set of closest keywords in the
spatial database. Since we are able to apply it in our uniform
mapped resource model, we shall re-state the definition here:

Definition 2 (mCK Query Problem [18]):Given a d-
dimensional spatial databaseSD = {o|o = [c1, c2, . . . , cd, t]}
and a set ofm query keywordsQ = {tq1 , tq2 , . . . , tqm

},
the mCK Query Problem is to find m tuples t
= {o1, o2, . . . , om}, oi.t ∈ Q and oi.t 6= oj .t if i 6= j,
anddiam(t) is minimum.2

The closeness measurediam(t) is defined as the maximum
distance between any two tuples int. The search algorithm in
[18] shows good scalability in terms of the number of query
keywords. However, the proposed bR∗-tree indexing structure
requires the storage of auxiliary information for each possible
tag and can therefore potentially incur high I/O cost when the
tag spaceT is large.

In this paper, we present a new and efficient index based
on the R∗-tree[5] and inverted list. A labelled R∗-tree is
constructed to provide spatial proximity information and the
inverted list is used as a partition of the tag spaceT .
The augmented summary information is not stored but built
dynamically during the search process to make the index light-
weighted. We design a bottom-up search algorithm to utilize
the inverted index so that only the related lists will be accessed.
Since the I/O cost has been greatly reduced, the new indexing
and searching technique can ensure scalability in terms of both
the number of query tagsm and the data size within a large
tag spaceT .

In addition to the efficiency issue, we also address the issue

1The data set is derived from Flickr’s geo-tagged photos and does not cover
all the Apple retail stores and subways in NYC. In this paper, we assume a
relatively complete geo-tag database has been built.

2A tuple o with multiple tags can be treated as multiple tuples at the same
location:o = {oi|oi = [c1, c2, . . . , cd, ti]}

applestore subway

Fig. 1. Distribution of geo-tags “applestore, subway” in NYC

of semantic relevancy by proposing a re-ranking mechanism
for co-located tags that are found within the top-k closest
scope. To this end, we have to take into account the geograph-
ical context in the ranking process. There exist work in [8], [2]
that propose geo-ranking mechanism using local popularity of
web resources measured by citations. However, the hyperlink
structure among the resources is not available in our data
model. In the recent work of [7], Cong et al. propose to retrieve
the most relevant spatial web objects by considering both the
distance proximity and text relevance in the ranking function.
However, the text relevance is still between query keywords
and each single spatial web document. In this paper, we present
a more general ranking method that takes the nearby resources
into account as well. We extend the widely usedtf-idf and
propose a new ranking strategy, namedgeo-tf-idf, to measure
how the tags are related to the area that they are located in.

In summary, the main contributions of our paper include:

• We propose to use tags to build a general data model.
Based on the model, we describe a system framework to
support co-location searches on various types of resources
in Web 2.0 applications.

• We develop an efficient indexing and searching strategy,
which is scalable in terms of both the number of query
tags and the data size of resources, to answer the queries
of co-located tag matching.

• We extend the widely acceptedtf-idf method for the ge-
ographical context, called thegeo-tf-idf ranking method,
to measure the relevancy of the geo-tags with respect to
the area in which they are located.

• We conduct extensive experiments using synthetic and
real life data sets. The results confirm the effectiveness
and practicability of our proposal in the context of Web
2.0 applications.

The remaining of this paper is organized as follows. Section
II discusses existing work on content based location searching
and takes an overview of the work in answeringmCK query .



Section III introduces the general framework and the improved
index and search strategy. Section IV proposes thegeo-tf-idf
ranking mechanism. Section V presents our performance study
on the synthetic and real life data sets. Finally, the paper is
concluded in Section VI.

II. RELATED WORK

A. Content Based Location Searching

Location detecting service has attracted great interest and
has been well studied[8], [17], [16], [1], [12], [14], [2] in
recent years due to its commercial potential to the search
engine in providing local or personalized service to customers.
The works can be divided into two categories according to
the source used to compute the geographical scope. The first
category aims to extract and parse the addresses, location
name, placemark, telephone and zip code from the web re-
source. Such gazetteer-based information extraction is obvious
and effective. Natural language processing and information
retrieval techniques have been applied for more effective
retrieval of the gazetteer terms by eliminating the ambiguities
so as to improve the recognition accuracy. On the other hand,
when the geographical content is implicit, other sources, such
as hyperlinks of web pages and log files, are utilized to detect
the web page’s location. A page that is popularly accessed or
cited by other local pages or users is considered to be relevant
to a local area. Unfortunately, in many Web 2.0 applications,
these sources are not available in the database.

