
ItCompress: An Iterative Semantic Compression Algorithm

H. V. Jagadish1 Raymond T. Ng2 Beng Chin Ooi3 Anthony K. H. Tung3 +

1 University of Michigan. email: jag@eecs.umich.edu 1301 Beal Ave, Ann Arbor, MI, 48109-2122
2 University of British Columbia. email: rng@cs.ubc.ca 2366 Main Mall, Vancouver, B.C., V6T 1Z4

3 National University of Singapore, email:{ooibc, atung}@comp.nus.edu.sg 3 Science Dr 2, Singapore 117543
4 +Contact Author

Abstract

Real datasets are often large enough to necessitate
data compression. Traditional ‘syntactic’ data compression
methods treat the table as a large byte string and operate at
the byte level. The tradeoff in such cases is usually between
the ease of retrieval (the ease with which one can retrieve
a single tuple or attribute value without decompressing a
much larger unit) and the effectiveness of the compression.
In this regard, the use of semantic compression has gen-
erated considerable interest and motivated certain recent
works.

In this paper, we propose a semantic compression al-
gorithm called ItCompress ITerative Compression, which
achieves good compression while permitting access even
at attribute level without requiring the decompression of
a larger unit. ItCompress iteratively improves the com-
pression ratio of the compressed output during each scan
of the table. The amount of compression can be tuned
based on the number of iterations. Moreover, the initial
iterations provide significant compression, thereby making
it a cost-effective compression technique. Extensive ex-
periments were conducted and the results indicate the su-
periority of ItCompress with respect to previously known
tehniques, such as ‘SPARTAN’ and ‘fascicles’.

1 Introduction

Advances in information technology have necessitated
the creation of massive high-dimensional tables required
for new applications such as corporate data warehouses,
network-traffic monitoring and bio-informatics. The sizes
of such tables are often in the range of terabytes, thereby
making it a challenge to store them efficiently. In order to
reduce the respective sizes of such tables, an obvious so-
lution is the use of traditional data compression methods
which are statistical or dictionary-based (e.g., Lempel-Ziv
[17]). Such methods are ‘syntactic’ in nature since they
view the table as a large byte string and operate at the byte
level.

More recently, compression techniques, which take se-
mantics of the table into consideration during compression
[9, 1], have received considerable attention. In general,
these algorithms first try to derive a descriptive model, M ,
of the database by taking into account the semantics of the
attributes and then separate them into the following three
groups with respect to M :

1. Data values that can be derived from M .

2. Data values essential for deriving the data values in (1)
using M .

3. Data values that do not fit M i.e., outliers.

By storing only the model M together with the second
and third groups of data values, compression is achieved
since M typically takes up substantially less storage space
than the original database. Such semantic compression gen-
erally has the following advantages over syntactic compres-
sion:

• More Complex Analysis
Since the semantics of the data are taken into considera-
tion, complex correlation and data dependency between
the data attributes can be exploited in case of semantic
compression of data. Note that this is not supported in
case of syntactic compression methods since the database
is viewed as a large byte string in such methods. Fur-
ther, the exploratory nature of many data analysis appli-
cations implies that exact answers are usually not needed
and analysts may prefer a fast approximate answer with
an upper bound on the error of approximation. By taking
into consideration the error tolerance that is acceptable
in each attribute, semantic compression can be used to
perform lossy compression to enhance the compression
ratio. (The benefits can be substantial even when the level
of error tolerance is low).

• Fast Retrieval
Given a massive table, only certain rows of the table are
typically accessed to answer database queries. As such,
it is desirable to be able to decompress only certain tu-
ples in the database, while allowing the other tuples to re-
main uncompressed. Since syntactic compression meth-
ods, such as gzip, are unaware of the record boundary, it
is usually not possible to do so without uncompressing
the whole database. In fact, it has even been suggested
[12, 13] that tables are better compressed column-wise.
Separate compression of individual tuples, and even in-
dividual attributes, is possible. However, syntactic com-
pression is usually not effective on very small strings. As
such, this sort of fine granularity compression is not used
frequently.

Semantic compression permits local reconstruction of se-
lected tuples and even attributes without having to recon-
struct the entire table. In fact, it is even possible to store
the compressed data in a relational database, thereby
making the query optimization and indexing techniques
of relational databases available also for compressed
data.



• Query Enhancement
In addition to the compression itself, there could be in-
trinsic value in obtaining the descriptive model M for
semantic compression. For example, in [1] where M is
a set of classification or regression trees, the following
rule could have been found “if X = a, then Y = b with
100% accuracy”. In such a case, for a query searching
for tuples with X = a and Y = c, an empty answer set
could be returned very efficiently. Such side benefits are
not available when syntactic compression is used.

Although semantic compression has several advantages
over syntactic compression, the two types of compression
are not mutually exclusive. In fact, it has been shown
in [9] that applying semantic compression before syntac-
tic compression results in better compression performance
than from either syntactic compression or semantic com-
pression. (However, syntactic compression used in the sec-
ond phase will nullify the fast retrieval benefit discussed
earlier for semantic compression.)

In this paper, we propose a new semantic compression
scheme based on the selection of representative rows.
Each tuple in the table is assigned to one of the represen-
tative rows and its attribute values are defaulted to be the
same with the assigned representative rows unless the ac-
tual value differs from the default value by more than an
acceptable error threshold. In such cases, outlying values
are specifically stored for the row. Our scheme is similar
to clustering, with each representative row considered like
a cluster representative. However, there is a significant dif-
ference due to the outlying values that are possible. These
attributes could have values in a row wildly different from
its assigned representative row. As such, by most standard
metrics, the distance between a row and its representative
could be very large. Let us illustrate the concept with an
example:

