Continuous Clusteri

ng of Moving Objects

Christian S. Jensen, Dan Lin, Beng Chin Ooi

Abstract— This paper considers the problem of efficiently
maintaining a clustering of a dynamic set of data points that move
continuously in two-dimensional Euclidean space. This problem
has received little attention and introduces new challenges to
clustering. The paper proposes a new scheme that is capable of
incrementally clustering moving objects. This proposal employs
a notion of object dissimilarity that considers object movement
across a period of time, and it employs clustering features that
can be maintained efficiently in incremental fashion. In the
proposed scheme, a quality measure for incremental clusters is
used for identifying clusters that are not compact enough after
certain insertions and deletions. An extensive experimental styd
shows that the new scheme performs significantly faster than
traditional ones that frequently rebuild clusters. The study also
shows that the new scheme is effective in preserving the quality
of moving-object clusters.

Index Terms— Spatial databases, Temporal databases, Cluster-
ing

In abstract terms, clustering denotes the grouping of a fset
data items so that similar data items are in the same groups
different data items are placed in distinct groups. Clusgethus
constitutes fundamental data analysis functionality firatides
a summary of data distribution patterns and correlations in
dataset. Clustering is finding application in diverse arsash

INTRODUCTION

Fig. 1. Clustering of Moving Objects

capture each clustering change as it occurs during therzemts
motion process, thus providing better insight into the teltisg
of datasets of continuously moving objects. Figure 1 itaists

tBe clustering effect that we aim for. Connected black arel th
()Mﬂte points denote object positions at the current time and

near-future time. Our approach attempts to identify chssé the

current time, as given by solid ellipses, and to detect etusplits

and merges at future times, as represented by shaded &llipse
As has been observed in the literature, two alternativest exi

as image processing, data compression, pattern recagnitial yvhen developing a new incremental _cll_Jstering scheme [18¢ O
market research, and many specific clustering techniques his t0 develop an entirely new, specialized scheme for the new

been proposed for static datasets (e.g., [17], [28]).

problem of moving objects. The other is to utilize the frarew

With the increasing diffusion of wireless devices such d¥ovided by a standard clustering algorithm, but to develep
PDAs and mobile phones and the availability of geo-positign Summary data structures for the specific problem being addce
e.g., GPS, a variety of location-based services are er’rgergiH“at may be maintained efficiently in incremental fashiom an

Many such services may exploit knowledge of object movemefftat may be integrated into such a framework. We adopt this
for purposes such as targeted sales, system load-balarazidg secon_d alternatlye, as we believe that this is more flexible a
traffic congestion prediction [3]. The needs for analyseghef 9€neric. In particular, the new summary data structures may
movements of a population of objects have also been fuelltfn e used together with a broad range of existing standard
by natural phenomena such as cloud movement and anirf&iStering algorithms. In addition, the summary data $tnes
migration. However, in spite of extensive research haviegrb €an be used for other data mining tasks such as computing

conducted on clustering and on moving objects (e.g., [14],[
[20], [21], [24]), little attention has been devoted to thestering
of moving objects.

approximate statistics of datasets.

We consequently propose a new summary data structure,
termed eclustering featurefor each moving object cluster, which

A straightforward approach to the clustering of a large det & able to reflect key properties of a moving cluster and can

continuously moving objects is to do sriodically. However,
if the period is short, this approach is overly expensiveiniga
because the effort expended on previous clustering arecwet-|

be maintained incrementally. Based on these clusterinigiries
we modify the Birch algorithm [28] to enable moving object
clustering. As suggested, our scheme can also be applieti¢o o

aged. If the period is long, long durations of time exist withhcremental clustering algorithms based on cluster center

no clustering information available. Moreover, this brfdece
approach effectively treats the objects as static objedt does
not take into account the information about their movemEeot.
example, this has the implication that it is impossible toede
that some groups of data are moving together.

Rather, clustering of continuously moving objects shoakkt
into account not just the objects’ current positions, babaheir

We summarize our contributions as follows. We employ a
notion of object dissimilarity that considers object mowsrtn
across a period of time. We develop clustering features daat
be maintained incrementally in efficient fashion. In ourestie,

a quality measure for incremental clusters is proposeddotify
clusters that are not compact enough after certain ingsrtio
and deletions. In other words, we are able to predict when

anticipated movements. As we shall see, doing so enables uslusters are to be split, thus avoiding the handling of thigda

amounts of events akin to the bounding-box violations ofpthand the numbers of such events are usually prohibitivelgelar
methods [16]. An extensive experimental study shows that tsiven a moving micro-cluster that containsobjects, the objects
proposed scheme performs significantly faster than tmaditi at each edge of the bounding box can change up (@) times
schemes that frequently rebuild clusters. The results sttemv during the motion, and each change corresponds to an event.
that the new scheme is effective in preserving the quality of Kalnis et al. [13] study historical trajectories of movinijects,
clusters of moving objects. To the best of our knowledges thproposing algorithms that discover moving clusters. A mgvi
is the first disk-based clustering method for moving objects cluster is a sequence of spatial clusters that appear irecotige
The organization of the paper is as follows. Section Il resnapshots of the object movements, so that consecutivélspat
views related work. Section Il presents our clusteringesel. clusters share a large number of common objects. Such moving
Section IV covers analytical studies, and Section V reports clusters can be identified by comparing clusters at consecut
empirical performance studies. Finally, Section VI codelsi the snapshots; however, the comparison cost can be very higre Mo
paper. recently, Spiliopoulou et al. [22] propose a framework M@NI
which models and traces cluster transitions. Specificaligy
Il. RELATED WORK first cluster data at multiple timestamps by using the bisgct

Many clustering techniques have been proposed for Stalﬁ.émeans.algorithm, and.then detect the changes o.f clusters a
data sets [1], [2], [7], [10], [14], [17], [18] [19], [25], 2. dlfferent.tlmestamps. Unlike the above two works, whlchlgna
A comprehensive survey is given elsewhere [11]. The K-meame relatlon_s between _clusters afte_r the clusters arer_(mia_our
algorithm [17] and the Birch algorithm [28] are represeintat proposal aims to predict the possible cluster evolution umle
of non-hierarchical and hierarchical methods, respegtivehe the .clusterlng. .) , .
goal of the K-means algorithm is to divide the objects ifto " nally, we note that clustering of moving objects involves
clusters such that some metric relative to the centroidshef future-position modeling. In addition to the linear furctimodel,
clusters is minimized. The Birch algorithm, which is propds V_VhiCh is _used in most work, a rec_e”t PrOposa' _considers non-
to incrementally cluster static objects, introduces thtomoof a INéar object movement [23]. The idea is to derive a recersiv
clustering feature and a height-balanced clustering feage. MOtion function that predicts the future positions of a nmayi
Our approach extends these concepts. A key difference ts tRQISCt Pased on the positions in the recent past. Howevisr, th
while in Birch, summary information of static data does need 2PProach is much more complex than the widely adopted linear
to be changed unless an object is inserted, in our approaeh, ‘F‘Ode' and complicates the analysis of_several interespages
summary information itself must be dynamic and must evolJgmporal problems. Thus, we use the linear model. We al.fm) not
with time due to continuous object movement. t_hat we have been qnat_)le to find work on clustering in the
Another interesting clustering algorithm is due to Yiu andjtérature devoted to kinetic data structures (e.g., [4]).
Mamoulis [26], who define and solve the problem of object
clustering according to network distance. In their assusegting, [1l. M OVING-OBJECT CLUSTERING

where objects are constrained to a spatial network, networkrhjs section first describes the representation of moving ob

for the measurement of similarity between objects. Moving-Object Clustering (MC for short).