Recently, several works have been proposed to handle
different types of keyword queries in spatial databases[10],
[9], [7], [18]. Hariharan et al. [10] introduce a spatial keyword
query with range constraints. Each spatial object returned is
required to intersect with the query MBR (Minimum Bounding
Rectangle) and match all the user-specified keywords. They
propose a hybrid index of the R∗-tree and inverted index,
called the KR∗-tree, to answer the query. Felipe et al. [9]
propose a similar query type by combiningk-NN query and
keyword search, and useIR2, a hybrid index of the R-tree
and signature file, for query processing. Cong et al. propose
to take into account both location proximity and text relevancy
during the ranking. They develop an efficient framework for
top-k text retrieval. These work cannot be applied to search
for co-located tags because they are looking for single objects
matching all the user-specified tags. The query tags can appear
in multiple tuples as long as these tuples are close and related
in the geographical space. In [18], we address the problem of
finding closest keywords in spatial databases. Its performance
scales well in terms of the number of query keywords due to
the proposed bR*-tree index and apriori-based search strategy.
However, since it requires the storage of auxiliary information
for each possible keyword in the indexing nodes, its index size
can be enormous when a large number of tags are involved
and high I/O overhead may be incurred. On the other hand,
no ranking mechanism is provided to capture the semantic
relevancy of the returned result.

Geo-ranking mechanisms were proposed in [8], [2] to
assign higher ranking to web pages that are popular among

local users. In these work, a similar strategy with PageRank
was proposed to measure the local popularity using back
link locations. To further emphasize the local importance,
geographic power and spread measurements are defined in
different context. Geographic power refers to the popularity
of a page in a local area and is measured by the normalized
number of desired links to the page. Spread measures how
uniform are the distribution of page’s back links. The back
links of the resources are however not available in most cases.
As such, a new geo-ranking mechanism is required to measure
the relevance of geo-tags to the area that they locate in.

B. ThemCK query and relevant query processing

In our earlier work [18], we proposedmCK query for
finding m closest keywords in the spatial database. To answer
mCK query, a hybrid index based on the R∗-tree, the bR∗-
tree, was proposed. In the bR∗-tree, in addition to the the
node MBR, each node in the tree is augmented with addi-
tional summary information: keyword bitmap and keyword
MBR. Keyword bitmap is bitmap structure indicating which
keywords are contained in the node and for each keyword, the
keyword MBR gives the minimum bounding rectangle that
bounds all resources that are associated with the keyword.
This information provide a quick summary of the keywords
and how they are distributed within the node. Thus, compared
to the R∗-tree, the bR∗-tree has better pruning power due to
this additional information being stored.

The challenge of answeringmCK query is the exponential
search space that contains all the combinations of different
keywords. Given an initial relatively small distanceδ∗, the
proposed search process starts from the root node and traverses
down the tree in a depth-first manner in order to find a good
result as soon as possible. Upon reaching a leaf node, all the
objects are exhaustively checked based on the combinations
of different keywords.

In addition, anapriori-based strategy to search inside one
node or across multiple nodes is applied. Two monotonic
constraints, namely the distance mutex and keyword mutex,
were proposed as theapriori properties to be applied in the
search process. The two properties have the formal definitions
as follow:

Definition 3 (Distance Mutex [18]):A node setN is dis-
tance mutex if there exist two nodesN, N ′ ∈ N such that
dist(N, N ′) > δ∗.

Definition 4 (Keyword Mutex [18]):Given a node setN =
{N1, N2, . . . , Nn}, for any n different query keywords
(wq1 , wq2 , . . . , wqn) in which wqi is uniquely contributed by
nodeNi, there always exist two different keywordswqi

and
wqj

such thatdist(wqi
, wqj

) > δ∗, thenN is called keyword
mutex.

These two properties have been proven to be monotonic and
can be used for efficient pruning. Although the experimental
results [18] show remarkable scalability in terms ofm when
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Fig. 2. The framework of location detecting in Web 2.0 applications

answering themCK query, such an index suffers from high
I/O cost if the total number of keywords is large. If there areN
keywords, the root node has to maintainN keyword MBRs.
The internal nodes become overloaded and occupy a large
amount of storage space. Such an index structure prevents the
search algorithm from handling spatial database with massive
number of tags. In this paper, we propose a new light-weight
index based on R∗-tree and inverted index to reduce the I/O
cost.

III. D ESIGN OFTHE SEARCH ENGINE

A. Framework

The emergence of Web 2.0 has resulted in the concept of
mashup where data objects from multiple external sources are
combined to create a new service. In other words, mashup
is a hybrid web application built on top of resources from
different channels. In this section, we describe a new type of
mapping mashup that integrates data sources from various Web
2.0 applications to support resource locating. We are currently
building such a mashup framework within the context of our
Marcopolo system [6]. The framework consists of:

• A wide range of data sources from different Web 2.0
applications are combined.

• All the resources are represented in a uniform data model
to facilitate the indexing and searching process.

• A simple, map-based user interface is designed to pro-
vide users with satisfactory experience in searching and
browsing the geographical resources.

As shown in Figure 2, the system is designed to for users to
conveniently search and browse the resources. The framework
consists of three components:1) the index engine to crawl,
integrate and index source data.2) query engine to find the
location of the resources.3) friendly interface to improve user
experience.