Example 1 Consider the table in Figure 1(a) which con-
tains 5 attributes and 8 tuples. Let the acceptable error
threshold for the numeric attributes age, salary and assets
be 5, 25,000 and 50,000 respectively, while no errors are
allowed for categorical data. We show a selection of rep-
resentative rows in Figure 1(c) and the compressed table in
Figure 1(b). As can be seen, each row in the compressed
table is associated with one of the representative rows us-
ing a representative row ID (RRid). A bitmap is assigned
to each row to provide the position for the outlying values.
A ‘1’ at the nth bit indicates that its nth attribute value is
within an acceptable error tolerance threshold of the nth

attribute value for the representative row, while a ‘0’ indi-
cates otherwise. Thus from the bitmap in the first row, we
can see that the values for attribute “age” and “assests” in
that row are ‘20’ and ‘25,000’ respectively instead of ‘30’
and ‘200,000’ as indicated by its representative row. 2

To compress data according to the scheme, the difficult
issue is to choose a good set of representative rows. For this
purpose, we develop an algorithm called ItCompress (ITer-
ative Compression) which iteratively improves the set of
chosen representative rows. From one iteration to the next,
new representative rows may be selected, and old ones dis-
carded. A key analytical result of this paper is the “conver-
gence” theorem showing that, even though the representa-

age salary assets credit sex
20 30,000 25,000 poor male
25 76,000 75,000 good female
30 90,000 200,000 good female
40 100,000 175,000 poor male
50 110,000 250,000 good female
60 50,000 150,000 good male
70 35,000 125,000 poor female
75 15,000 100,000 poor male

(a) An Example Table

RRid Bitmap Outlying Values
2 01011 20, 25,000
1 11011 75,000
1 11111
1 01100 40, poor, male
1 01111 50
1 01110 60, male
2 11110 female
2 11111

(b) Table Tc

RRid age salary assets credit sex
1 30 90,000 200,000 good female
2 70 35,000 100,000 poor male

(c) Representative Rows

Figure 1. Representative Rows and Com-
pressed Table

tive rows may keep changing, each iteration monotonically
improves the global quality. In fact, for many cases, the
rate of convergence is high i.e., even a small number of iter-
ations may be sufficient to deliver significant compression
performance. Furthermore, each iteration of the algorithm
requires only a single scan over the data, leading to a fast
compression scheme.

The rest of this paper is organized as follows. Section
2 gives a formal definition of the problem of semantic data
compression, while our proposed ItCompress algorithm is
presented in Section 3. In Section 4, we briefly describe
competing approaches, and discuss their comparative mer-
its. In Section 5, we present results from an extensive ex-
perimental study comparing our approach with these ap-
proaches. Section 6 describes other related work, while
Section 7 concludes with directions for future work.

2 Problem Description

Given a table T , which has m attributes X1, ..., Xm and
n rows, we use R[Xi] to represent the value of Ai for row
R. We denote the domain of attribute Xi as dom(Xi). Our
aim is to perform a lossy compression on T such that the
values reconstructed from the compressed table satisfy cer-
tain error tolerances for each column. We denote these er-
ror tolerances as a vector e = [e1, ..., em] with ei being
the error tolerance for Xi. The value ei is interpreted dif-
ferently depending on the (domain) type of Xi. Our tech-
niques are applicable irrespective of the specific definitions
chosen for tolerance. For instance, we could use edit dis-
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tances for string types, or distance to the closest common
ancestor for classification types. To keep matters concrete,
in all examples and experiments in this paper, we focus on
two of the most popular types: An attribute Xi is said to
be numeric if the values in dom(Xi) can be ordered while
attributes with unordered, discrete domain values are said
to be categorical. With these, we associate the following
tolerance rules:

1. Categorical
For a categorical attribute, the tolerance ei defines an up-
per bound on the probability that the approximate value
of Xi in Tc is different from the actual value in T. This
means that given Xi = x for a particular row in T and
Xi = x′ for the same row in Tc, Prob(x = x′) ≥ 1− ei.

2. Numeric
Given that the value of an attribute Xi is x in T and that
x′ is it corresponding value in Tc, then the tolerance ei

defines the upper bound that x′ can deviate from x. This
means that x should be within the range [x′−ei, x

′ +ei].

Given the error tolerance specifications, our aim is to
derive a compression scheme that minimizes total storage
while satisfying these criteria.

Definition 2.1 Compression Scheme
Given the table T , our basic compression scheme consists
of two parts, the set of representative rows P and the com-
pressed table Tc

1. Representative Rows
The set of representative rows P consists of a set of k
rows {P1, ..., Pk} where each row Pi ∈ (dom(X1)) ×
(dom(X2)) × ...(dom(Xm)). We say that a row in R
matches a representative row Pi on attribute Xi if one of
the following conditions is true:

(a) P [Xi]−ei ≤ R[Xi] < P [Xi]+ei if Xi is numeric
(b) R[Xi] = P [Xi] if Xi is categorical

2. Compressed Table
For each row R in T , the compressed table Tc has a cor-
responding row which can be further split into the fol-
lowing three parts:

(a) A representative row id, RRid, which indicates
that R is most similar to representative row PRRid

in the set of representative rows.
(b) A bitmap which has a bit for every attribute. A bit

representing Xi is set to 1 if PRRID[Xi] matches
RRRiD[Xi] and 0 otherwise.

(c) An outlying list which stores attribute values in R
that cannot be inferred satisfactorily from the rep-
resentative row id and bitmap.

Given our compression scheme, one obvious conclusion
is that if we can find a set of k representative rows, P =
{P1, ..., Pk} such that all rows are fully matched by at least
one member from P , then the number of outlying values
that need to be stored will be zero giving rise to very good
compression ratio. However, this is not always possible and
hence our aim is to minimize the number of outlying values
that need to be stored using the notion of coverage.

