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ABSTRACT
In this paper, we propose a new tunable index scheme, called
iMinMax(�), that maps points in high dimensional spaces
to single dimension values determined by their maximum
or minimum values among all dimensions. By varying the
tuning \knob" �, we can obtain di�erent family of iMinMax
structures that are optimized for di�erent distributions of
data sets. For a d-dimensional space, a range query need to
be transformed into d subqueries. However, some of these
subqueries can be pruned away without evaluation, further
enhancing the e�ciency of the scheme. Experimental results
show that iMinMax(�) can outperform the more complex
Pyramid technique by a wide margin.

1. INTRODUCTION
Many multi-dimensional indexing structures have been pro-
posed in the literature (see [1] for a survey). In particular,
it has been observed that the performance of hierarchical
tree index structures such as R-trees [2] and R�-trees [3] de-
teriorates rapidly with the increase in the dimensionality of
data. This phenomenon is caused by two factors. First, let
us consider the fan-out of internal nodes in an R-tree. Sup-
pose we conform to the classic de�nition of an R-tree where
all nodes are of a �xed size B. The fan-out of an internal
node is clearly bounded by�

B

�d
i=1( 2 � si )

�

where si is the size of data elements corresponding to di-
mension i. (The expression �d

i=1(2 � si) constitutes the stor-
age needed to de�ne a minimal bounding region in a d-
dimensional space.) Clearly, the fan-out of an R-tree is in-
versely proportional to the dimensionality of data objects
(d). The smaller fan-out contributes not only to increased
overlap between node entries but also the height of the
corresponding R-tree. One obvious solution is to reduce
the amount of overlap by increasing the fan-out of selected

nodes. Notwithstanding, the size of a node cannot be en-
larged inde�nitely, since any increase in node size contributes
ultimately to additional page accesses and CPU cost, caus-
ing the index to degenerate into a semi-sequential scan within
an index. Second, as the number of dimensions increases,
the area covered by the query increases tremendously. Con-
sider a hyper-cube with a selectivity of 0.1% of the domain
space ([0,1],[0,1],: : :,[0,1]). This is a relatively small query
in two to three-dimensional databases. However, for a 40-
dimensional space, the query width along each dimension
works out to be 0.841, which causes the query to cover a
large area of the domain space. Consequently, many leaf
nodes of a hierarchical index have to be searched. The above
two problems are so severe that the performance is worse o�
than a simple sequential scan of the index keys [4] [5]. How-
ever, sequential scanning is expensive as it requires the whole
database to be searched for any range queries, irrespective
of query sizes. Therefore, research e�orts have been driven
to develop techniques that can outperform sequential scan-
ning. Some of the notable techniques include the VA-�le [4]
and the Pyramid scheme [5].

This paper adopts a slightly di�erent approach that reduces
high-dimensional data to a single dimensional value. It is
motivated by two observations. First, data points in high
dimensional space can be ordered based on the maximum
value of all dimensions. (We have adopted the maximum
value in our discussion. However, similar observations can
be made with the minimum value.) Second, if an index key
does not �t in any query range, the data point will not be
in the answer set. The former implies that we can represent
high-dimension data in single dimensional space, and reuse
existing single dimensional indexes. The latter provides a
mechanism to prune the search space.

In this paper, we propose a new tunable indexing scheme,
called iMinMax(�), that addresses the de�ciency of the sim-
ple approach discussed above. iMinMax has several nice
features. First, iMinMax(�) adopts a simple transformation
function to map high dimension points to a single dimension
space. Let xmin and xmax be respectively the smallest and
largest values among all the d dimensions of the data point
(x1; x2; : : : ; xd) 0 � xj � 1, 1 � j � d. Let the cor-
responding dimension for xmin and xmax be dmin and dmax

respectively. The data point is mapped to y over a single
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dimensional space as follows:

y =

�
dmin + xmin if xmin + � < 1� xmax

dmax + xmax otherwise

We note that the transformation actually partitions the data
space into di�erent partitions based on the dimension which
has the largest value or smallest value, and provides an or-
dering within each partition. Second, B+-tree is used to
index the transformed values. Thus, iMinMax(�) can be
implemented on existing DBMSs without additional com-
plexity, making it a practical approach.