1) Index Engine:The index engine aims to support efficient
tag matching on top of the combined data resources derived
from other applications, such as Wikipedia, Flickr, Picasa
Web Albums, and Youtube. In Wikipedia, most of the articles
with geographical context have been geo-located. For instance,
the page “Forbidden City” is associated with coordinates

39◦54′53′′N and116◦23′26′′E. This location information can
be parsed as the spatial attribute of the article. In online photo
sharing applications like Flickr and Google Web Picasa, APIs
have been published to access the public albums, photos, tags
as well as their locations. Similarly, when users share their
videos in Youtube or other online video sharing websites, they
may mark in the map the location where the video was shot.
Hence, we are able to retrieve mapped resources of different
types to build our underlining database.

After the retrieval step, we need to combine the data sources.
We can use the uniform resource mapped resource model to
seamlessly integrate the articles, photos and videos. It can
provide a transparent access layer and benefit the indexing and
searching process. Our index structure is based on R∗-tree and
inverted list.

2) The Query Engine:Based on our uniform resource
model, the query interface allows users to submit query tags
to find matching co-located geographical resources. The query
input is a collection of the tags which are either associated with
the resources or created by users to identify relevant areas in
the map. For example, “wedding church New York” is a query
to find the churches in New York that can hold a wedding
ceremony. Local search engine can benefit greatly from such
queries as these can help them to provide better customized
service.

Meanwhile, the query engine also supports resource locating
when a search boundary constraint is specified. The area can
be either added by users manually or set as the current display
region in the map. Since the underlying index is actually
inverted list, all the elements that do not lie in the query region
will be eliminated to ensure all the candidates are within the
boundary.

3) User Interface: The search engine is designed to be
simple and friendly. The whole interface is map-based. Users
can freely explore geo-resources in the area they are interested
in. The main search entry is only a simple textbox to accept
query tags. All the related resources will be displayed directly
in the map for further refinement.

Users are also allowed to specify the search area and
resource type during the search. They can specify the search
constraint by drawing a rectangle in the map and choose the
desired resource type they are looking for. The resources that
are outside the search boundary or not compatible with the
query resource type will be filtered.

B. Light-weighted Index Structure

In Web 2.0 context, users can continuously contribute new
resources to the map. On one hand, there will be increasing
number of locations. On the other hand, in each location, the
number of associated tags will increase as well. Thus, it is
essential for the proposed index structure to be scalable enough
to handle large number of locations and tags. To achieve this
goal, we do not maintain the additional summary information.
Moreover, we do not integrate all the locations and tags into
one tree structure. Instead, we split them into two components:
a spatial index and an inverted index, as shown in Figure 3.
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Fig. 3. The index of R∗-tree and inverted index

This also ensures that the proposed index could be grafted into
existing commercial systems easily.

The R∗-tree is used to index all the spatial locations
associated with tags. It is constructed in the same manner
as described in [4] except that each node is assigned a label
indicating the path to the root node. In our example, node
R3 and R4 are both labelled as “a” because they share the
same path to the root node’s first entry. Similarly,R5 andR6

are labelled with “b”, which represents the second entry in
the root node. Given a node label, we can judge where the
node is located in the R∗-tree without accessing the tree. Two
locations close to each other probably have the same prefix
of node label. If they lie in the same internal node, they will
be assigned the same label. Thus, the label can be used to
approximate the spatial distance between the data points.

An inverted index is built along with the R∗-tree. It main-
tains inverted lists for all the tags in the database. Each
element in the list consists of the node label derived from the
construction of the R∗-tree and the actual location. Note that
the list of locations are ordered by the label so that the data
points close to each other in geographical space are probably
still close in the inverted lists.

Such an index is scalable in terms of both the number of
locations and tags. Each time a new location is marked in
the map, it is inserted in the labelled R∗-tree. The function
ChooseSubtreein [4] is first invoked to find a leaf node to
accommodate the location. If there exist empty entries in the
node, the location point is inserted and assigned with the
node’s label. The inverted lists of the associated tags can
also be updated at a small cost as the elements have been
ordered. Otherwise, split occurs in the overflowing node and
the changes are propagated upward the tree. Besides the MBR
adjustment, we need to update the label of nodes as well
as the elements in the inverted lists assigned with the old
label. Suppose the propagation stopped at nodeN labelled
l1l2...lt, all the descendent nodes ofN will be re-labelled.
Meanwhile, the elements in the affected inverted index whose
labels start withl1l2...lt are also updated. Since the lists have
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Fig. 4. Bottom-up construction of virtual bR∗-tree

been ordered, it is convenient to retrieve the list segment
with this prefix. However, if the insertion occurs frequently,
ensuring correct label will be computationally expensive. As
we do not require accurate labelling in our search algorithm,
we can adopt a lazy approach in which we will delay the
updates of the labels. The location’s label is buffered before
the split operation. The affected part of the R∗-tree will be
updated in a batch manner using the buffered information to
ensure an acceptable cost. The case of insertion of a new tag
is much simpler. A new inverted list is created for the new tag
and its location and label are inserted into the list.