Notation Description
e error tolerance vector
ei error tolerance for attribute Xi

fv(Xj , G(Pi)) the most frequent value/interval for at-
tribute Xi in group G(Pi)

G(Pi) a set of rows which have Pi as the best
match

m number of attributes in a table
n number of rows in a table
P a set of representative rows
Pi the ith representative row in P

Pi[Xj ] value of attribute Xi for representative
row Pi

Pmax(R) the representative row that best matches
row R

R a row in a table T

R[Xj ] value of attribute Xi for row R

RRid representative row id
T a table
Tc a compressed version of T

X a set of attributes

Figure 2. Notations

Definition 2.2 Coverage
Let R be a row in T and let Pi be a representative row in
P . We say that the coverage of Pi on R, cov(Pi, R) is
the number of attributes Xi in which R[Xi] is matched by
P [Xi]. 2

As an example, the coverage of representative row P1

on the second row of T in Example 1 is 4 since the age,
salary, credit, and sex attributes lie within the error toler-
ance.

Now let us define the total coverage of a set of represen-
tative rows P on a table T .

Definition 2.3 Total Coverage
Let P be a set of representative rows P1, ..., Pk and let the
table T contain n rows R1, ..., Rn. For each row, Ri let
Pmax(Ri) be the representative row from P that gives the
maximum coverage among Pi (i ≤ i ≤ k) to Ri. We de-
fine the total coverage of P on T to be totalcov(P, T ) =∑

i=1..n cov(Pmax(Ri), Ri) 2

Maximizing the total coverage is equivalent to minimiz-
ing the number of outlying values and thus we have the fol-
lowing problem definition:

Definition 2.4 Maximum Coverage (MC) Problem
Given a table T , an error tolerance vector e and a user-
specified value k, find a set of k representative rows P
which maximizes totalcov(P, T ). 2

For ease of reference, we show in Figure 2 the notations
used in this paper.

3 The ItCompress Algorithm

The MC problem is easily shown to be NP-hard since a
special case is equivalent to the k-center problem [5]. As
such, our solution to this problem is to find an efficient
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Algorithm ItCompress
Input: A table T , a user specified value k and an error tolerance
vector e.
Output: A compressed table Tc and a set of representative rows
P = {P1, ..., Pk}.

1. Pick a random set of representative rows P
2. While totalcov(P, T ) is increasing do
3. { For each row R in T , find Pmax(R)
4. Recompute each Pi in P as follow:
5. { For each attribute Xj ,
6. Pi[Xj ] = fv(Xj , G(Pi))
7. }
8. }

Figure 3. The ItCompress Algorithm

heuristic. While optimality is not guaranteed for our algo-
rithm, experiments show that it gives a good compression
ratio without sacrificing efficiency.

The ItCompress (ITerative COMPRESSion) algorithm is
presented in Figure 3. The algorithm begins by picking a
random set of k representative rows from the table T . It
then iteratively improves this random choice with the ob-
jective of increasing the total coverage over the table to be
compressed. There are two phases in each iteration:

Phase 1: (Step 3 of ItCompress) In this phase, each row
R in T is assigned to a representative row Pmax(R) that
gives the most coverage to R among the members of P . Let
G(Pi) denote the set of rows that are assigned to a repre-
sentative row Pi.

Phase 2: (Steps 4 to 6 of ItCompress) In this phase, a
new set of representative rows is computed. Each new Pi

is computed by setting each attribute value Pi[Xj ] to be
fv(Xj , G(Pi)) which denotes the most frequently occur-
ring value/interval for attribute Xj in G(Pi).

For a categorical attribute, this can easily be done by
keeping count of the number of occurrences for each cat-
egorical value in G(Pi) during Phase 1. For a numeric at-
tribute, fv(Xj , G(Pi)) is an interval of width [x − ej , x +
ej ], x ∈ dom(Xj) that is most frequently matched by the
rows in G(Pi). An efficient mechanism is to partition the
range for Xj into micro-intervals of size that are signifi-
cantly smaller than ej say ej/10 and keep track of the fre-
quency of occurrence of each such micro-interval in Phase
1. A sliding window of size 2 ∗ ej is then moved along
these sorted micro-intervals to find the range that is most
frequently matched. This method ensures a linear time al-
gorithm for computing fv(Xj , G(Pi)) while ensuring that
the error in estimating fv(Xj , G(Pi)) is not more than the
size of the micro-interval.

The above two phases are repeated until there is no im-
provement in totalcov(P, T ). In some practical situations,
it can also be specified that termination will occur if the im-
provement in totalcov(P, T ) is negligible in comparison to
the previous iteration. Example 2 demonstrates the running
of the ItCompress algorithm.

Example 2 Consider again the table in Figure 1 and let us
assume that the error tolerance vector e is {5, 25000, 50000,
0, 0 }. Assuming that k = 2 and that the first and second

RRid age salary assets credit sex
1 20 30,000 25,000 poor male
2 25 76,000 75,000 good female

(a) Representative Rows

age salary assets credit sex
20 30,000 25,000 poor male
60 50,000 150,000 good male
70 35,000 125,000 poor female
75 15,000 100,000 poor male

(b) G(P1):Rows assign to P1

age salary assets credit sex
25 76,000 75,000 good female
30 90,000 200,000 good female
40 100,000 175,000 poor male
50 110,000 250,000 good female

(c) G(P2):Rows assign to P2

Figure 4. Iteration 1 for Example 2

row of the table are picked as the initial representative rows,
we depict the situation for the first iteration of ItCompress
in Figure 3. The representative rows P1 and P2 are shown
in Figure 4(a) while Figure 4(b) and 4(c) show the rows that
are assigned to P1 and P2 respectively. We leave it to read-
ers to verify that each row is assigned to the representative
row that best matches it (arbitrarily breaking ties). Having
done so, P1 and P2 are recomputed by assigning to each
attribute the most frequently occurring value/interval (high-
lighted in bold).