Third, in iMinMax(�), queries on the original space need to
be transformed to queries on the transformed space. For a
given range query, the range of each dimension is used to
generate a range subqueries on the dimension. The union
of the answers from all subqueries provides the candidate
answer set from which the query answers can be obtained.
iMinMax's query mapping function facilitates e�ective range
query processing: (i) the search space on the transformed
space contains all answers from the original query, and it
cannot be further constrained without the risk of missing
some answers; (ii) the number of points within a search space
is reduced; and (iii) some of the subqueries can be pruned
away without being evaluated.

Finally, by varying �, we can obtain di�erent families of
iMinMax(�) structures. At the extremes, iMinMax(�) maps
all high dimensional points to the maximum (minimum)
value among all dimensions; alternatively, it can be tuned
to map some points to the maximum values, while others
to the minimum values. Thus, iMinMax(�) can be opti-
mized for data sets with di�erent distributions. Unlike the
Pyramid technique, no apriori knowledge or reconstruction
is required.

We implemented the iMinMax(�) and evaluated its perfor-
mance against the more complex Pyramid technique. Our
experimental results on both uniform and skewed data sets
show that the proposed scheme can be more e�cient than
the Pyramid technique by more than 50% of retrieval costs.

The rest of our paper is organized as follows: In Section 2,
we describe existing work. In Section 3, we shall present
iMinMax(�) in detail, and in Section 4, the search algo-
rithms. Section 5 presents the experimental study and re-
ports our �ndings. We conclude in Section 6.

2. RELATED WORK
There is a considerable amount of work on high-dimensional
indexing. In this section, we shall review two of the recently
proposed indexing structures, namely the Pyramid tech-
nique [5] and the VA �le [4]. While the Pyramid technique is
used for performance comparison in this paper, the VA-�le
is a potential candidate for further performance study.

The basic idea of the Pyramid Technique is to transform d-
dimensional data points into 1-dimensional values, and then
store and access the values using a conventional index such
as the B+-tree.

There are mainly two steps in its partitioning method. First,
it splits the data space into 2d pyramids, which share the

center point of the data space as their top and have (d� 1)-
dimensional surface of the data space as their base.
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Figure 1: Index key assignment in the Pyramid tech-
nique

All points located on the i-th (d� 1)-dimensional surface of
cube (the base of the pyramid) have the common property:
either their i-th coordinate is 0 or their (i�d)-th coordinate
is 1. On the other hand, all points � located in the i-th
pyramid pi have the furthest distance from the top on the
i-th dimension. The dimension in which the point has the
longest distance from the top determines which pyramid the
point lies.

Another property of Pyramid Technique is that the location
of a point � within its pyramid is indicated by a single value,
which is the distance from the point to the center point
according to dimension jmax (see Figure 1). The data on
the same slice in a pyramid have the same pyramid value.
That is, any objects fall on the slice will be represented
by the same pyramid value. As a result, many points will
be indexed by the same key in a skewed distribution. It
has been suggested that the center point can be shifted to
handle data skewness. However, this incurs recalculation of
all index values, i.e. redistribution of the points among the
pyramids, and reconstruction of the B+-tree.

To retrieve a point q, the pyramid value P� of q is computed,
and used to serach the B+-tree. All points with P� will be
checked and retrieved. To perform a range query, the pyra-
mids that intersect the search region are determined, and
for each pyramid, individual subquery range is determined.
Each subquery is used to search the B+-tree. For each range
query, 2d subqueries may be required, one against each pyra-
mid.