In contrast to [18], such a light-weight index saves a large
amount of I/O cost compared to indexing all the tags and
locations into one bR∗-tree. Given a set of query tags, only
the relevant location lists will be retrieved. The following
subsection will introduce how themCK query can be answered
on top of the inverted lists without even accessing the spatial
index. The index can also be utilized to answer queries in
which the user specifies a bounding region. We traverse down
the R∗-tree as much as possible while ensuring that the node
MBR bounds the query region completely. Using the label of
such a node, we filter off all data points that are not prefixed
with the label. The retrieval cost is small as the labels in the
lists have been ordered. Then, a further check is performed to
see if the data point is within the query region so as to obtain
the correct result.

C. Bottom-Up Search Algorithm

Given m query tags, we retrievem lists of data points that
match the tags from the inverted index. A naive solution to
this problem is to exhaustively examine all possible sets of m
tuples from different lists. This is prohibitively expensive when
the number of objects and/orm is large. To take advantage
of the spatial information embedded in the label, we instead
propose an elegant solution to construct a virtual bR∗-tree
using the label and location of the data points.

The virtual bR∗-tree is built level by level in bottom-up
manner as illustrated in Figure 4. At first,m inverted lists
corresponding to the query tags are retrieved and merged into
one list ordered by the node label. The cost of this merge sort
is linear to the size of lists. We traverse the sorted list and
fetch all the data points with the same label. These points are
used to construct a new virtual node which has a counterpart
in the original R∗-tree. Note that the MBR of the virtual node



is much smaller than its counterpart as it is built on the points
relevant to the query. For each virtual node, we maintain the
additional information: the keyword bitmap and the keyword
MBR to summarize the keywords and their distribution inside
the virtual node. Compared to the bR∗-tree proposed in [18],
the node size has been greatly reduced to save the I/O cost and
allows the virtual bR∗-tree to handle a database with massive
number of possible tags. In addition, the a priori-based search
strategy can still be applied in the virtual bR∗-tree.

Algorithm 1 Bottom-Up Search Strategy
Input: m query tags, inverted index
Output: Distance and location ofm closest keywords

1. Retrieve m inverted lists for each query tag
2. Merge the lists into one listL ordered by the label
3. Initialize a virtual nodecur node
4. while L.level < tree.height do
5. for each elementvnode in L do
6. if vnode has the same label with its previous element

then
7. addvnode into cur node
8. else
9. SubsetSearch (cur node)

10. addcur node to List L′

11. moveL′ to L

The detailed search algorithm is shown in Algorithm 1.
Each time a virtual node is constructed, it will be treated as a
subtree and the pruning algorithmSubsetSearch proposed
in [18] could be applied in this virtual node. The difference is
that the search space will exclude the single child node that
matches all the query tags. As our search strategy is bottom
up, the space within the node must have been explored. Fig
5 shows the order ofNodeSet candidates checked in the
top-down and bottom-up search algorithm respectively. The
bottom-up strategy can access the leaf nodes earlier than top-
down method and get a smallerδ∗ first. In overall summary,
the bottom-up search demonstrates better scalability because
it only accesses a small virtual bR∗-tree and in the meanwhile
preserves the effective pruning strategy.

Order 1 2 3 4 5 6
Top-down R1 R3 R2 R5 R1R2 R3R5

Bottom-up R3 R5 R1R2 R3R5

Fig. 5. Order ofNodeSet candidates checked

IV. RANKING

The results returned by themCK search algorithm only
considers the spatial closeness while ignoring the geograph-
ical relevance. In this section, we propose a new ranking
mechanism, namelygeo-tf-idf, which extends the classictf-
idf ranking to be applied in a geographical context.

tf-idf [3], [15], [11] has been widely adopted in search
engines to measure the importance of a keyword with re-
spect to a document in a collection or corpus. Intuitively,

score(k, D) will be assigned a higher value if keywordk
occurs frequently in documentD and infrequently in other
documents. Formula 1-5 shows the ranking mechanism with
normalization of document length and frequency taken into
account:

score(Q,D) =
∑

k∈Q

weight(k, Q) ∗ score(k, D) (1)

score(k, D) =
tf(k, D)

dl
∗ idf (2)

tf(k, D) = 1 + ln(1 + ln(freq(k, D))) (3)

dl = (1− s) + s ∗ dl(D)
avgdl

(4)

idf = ln
N

df + 1
(5)

The term weight ofk with respect toQ is usually measured
by the raw term frequency inQ. The documents with higher
ranking scores will be considered as more relevant to the
keywords. Similarly, we can define our score function of a
geographical areaR with respect to queryQ, as shown in
Formula 6.

score(Q,R) =
∑

k∈Q

weight(k, Q) ∗ score(k, R) (6)

The problem becomes how to measure the importance of
a tagk with respect to an areaR. Inspired by the intuition
behindtf-idf, we propose an extended ranking mechanism used
in geographical context. A higher score will be assigned to
score(k, R) if the tag t and areaR satisfy the following
properties:

1) The tagt appears frequently around the area ofR. For
example, tourist travelling in Beijing will probably take
a visit to Forbidden City. There will be many photos
and blogs tagged with “Forbidden City” uploaded in the
map. Thus, this tag is closely related to Beijing city.