This new set of representative rows is shown in Figure
5(a) and we highlight the changes from the previous set
of representative rows in bold. With this change, the rows
in the table are again reassigned and only one of the row
changes membership from G(P2) to G(P1). Note that the
total coverage of the two representative rows improves from
25 to 31 as we move through the two iterations. The it-
erative process continues until there is no improvement in
totalcov(P, T ). 2

Note that throughout the ItCompress algorithm, the er-
ror bound for categorical attribute is not utilized as part
of the optimization. However, this can be easily done
at the end of the algorithm. Given G(Pi), the set of
rows which have Pi as the best match, we can compute
for each categorical attribute Xj , the frequency of occur-
rence of Pi[Xj ] within G(Pi). Let us denote this fre-
quency of occurrence as freq(Pi[Xj ], G(Pi)). Since we
have an error tolerance of ej for Xj , we will remove up to
ej/(1 − ej) × freq(Pi[Xj ], G(Pi)) outlying values from
the rows in G(Pi) as long as these outlying values are in
the domain of Xj . These removed outlying values can be
assumed to be Pi[Xj ] without invalidating the error-bound.
From here, we can see that ItCompress is indirectly utiliz-
ing the error tolerance for categorical attributes by trying to
maximize coverage and thus allowing more outlying values
to be removed.
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RRid age salary assets credit sex
1 70 30,000 125,000 poor male
2 25 90,000 175,000 good female

(a) Representative Rows

age salary assets credit sex
20 30,000 25,000 poor male
40 100,000 175,000 poor male
60 50,000 150,000 good male
70 35,000 125,000 poor female
75 15,000 100,000 poor male

(b) G(P1):Rows assign to P1

age salary assets credit sex
25 76,000 75,000 good female
30 90,000 200,000 good female
50 110,000 250,000 good female

(c) G(P2):Rows assign to P2

Figure 5. Iteration 2 for Example 2

3.1 Convergence and Complexity

Given the ItCompress algorithm described above, we
have the following theorem:

Theorem 3.1 The total coverage of P on T is non-
decreasing for every iteration in ItCompress.

Proof: Our aim is to show that the totalcov(P, T ) either
increases or remain the same in both Phases 1 and 2.
In Phase 1, this is trivial since each row is assigned a
representative row Pi that provide the most coverage. If
Pmax(Ri) changed for a row Ri, then it means that
cov(Ri, Pmax(Ri)) has increased, otherwise without a
change in Pmax(Ri),cov(Ri, Pmax(Ri)) would have re-
mained the same. Since all rows either have the same or
increased coverage for the same set of P , totalcov(P, T )
must have increased or remained the same.
In Phase 2, we first observe that

∑
R∈G(Pi)

cov(R,Pi) is
equal
to

∑
j=1..m match(G(Pi), Xj) where match(G(Pi), Xj)

is the number of rows in G(Pi) that match Pi on attribute
Xj . Since fv(Xj , G(Pi)) is chosen such that the number
of rows from G(Pi) that match Pi[Xj ] is maximum, we are
also maximizing

∑
R∈G(Pi)

cov(R,Pi). Since this is done
for each pattern Pi ∈ P , we are thus increasing or main-
taining totalcov(P, T ).

As can be seen, both Phase 1 and 2 either increase or
maintain totalcov(P, T ), thus proving the theorem. 2

From Theorem 3.1, we can conclude that ItCompress will
eventually converge since totalcov(P, T ) is finite.

We now look at the issue of efficiency. Since ItCompress
iteratively goes through the n rows in the table and matches
each of them against the k representative rows, the num-
ber of rows compared is kn. Each row comparison requires
2m operations, where m is the number of columns. Thus,
the run-time complexity for Phase 1 is O(kmnl), where l is
the number of iterations. In Phase 2, computing each new
Pi requires going through all the domain values/intervals of

each attribute. Assuming that the total number of domain
values/intervals is d, then Phase 2 will have a run time com-
plexity of O(kdl). Thus, the total run time complexity of
ItCompress is O(kmnl +kdl). Since k, d, m and l are usu-
ally much less than n, we infer that ItCompress has a linear
running time of O(n).

To further reduce the running time in practice, we run
ItCompress on a sample drawn from a large table and find a
set of representative rows P for the sample. The remaining
remaining rows in the table are then assigned to the best
matched member in P . Experiments in the next section will
show that a 5% to 10% sample is sufficient to produce good
compression in this manner.

4 Discussion

Two semantic compression algorithms [9, 1] have pre-
viously been suggested in the literature. Both these algo-
rithms are quite complex, and the ItCompress algorithm de-
scribed above appears to be much less sophisicated. While
an extensive performance comparison will be presented in
the next section, here we will highlight some of the dif-
ferences and motivate some of the design choices made in
ItCompress.

4.1 Previously Known Semantic Compression Al-
gorithms

In this section, we present a brief sketch of the two pre-
viously known semantic compression algorithms that we
must compare ourselves against.

The fascicles algorithm presented in [9] is the first se-
mantic compression algorithm developed for tables and re-
lations. Given a table of m columns and a user-specified
value of u (u ≤ m), the algorithm extracts a model M
consisting of w fascicles, each of which is represented by
a u-tuple. The u columns are called compact attributes be-
cause these are columns with very similar values (i.e., val-
ues within the error tolerance) for all the rows assigned to
the fascicle.

While the fascicles algorithm determines the u compact
columns locally on a per fascicle basis, SPARTAN [1] tries
to separate the m columns into a set of predictor attributes
and a set of predicted attributes globally for the entire re-
lation. The model M , in this case, is simply the set of
the predictor attributes. SPARTAN identifies the predic-
tor columns by constructing Bayesian Network and CaRTs
(classification and regression trees).

As seen in the fascicle algorithm and SPARTAN, the key
aspects that differentiate one semantic compression algo-
rithm from another are the exact definition of the model M
used to compress the database and how it is constructed.

4.2 Simplicity and Directness

In both fascicles and SPARTAN, the process of compres-
sion can generally be separated into 2 steps.

Step 1: Finding a set of patterns or rules.
Step 2: Using the discovered patterns/rules in Step 1, form
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the global model, M for compressing the database.