The VA-�le (vector approximation �le) [4] is based on the
idea of object approximation by mapping a coordinate to
some value that reduces storage requirement. The basic
idea is to divide the data space into 2b hyper-rectangular
cell where b is the tunable number of bits used for represen-
tation. For each dimension i, bi bits are used, and 2bi slices
are generated in such a way that all slices are equally full.
The data space consists of 2b hyper-rectangular cell, each of
which can be represented by a unique bit string of length b.
A data point is then approximated by the bit string of the
cell it falls into.
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To perform a point or range query, the entire approximation
�le must be sequentially scanned. Objects whose bit string
satis�es the query must be retrieved and checked. Typically,
the VA-�le is much smaller than the vector �le and hence
is far more e�cient than direct sequential scan of data �le
and the variants of R-tree. However, the performance of
the VA-�le is likely to be a�ected by data distributions and
hence the false drop rate; the number of dimensions and the
volume of data.

3. INDEXING ON THE EDGES
In a multi-dimensional range search, all values of all dimen-
sions must satisfy the query range along each dimension. If
any of them fails, the data point will not be in the answer
set. Based on this observation, a straightforward approach
is to index on a small subset of the dimensions. However, the
e�ectiveness of such an approach depends on the data dis-
tribution of the selected dimensions. Our preliminary study
on indexing one single dimension showed that the approach
can perform worse than sequential scanning. This led us
to examine novel techniques that index on the \edges". An
\edge" of a data point refers to the maximum or minimum
value among all the dimensions of the point. The proposed
technique, iMinMax(�) uses either the values of the Max

edge (the dimension with the maximum value) or the values
of the Min edge (the dimension with the minimum value)
as the representative index keys for the points. Because
the transformed values can be ordered and range queries
can be performed on the transformed (single dimensional)
space, we can employ single dimensional indexes to index the
transformed values. In this paper, we employ the B+-tree
structure since it is supported by all commercial DBMSs.
Thus, iMinMax(�) can be readily adopted for use.

In the following discussion, we consider a unit d-dimensional
space, i.e., points are in the space ([0,1],[0,1],. . . ,[0,1]). We
denote an arbitrary data point in the space as x = (x1; x2;

: : : ; xd). Let xmax = maxdi=1 xi and xmin = mindi=1 xi be the
maximum value and minimum value among the dimensions
of the point. Moreover, let dmax and dmin denote the dimen-
sions at which the maximum and minimum values occur. Let
the range query be q = ([x11; x12], [x21; x22], : : :, [xd1; xd2]).
Let ans(q) denote the answers produced by evaluating a
query q. In the following discussion, we shall present the
transformation function that maps a point in a d dimen-
sional space to a single dimensional space, and discuss how
range queries can be evaluated.

3.1 Mapping High Dimensional Data to Single
Dimension Space

iMinMax(�) adopts a simple mapping function that is com-
putationally inexpensive. The data point x is mapped to a
point y over a single dimensional space as follows:

y =

�
dmin + xmin if xmin + � < 1� xmax

dmax + xmax otherwise

where � is a real number.

First, we note that � plays an important role in inuencing
the number of points falling on each index hyperplane. In
fact, it is the tuning knob that a�ects the hyperplane an
index point should reside. Take a data point (0.2, 0.75) in

2-dimensional space for example, with � = 0:0, the index
point will reside on the Min edge. By setting � to 0.1 will
push the index point to reside on the Max edge. The higher
the value of � � 0, the biasness the function is expressing
towards the Max edge. When � = 0:1, the Max edge has the
preference of about 10% more. Similarly, we can \favor" the
transformation to the Min edge with � < 0. In fact, at one
extreme, when � � 1:0, the transformation maps all points
to their Max edge. and by setting � � �1:0, we always pick
the value at the Min edge as the index key. For simplicity, we
shall denote the former extreme as iMax, the latter extreme
as iMin, and any other variation as iMinMax (dropping �

unless its value is critical).