In spite of extensive work on the static databases, only few
approaches exist for moving-object clustering. We proceed
review each of these.

Early work by Har-Peled [9] aims to show that moving objects We assume a population of moving objects, where each object
can be clustered once so that the resulting clusters areatems capable of transmitting its current location and velpdid a
itive at any future time during the motion. However, in two-central server. An object transmits new movement inforomato
dimensional space, the static clusters obtained from tleghod the server when the deviation between its current, actealilon
may have about 8 times larger radii than the radii obtained laynd its current, server-side location exceeds a specifreghbld,
the optimal clustering, and the numbers of clusters areralsch dictated by the services to be supported. The deviation detw
larger (at least 15 times) than for the usual clusteringtfeuy the actual location and the location assumed by the sermeste
this proposal does not take into account I/O efficiency. to increase as time progresses.

Zhang and Lin [27] propose a histogram technique based onin keeping with this, we define themaximum update tim@/)
the clustering paradigm. In particular, using a “distanteiction as a problem parameter that denotes the maximum time daratio
that combines both position and velocity differences, thieploy in-between any two updates to any object. ParamEtean be
the K-center clustering algorithm [6] for histogram constion. built into the system to require that each object must issleaat
However, histogram maintenance lacks in efficiency—asdtatone update every time units. This is rational due to the concern
in the paper, a histogram must be reconstructed if too mathat if an object did not communicate with the server for aglon
updates occur. Since there are usually a large amount oftegpddime, it is hard to know whether this object keeps moving ia th
at each timestamp in moving object databases, the histograame way or disappears accidentally without being able tidyno
reconstruction will occur frequently and thus this apploatay the server.
not be feasible. Each moving object has a unique ID, and we model its point

Li et al. [16] apply micro-clustering [28] to moving objects position in two-dimensional Euclidean space as a lineactian
thus obtaining algorithms that dynamically maintain bangd of time. Specifically, an object with IDDID can be represented
boxes of clusters. However, the numbers of maintenanceteveny a four-tuple(OID, z., v, t.), Wherez,, is the position of the
involved dominates the overall running times of the aldoms, object at timet,, andv is the velocity of the object at that time.

A. Modeling of Moving Objects

Then the (server-side) position of this object at timean be CF'= (N,CX 4 CV (tnow — t),

computed ag (t) = Zu + (¢ — tu), Wheret > t,. CX2 420XV (tnow — t) + CV2(tnow — t)?,
CV,CV2,CXV 4+ CV2(tnow — t), tnow)-
B. Object Movement Dissimilarity Proof: The number of moving objects, the sum of the velocities

We aim to cluster objects with similar movements, taking@intCV, and the sum of the squared velociti&¥2 remain the same
account both their initial position and velocity. In padiar, we when there are no updates. The three components that involve
use weighted object positions at a series of time points fimele positions need to be updated to the current time accordirlgeto
object dissimilarity. The computation of dissimilarityqmeeds in moving function. For examplel’X will be updated toCX as
three steps. follows.

We first selectm, m > 1, sample timestamps,, ..., tm, €ach X ZN _
of which is associated with a weight,. Their properties are - iﬁlmj(”0“’)7
described as follows, wherg,,., denotes the current time: = 23\?1 (@i(t) + Vi(tnow — t)z)v
=2 i=1 Zi(t) + (tnow —) 32521 0
Vi (t; < tig1 Atnow <t <tnow +U Aw; > wit1) =CX + CV (tnow — t)
We thus only consider trajectories of moving objects within The other two components are derived similarly. |

period of duratiori/ after the current time, and sample points are
given higher weight the closer they are to the current tintfeés T
allows modeling of predicted positions that become lessirate
;sgrencetzigsslf/es. The details of the selection of weight véliesy ture CF is computed asCF' = (N 4 1,CX + 7, CX2 + z2,
. — _ D) _ 2 o7 _
In the second step, object positions are computed at thenhogv +9,CV2 1%, CXV £20,1).
timestamps according to their movement functions. Given &toof. Omitted. O
i i iti i 7 (1 7 _—
objectO, its positions at timesy ..., tm arez)j;“7i§(m)' Tn)e Definition 2: Given a clusterC, its (virtual, moving center
Euclidean distance (ED) between a pair of posmfb{p_ and_x2 object O is (OID, CX/N, CV/N, t), where theOID is
of t_W0 objectsOl andO- at timet; is given byED(ng),i’g)) = generated by the system.
|5E§Z) - jg)L: \/(1"711_ zh))? + (2, - h,)?, V.Vherexé'k is the
kth dimensional position value of object; at timet;.

Claim 2: Assume that an object given BfQID,z,v,t) is in-
serted into or deleted from a cluster with clustering featif’ =
(N,CX,CX2,CV,CV2,CXV,t). The resulting clustering fea-

This center object represents the moving trend of the aluste

Third, we define the dissimilarity function betweén andO,: Definition 3: The average radiusk(t) of a cluster is the time-
m varying average distance between the member objects and the
M(O1,05) = Z w; - ED%E@, jgi)) (1) center object. We tern(t) the average-radius function.
=1 N
Note that whenn = 1 andw; = 1, the function reduces to the R(t) = \j %Z ED2(z;(t),Z(t))
(squared) Euclidean distance. i=1

We extend the function to apply to an object and a cluster

that consists ofV objects and has center.: This function enables us to measure the compactness of a

cluster, which then allows us to determine when a clusteulsho
be split. More importantly, we can efficiently compute thenei
when a cluster needs to be split without tracking the vammatf

the bounding b f the cluster.
The centerO. of a cluster is defined formally in the following et hehdh bl

section. Claim 3: The average-radius functioR(¢2) can be expressed
as a function of timeR(At), and can be computed based on the
clustering feature given at timg (¢1 < t2).

M(0,0) = 55 Yo wi- EDA @, 2l) &)
i=1

C. Clustering Feature

We proceed to define the clustering feature for moving objecf’T00" Let the clustering feature be given as of timeand assume
which is a compact, incrementally maintainable data sirecthat that we want o computéi(tz) for a later timet;. We first
summarizes a cluster and that can be used for computing §stitute the time variationt = ¢> —t, for every occurrence of
average radius of a cluster. ta — t1 in function R(t2).

_ _ N _
Definition 1: The clustering featurdCF) of a cluster is of the ED”(#i(t), Zc(t)) = 3,0, (%

i(t2) — Ze(t2))?
form (N, CX,CX2,CV,CV2,CXV,t), whereN is the number =31 (Z7 (t2) — 234 (t2)Ze(ta) + T (t2))
of moving objects in the cluste(X = YN z;(t), CX2 = =S (3 + 0,88) %
SN 22@1), OV = 2N 5i(t), OVZ = i w2(t), CXV = 2% + 0iA) (T + DeAL) + (Te + 1cAL)?)