To assess the usefulness of the patterns/rules in Step 1,
criteria like length of the patterns or accuracy of the rules
are used to guide the mining algorithms. There are however
no direct guarantee that the patterns/rules discovered using
such criteria are actually useful in forming a good global
model for compression. For example consider an example
in which the following 6 rules are found by SPARTAN:

• Rule 1: X1, X2, X3 → X7(100%)

• Rule 2: X4, X5, X6 → X8(100%)

• Rule 3: X3, X4, X5 → X7(80%)

• Rule 4: X3, X4, X5 → X8(80%)

• Rule 5: X1 → X2(80%)

• Rule 6: X1 → X6(80%)

In this example, although both Rule 1 and 2 have 100%
prediction accuracy but utilizing them in the global com-
pression model will require the storage of 6 predictor at-
tributes (i.e. X1,..., X6). On the other hand, Rule 3 to 6
allow us to store only 4 predictor attributes (i.e. X1, X3,
X4 and X5) although more outliers are expected due to less
accurate rules. The tradeoff in performance between these
two choices is not entirely clear.

Based on this example, we can seen that it is entirely
possible for SPARTAN to find excessive number of pat-
terns/rules that are not useful in constructing a good global
compression model while other potentially useful rules can
be missed based on the criteria adopted in Step 1. This con-
clusion seems unsatisfactory considering that we much go
through the complex process of training Bayesian Network
in SPARTAN (which have a time complexity of O(m4 ∗ n)
[1], m being the number of columns and n the number of
randomly sampled rows). Likewise, fascicles suffers from
similar difficulties since it too has a two-stage process.

Furthermore, since the selection of the optimal set of pat-
terns/rules in the second step is NP-hard for both fascicles
and SPARTAN, greedy algorithms are used for this purpose,
with no guarantees on the quality of results obtained.

ItCompress on the other hand adopt a simple philosopy
of “direct optimization”. Since the aim of a compression al-
gorithm is to reduce the storage requirement for a database,
ItCompress directly use this as a optimization criteria and
ensure that only patterns which improve the compression
are found in each step of its iterations 5 . While the opti-
mization problem is NP-hard in our case as well, the heuris-
tic used is an iterative hill-climbing technique that can rec-
ognize when it has reached a (local) maximum. As men-
tioned earlier, this simple approach result in a much lower
time complexity compared to SPARTAN.

4.3 Constraining the Optimization

If one views the compression task as an optimization
problem, a question to ask is what constraints are imposed

5This philosopy is inspired by the proposal to have a microeconomic
view on data mining in [11]

on feasible solutions by virtue of the choice of solution
technique.

SPARTAN imposes a constraint that each attribute
must be either a predicted or predictor attribute globally.
In consequence, SPARTAN is not able to exploit situ-
ations where there is only local “column-wise” depen-
dency in a dataset (i.e., exhibited by a subset of the rows).
For example, “age<20” could be a strong predictor for
“assets<50,000”. However “age>20” might give no
good indication on a person’s assets. In such a case, age is
said to give only a “local” prediction for assets and hence
will not be suitable as a predictor attribute since SPARTAN
is constraining its compression model to use only global de-
pendency exhibited by all the rows.

Similarly, a fascicle has the constraint that there must
be u compact attributes which are matched completely by
every tuple in it. If even one tuple has a different value for
one of the u attributes, it cannot be retained in the fascicle.

ItCompress overcomes this problem by grouping rows
based on approximate matching to the representative row
and trying to maximize the number of matching columns
without any constraints.

4.4 Tuning Parameters

Every algorithm has engineering parameters that must be
specified for effective performance.

For instance, consider u, the number of compact at-
tributes required in a fascicle. For a fascicle with n rows,
the saving in term of storage will be in the order of O(un).
Because of this, the result of the compression can be rather
sensitive to u. A small value of u will obviously give little
compression even when n is large. A large value of u will
result in only a few rows in each fascile, making the value
of the this product small. There is no easy way to determine
an optimum choice for u.

Similarly, the parameters for the construction of
Bayesian Network and CARTs which is needed by SPAR-
TAN are also not easily selected. The is especially true for
Bayesian Network since the network structure must first be
inferred before any training can take place.

ItCompress, too has user-tunable parameters. However,
these parameters can be tuned more easily due to the sim-
plicity of the algorithm. One is the the number of represen-
tative rows. Too large a number will result in little com-
pression. Too small a number may leave too many attribute
values stored as exception, again leading to little compres-
sion. Fortunately, our experimental results show that there
is a rather flat optimum region, and the quality of compres-
sion is not greatly affected by the choice of value for this
parameter.

Another parameter in ItCompress is the number of iter-
ations it is run for. Here, we know when to stop, since the
improvement is easily measured from one iteration to the
next. As such, it is not necessary to have an a priori deter-
mination of this parameter value.

5 Performance Study

In this section, we study the performance of ItCompress,
and evaluate its senstivity to various parameters. We also

6



compare its performance, not only against the fascicles and
SPARTAN algorithm, but also against gzip [17, 18], a well-
known syntactic compression algorithm.

Since the SPARTAN system is proprietary and the code
is non-trivial for us to reproduce from scratch, we decided
to follow the experiments reported in [1] and compare our
results against those described in it. We implemented and
ran the other three algorithms. Faithful reproduction of
datasets provides a fair basis to compare the compression
obtained by the four algorithms. To compare running times,
we performed our experiments on a single processor PC
with a 700Mhz AMD Duron processor and 256MB of main
memory, which is clearly less superior to the system used
in [1] that has four Pentium 700Mhz processors and 1 GB
of memory. This provides an advantage to SPARTAN over
the other algorithms, and ItCompress in particular.

Syntactic compression can optionally be applied after se-
mantic compression, since the two techniques are comple-
mentary. As such, in addition to running gzip by itself, we
also ran gzip on the results of the other algorithms. For It-
Compress and fascicles, we are able to report results both
with and without this final syntactic compression.

In the case of SPARTAN, the results in [1] are obtained
after applying gzip on top of the initial compression by fas-
cicles and SPARTAN 6. As such, we do not have the num-
bers for compression by SPARTAN alone, without the gzip
that follows.

Real-life Data Sets. As in the experiments in the SPAR-
TAN paper[1], we select the following three real-life
datasets for experiments.