Second, we note that the transformation actually splits the
(single dimensional) data space into di�erent partitions based
on the dimension which has the largest value or smallest
value, and provides an ordering within each partition. This
is e�ected by including the dimension at which the maxi-
mum value occurs, i.e., the �rst component of the mapping
function.

Finally, the unique tunable feature facilitates the adapta-
tion of iMinMax(�) to data sets of di�erent distributions
(uniform or skewed). In cases where data points are skewed
toward certain edges, we may \scatter" these points to other
edges to evenly distribute them by making a choice between
dmin and dmax. Statistical information such as the number
of index points can be used for such purpose. Alternatively,
one can either use the information regarding data distri-
bution or information collected to categorically adjust the
partitioning.

3.2 Mapping Range Queries
Range queries on the original d-dimensional space have to be
transformed to the single dimensional space for evaluation.
In iMinMax(�), the original query on the d-dimensional space
is mapped into d subqueries | one for each dimension. Let
us denote the subqueries as q1, q2, : : :, qd, where qi = [li; hi]
1 � i � d. For the jth query subrange in q, [xj1; xj2], we
have qj as given by the expression in Equation 1.

The union of the answers from all subqueries provides the
candidate answer set from which the query answers can be
obtained, i.e., ans(q) � [di=1ans(qi). We shall now prove
some interesting results.

T
�
heorem 1. Under iMinMax(�) scheme, ans(q) � [di=1ans(qi).

Moreover, there does not exist q0i = [l0i; h
0

i], where l0i > li or
h0 < hi for which ans(q) � [di=1ans(q0i) always holds. In
other words, qi is \optimal" and narrowing its range may
miss some of q's answers.

Proof: For the �rst part, we need to show that any point x
that satis�es q will be retrieved by some qi; 1 � i � d. For
the second part, we only need to show that some points that
satisfy q may be missed. The proof comprises three parts,
corresponding to the three cases in the range query mapping
function.

Case 1: mindi=1 xi1 + � � 1�maxdi=1 xi1
In this case, all the answer points that satisfy the query q

have been mapped to the Max edge, i.e., a point x that
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qj =

(
[j +maxdi=1 xi1; j + xj2] if mindi=1 xi1 + � � 1�maxdi=1 xi1
[j + xj1; j +mindi=1 xi2] if mindi=1 xi2 + � < 1�maxdi=1 xi2
[j + xj1; j + xj2] otherwise

Equation 1: Transformation function for queries.

satis�es q is mapped to xmax, and would have been mapped
to the dmaxth dimension, and has index key of dmax+xmax.
The subquery range for the dmaxth dimension is [dmax +
maxdi=1 xi1; dmax+xdmax2]. Since x satis�es q, we have xi 2
[xi1; xi2], 8i; 1 � i � d. Moreover, we have xmax � xi1
8i; 1 � i � d. This implies that xmax � maxdi=1 xi1 8i; 1 �
i � d. We also have xmax � xdmax2. Therefore, we have
xmax 2 [maxdi=1 xi1; xdmax2], i.e., x can be retrieved using
the dmaxth subquery. Thus, ans(q) � [di=1ans(qi).

Now, let q0i = [l0i + �l; h
0

i � �h], for some �l > 0 and �h > 0.
Consider a point z = (z1; z2; : : : ; zd) that satis�es q. We
note that if li < zmax < li+ �l, then, we will miss z if q

0

i has
been used. Similarly, if hi � �h < zmax < maxdi=1 xi2, then,
we will also miss z if q0i has been used. Therefore, no q0i
provides the tightest bound that guarantees that no points
will be missed.

Case 2: mindi=1 xi2 + � < 1�maxdi=1 xi2
This case is the inverse of Case 1, i.e., all points in the query
range belongs to the Min edge. As such, we can apply similar
logic.