>i=1 (Z:(t)7:(t)), and¢ is the update time of the feature. Then we represent functioR(¢2) as a function ofA¢:

R(At) = \/(AAt2 + BAt + C)/N where
N

A clustering feature can be maintained incrementally urtber
passage of time and updates.

N

Claim 1: Let t,0, be the current time and'F = (N, CX, A= ZT’? —20cy i+ Nov?
CX2, CV, CV2, CXV, t), wheret < tnow, be a clustering =1 =y N
feature. TherC'F at timet can be updated ta'F’ at time tnow B= Q(Z(i’i@i) . T’CZ@ . icz i + NZcbe)
as follows: ,

C— ol 22 _ oz o s N2 Insert (O)
= z;% - xcz:l Ti+ NTe Input: O is an object to be inserted
= = 1. find the nearest center obje@dt of O

Subsequently, the coefficients of functidri can be expressed in /I O. belongs to clusteCTD

terms of the clustering feature.

2. if M(Oc,O) > pgthen
A=CVZ— (CV)2/N 3. create a new cluster f@p
= Ao 4. else
B =2(CXV - CXCV/N) 5. t, — SplitTime(CID, O)
C=CX2 - (CX)?/N 0 . if ¢, is not equal to the current time
and clusterCID is not full then
D. Clustering Scheme 7. insertO into cluster CID
. . 8. adjust the clustering feature of clustefD
We are now ready to present our clustering scheme, which eg- if £. > 0 then
ploys the proposed dissimilarity function and clusteriegttire, 10. insert eventt,, CID) into the event queue
thus enabling many traditional incremental clusteringpetgms 11. insertO to the hash table
based on cluster centers, to handle moving objects. 12. else)
Our scheme utilizes the framework provided by the Birch clug-3- Spli(CID, O, newCID)
14. if CanMergéCID, CID;)

tering algorllthm., WhICh, however, requires several modtfans 15 then mergé 1D, CID,)
and extgpsmns. 0] concerning the .d.ata structur.e, we (jUUe 16. if CanMergénewCID, CIDs)
two auxiliary data structures in addition to the hierarehidata 17 then mergenewCID, CID,)
structure; (i) we propose algorithms for the maintenantéhe end Insert.
new clustering feature under insertion and deletion ojmrst
(iii) for the split and merge operations, we propose algong Fig. 2. Insertion Algorithm
that quantify the cluster quality and compute the split time

1) Data Structures:The clustering algorithm uses a disk-based . . .
data structure that consists of directory nodes and clustdes, that controls the clustering. Threshold, gives the possible
The directory nodes store summary information for the eisst Maximum A distance between two objects belonging to two
Each node contains entries of the forf@F, CP), where CF closest nelght_)orlng clusters. To _esum,agewe flrst need to know
is the clustering feature andP is a pointer to either a cluster the average size of a clustés. Without any prior knowledges.

node or the next directory node. The structure allows thstets is computed as. = Area/(N/f) based on a uniform distribution
to be organized hierarchically according to the center aibjef

(Area is the area of the domain spadg, is the total number of
the clusters, and hence is scalable with respect to dataEiee objects, andf is the cluster capacity). If the data distribution is
directory node size is one disk page.

known, Area can be computed as the area of the region covered
Each cluster node stores the data objects, each representey Most objects.

(0ID, z,3,t), according to the cluster they belong to. Unlike e can now definep; = 377, w; - (2v/5c)*. The idea
the directory node, each cluster node may consist of maltipfnderlying this definition is that if the distance betweerp tw
disk pages. The maximum capacity of a cluster is an appﬁnatiObJ_eCtS IS always twice as Iarge as the average cluster_mame
dependent parameter, which can be given by users. By usﬁi{'q'ng the consm!ered time perlod,these_two objects mastiply
the concept of maximum cluster capacity, we guarantee teat £€10Ng t0 two different clusters. By using,, we can roughly
clustering performance is stable, i.e., the maintenanct fow partition the space, which saves computation cost. If tetadtce

each cluster is similar. it should be noted that the maximiuster P&tween objecO and clusterC' exceedspy, we create a new
capacity is only associated with the leaf cluster nodes. fidtes cluster for objecD directly. Otherwise, we check whether cluster

at higher levels correspond to bigger clusters and can aiso % N€€ds to be split after absorbing objectlf no split is needed,
returned to the users according to their requests. we insert objec into clusterC and then execute the following
In addition to this clustering feature structure, two aiaxj 2diustments.
structures, an event queue and a hash table, are also euhployees Update the clustering feature af to the current time,
The event queue stores future split evefats;;;, CID) in ascend- according to Claim 1; then update it to cover the new object,
ing order oft,;;, wheret,;; denotes the split time and’D according to Claim 2.
is the cluster identifier. The hash table maps object IDsuster ~ « Calculate the split time, if any, of the new cluster and ihser
IDs, i.e., OIDs to CIDs, so that given the ID of an object, we can the event into the event queue. Details to do with splits are
efficiently locate the cluster that this object belongs toede two addressed in the next section.
structures store much less data than the whole datasetygine e * Update the object information in the hash table.
queue and the hash table are only 1% and 10% of the whole dat# cluster C is to be split after the insertion of object, we
set size, respectively), and hence they can be either caclnegin check whether the two resultant cluste€d D and newCID) can
memory or stored contiguously on disk for efficient scanrang be merged with other clusters. The function CanMerge maymet
loading into main memory. a candidate cluster for merge operation. Specifically, andation
2) Insertion and Deletion:We proceed to present the algo-of function CanMerge with arguments/D and CID’, looks for
rithms that maintain a clustering under insertions andtiele. a cluster that it is appropriate to merge clustdiD with, and if
The outline of the insertion algorithm is given in Figure 2such a cluster is found, it is returned @¢D’. The merge policy
To insert an objecO given by (0OID,z,v,t,), we first find the will be explained in Section III-D.3.
center object of some cluster that is nearest to the object Next, to delete an objead, we use the hash table to locate
according toM. A global partition thresholdp, is introduced the clusterC that objectO belongs to. Then we remove obje@t

Delete)
Input: O is an object to be deleted

1. CID = Hash(O)
/I objectO belongs to clusteCID
deleteO from the hash table
deleteO from cluster CID
adjust the clustering feature of clustéfD
if cluster CID is in underflow
if CanMergéCID, CID’)
then mergé CID, CID')
else
delete old event of clustef'ZD from the event queue
0. insert new event of cluste?/D into the event queue
end Delete.