2) The tag t is not frequently mentioned in areas other
than R. Although “Forbidden City” may appear in
other travel blogs not located in Beijing, such cases are
typically rare. Beijing will be assigned with a high score
with respect to “Forbidden City”.

In IR systems, the information unit is a document. While
in our uniform data model, the concept of document is
vague. Each location point is associated with a set of tags.
Distinct resources located at the same point can constitute a
large virtual document with the tags merged. If there are no
resources in the nearby area, we can apply traditionaltf-idf to
measure the weight between keywordk and locationp:

inw(k, p) = score(k, D) (7)

,where D is the merged tag “document” located at point
p. However, in real Web 2.0 applications, the resources are
contributed and uploaded by users. The resources on the same
topic will gather around the actual location. The score value on



a point locationp can not completely capture the geographical
context. We need to take into account the nearby resources.

In order to measure the effect of tagt in location p to
its nearby areas, we build a degradation model as shown
in Figure 6(a). The keyword will affect mainly the nearby
regions. The regions far away are considered irrelevant to the
tag. We may use Gaussian function in Figure 6(b) to describe
such degradation. Suppose thed-dimensional space has been
normalized into[0, 1]d, the relevance of keywordk located at
p with respect to areaR can be measured via the following
formula:

score(k, p,R) =

∫
q∈R

{inw(k, p) ∗ f(dist(p, q))}
1 + ln(area(R))

(8)

, wheref is the degradation function. The intuition behind
the definition is that if the area is small and close to the
keyword, a higher score will be assigned. If the area is large,
the effect of the keyword on the whole region will be scaled
down accordingly as well. Thus,R2 is more relevant tok than
R1 in example of Figure 6(a). If there are multiple occurrences
of keywordk in the spatial databaseSD, the final score will
sum up all the effect ofk on the area ofR:

score(k, R) =
∑

p∈SD

score(k, p,R) (9)

R1

R2

(a) Keyword weight degrada-
tion model

1

f

x

(b) Keyword weight degradation
function

Fig. 6. Degradation of keyword spatial importance

A. Approximate Ranking Mechanism

In real applications, it is expensive to calculate the exact
weight of a region with respect to a keyword. To save
the computation cost, we propose an approximate scoring
mechanism.

α
β β β

β
ββ

β
β

(a) Grid degradation model

α
β

(b) Grid degradation function

Fig. 7. Degradation of keyword spatial importance

In our approximation model, the space is split into grid cells
and regionR is approximated by a minimum set of cells that

can bound it. The degradation function no longer decreases
continuously to0. Instead, as shown in Figure 7(b), we use
the grid cell as the basic unit. The weight of the grid that holds
point p is assigned with constantα and the neighboring grids
are assigned with constantβ(1 ≥ α > β > 0). The remaining
grids are considered not relevant to the keyword. The weight
of keywordk with respect the cellC becomes:

score(k, C) =
α ∗ ∑

p∈C

inw(k, p) + β ∗ ∑
C′∈NC

∑
p∈C′

inw(k, p)

3d

(10)
,whereNC are the neighboring cells ofC. Such a definition
will assign higher value toscore(k, C) if k frequently appear
in C as well as its neighboring cells. Finally, a normalization
process similar toidf is proposed to reduce the effect of the
general tag that occurs all over the grid:

igf(k) = ln
|G|

dg(k) + 1
(11)

,where|G| is the total number ofd-dimensional grid cells and
dg(k) is the number of grids containing the keyword. Given
all these formulas, the ranking score ofk with respect to its
location can be approximately defined as :

score(k, R) ≈

∑
C∈R

score(k, C) ∗ igf(k)

|C| (12)

,where R is approximated by a set of cellsC. Such an
approximation takes the nearby documents into account. In our
experiments, we will provide further analysis of the ranking
mechanism.

V. EXPERIMENT

This section provides an extensive performance study on
both synthetic and real data sets in order to evaluate the
scalability of our query processing strategy as well as its
practical utility.

We incrementally generate large synthetic data sets to simu-
late those from Web 2.0 applications. Meanwhile, real data sets
extracted from online photo sharing applications are used to
testify the practical utility of themCK query in local services
and resource locating. All of our experiments are conducted on
a server with Quad-Core AMD Opteron(tm) Processor 8356,
128GB memory, running RHEL 4.7AS.