Case 3
In case 3, the answers of q may be found in both the Min
edge and the Max edge. Given a point x that satis�es q,
we have xi 2 [xi1; xi2], 8i; 1 � i � d. We have two cases
to consider. In the �rst case, x is mapped to the Min edge,
its index key is dmin + xmin, and it is index on the dminth
dimension. To retrieve x, we need to examine the dminth
subquery, [dmin + xdmin1; dmin + xdmin2]. Now, we have
xmin 2 [xdmin1; xdmin2] (since x is in the answer) and hence
the dminth subquery will be able to retrieve x. The second
case, which is mapping x onto the Max edge and can be
similarly derived. Thus, ans(q) � [di=1ans(qi).

Now, let q0i = [l0i + �l; h
0

i � �h], for some �l > 0 and �h > 0.
Consider a point z = (z1; z2; : : : ; zd) that satis�es q. We
note that if li < zmax < li+ �l, then, we will miss z if q

0

i has
been used. Similarly, if hi � �h < zmax < h0

i, then, we will
also miss z if q0i has been used. Therefore, no q0i provides
the tightest bound that guarantees that no points will be
missed.

2

We would like to point out that in an actual implementa-
tion, the leaf nodes of the B+-tree will contain the high-
dimensional point, i.e., even though the index key on the
B+-tree is only single dimension, the leaf node entries con-
tain the triple (xkey; x; ptr) where xkey is the single dimen-
sional index key of point x and ptr is the pointer to the
data page containing other information that may be related
to the high-dimensional point. Therefore, the false drop of
Theorem 1 a�ects only the vectors used as index keys, rather
than the actual data itself.

T
�
heorem 2. Given a query q, and the subqueries q1; q2; : : : ; qd,

qi need not be evaluated if any of the followings holds:

(i)
d

min
j=1

xj1 + � � 1� d
max
j=1

xj1 and hi <
d

max
j=1

xj1

(ii)
d

min
j=1

xj2 + � < 1� d
max
j=1

xj2 and li >
d

min
j=1

xj2

Proof: Consider the �rst case: mindj=1 xj1+� � 1�maxdj=1 xj1
and hi < maxdj=1 xj1. The �rst expression implies that
all the answers for q can only be found in the Max edge.
We note that the point with the smallest maximum value
that satis�es q is maxdj=1 xj1. This implies that if hi <

maxdj=1 xj1, then the answer set for qi will be an empty set.
Thus, qi need not be evaluated.

The second expression means that all the answers for q are
located in the Min edge. The point with the largest mini-
mum value that satis�es q is mindj=1 xj2. This implies that

if li > mindj=1 xj2, then the answer set for qi will be empty.
Thus, qi need not be evaluated.

2

Example 1. Let � = 0:5. Consider the range query ([0.2,0.3],
[0.4,0.6]) in 2-dimensional space. Since 0:2 + 0:5 > 1 �
0:4 = 0:6, we know that all points that satisfy the query
falls on the Max edge. This means that the lower bound
for the subqueries should be 0.4, i.e., the two subqueries are
respectively [0.4,0.3] and [0.4,0.6]. Since the �rst subquery's
upper bound (i.e, 0.3) is smaller than 0.4, it need not be
evaluated because no points will satisfy the query.

T
�
heorem 3. Given a query q, and the subqueries q1; q2; : : : ; qd,

at most d subqueries need to be evaluated.

Proof: The proof is straightforward, and follows from The-
orem 2.

2

From theorems 2 and 3 we have a glimpse of the e�ective-
ness of iMinMax(�). In fact, for very high dimension spaces,
we can expect signi�cant savings from the pruning of sub-
queries.

Example 2. In this example, we illustrate how iMinMax can
keep out points from the search space. Figure 2 shows the
example. Here, we have two points A(0.2,0.5) and B(0.87,0.25)
in 2-dimensional space. If we employ either iMax or iMin,
at least one false drop will occur. On the other hand, using
iMinMax(0.5) e�ectively keeps both points out of the search
space.
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Figure 2: Sample search space for 2-dimensional space.