BooNoOR~WN

time - time - ts time

Fig. 3. Deletion Algorithm Fig. 5. Squared Average Radius Evolution

from the hash table and C|Ustér, and we adeSt the Clustering kinds of re|ati0nships betweeRQ(At) andpz are possib|e_see
feature. Specifically, we first update the feature to theentrtime Figure 5.

according to Claim 1 and then modify it according to Claimf2. I | the first, leftmost two cases, radiug? remains below
clusterC does not underflow after the deletion, we further Cheqlﬁresholdpﬁ, implying that no split is caused. In the second,
whether the split event of’ has been affected and adjust thenigdie two cases, radiug?(0) exceeds thresholg?, which
event queue accordingly. Otherwise, we apply the mergeyolimeans that the insertion of a new object into clustgp will
to determine whether this cluster can be merged with other make the new radius larger than the split threshold and thus
clusters (denoted as1D’). The deletion algorithm is outlined in cause an immediate split. In the last two cases, raifusxceeds
Figure 3. thresholdp? at timets, causing an eventts, CID) to be placed

3) Split and Merge of ClustersTwo situations exist where a jn the event queue.
cluster must be split. The first occurs when the number ofatbje The next step is to identify each of the three situations by
in the cluster exceeds a user-specified threshold (i.e.midve- neans of functionR?(At) itself. We first computeR?(0). If this
mum cluster capacity). This situation is detected autarallyi g)ye exceedg?, we are in the second case. Otherwif2(U)

by the insertion algorithm covered already. The second rsccig computed. If this value is smaller thad, we are in the first
when the average radius of the cluster exceeds a threshibichw ¢ase. If not, we are in the third case, and we need to solve the

means that the cluster is not compact enough. Here, thehtiices equation(AAt2 + BAt + C)/N = p2, where the split time is
(denoted ags) can be defined by the users if they want to limijhe larger solution, i.ets = (—B-++/B2 — 4A(C — pZN))/(2A).
the cluster size. It can also be estimated as the averagesrafli Note that when the coefficient df+2 equals0, function R%(At)
clusters given by the equatign = ;v/S.. We proceed to address egenerates to a linear function and= (p2N — C)/B. Figure 6
the operations in the second situation in some detail. summarizes the algorithm.

Recall that the average radius of a cluster is given as aitmct at the time of a split, the split starts by identifying the pai
of time R(At) (cf. Section Ill-C). Sincer(At) is a square root, of opjects with the largest/ value. Then, we use these objects
for simplicity, we conside??(At) in the following computation. as seeds, redistributing the remaining objects among thgain
Generally, R?(At) is a quadratic function. It degenerates t0 @ased on their mutuals values. Objects are thus assigned to
linear function when all the objects have the same vel®itighe cluster that they are most similar to. We use this spitti
Moreover, R*(At) is either a parabola opening upwards or aBrocedure mainly because it is very fast and running timenis a

increasing line—the radius of a cluster will never first ease important concern in moving object environments. The et
and then decrease when there are no updates. Figure 4 stows th

only two cases possible for the evolution of the averageusadi

when no updates occur, where the shaded area corresporids t%blitTime (CID, 0)

region covered by the cluster as time passes. Input: ClusterCID and objectO

Output: The time to split the cluste?ID with O
1. get functionR(¢) from the clusterCID and O
2. if R*(0) > p? then

3. return current time
/I need to split at the current time
4. else
-~ 5 if R*(U) < p? then
time time 6. return —1 // no need to split durindg’
7 else
Fig. 4. Average Radius Examples 8. compute the split time, by R2(t,) = p?
9. return t; // return the future split time

Our task is to determine the time, if any, in-between theemtrr end SplitTime.
time and the maximum update time when the cluster must b sph
i.e., At ranges from0 to U. Given the split thresholgs, three Fig. 6. Split Time Algorithm

Split (CID;, O, CIDg) Merge(CID+, CID3)
Input: ClusterCID; and objectO Input: ClusterCID, and CID, to be merged
Output: New cluster with IDCID

1. CF, < CF(CID;) at the current time
1. pick the farthest pair of objectseed, seeds) 2. CF3 <« CF(CID3) at the current time
from clusterCID; and O based onM 3. CFy < CF1+ CF,
2. initialize clusterCID, 4. for each objecO in cluster CID- do
3. insertseeds into cluster CID, 5. storeO in cluster CID;
4. deleteseeds from cluster CID; 6. update the hash table
5. for each remaining objead, in CID;do 7. delete clusteCID-
6 D1 «— M(Or, seed1) 8. delete split event of clustef'ID, from event queue
7 D2 — M(O,, seed2) 9. compute split timeg, of new clusterCID,
8. if D1 > Do then 10. modify split event of cluste€ID; in event queue
9. insertO,. into cluster CID, end Merge.
10. modify the hash table
11. if O, belongs to clusteCID; then Fig. 9. Merge Algorithm
12. deleteO,. from cluster CID;

13. adjust the clustering feature of clust€rD;
14. compute the clustering feature of clustgéfD,
15. return CID,

end Split.

these, we choose a cluster that will lead to no split durirgy th
maximum update time, if one exist; otherwise, we choose the
one that will yield the latest split time. Finally, we exeeuhe

Fig. 7. Split Algorithm real merge: we update the clustering feature, the hash, taiée
the event queue. The merge algorithm is shown in Figure 9.

the algorithm are shown in Figure 7. IV. ANALYSIS OF DISSIMILARITY VERSUSCLUSTERING

~We first pick up the farthest pair of objeciged; and seeds In this section, we study the relationship between dissiritjl
(line 1), which will be stored in cluste’IDy and CIDy measureM and the average radius of the clusters produced by
respectively. For each remaining obje®t in clusterCIDi, We qur scheme.
compute its distances ted; andseedy using M (lines 6-7). If 1 facilitate the analysis, we initially assume that no upda
Oy is close toseed, it will remain in clusterCID;. Otherwise, ey to the dataset. This enables us to set the weights nsed |
Oy will be stored in clusteC'I D, . After all the objects have beeny, 1__gecreasing weights are used to make later positions, which
considered, we compute the clustering features of bothteris may pe updated before they are reached, less important.tdlso
(lines 11-12). facilitate the analysis, we replace the sum of sample positin

After a split, we check whether each clusteramong the)/ with the corresponding integral, denotedds, from the time
two new clusters can be merged with preexisting clusters (Sghen a clustering is performed amdtime units into the future.
Figure 8). To do this, we compute the-distances between theNote that M’ is the boundary case aff that is similar to the
center object of cluster’ and the center object of each preexistingytegrals used in R-tree based moving object indexing [21].
cluster. We consider thenearest clusters that may accommodate The pext theorem states that inclusion of an object into the
clusterC'in terms of numbers of objects. For each such candidatg,ster with a smallens’ value leads to a tighter and thus better
we execute a “virtual merge” that computes the clusteriagufie clustering during time interval/.
assuming absorption of’. This allows us to identify clusters

where the new average radius is within threshpjd Among _ Theorem l:iLet O = (OID,7,v,t,) denote an object to be
inserted at timet,; C;, i« = 1,2, denote two existing clusters

with N; objects, center object9.; = (OID¢;, Tei, Tes, tu), and

CanMerge(CID:, CID,) average radiir; at timet,. Let R; o be the average radius of
Input: ClusterCID1, waiting for a merge operation C; after absorbing objec. If M'(0,C1) < M'(O,C2) then
Output: ClusterCID,, a candidate for a merge operation the average squared distance between objects and clustersce
1. for each clusterCID, exceptCID; do after insertingO to clusterC; is less than that after inserting
2. if cluster CID, has enough space to absorb clustédiD, to clusterCs:
3. then
4. Dy — M(O,,01) /U (N1 + DRLo + NaRj /U N1RT + (N2 + 1R 0