• Corel.(http://kdd.ics.uci.edu/databases/CorelFeatures)
This dataset consists of 32 numerical attributes and con-
tains 68,040 tuples. Since only a 10.5MB subset is used
out of the 20MB dataset in [1], we followed likewise
and randomly selected twenty such subsets in order to
reduce the error due to variations in the sample. Ex-
periments show that the difference in performance over
the twenty subsets is negligible. Each subset consists of
around 35,000 tuples.

• Forest-cover.
(http://kdd.ics.uci.edu/databases/covertype)
This dataset was also downloaded from the given web-
site. It is a 75.2MB dataset containing 581,000 tuples
with 10 numeric and 44 categorical attributes describing
the elevation, slope, soil type etc for a forest cover.

• Census. (www.bls.census.gov)
This dataset is obtained directly obtained from the au-
thors of [1]. It consists of 7 categorical attributes and 7
numeric attributes selected from a census dataset. There
are 676,000 tuples in the dataset and it takes up a storage
of 28.6 MB.

Default Parameter Settings. For SPARTAN, we used the
default parameter values used in [1]. To obtain the result
for fascicles without gzip, we also used the optimal settings
provided in [1]. For ItCompress, the default value for error

6For fascicle, gzip is applied on the whole compressed dataset while
for SPARTAN, gzip is applied on the predictor attributes.

tolerance was fixed at 0 for all categorical attributes. For a
numeric attribute Xi, we specified ei as a percentage of the
width of the range of Xi values in the table, and we had set
this percentage to 1% by default. For other parameters, the
default value of k was fixed at 300 and the sampling rate
was 10%. The number of iterations for ItCompress was
limited to 3, unless otherwise stated.

5.1 Effect of Random Initialization

The initialization of ItCompress is based on a random se-
lection of representative rows. We investigated the variation
in compression performance produced by ItCompress due
to this random selection. For this purpose, we performed 5
sets of experiments using a different set of initial represen-
tative rows each time. To see if this random choice becomes
more significant when more or fewer representatives are
chosen, we varied k, and again repeated the experiment five
times with different random initial representative rows for
each value of k. For the same reason, we also repeated the
experiment with different datasets. Our results are shown in
Figure 6 where each column of the table represents one set
of five repetitions for a chosen dataset and specified value of
k. As can be seen, all values in any column are almost iden-
tical, indicating that the variance in compression ratio due
to different random initializations is insignificant for all the
three datasets with the value of k ranging from 50 to 500.
We thus have reason to believe that the compression ratio of
ItCompress is stable despite the random initialization. To be
doubly sure, all our readings for ItCompress in the next two
sections are reported as the average over 5 runs. Note that
we did not observe a significant variance between runs in
any of these cases.

5.2 Empirical Comparison of Algorithms

We next compare ItCompress with the other compres-
sion algorithms in terms of both effectiveness and effi-
ciency. In Figure 7, we vary the error tolerance threshold
from its default value and look at the compression ratio
achieved by the various algorithms on the three datasets.
From the graphs in Figure 7, we make the following obser-
vations:

• Combining syntactic and semantic compression gener-
ally gives better performance than pure syntactic or se-
mantic compression. The only exceptional case is noted
for the Corel dataset in which ItCompress by itself out-
performs fascicle(gzip) when the error tolerance thresh-
old is high.

• For pure semantic compression, the compressed tables
produced by ItCompress are around 1.2 to 1.7 times
smaller than those produced by fascicles for the small-
est error tolerance threshold (i.e. 0.05%) while the dif-
ference increases to 2 to 3 times for larger thresholds. It-
Compress exhibits a much steeper improvement in com-
pression ratio as the error tolerance threshold is increased
as compared to fascicles. This result clearly shows
that ItCompress, which dynamically switches the mem-
bership of a row to a group that best matches it, is able
to give better compression than fascicle which fixes the

7



Forest-Cover Corel Census
Exp. No. k = 50 k = 300 k = 500 k = 50 k = 300 k = 500 k = 50 k = 300 k = 500

1 0.451 0.283 0.271 0.538 0.431 0.421 0.505 0.281 0.270
2 0.455 0.281 0.270 0.529 0.430 0.419 0.492 0.277 0.268
3 0.447 0.279 0.270 0.528 0.430 0.420 0.501 0.284 0.270
4 0.443 0.281 0.269 0.533 0.431 0.420 0.503 0.275 0.272
5 0.447 0.285 0.270 0.535 0.430 0.421 0.497 0.281 0.272

Figure 6. Compression Ratio Under Random Initialization

membership of row once it is assigned to a particular
group.

• For “combined” algorithms involving both semantic
compression and gzip, ItCompress(gzip) always yields
better compression except on the Forest Cover dataset
where SPARTAN(gzip) is only slightly better for small
error tolerance threshold. For other datasets, however,
ItCompress(gzip) is always the clear winner producing
compressed tables that are 1.5 to 3 times smaller than the
closest competitor. This again illustrates that the under-
lying strategy of ItCompress, which simply aims to max-
imize the total coverage of its representative rows, is a
more effective method than other semantic compression
algorithms.

Given the impressive compression ratio that is achieved by
ItCompress, the natural question to ask is whether this is
done by paying a price in term of efficiency.

To answer this question, we compare the running time
of ItCompress, fascicles and SPARTAN in Figure 8 for an
error tolerance of 1%. We expect error tolerance to have
insignificant impact on the running time of the three al-
gorithms and we pick an error tolerance of 1% since the
running time for SPARTAN is taken from [1] which uses
the same error tolerance threshold. Note that for SPAR-
TAN, running time is dependent on the CaRT selection al-
gorithm that is being used. There are three such algorithms,
Greedy, WMIS(Parent) and WMIS(Markov). For each
dataset, we take SPARTAN ’s running time to be the mini-
mum one among the three algorithms. As can be seen from
the table, fascicles always has the best running time among
the three algorithms. Compared to fascicles, ItCompress ’s
running time is around 10% to 15% more. We feel that this
small increase in running time is justifiable compared to the
large gain in compression ratio. Moreover, one can always
trade off the compression ratio slightly by running fewer it-
erations of ItCompress to substantially reduce the running
time. Please see Figures 9(c) and 10(c). For SPARTAN, its
running time is almost 2.5 to 4 times more than ItCompress.
This clearly indicates that ItCompress can achieve compa-
rable compression ratio with SPARTAN while maintaining
a significant advantage in terms of running time.