4. IMINMAX(�) SEARCH ALGORITHMS
In our implementation of iMinMax(�), we have adopted the
B+-tree [6] as the underlying single dimensional index struc-
ture. However, for greater e�ciency, leaf nodes also store the
high-dimensional key, i.e., leaf node entries are of the form
(key, v, ptr) where key is the single dimensional key, v is
the high-dimensional vector whose transformed value is key,
and ptr is the pointer to the data page containing informa-
tion related to v. Keeping v at the leaf nodes can minimize
page accesses to non-matching points. We note that multi-
ple high-dimensional keys may be mapped to a single key

value.

The search, insert and delete algorithms are similar to the
B+-tree algorithms. The additional complexity arises as we
have to deal with the additional high-dimensional key (be-
sides the single dimensional key value). In this paper, we
shall present the search algorithms (for both point and range
queries). Insert and delete algorithms are similar to those
of B+-tree, and so we omit them.

4.1 Point Search Algorithm
In point search, a point p is issued and all matching tuples
are to be retrieved. Suppose � has been tuned for perfor-
mance purposes, the maximum and minimum values of p
have to be used to search the tree. In this case, a � that will
cause the search to be done on the other edge can be used
to call the algorithm.

The algorithm is summarized in Figure 3. Based on �, the
search algorithm �rst maps p to the single-dimensional key,
xp, using the function transform(point, �) (line 1). For
each query, the B+-tree is traversed (line 2) to the leaf node
where xp may be stored. If the point does not exist, then
a NULL value is returned (lines 3-4). Otherwise, for every
matching xp value, the high-dimensional key of the data is
compared with p for a match. Those that match are ac-
cessed using the pointer value (lines 7-13); otherwise, they
are ignored. We note that it is possible for a sequence of
leaf nodes to contain matching key values and hence they
all have to be examined. The �nal answers are then returned
(line 14).

4.2 Range Search Algorithm
Range queries are slightly more complicated than point search.
Figure 4 shows the algorithm. Unlike point queries, a d-
dimensional range query r is transformed into d subqueries
(line 2,3). The ith subquery is denoted as ri = [li; hi]. Next,
routine pruneSubquery is invoked to check if ri can be
pruned (line 4). If it can be, then it is ignored. Other-
wise, the subquery is evaluated as follows (lines 5-12). The
B+-tree is traversed to the appropriate leaf node. If there
are no points in the range of ri, then the subquery stops.
Otherwise, for every x 2 [li; hi], the high-dimensional key
of the data is compared with p for a match. Those that
match are accessed using the pointer value. As in point
search, multiple leaf pages may have to be examined. Once
all subqueries have been evaluated, the �nal answers are
then returned (line 13).

5. PERFORMANCE STUDY
We implemented iMinMax(�) and the Pyramid technique [5]
in C, and use the B+-tree as the single dimensional index
structure. Each index page is 4 KB pages. We did not
bu�er any data pages in this study. Therefore, every page
touched incurs an I/O. However, it should be noted that the
traversal paths of the d subqueries generated by iMinMax(�)
do not overlap and hence share very few common internal
nodes. This is also true for the subqueries generated by the
Pyramid technique. For the performance study reported, we
did not use Theorem 2 to prune any subqueries.