Il O, is the center object of clusterID, 0 Ny +Na+1 0 N1+ Ny +1

/I Oy is the center object of cluster/D, . .
5. update listZ. that records thé: nearest clusters Proof: M’(0,C;) computes the difference between the position
6. for each clusterCID; in L. do of object O and the center objead.; of cluster C; for the U
7. CF « CF(CID2) + CF(CIDy) time units starting at the insertion timg. Let z(t) and z.;(t)
g- ;f:ompute EOSS/'/bk* split é‘m fr?m CF denote the positions of objects and O,; at timet,, + t. We first

. 1Tt <Othen //no need to split reorganizeM’ to be function of the time that ranges frond to

10. return CID,
11. else U.
12. recordCID, with the largest M'(0,C;) = NNh foU [T(t) — Toi ()] 2dt
13. return CID, U - a9
end CanMerge. = 51 Jo (@ +7Tt) — (Tei +Teit)]"dt

Fig. 8. Identifying Clusters to be Merged +(T — fci)QU]

Next, we examine the variation of the radius of the clustat thmaintain a clustering across time. This is because the daatti
absorbs the new objec. distance only measures the difference of object positidna a
single point in time, while\/’ measures the total difference during

U 2 U n p2
Jo Wi+ DR odt = [y NiR7dt a time interval. It may occur frequently that objects closeach

Ai0t°+B; Ci A, Ci L . .
= fo [(Ni +1) ol +Nﬂi(ft+ 0) _ (e +B .)]dt other at a point in time may be relatively far apart at laterets.
= fo A0 — 4) + (Bi,o — Bi)t+ (CZ o— C)]dt Therefore, even if the Euclidean distance between the thjet
=31 (Ao — A DU+ 32(Bio — B)U? + (Cio — C;)U the cluster center is at first small, the correspondid§ value

could be larger, meaning that the use of the Euclidean distan
4@sults in larger average distance between objects andcthster
centers.

We proceed to consider the effect of updates during the
clustering. LetF(t), where0 < F(¢t) <1 and0 < ¢ < U, denote

We proceed to utilize Theorem 3, which states that the aeger
radius of a cluster can be computed from the cluster’s dlingte
feature. In the transformation from the third to the fourtie] we
useWi = N,;U;.

AA; = A0 — A the fraction of objects having their update interval beinga to
— OV, 472 — (CJ‘QH))= ([@V2, — C]\‘,/f) t. We defltle the weight value, at timet,, where0 <t, < U,
T P A as follows:
= mcvi ~ MOVt N U
Ny 52 2N; — = z = F(t)dt 3
:N-t-lv +N(N+1) ci T N,+1VeiV Wy /I () 3)
=N +1(—Uei) This weight value can reflect the update behavior. The resason
We expressAB; similarly. In the last transformation, we useare as follows. The update interval of any object is less than
CV; = N;v,; andCX; = N;Z.;. maximum update timé/. After the initial cluster construction,
the probablhty that an object will be updated before time
AB; = B0 — B; X4V %) is [y* F(t)dt. Because[0 t)dt = 1, the probability that an
=2(CXV;+ ﬁf%)* objects WI|| not be updated before time is thenl — [j* F
2(CXV,; — V) = ft t)dt. This weight value gives the ‘validity’ tlme of an
- 1\27111 (T — Tei) (T — Tes) object. In other words, it indicates the importance of thgeols

position at timet,,.

Finally, we express\C;, utilizing CX; = NiTe;. Moreover, the weight value also satisfies the property #hat

AC; =Cio—C; ty implies wy > wy. Lett, <ty. Then:
(W 72— (C_X]\,ﬂ) — (CX?; — %XQ) we —wy= [} F(t)dt — [F(t)dt
= g (@ - Tei)? = [[v F(t)dt + Sy, F(t)dt - ftly] F(t)dt
We observe that/’(= [(N;+1)R? pdt— [,/ N;RZdt. = [V F(t)dt > 0
Utilizing the premlse Of the theorem, we havﬁ(‘) (N1 + In the empirical study, next, we use versions of dissintiari

)Rzﬁodt fo NiR3dt < fo (Ng + 1)R3 odt — fo N>R3dt. measure)/ that sum values at sample time points, rather than the
Then, both sides of the inequality are divided by the totahber boundary (integral) case considered in this section. Thidoine
of objects inCy and Co, which is Ny + Nz + 1. The theorem mainly for simplicity of computation.
follows by rearranging the terms. O

The following lemma, based on Theorem 1, shows which V. EMPIRICAL PERFORMANCESTUDIES
cluster a new object should be inserted into. We proceed to present results of empirical performanceaestud
of the proposed clustering algorithm. We first introduce the
experimental settings. We then compare our proposal wigh th
existing K-means and Birch clustering algorithms. Finaile
study the properties of our algorithm while varying several
pertinent parameters.

Lemma 2:Placement of a new object into the clust@rwith
the nearest center object according to dissimilarity measu
minimizes the average squared distance between all olgacts
their cluster centers, termed, in comparison to all other place-
ments.

Proof: Assume that inserting objec® into another clusteC’ A Experimental Settings
results in a smaller average distance between all objedtshair
cluster centers, denoteld’, than D. SinceC’ is not the nearest
cluster ofO, M’(0,C) < M’(0O,C"). According to Theorem 1,
we haveD < D', which contradicts the initial assumption.O

All experiments are conducted on a 2.6G Hz P4 machine with
1Gbyte of main memory. The page size is 4K bytes, which result
in a node capacity of 170 objects in the MC data structures. We
assign two pages to each cluster.

In essence, Lemma 2 suggests how to achieve a locally optimaDue to the lack of appropriate, real moving object datasets,
clustering during continuous clustering. Globally optiroluster- we use synthetic datasets of moving objects with positiarthé
ing appears to be unrealistic for continuous clustering ofimy square space of siz®00 x 1000 units. We use three types of gen-
objects—it is not realistic to frequently re-cluster allj@tis, and erated datasets: uniform distributed datasets, Gauss#ibdted
we have no knowledge of future updates. datasets, and network-based datasets. In most experjnveats

Next, we observe that use of the Euclidean distance amowmge uniform data. Initial positions of all moving objectse ar
objects at the time a clustering is performed or updated @n thosen at random, as are their movement directions. Olgeetls
expected to be quite sub-optimal for our setting, where wet@r are also chosen at random, within the range0db 3. In the

Gaussian datasets, the moving object positions follow ss§an 140 -
distribution. The network-based datasets are construmtesing 190 | T femeans
the data generator for the COST benchmark [5], where objects = Bireh
move in a network of two-way routes that connect a given numbe 100 1 ZME
of uniformly distributed destinations. Objects start ahdam
positions on routes and are assigned at random to one of three
groups of objects with maximum speeds of 0.75, 1.5, and 3.
Whenever an object reaches one of the destinations, it esdbs
next target destination at random. Objects accelerateegdehve
a destination, and they decelerate as they approach a atastin 0 — T
One may think of the space unit as being kilometers and thedspe 0 6 12 18 24 30 36 42 48 54 60
unit as being kilometers per minute. The sizes of dataseis va Time Units
from 10K to 100K. The duration in-between updates to an abjec
ranges froml to U, whereU is the maximum update time. Fig. 10. Clustering Effect without Updates