5.3 Effect of Parameter Settings

Having compared ItCompress to the other compression
algorithms, we will next investigate the effect that different
parameter settings have on ItCompress. To keep the num-
ber of parameter setting combinations small, we will only
vary the setting for one parameter at a time, while keep-

ing the setting for other parameters to their default values.
Experiments are conducted on all three real-life datasets.

5.3.1 Effect of Parameter Settings on Compression Ra-
tio

We will first look at how the setting of parameters affects
the compression ratio of ItCompress.

Varying number of representative rows. In Figure 9(a),
we vary k, the number of representative rows, from 0 to
500 and look at the compression ratio achieved by ItCom-
press and ItCompress(gzip) on the three datasets. From the
graph, we can see that increasing k will improve the com-
pression ratio of ItCompress and ItCompress(gzip), but the
improvement is only marginal from k = 100 onwards. This
improvement is due to the fact that with higher value of k,
each row is more likely to be allocated to a representative
row that could match it on higher number of attributes. This
results in fewer outlying values and reduces the total storage
needed for them.

However, we also note that the storage for representa-
tive rows will increase with k. Thus if k is subsequently
increased to an extreme value where the reduction in out-
lying values is not enough to offset the additional storage
need for the representative rows, then the compression ratio
will increase instead.

Although this situation does not occur easily as evident
from our experiments, we will still try to start with a small
value for k when we are trying to optimize the performance
of ItCompress. This can then be increased gradually to a
point where the increase in compression ratio is negligible.
As we had observed earlier, this is not too difficult since
there is a large range of values for k where there is no sig-
nificant increase or decrease in the compression ratio.

Varying Sampling Ratio. We next vary the sampling ratio
from 1% to 20% to see its effect on ItCompress’s perfor-
mance. From Figure 9(b), we observe that while increasing
the sampling ratio improves the compression ratio for both
ItCompress as well as ItCompress(gzip), this improvement
is negligible. Among the three datasets, ItCompress seems
to be most affected by the sampling ratio when it is run on
the Forest Cover dataset. This is due to the higher dimen-
sionality of the dataset which means that a higher sampling
rate is needed to capture the distribution of the data.

Varying Number of Iterations. Finally, we investigate
how the compression ratio of ItCompress improves with
the number of iterations. In Figure 9(c), we plot the com-
pression ratio for ItCompress and ItCompress(gzip) against
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Figure 7. Error Threshold vs Compression
Ratio.

Data Set Running Time(sec)
ItCompress Fascicles SPARTAN

Forest-Cover 169.66 151.00 670.00
Corel 23.29 20.12 80.73
Census 57.93 50.51 153.00

Figure 8. Comparison of Running Time
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Figure 9. Parameter Settings vs Compression
Ratio.

ate. Note that we consider the number of iterations to be
0 when we randomly pick k representatives and assign the
remaining rows to the best matched representative. From
the graph, we see that the first 1 to 3 iterations of ItCom-
press bring about the most improvement in compression ra-
tio, while the performance levels off for higher number of it-
erations. Among the three datasets, the Forest Cover dataset
takes the most number of iterations for the performance to
level off. Once again, this is due to its high dimensional-
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Figure 10. Parameter Settings vs Running
Time.

ity which gives more room for performance improvement
in terms of the number of matched attribute values which a
database row shares with the closest representative rows.

From this, we can conclude that ItCompress does not
need too many iterations in order to achieve good compres-
sion. This is important since many scans through the table
will result in loss of efficiency.

5.3.2 Effect of Parameter Settings on Running Time

Having seen how the parameter settings affect the compres-
sion ratio of ItCompress, we will examine the effect of pa-
rameter settings on the running time of ItCompress. Note
that we leave out ItCompress(gzip) in this section since the
gzip algorithm takes up a negligible amount of running time
as compared to ItCompress and thus we will see no differ-
ence between the running time of ItCompress and ItCom-
press(gzip) on the same dataset. Also all running times in
this section are obtained from the same set of experiments
as in the previous section. Thus, readers should feel free
to compare the tradeoff in compression ratio and running
time by performing a direct mapping between the two sets
of graphs.
Varying k. Figure 10(a) depicts the running time of It-
Compress against k. The graph confirms our analysis in
the earlier section that the running time of ItCompress is
linear with respect to k. By comparing this graph with Fig-
ure 9(a), we see that the running time of ItCompress can, in
fact, be improved by selecting k to be 100 without sacrific-
ing too much on compression ratio. This also means that the
running time we have shown in Figure 8 can be improved
without any significant effect on the compression ratio.

Varying Sampling Ratio. As shown in Figure 10(b), the
running time of ItCompress is also linear with respect to
the sampling ratio. Note that the running time does not tend
to zero together with the sampling ratio since our running
time is based on the total time that ItCompress takes to run
on the sample and the time taken to allocate each row in the
table to the best matched representative row at the end of
the run. In fact, we can see from the graph that the total
running time is dominated mainly by the time taken to allo-
cate each row in the table to the best matched representative
at the end while the time spent on discovering representa-
tive rows from the sample is generally less significant.

Varying Number of Iterations. From Figure 10(c), we
can see that the running time of ItCompress is also linear
with respect to the number of iterations. This is consistent
with our analysis in Section 3. By comparing Figure 10(c)
with Figure 9(c), we can see that the time spent on the 3rd
iteration and beyond will not bring significant improvement
in compression ratio, thus justifying our default value for
the number of iterations that we allow ItCompress to run
through.