We conducted many experiments. Here, we report some
of the more interesting results on range queries. A total
of 500 range queries are used. Each query is a hyper-cube
and has a default selectivity of 0.1% of the domain space
([0,1],[0,1],: : :,[0,1]). The query width is the d-th root of
the selectivity: d

p
0:001. As an indication on how large the

width of a fairly low selectivity can be, the query width for
40-dimensional space is 0.841, which is much larger than half
of the extension of the data space along each dimension. Dif-
ferent query size will be used for non-uniform distributions.
The default number of dimensions used is 30. Each I/O cor-
responds to the retrieval of a 4 KB page. The average I/O
cost of the queries is used as the performance metrics.
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Algorithm PointSearch

Input: point p, �, root of the B+-tree R

Output: tuples matching p

1. xp  transform(p, �)
2. l  traverse(xp , R)
3. if xp is not found in l

4. return (NULL)
5. else
6. S  ;
7. for every entry in l with key xp, (xp; v; ptr)
8. if v == p

9. tuple  access(ptr)
10. S  S[ tuple
11. if l's last entry contains key xp
12. l  l's right sibling
13. goto 7
14. return (S)

Figure 3: Point search algorithm.

Algorithm RangeSearch

Input: range query r = ([x11; x12]; [x21; x22]; : : :), root of the B
+-tree R

Output: answer tuples to the range query

1. S  ;
2. for (i = 1 to d)
3. ri  transform(r, i)
4. if NOT(pruneSubquery(ri, r))
5. l  traverse(li , R)
6. for every entry in l with key x 2 [li; hi], (x; v; ptr)
7. if v == P

8. tuple  access(ptr)
9. S  S[ tuple
10. if l's last entry contains key x < hi
11. l  l's right sibling
12. goto 6
13. return (S)

Figure 4: Range search algorithm.

5.1 Effect of Dimensions
In the �rst set of experiments, we vary the number of dimen-
sions from 8 to 50. The data set is uniformly distributed over
the domain space. There are a total of 100K points.

In the �rst experiment, besides the Pyramid scheme, we
also compare against the MAX scheme and the sequential
scan (seq-scan) technique. The MAX scheme is the simple
scheme that maps each point to its maximum value. How-
ever, the transformed space is not partitioned. Moreover,
two variations of iMinMax(�) are used, namely iMax (i.e.,
� = 1) and iMinMax(� = 0:0) (denoted as iMinMax). Fig-
ure 5 shows the results. First, we note that both the MAX
and seq-scan techniques perform poorly, and their I/O cost
increases with the higher number of dimensions. MAX per-
forms slightly worse because of the additional internal nodes
to be accessed and the high number of false drops.

Second, while the number of I/Os for iMinMax, iMax and
Pyramid also increases with increasing number of dimen-
sions, it is growing at a much slower rate. Third, we see
that iMinMax performs the best, with Pyramid following
closely, and iMax performing worse than Pyramid. iMin-
Max outperforms iMax and Pyramid since its search space
touches fewer points.

In a typical application, apart from the index attributes,
there are many more large attributes which make sequential
scan of an entire �le not cost e�ective. Instead, a feature
�le which consists of vectors of index attribute values is used
to �lter out objects (records) that do not match the search
condition. However, we note that for queries which entail
retrieval of a large proportion of objects, direct sequential
scan may still be cost e�ective. The data �le of the iMinMax
technique can be clustered based on the leaf nodes of its B+-
tree to reduce random reads. The clusters can be formed in
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Figure 5: E�ect of dimensions on uniformly dis-
tributed data set.
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Figure 6: Comparing iMinMax and Pyramid
schemes.

such a way they allow easy insertion of objects and expan-
sion of their extent. Other optimizations such as those at the
physical level are possible to make the B+-tree behave like
an index sequential �le. Based on above argument and ex-
perimental results, for all subsequent experiments, we shall
restrict our study to iMinMax and Pyramid techniques.

We further evaluated Pyramid and iMinMax and the results
are shown in Figure 6. We observe that iMinMax remains
superior, and can outperform Pyramid by up to 25%.

5.2 Effect of Data Set Sizes and Query Sizes
In this set of experiments, we study several di�erent factors
- the data set sizes, the query selectivities. For both studies,
we �xed the number of dimensions at 30. Figure 7 shows
the results when we vary the data set sizes from 100K to
500K points. Figure 8 shows the results when we vary the
query selectivities from 0.01% to 10%.
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Figure 7: E�ect of varying data set sizes.
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Figure 8: E�ect of varying query selectivity (100K
dataset).