Unless stated otherwise, we use the decreasing weight salue
defined in equation 3, and we set the interval between sam
timestamps to be 10. We store the event queue and the h
table in memory. We quantify the clustering effect by therage

radius, and we examine the construction and update costiiste . S o :
P ering both object positions and velocities, and hence theimgo

of both 1/0Os and CPU time. . . C .
. . .objects in the same clusters have similar moving trend ang ma
Table | offers an overview of the parameters used in the egsui
not expand the clusters too fast.

experiments. Values in bold denote default values. Observe also that the radii of the K-means and the Birch

80 1

60 -
40

Average Radius

20

le. i, .
E me60, the average radii of the K-means and the Birch clusters
are more than 35% larger than that of the MC clusters.
Algorithm MC achieves its higher cluster longevity by cafsi

TABLE | clusters are slightly smaller than those of the MC clustering
PARAMETERS AND THEIR SETTINGS the first few time units. This is so because the MC algorithm
aims to achieve a small cluster radius along the clustertseen
[_Parameter [Setting life time, instead of achieving a small initial radius. Fomeple,
Page size 4K MC may place objects that are not very close at first, but may
Node capacity 170 :
4 get closer later, in the same cluster.
Cluster capacity 340) . Eff ith Undatesn thi .
Maximum update time 50) Clustering ec_t with Up _ate nt is experiment, we use
Type of weight values Decreasing Equal the same dataset as in the previous section to compare gterslu
Interval between sample timestamps5, 10, 20, 30, 60 maintained incrementally by the MC algorithm when updates
Dataset size 10K, ..., 100K occur with the clusters obtained by the K-means and the Birch

algorithms, which simply recompute their clusters eactetiime
comparison is made. Although the K-means and the Birchalsist
deteriorate quickly, they are computed to be small at thes tim
of computation and thus represent the near optimal cases for
For comparison purposes, we choose the K-means and Bigfistering.
algorithms, which are representative clustering algor#hfor Figure 11 shows the average radii obtained by all the alymst
static databases. To directly apply both the K-means anchBiras time progresses. Observe that the average radii of the MC
algorithms to moving objects, both have to re-compute &ftery clusters are only slightly larger than those of the K-meand a
update, everys updates, or at regular time intervals in order t¢he Birch clusters. Note also that after the first few timetsyni

B. Comparison with Clustering Algorithms for Static Databa

maintain each clustering effectiveness. the average radii of the MC clusters do not deteriorate.
The number of clusters generated by MC is used as the
desired number of clusters for the K-means and Birch algmst 50 -
Other parameters of Birch are set similarly to those usedhén t 45 | —+K-means
literature [28]: (i) memory size is 5% of the dataset sizg;ttie 40 - :a‘gh
initial threshold is 0.0; (iii) outlier-handling is turnedff; (iv) 2 35 A
the maximum input range of phase 3 is 1000; (v) the number of 8 30 4 /e/*—'v * —
refinement passes in phase 4 is one. We then study the average S g A
radius across time. The smaller the radius, the more contpect g i: |
clusters. < o]
1) Clustering Effect without Updatesin this initial experi- 5 |
ment, we evaluate the clustering effect of all algorithmseoss 0 —
time assuming that no updates occur. Clusters are createdeat 0 6 12 18 24 30 36 42 48 54 60
0, and the average radius is computed at each time unit. Itithwo Time Units

noting that the weight values in MC are equallt@as there are

no updates. Figure 10 shows that the average cluster radius g Fig. 11. Clustering Effect with Updates

much faster for the K-means and Birch algorithms than for the

MC algorithm, which intuitively means that MC clusters rema 3) Clustering Effect with Dataset SizeiVe also study the
“valid” longer than do K-means and Birch clusters. Spedifijza clustering effect when varying the number of moving objects

100 - of datasets. We can observe that the average inter clustande

90 -+ —+—K-means of MC clusters is slightly larger than those of K-means anctiBi
80 1 —=—Birch clusters in the network-based datasets. This again deratest
70 4 —>—MC

that the MC algorithm may be more suitable for moving objects

60 - . .
such as vehicles that move in road networks.

50 -
40 -
30 -
20 -
10 -

Average Radius

1000 -
900 4
800 4
700 4
600 4
500 4
400 A
300 4
200 4
100 4

0 T T T
100 500 Gaussian Uniform

Figure 12 plots the average radius. The clustering prodiged Data Type

the MC algorithm is competitive for any size of dataset coraga

to those of the K-means and the Birch algorithms. Moreover, Eig 14, inter Cluster Distance

all algorithms, the average radius decreases as the daiaset

increases. This is because the capacity of a cluster isamnst g cjystering SpeedHaving considered clustering quality, we

(in our case twice the size of a page), and the object densiyyceed to compare the efficiency of cluster constructiod an

Increases. o maintenance for all three algorithms. Since K-means is axmai
4) Clustering Effect with Different Data DistributiondNext, memory algorithm, we assume all the data can be loaded into

we study the clustering effect in different types of datss#¥e ain memory, so that Birch and MC also run entirely in main
test two network-based datasets with 100 and 500 desnirmtiomemory_

respectively, and one Gaussian dataset. As shown in Fi@,ted
average radii obtained by the MC algorithm are very clos@dsé
obtained by the K-means and Birch algorithms, especialtife
network-based and Gaussian datasets. This is becausesobjec

@DK-means @Birch OMC

10K 30K 50K 70K 90K
Number of Moving Objects

Fig. 12. Clustering Effect with Varying Number of Moving Objs

Average Intercluster Distance

z
30 4 o)
D K-means MmBirch OMC E
25 A]
o
%) O
= 20 A
el
o]
o
o 15 4
[=)]
]
$ 10 A '
< 10K 30K 50K 70K 90K
5 Number of Moving Objects
0 - T T T —
100 500 Gaussian Uniform Fig. 15. Construction Time
Data Type

We first construct clusters at tindefor all algorithms. Figure 15
Fig. 13. Clustering Effect with Different Data Distributie compares the CPU times for different dataset sizes. We wbser
that MC outperforms K-means, with a gap that increases with
the network-based datasets move along the roads, enabkngihcreasing dataset size. Specifically, in the experimevts, is
MC algorithm to easily cluster those objects that move siril more than 5 times faster than K-means for the 100K dataset.
In the Gaussian dataset, objects concentrate in the cehteeo In comparison to Birch, MC is slightly slower when the datase
space; hence there are higher probabilities that more tslijgave becomes large. The main reason is that Birch does not maintai
similarly, which leads to better clustering by the MC al¢fom. any information between objects and clusters. This canltresu
These results indicate that the MC algorithm is more efficietime savings in Birch when MC needs to change object labels
for objects moving similarly, which is often the case for s during the merging or splitting of clusters. However, constion
moving in road networks. is a one-time task, and this slight construction overhedd@is
5) Inter Cluster Distance:In addition to using the averageuseful because it enables efficient support for the frequedates
radius as the measure of clustering effect, we also testvirage that occur in moving-object databases.
inter cluster distance. The average inter cluster distaofca After the initial construction, we execute updates un#é thax-
clusterC is defined as the average distance between the ceriteum update time. We apply two strategies to enable the Kasea
of clusterC and the centers of all the other clusters. Generallgnd Birch algorithms to handle updates without any modificet
the larger the inter cluster distance, the better the dlimgte to the original algorithms. One is the extreme case where the
quality. Figure 14 shows the clustering results in différgmes dataset is re-clustered after every update, labeled “pdateg

1000000 -

100000

10000 -+

1000 +

100

CPU Time (s)

0.1 T

—¥—K-means (per update)
—— K-means (per time unit)

—@— Birch (per update)
—<—MC

%

10

dataset as time passes. Recall also Figure 11 (in Sectior2\V-B
We can derive from these results that the MC algorithm maista
a similar number of clusters and similar sizes of radii fa& dame
dataset as time passes, which indicates that the MC algohts
stable performance. In other words, the passing of time Inagsh
no effect on the results produced by the MC algorithm.