5.4 Performance on Noisy Datasets

In all previous experiments, our tests are performed on
the original datasets. One aspect of real-life datasets how-
ever is the existence of random noise which might result
in a degradation of performance for all the semantic com-
pression algorithms. In this section, we will look at how
ItCompress is affected by the amount of random noise that
is presented in the datasets 7. Figure 11 illustrates the algo-
rithm for corrupting the datasets. The algorithm essentially
goes through every row in the table and attempts to cor-
rupt each in turn. Each attribute in a row have a (corruption

7While the original datasets might already contain noises, this is not
measurable from our perspective.
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Algorithm Corrupt
Input: A table T , a user specified corrupt level, clevel%. Out-
put: A corrupted table T ′ with a noise level of clevel%.

1. For each row R in T ,
2. For each attribute Xi,
3. If rand() ≤ clevel%
4. corrupt R[Xi]
5. Output corrupt row R′ to T ′

Figure 11. Algorithm for Dataset Corruption

level) clevel% probability of being changed to a random
value within the domain of the attribute.

We ran ItCompress on the datasets with corruption level
of 5% to 50% and compare it against the fascicle algorithm.
Default values are used for the parameter settings of ItCom-
press while the parameters for fascicles are tuned to give the
best performance. As shown in Figure 12, the compressed
file size for ItCompress increases linearly with the corrup-
tion level for all datasets while the performance of the fasci-
cle algorithm degrades sharply even with a small corruption
level (though it levels off afterwards).

This behavior can be explained by our earlier observa-
tion in Section 4 that the compression scheme adopted by
ItCompress is less restrictive than that of fascicles algorithm
which requires a perfect match for all the compact attributes
for the rows in a fascicle. In the presence of noise, a perfect
block of fascicle can break down rapidly especially when
the number of compact attributes is large as in the case
of the Forest Cover and Census datasets. This is because
the probability of having a perfect match in the presence
of noise drops exponentially with the number of compact
attributes considered. As evidenced from Figure 12(a) and
12(c), a large number of compact attributes which orginally
bring better compression performance now become a liabil-
ity to the fascicle algorithm when noises are introduced.

While we are unable to perform any comparison to
SPARTAN due to reasons mentioned earlier, we note that
SPARTAN makes use of rules that are of the form “X →
Y ” in order to perform its compression. Such rules also
require perfect match for all the attributes involved in both
their L.H.S. and R.H.S. As such, we have every reason to
believe that the performance of SPARTAN will also degrade
substantially like the fascicle algorithm when noises are in-
troduced.

6 More Related Work

Since we have compared ItCompress to both fascicles
and SPARTAN in earlier sections, we have only one ad-
ditional issue to raise in term of decompression efficiency.
Since ItCompress essentially finds a best match representa-
tive for every row, uncompressing a row is relatively sim-
ple and is performed by first extracting the particular best
matched representative row and then substituting the out-
lying attribute values from the outlying list. The computa-
tional complexity of such an operation is O(m). Datasets
compressed by SPARTAN do not enjoy this advantage.
Since each predicted attribute value is only available after
passing the predictor values through the classification and
regression trees, a row which has m attributes could take
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Figure 12. Noise Level vs Compression Ratio.

O(m2) time to be uncompressed in the worst case.
As with other semantic compression algorithms, ItCom-

press can provide lossy compression within the specified
error tolerance. The rearrangement of columns in a rela-
tion has been shown to affect the compression achieved in
previous studies [13, 12]. Under the proposed scheme, this
idea is carried further since the outlying attributes are deter-
mined on a per tuple basis with respect to its representative
row.

To achieve scalable spatial clustering, it is common prac-
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tice to reduce the size of the dataset by grouping points
into micro-clusters [16, 6, 15, 14] and then perform the
actual clustering on the compressed dataset. However, no
error tolerance threshold is allowed along each dimension
and the technique is applicable only to numerical attributes.
Since ItCompress adopts an iterative refinement approach
for compression, in some sense it can be compared to the
k-means algorithm [7]. We note however that the k-means
algorithm is also not applicable here since it does not give
any guaranteed error bounds and converges only on Eu-
clidean distance. Our contribution lies in the development
of a semantic compression scheme in which the iterative
refinement technique(with convergence) is applicable and
in which error tolerance is observed for datasets involving
both categorical as well as numerical attributes.

An important aspect of ItCompress is dimensionality
reduction (which leads to compression). “Feature reduc-
tion” is a fundamental problem in machine learning and
pattern recognition. There are many well-known statistical
techniques for dimensionality reduction, including Singular
Value Decomposition (SVD) [4] and Projection Pursuit [3].
The key difference here is that dimensionality reduction is
applied to the entire dataset. In contrast, ItCompress han-
dles the additional complexity of finding different subsets
of the data, all of which may permit a reduction on differ-
ent subsets of dimensions. The same comment extends to
FastMap [2], the SVDD technique [10], and the DataSphere
technique [8].

7 Conclusion

In this paper, we have presented a simple and general
semantic compression algorithm, ItCompress, and demon-
strated it to be remarkably effective over a variety of
datasets. ItCompress works by choosing random represen-
tative rows and then improving upon this choice iteratively.
We thus have the possibility of trading off the running time
of the compression algorithm for compression ratio. The
good news is that the asymptotic compression limit is ap-
proached after only a few iterations.

Like other semantic compression algorithms, ItCom-
press is complementary with respect to byte-oriented syn-
tactic compression. Syntactic compression techniques may
be applied to the results of ItCompress to obtain additional
compression.

As part of our future work, we are currently looking at
how the compressed database and semantic model of It-
Compress can be used to speed up more complex mining
tasks such as Bayesian Network building or CaRTs con-
struction. Achieving these could mean that more com-
plex semantic models can be discovered efficiently and such
models could provide even better semantic compression. It-
Compress can thus be used as a “bootstrap” compression
algorithm for entering into a positive loop where compres-
sion enhances mining and mining, in turn, enhances com-
pression. This is a different form of iterative compression.
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