A. Experiments on Synthetic Data Sets

Synthetic data sets are generated to simulate real-life ap-
plications in two aspects. First, in successful commercial
applications, there are millions of users who created large
amounts of resources. Hence, the data size we generated must
be large scale. Second, the database expands continuously as
new resources are added in by different users. Thus, scalability
in terms of the number of locations and their associated tags
becomes an essential issue. Our experiments are performed on
synthetic data sets with millions of locations and thousands



of tags. All the spatial data points are generated in ad-
dimensional space[0, 1]d in a random manner. For most
mapping applications,d is usually set as two. Each data point
is randomly assigned with a fix number of tags.

We compare virtual bR∗-tree against bR∗-tree proposed in
our earlier work [18] and MWSJ[13] in answeringmCK query.
These two algorithms retain the same settings as before. The
average response time(ART) is used as our performance met-
ric. In the following experiments, we compare the scalability
in terms ofm, the number of locations and the associated tags.

1) Scalability in terms of m: In this experiment, we ran-
domly generate two data sets with 5,000,000 and 10,000,000
location points respectively. There are in total5, 000 tags in
the database and each point is associated with5 random tags.
The number of query tags submitted is varied from3 to 8.

Figure 8 illustrates the average running time of the three
algorithms. The bR∗-tree proposed in [18] shows reasonable
scalability asm increases. However, since the tree maintains
auxiliary information in each node, this lead to extremely high
I/O cost. The index occupies more than4GB disk storage
while our inverted index only takes up527MB for the data
set with5, 000, 000 points. The performance of MWSJ shows
the same pattern as in our previous paper. Whenm is small,
the query can be answered efficiently. Whenm is increased
to larger values, the performance starts to degrade due to
the exponential expansion of the search space. Our virtual
bR∗-tree demonstrates much advantages over the other two
algorithms. This is due to the improved index structure as
well as the efficient pruning strategy. In the following two
experiments, we only compare the performance with MWSJ
as the original bR∗-tree is not suitable for handling data set
with massive number of tags.
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Fig. 8. Scalability in terms ofm

2) Scalability in terms of the number of locations: In
order to simulate the real applications in which new resources
are continuously marked in the map, we generate the synthetic
data sets with the size increasing steadily from5, 000, 000 to
10, 000, 000 data points. The number of tags associated with
each point is fixed as5. Figure 9 shows the performance trend
as the data size increases.

When m is small, both algorithms demonstrate similar
growth rate in running time. The spatial index did take effect
to suppress the expansion of search space. However, asm
increases, the performance of MWSJ becomes sensitive to the
growth of data size. The reason is that the search space grows
substantially with the data size. A small amount of increase

in data size can lead to remarkable expansion of the search
space. In contrast, our virtual bR∗-tree is able to scale in a
stable manner.
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Fig. 9. Scalability in terms of the number of locations

3) Scalability in terms of the number of tags: In real
applications, new tags can be added to describe a particular
resource. In this experiment, synthetic data sets are generated
to simulate the growth in the number of tags. Here, we increase
the number of tags associated with each location from1 to 9.
The spatial database contains5, 000, 000 data points and5, 000
different tags in total.

The two algorithms in Figure 10 present similar growth rate
with Figure 9 in term of response time. Their performance are
good whenm is small. However, MWSJ suffers from serious
degradation in handling large number of query tags because
it does not inherently support effective summarization of tag
locations. Our virtual bR∗-tree on the other hand demonstrates
good scalability.

Note that the virtual bR∗-tree performs slightly better with
respect to the growth in the number of tags compared to the
growth in number of locations. The reason is that the virtual
node in the bR∗-tree maintains a bitmap indicating the query
tags within. The insertion of a tag into an existing location
will only trigger the setting of the bit in the bitmap. However,
the insertion of new locations leads to a larger labelled R∗-
tree. Therefore, more virtual nodes will be created during the
search process.

B. Real Experiment

Our real data set is generated via the Flickr service API3

and Picasa Web Albums Data API4. We extracted all photos in
New York that are tagged and geo-marked. Resources located
at the same coordinates are merged into the same tag list. After
removing the infrequent tags, the database consists of74, 774

3http://www.flickr.com/services/api/
4http://code.google.com/apis/picasaweb/overview.html
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Fig. 10. Scalability in terms of the number of tags

Fig. 11. Distribution of tag “zoo”

location points from Flickr and6, 729 points from Picasa Web.
There are12, 636 tags in total.

Based on our observation, the geo-tag data set is of accept-
able quality. Most of the photos are assigned with relevant
tags and are correctly marked in the map. The geo-tags
are usually distributed in the form of spatial clusters. These
clusters can be utilized to identify the locations of popular
resources and events because related tags will emerge around
that area. For instance, as shown in Figure 11, the tag “zoo”
is mainly distributed in three spatial clusters corresponding to
Bronx Zoo, Central Park Zoo and Queens Zoo Wildlife Center
respectively. Similarly, in Figure 12 there are a large number
of “USOPEN” tags gathering around the Arthur Ashe Stadium
where the tennis match is held. This phenomenon provides us
with new opportunities to locate resources in more precise
geographical scale.