500 -
450
400

10K

30K

50K

70K

90K

Number of Moving Objects

350 A
300 A

——MC-100K
—o— MC-50K
—A—MC-10K

(@

—a— Birch (per time unit)

51 —=—Mc

CPU Time (s)
w
)

10K 30K 50K 70K
Number of Moving Objects

(b)

Fig. 16. Maintenance Time

90K

250 A
200 { —0 06006 o0——0—0—0—0
150 A
100 A

501 A—a A A A A A A A A

Number of Clusters

0 6 12 18 24 30 36 42 48 54 60
Time Units

Fig. 17. Number of Clusters with Different Data Sizes

2) Effect of Weight ValuesNext, we are interested in the
behavior of the MC algorithm under the different types of giei
values used in the dissimilarity measurements. We take two
types of weight values into account: (i) decreasing weigbte
equation 3):w; > wjtq, 1 < 5 < k—1; (i) equal weights:
wj:wj+1, lgjgk'—l.

From now on, we use the total radius (i.e., the product of
the average radius and the number of clusters) as the dhgster

effect measurement since the numbers of clusters are datiffer

The other re-clusters the dataset once every time unit|ddbe
“per time unit.” Figure 16 shows the average computatiooats
per time unit of all the algorithms for different datasetesiz
Please note that theaxis in Figure 16(a) uses a log scale, which
makes the performance gaps between our algorithms and other
algorithms seem narrow. Actually, the MC algorithm achgeve
significant better CPU performance than both variants oh edc
K-means and Birch. According to Figure 16(a), the MC aldonit
is up to10° times ands0 times faster than the first and the second
variant of K-means, respectively. When comparing to Birtig,
MC algorithm is up to10° times faster than the first variant of
Birch (Figure 16(a)) and up t6 times faster than the second
variant of Birch (Figure 16(b)).

These findings highlight the adaptiveness of the MC algorith
The first variants recompute clusters most frequently and th
have by far the worst performance. The second variants have

Total Radius

18000
16000
14000
12000
10000
8000
6000
4000
2000
0

for the different weight values. Figure 18 shows the totdius
of clusters generated by using these two types of weightegalu
It is not surprising that the one using decreasing weightiesl

rastaents

—<— Decreasing Weight
—A— Equal Weight

0 6 12 18 24 30 36 42 48 54 60

Time Units

lower recomputation frequency, but are then as a result Inlet aFig. 18. Clustering Effect with Different Types of Weight lMes

to reflect the effect of every update in its clustering (ethey

are unable to support a mixed update and query workload). Yiglds better performance. As we mentioned before, theeclos
contrast, the MC algorithm does not do re-clustering, bsteiad 0 the current time, the more important the positions of mgvi

incrementally adjusts its existing clusters at each update

objects are because later positions have higher probebilitf

being changed by updates.
3) Effect of Time Interval Length between Sample Points:

C. Properties of the MC Algorithm

Another parameter of the dissimilarity measurement is iime t

We proceed to explore the properties of the MC algorithnmterval length between two consecutive sample positidlis.

including its stability and performance under various paters vary the interval length and examine the performance of ti@ M
and its update I/O cost. algorithm as time progresses (see Figure 19(a)). As expecte
1) The Number of ClustersWe first study the number of we can see that the one with the shortest interval lengthhes t
clusters, varying the dataset size and time. As shown inrEitjd, smallest radius (i.e., best clustering effect). Howeveis tloes
the number of clusters remains almost constant for the sama mean that the shortest interval length is an optimal evalu

Total Radius

30000

25000

20000

15000

10000

5000

—8—Interval length 5 —¢ Interval length 10
—e— Interval length 20 —o— Interval length 30
—A— Interval length 60

T T T T T T T T T T

0 6 12 18 24 30 36 42 48 54 60

Time Units

(a) Clustering Effect

1

5 10

20

30

60

11

—>—MC

Update 1/0s
N W £

10K 30K 50K 70K

Number of Moving Objects

Fig. 20. Update 1/0O Cost

0.5 +

0.45 @ 1/0 cost m Computation cost
2 04 4 usually affects only one or two clusters. This suggests that
s 0032 1 MC algorithm has very good update performance.
5 0.25 A
& 021 VI. CONCLUSION
T 0.15 .) .
2 01 This paper proposes a fast and effective scheme for theneonti

0.05 - uous clustering of moving objects. We define a new and general

0 T T T 1

notion of object dissimilarity, which is capable of takingtdre

object movement and expected update frequency into account
with resulting improvements in clustering quality and ringn
time performance. Next, we propose a dynamic summary data
structure for clusters that is shown to enable frequent tesd@

the data without the need for global re-clustering. An agera
radius function is used that automatically detects clusit
vents, which, in comparison to existing approaches, pies

the need to maintain bounding boxes of clusters with large
amounts of associated violation events. In future work, ne a

ﬁg apply the clustering scheme in new applications.

Interval Length

(b) Maintenance Time

Fig. 19. Effect of Different Interval Lengths

considering the overall performance of the MC algorithm.
need to consider the time efficiency with respect to the vater
length. In addition, we also observe that the differencevben
the time intervals equal to 60 and 30 is much wider than t
others. The possible reason is that when time interval ish&de
are only two sample points (start and end points of an object

trajectory), which are not able to differentiate the twaiattons The work of Dan Lin and Beng Chin Ooi was in part funded
shown in Figure 4. Therefore, it is suggested to use no less thhy an A* STARproject on spatial-temporal databases.

three sample points so that the middle point of a trajectaty c
be captured.

Figure 19(b) shows the maintenance cost of the MC algorithm _
when varying the time interval length. Observe that the Citg¢t [1] R Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. omatic
. subspace clustering of high dimensional data for data minipdjcation.
decreases with the increase of the time interval Iengthlev\lhe In Proc. ACM SIGMOD pp. 94-105, 1998.
I/O cost (expressed in milliseconds) does not change mugais. T[2] M. Ankerst, M. Breunig, H.P. Kriegel, and J. Sander. OB%! Ordering
is because the longer time interval results in less samitiqios, ggintsg ;% identify the clustering structure. fioc. ACM SIGMODpp. 49—
; ; ; , 1999.
and hence Ies?s computation. In contrast, the .I/O post is Ipnalrf3] Applied Generics. RoDIN24.
due to the split and merge events. When the time intervaltfeng = roDpIN24-Brochure.pdf, 2006.
increases, the dissimilarity measurement tends to be igkt t [4] J. Basch, L. J. Guibas, and J. Hershberger. Data stegtiar mobile
which results in less split and merge events. data. Algorithms 31(1): 1-28, 1999.
. . . - [5] C. S. Jensen, D. Tiesyte, and N. Tradisauskas. The COSitHBeark-
Considering the clustering effect and time efficiency tbget Comparison and Evaluation of Spatio-temporal Indesec. DASFAA
the time interval length should not be larger than 30, as vezine pp. 125-140, 2006.
at least three sample points, and it should not be too small [a] T.F. Gonzalez. Clustering to minimize the maximum interduslistance.
L S . "7 Theoretical Computer Scienc@8: 293-306, 1985.
this will yield unnecessarily many computatlo_ns. Therefave [7] S. Guha R. Rastogi, and K. Shim. CURE: An efficient clistgr
choose the number of sample points to be a little more than 3 as algorithm for large databases. Rroc. ACM SIGMOD pp. 73-84, 1998.