As expected, both iMinMax and Pyramid incurred higher
I/O cost with increasing data set sizes as well as the query
selectivities. As before iMinMax remains superior over the
Pyramid scheme. It is interesting to note that the relative
di�erence between the two schemes seems to be una�ected
by the data set sizes and query selectivities. Upon investiga-
tion, we found that both iMinMax and Pyramid return the
same candidate answer set. The improvement of iMinMax
stems from its reduced number of subqueries compared to
the Pyramid scheme.

5.3 Effect of Data Distributions
In this experiment, we study the relative performance of
iMinMax and Pyramid on skewed data distributions. Here,
we show the results on two distributions, namely skewed
normal and skewed exponential. Figure 9 illustrates two
skewed data distributions in a 2-dimensional space.

The �rst set of experiments studies the e�ect of � on skewed
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Figure 9: Skewed data distribution.

normal distribution. For normal distribution, the closer the
data center is to the cluster center, the more we can keep
points evenly assigned to each edge. For queries that follow
the same distribution, the data points will have the same
probability of being kept far from the query cube. In these
experiments, we �x each dimension of the query to have a
width 0f 0.4.

Figure 10(a) shows the results for 100K 30-dimensional points.
First, we observe that for iMinMax, there exists a certain
optimal � value that leads to the best performance. Essen-
tially, � \looks out" for the center of the cluster. Second,
iMinMax can outperform the Pyramid technique by a wide
margin (more than 50%!). Third, we note that iMinMax
can perform worse than the Pyramid scheme. This occurs
when the distribution of points to the edges become skewed,
and a larger number of points have to be searched. Because
of the above points, we note that it is important to �ne tune
� for di�erent data distributions in order to obtain optimal

performance. The nice property is that this tuning can be
easily performed by varying �.

In Figure 10(b), we have the results for 500K 30-dimensional
points. As in the earlier experiment, iMinMax's e�ective-
ness depends on the � value set. We observe that iMinMax
performs better than Pyramid over a wider range of tuning
factors, and over a wider margin (more than 66%).
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(a) 100K points
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Figure 10: Skewed normal data set.

The second set of experiments looks at the relative perfor-
mance of the schemes for skewed exponential data sets. As
above, we �x each dimension of the query to have a width
of 0.4. For exponential distribution (we choose to be ex-
ponential to small value), many dimensions will have small
values, and a small number of them will have large values.
Thus, lots of data points will have at least one big value.
Because many of the dimensions are with small values, the
data points tend to lie close along the edges of data space.
We note that exponential data distribution can be far dif-
ferent from each other. They are more likely to be closed
along the edges, or closed to the di�erent corners depending
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on the number of dimensions that are skewed to be large, or
small. A range query, if it is with exponentially distribution
characteristic, its subqueries will mostly be closed to the low
corner. Therefore, tuning the keys to choose large values is
likely to keep away more points from the query.

Figure 11 shows the results for 500K 30-dimensional points
on skewed exponential distribution. The results are similar
to that of the normal distribution experiments | iMinMax
is optimal at certain � values.
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Figure 11: Skewed exponential data sets (500K
points).

6. CONCLUSION
In this paper, we have proposed a simple and yet very e�-
cient method for indexing very high dimensional data based
on edges. We have shown by experiments that the method
is signi�cantly more e�cient and dynamic than the Pyra-
mid technique. Performance di�erence is expected to in-
crease as the data volume and dimensionality increase, and
for skewed data distributions. We are currently comparing
iMinMax against the VA-�le [4] and looking at how to gen-
eralize iMinMax(�) for nearest neighbor search. We are also
looking at the possibility and the e�ect of maintaining �i for
each dimension. Finally, we are exploring how to determine
� adaptively.
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