In the following experiments with real data set, we design a
set of queries using tags or photos as the input. These queries
are mainly for locating local services.

1) Tag Query: In this experiment, users propose query
tags from the perspective of finding local service, including

Fig. 12. Distribution of tag “USOPEN”

restaurant, museum, shopping, recreation center, viewing site,
local news and so on. As shown in Figure 13, fifteen example
queries are listed and the results are compared against Google
Maps. These local service queries can be divided into three
categories:

Type Tag Query Google mCK
I liberty statue

√ √
marc jacobs store

√ ×
restaurant seafood sashimi

√ ×
bar cocktail jazz player × √
museum dinosaur fossil

√ √
tennis court Williams champion × √

II weapon factory × ×
river airplane crush

√ √
campus Barack Obama × √

park river fishing × √
recreation bowling billiard

√ ×
square fountain roller skating × √

III applestore subway
√ √

supermarket gas station
√ ×

hotel church catholic historic × √

Fig. 13. Example tag queries

• The first type of queries is landmark query, such as
“Statue of Liberty” and “Marc Jacobs Store” in our
examples. Google Maps can answer this kind of queries
effectively as enormous number of landmarks have been
correctly maintained in the database. Each time a query
is submitted, it will first look for gazetteer terms so as
to reduce the search space. OurmCK query strategy can
correctly give the result for “Statue of Liberty” because
this is a famous viewing site in New York City and many
photos have been tagged and marked around the statue.
However, no result is returned for “Marc Jacobs Store” as
no geo-tagged photos about “Marc Jacobs” exist in our
data sets.

• The second type of query is seeking for a subject as-
sociated with constraint features, persons or events that
users are interested in. If the association is common and
straightforward, such as a restaurant with seafood and
sashimi, a museum with dinosaur fossil and recreation



center with bowling and billiard, Google Maps is a good
choice. However, this search engine is not suitable for
locating subjects with complicated features like “tennis
court where Williams won the champion” and “bar with
cocktail and jazz player”. In contrast, ourmCK query
can answer most of the queries as long as the target
location is well tagged. For the infrequent tags in our
data set, such as “sashimi”, “recreation”, “billiard”, it
is difficult for them to occur simultaneously with other
query tags in the same location. Thus, no related results
are returned. The other problem withmCK query is that
it can not guarantee that the results returned are related to
the same subject. In the query “weapon factory”, Knitting
Factory, a music club and concert house, is returned. The
reason is that there are no available weapon factories in
the database and it happens that there is a poster about
weapon on the door of the music club so that the two
tags “weapon” and “factory” become connected.

• The third type of query differs in that spatial constraint
is embedded. For example, “applestore subway” aims to
find the apple retail stores near the subway. Similarly,
“supermarket gas station” intends to find a supermarket
and gas station close to each other. Google Maps is able
to answer these two queries because the result returned
happens to contain all the query tags. It can not capture
the spatial constraint so as to answer queries like “find a
historic catholic church with hotels nearby”. OurmCK
in essence is proposed to answer this type of query. The
quality of the search result relies on the quantity of tags
contributed by users.

Figure 14 illustrates some results of example queries re-
turned by mCK and Google Maps. We can observe that
Google Maps pays more attention to tags with geographical
context, such as college and church. The other keywords used
as features or spatial constraints are ignored. Thus, its results
can not capture the correct query subject or user’s intention.
Our mCK query takes all the tags into account and find a
location matching all of them. Such a query mechanism is
able to capture the complete meaning and return satisfactory
results.

2) Ranking Mechanism:In this part, we provide more in-
depth analysis of our ranking strategy. As mentioned, we
assign higher value toscore(k, R) if keyword k appears
frequently aroundR and infrequently in other locations. Such
keywords usually refer to the distinguishing and prominent
entities. To achieve this goal, the primary issue is to determine
the size of the grid cell. The setting of this parameter is closely
related to the specific services being provided. Precise location
at the level of a shop or sculpture desires a small cell size.
Otherwise, we can allow larger cells to save maintenance
cost. Note that hierarchy grid structure can be designed to
support locating services at different geographical scales. In
our experiment on the New York data set, the grid is split into
500× 500 cells.

Fig 15 shows the ranking scores of query tags with respect
to the detected location. The bold tags “crash”, “catholic” are

important and prominent subjects or features in that location.
Although tags like “river” and “hotel” also appear frequently,
they are not distinguishing enough. These tags spread round
the city and theigf (inverse grid frequency ) takes effect to
assign lower scores to them. In addition, we can tell from
the figure that most feature tags are assigned with moderate
scores.

t8 airplane crash river
141.221 217.448 118.497

t15 hotel church catholic historic
114.849 214.979 685.173 45.2946

Fig. 15. Ranking score for the tags

The last essential issue about ranking is the weights of the
query terms. In default, the query tags are assigned with equal
weights. When the results returned are not satisfactory, users
are allowed to adjust the weights to highlight the important
terms to better identify their intention. For example, given
query tags “fountain, square”, a famous square with a fountain
may be returned as the square may be frequently tagged,
leading to a dominating score. If the user is actually searching
an ornate fountain in a square, he can increase the weight of
“fountain”. If the fountain is the prominent scene, it is likely
to be more frequently tagged than the locating square and the
famous fountains will be returned.