a tradeoff. In our experiments, the number of sample pos& i [8] M. Hadjieleftheriou, G. Kollios, D. Gunopulos, and V. Tsotras. On-

corresponding to the time interval length 10. g';e ;’}fgf}!ﬂy ggggﬂse areas in spatio-temporal databedrot. SSTD
4) Update I/0 Cost:We now study the update 1/O cost 0f[9] S. Har-Peled. Clustering motioiscrete and Computational Geometry

the MC algorithm solely. We vary the dataset size from 10K to 31(4): 545-565, 2003.

100K and run the MC algorithm for the maximum update interval) ngs.zggggar. On detecting space-time clustersPioc. KDD, pp. 587—

Figure 20 repords the average update cost. .AS we can see,[#hf A. K. Jain, M. N. Murty, and P. J. Flynn. Data clusteringy:review.
update cost is only 2 to 5 I/Os because each insertion oridielet ~ACM Computing Survey81(3):264-323, 1999.

ACKNOWLEDGEMENT

REFERENCES

www.appliedgenerics.coowdloads/

[12] C. S. Jensen, D. Lin, and B. C. Ooi. Query and update efftd8* -tree
based indexing of moving objects. Rroc. VLDB pp. 768-779, 2004.

[13] P. Kalnis, N. Mamoulis, and S. Bakiras. On discovering mg\wclusters
in spatio-temporal data. IRroc. SSTDpp. 364-381, 2005.

[14] G. Karypis, E.-H. Han, and V. Kumar. Chameleon: Hierazehtluster-
ing algorithm using dynamic modeling. IEEE Computer32(8):68-75,
1999.

[15] D. Kwon, S. Lee, and S. Lee. Indexing the current posgiof moving
objects using the lazy update R-tree.Rroc. MDM, pp. 113-120, 2002.

[16] Y. Li, J. Han, and J. Yang. Clustering moving objects.Froc. KDD,
pp. 617-622, 2004.

[17] J. Macqueen. Some methods for classification and anabfsisulti-
variate observations. IRroc. Berkeley Symp. Math. Statipp. 281-297,
1967.

[18] S. Nassar, J. Sander, and C. Cheng. Incremental andtiedfedata
summarization for dynamic hierarchical clustering. Rroc. ACM
SIGMOD, pp. 467-478, 2004.

[19] R. Ng and J. Han. Efficient and effective clustering melitfior spatial
data mining. InProc. VLDB pp. 144-155, 1994.

[20] J. M. Patel, Y. Chen, and V. P. Chakka. STRIPES: An efficiadex
for predicted trajectories. IRroc. ACM SIGMOD pp. 637-646, 2004.

[21] S. Saltenis, C. S.Jensen, S. T. Leutenegger, and M. A. Lopelexing
the positions of continuously moving objects. Proc. ACM SIGMOD
pp. 331-342, 2000.

[22] M. Spiliopoulou, I. Ntoutsi, Y. Theodoridis, and R. Sgh MONIC:
modeling and monitoring cluster transitions. Rroc. KDD, pp. 706—
711, 2006.

[23] Y. Tao, C. Faloutsos, D. Papadias, and B. Liu. Predicéind indexing of
moving objects with unknown motion patterns. Fnoc. ACM SIGMOD
pp. 611-622, 2004.

[24] Y. Tao, D. Papadias, and J. Sun. The TPR*-tree: An opthigpatio-
temporal access method for predictive queriesPloc. VLDB pp. 790—
801, 2003.

[25] W. Wang, J. Yang, and R. Muntz. Sting: a statistical infation grid
approach to spatial data mining. Rroc. VLDB pp. 186-195, 1997.

[26] M. L. Yiu and N. Mamoulis. Clustering objects on a spatietwork.
In Proc. ACM SIGMOD pp. 443-454, 2004.

[27] Q. Zhang and X. Lin. Clustering moving objects for spagmporal
selectivity estimation. IProc. ADG pp. 123-130, 2004.

[28] T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: An effitiedata
clustering method for very large databases. Pimc. ACM SIGMOD
pp. 103-114, 1996.

12

Dan Lin received the B.S. degree (First Class Hon-
ors) in Computer Science from Fudan University,
China in 2002, and the Ph.D. degree in Computer
Science from the National University of Singapore in
2007. Currently, She is a visiting scholar in the De-
partment of Computer Science at Purdue University,
USA. Her main research interests cover many areas
in the fields of database systems and information
security. Her current research includes geographical
information systems, spatial-temporal databases, lo-
cation privacy, and access control policies.

Beng Chin Ooi received the B.S. (First Class
Honors) and Ph.D. degrees from Monash Univer-
sity, Australia in 1985 and 1989 respectively. He
is currently a professor of computer science at the
School of Computing, National University of Singa-
pore. His current research interests include database
performance issues, index techniques, XML, spatial
databases and P2P/grid Computing. He has pub-
lished more than 100 conference/journal papers and

;», 8184 § aie 8 ” served as a PC member for a number of international
Christian S. Jensen (Ph.D., Dr.Techn.) is a Pro- conferences (including SIGMOD, VLDB, ICDE,
fessor of Computer Science at Aalborg UniversityEDBT and DASFAA). He is an editor dbeolnformaticatheJournal of GIS
Denmark, and an Adjunct Professor at Agder UniACM SIGMOD Dis¢VLDB Journaland thelEEE TKDE He is a member
versity College, Norway. of the ACM and the |IEEE.
His research concerns data management and spans
issues of semantics, modeling, and performance.
With his colleagues, he has published widely on
these subjects. With his colleagues, he receives sub-
stantial national and international funding for his
research.
He is a member of the Danish Danish Academy
of Technical Sciences, the EDBT Endowment, and the VLDB Endent’s
Board of Trustees. He received Ib Henriksen’s Research éd\2801 for his
research in mainly temporal data management and Telenor’'s ?NBeiearch
Award 2002 for his research in mobile services.
His service record includes the editorial boards of ACM TOQDSEE
TKDE and the IEEE Data Engineering Bulletin. He was the ganehair
of the 1995 International Workshop on Temporal Databasesaanide PC
chair for ICDE 1998. He was PC chair or co-chair for the Wodgston
Spatio-Temporal Database Management, held with VLDB 1999,S®TD
2001, EDBT 2002, VLDB 2005, MobiDE 2006, and MDM 2007. He is a
vice PC chair for ICDE 2008. He has served on more than 100 anogr
committees.
He serves on the boards of directors and advisors for a smaibeu of
companies, and he serves regularly as a consultant.