3) Accuracy: To further test the accuracy of the resource
locating, we invite a group of volunteers to generate the local
service queries for us and verify whether the returned results
are satisfactory or not. Since our data set is still too small to
meet with daily needs, we extract frequent tags and ask the
volunteers to create the query from the combination of these
tags. All the50 queries are shown in Fig 16.

In this experiment, we first use the Flickr data set and later
add in the Picasa Web data set to examine whether the idea
of mashup works. The accuracy results are shown in Fig 17.
When there is only one data set,mCK query only performs
slightly better than Google Maps. The reason is thatmCK
seeks for a location matching the query tags but these tags are
possible to be associated with different unrelated subjects. If
multiple data sources from other applications are combined, it
is more likely for the related query tags to appear in the same
location and their distance becomes0. As such, we obtain
an improvement in accuracy when the Picasa Web data set is
incorporated.

4) Photo Query: In this experiment, we discuss how to
locate a photo usingmCK query. Given a photo, the semantic
objects as well as their features can be extracted via human
intelligence and represented as query tags. These tags are
close to each other in the physical space. Google Maps is not
suitable to handle such queries because it is unable to capture
the spatial constraint. Thus, we try to solve the problem by
submitting anmCK query using the extracted tags.

As different query tags extracted from the same photo may
result in different matching locations, the selection of extracted
tags becomes an important issue. Based on our experiments
of the query photos in Fig 18, we observe that:



Query Tags mCK Google Maps

BarackObama
campus

Columbia University

Campus Description: 12 acre Yeshiva College

campus in uptown Manhattan Stern College

Business at both campuses... a2zcolleges.com

Yeshiva University Main Campus

campus in midtown Manhattan Sy Syms School of

hotel
church
catholic
historic

St Patrick’s Cathedral

Latin Catholic - 2 NYC Cathedrals The people

usually known as ”Roman Catholics” - the historic

of the Pope ...fordham.edu

Old St Patricks Cathedral School

Church of the West under the immediate supervision

Fig. 14. Example results returned bymCK and Google Maps

sunrise hotel hospital plaza dinner movie island waterfall weapons factory girls gold shoes shop
wedding church gold sunset beach rockband beer waterfall ferry weapon museum 911 monument

orange lamp library historic architechture historic museum pizza plaza sunset lake japanese restaurants
waterfalls hotel fireworks square bridge train river fishing dogs pet shop vocation island

garden cafe monument square movie theatre kids playground dinner plaza chicken ice stadium
baseball stadium sunset skyline sunset boat sea tennis usopen iphone gallery park band bass

beach guitar moon dance rock band fish market fashion jewelry shop architecture museum historic movie theater
sexy girls flower exhibition bronze statue towers lamp ice cafe pizza museum pizza

island moon bowling beer dinner

Fig. 16. Local service queries
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• Distinguishing tags are preferred as they can help to
reduce the search space. For example, in the second
query, “skyscraper” is a frequent tag that appears around
the downtown of New York City and leads to many
candidates. However, “mast” is a distinguishing keyword
as it is found in limited locations. The search space can
be further reduced through the spatial constraint that the
skyscraper is near the mast.

• The number of candidate locations can be reduced by
adding new query tags. When there are no distinguishing
features embedded in the photo, users can provide more

tags from the image to eliminate false positive. For
instance, in the first photo query, all the four query tags
are widely distributed in New York City. Their spatial
constraint assists us in detecting the correct location.
Missing any of the query tags could lead to a false result.

Other types of resources, such as blogs, news and videos,
can also be located in a similar manner. As long as the resource
is concerned with a local area, their associated tags are likely
to spread around that area. Therefore,mCK is a useful query
in the location detection of mapped resources.

VI. CONCLUSIONS

In this paper, we have addressed the new emerging problem
of locating mapped resources in Web 2.0. We have proposed
to use tags to build a general data and query model to support
co-location searches by tag matching. The data resources from
different applications can be combined and integrated into the
labelled R∗-tree and inverted index. Efficient search strategies
are developed to effectively answer the tag matching query.
We have also proposed a newgeo-tf-idf ranking mechanism
to measure the geographical relevance. Extensive experiments
using both synthetic and real life data sets confirm the feasi-
bility and efficiency of our proposed design in the Web 2.0
environment.



park square
arch fountain

Washington Square Park

skyscraper seaport
boat mast

Near Brooklyn Bridge

bull bronze
sculpture

Wall Street Bull

Fig. 18. Example photo queries
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