
1

Continuous Clustering of Moving Objects
Christian S. Jensen, Dan Lin, Beng Chin Ooi

Abstract— This paper considers the problem of efficiently
maintaining a clustering of a dynamic set of data points that move
continuously in two-dimensional Euclidean space. This problem
has received little attention and introduces new challenges to
clustering. The paper proposes a new scheme that is capable of
incrementally clustering moving objects. This proposal employs
a notion of object dissimilarity that considers object movement
across a period of time, and it employs clustering features that
can be maintained efficiently in incremental fashion. In the
proposed scheme, a quality measure for incremental clusters is
used for identifying clusters that are not compact enough after
certain insertions and deletions. An extensive experimental study
shows that the new scheme performs significantly faster than
traditional ones that frequently rebuild clusters. The study also
shows that the new scheme is effective in preserving the quality
of moving-object clusters.

Index Terms— Spatial databases, Temporal databases, Cluster-
ing

I. I NTRODUCTION

In abstract terms, clustering denotes the grouping of a set of
data items so that similar data items are in the same groups and
different data items are placed in distinct groups. Clustering thus
constitutes fundamental data analysis functionality thatprovides
a summary of data distribution patterns and correlations ina
dataset. Clustering is finding application in diverse areassuch
as image processing, data compression, pattern recognition, and
market research, and many specific clustering techniques have
been proposed for static datasets (e.g., [17], [28]).

With the increasing diffusion of wireless devices such as
PDAs and mobile phones and the availability of geo-positioning,
e.g., GPS, a variety of location-based services are emerging.
Many such services may exploit knowledge of object movement
for purposes such as targeted sales, system load-balancing, and
traffic congestion prediction [3]. The needs for analyses ofthe
movements of a population of objects have also been fueled
by natural phenomena such as cloud movement and animal
migration. However, in spite of extensive research having been
conducted on clustering and on moving objects (e.g., [12], [15],
[20], [21], [24]), little attention has been devoted to the clustering
of moving objects.

A straightforward approach to the clustering of a large set of
continuously moving objects is to do soperiodically. However,
if the period is short, this approach is overly expensive, mainly
because the effort expended on previous clustering are not lever-
aged. If the period is long, long durations of time exist with
no clustering information available. Moreover, this brute-force
approach effectively treats the objects as static object and does
not take into account the information about their movement.For
example, this has the implication that it is impossible to detect
that some groups of data are moving together.

Rather, clustering of continuously moving objects should take
into account not just the objects’ current positions, but also their
anticipated movements. As we shall see, doing so enables us to

Fig. 1. Clustering of Moving Objects

capture each clustering change as it occurs during the continuous
motion process, thus providing better insight into the clustering
of datasets of continuously moving objects. Figure 1 illustrates
the clustering effect that we aim for. Connected black and the
white points denote object positions at the current time anda
near-future time. Our approach attempts to identify clusters at the
current time, as given by solid ellipses, and to detect cluster splits
and merges at future times, as represented by shaded ellipses.

As has been observed in the literature, two alternatives exist
when developing a new incremental clustering scheme [18]. One
is to develop an entirely new, specialized scheme for the new
problem of moving objects. The other is to utilize the framework
provided by a standard clustering algorithm, but to developnew
summary data structures for the specific problem being addressed
that may be maintained efficiently in incremental fashion and
that may be integrated into such a framework. We adopt this
second alternative, as we believe that this is more flexible and
generic. In particular, the new summary data structures may
then be used together with a broad range of existing standard
clustering algorithms. In addition, the summary data structures
can be used for other data mining tasks such as computing
approximate statistics of datasets.

We consequently propose a new summary data structure,
termed aclustering feature, for each moving object cluster, which
is able to reflect key properties of a moving cluster and can
be maintained incrementally. Based on these clustering features,
we modify the Birch algorithm [28] to enable moving object
clustering. As suggested, our scheme can also be applied to other
incremental clustering algorithms based on cluster centers.

We summarize our contributions as follows. We employ a
notion of object dissimilarity that considers object movement
across a period of time. We develop clustering features thatcan
be maintained incrementally in efficient fashion. In our scheme,
a quality measure for incremental clusters is proposed to identify
clusters that are not compact enough after certain insertions
and deletions. In other words, we are able to predict when
clusters are to be split, thus avoiding the handling of the large

2

amounts of events akin to the bounding-box violations of other
methods [16]. An extensive experimental study shows that the
proposed scheme performs significantly faster than traditional
schemes that frequently rebuild clusters. The results alsoshow
that the new scheme is effective in preserving the quality of
clusters of moving objects. To the best of our knowledge, this
is the first disk-based clustering method for moving objects.

The organization of the paper is as follows. Section II re-
views related work. Section III presents our clustering scheme.
Section IV covers analytical studies, and Section V reportson
empirical performance studies. Finally, Section VI concludes the
paper.

II. RELATED WORK

Many clustering techniques have been proposed for static
data sets [1], [2], [7], [10], [14], [17], [18], [19], [25], [28].
A comprehensive survey is given elsewhere [11]. The K-means
algorithm [17] and the Birch algorithm [28] are representatives
of non-hierarchical and hierarchical methods, respectively. The
goal of the K-means algorithm is to divide the objects intoK

clusters such that some metric relative to the centroids of the
clusters is minimized. The Birch algorithm, which is proposed
to incrementally cluster static objects, introduces the notion of a
clustering feature and a height-balanced clustering feature tree.
Our approach extends these concepts. A key difference is that
while in Birch, summary information of static data does not need
to be changed unless an object is inserted, in our approach, the
summary information itself must be dynamic and must evolve
with time due to continuous object movement.

Another interesting clustering algorithm is due to Yiu and
Mamoulis [26], who define and solve the problem of object
clustering according to network distance. In their assumedsetting,
where objects are constrained to a spatial network, network
distance is more realistic than the widely used Euclidean distance
for the measurement of similarity between objects.

In spite of extensive work on the static databases, only few
approaches exist for moving-object clustering. We proceedto
review each of these.

Early work by Har-Peled [9] aims to show that moving objects
can be clustered once so that the resulting clusters are compet-
itive at any future time during the motion. However, in two-
dimensional space, the static clusters obtained from this method
may have about 8 times larger radii than the radii obtained by
the optimal clustering, and the numbers of clusters are alsomuch
larger (at least 15 times) than for the usual clustering. Further,
this proposal does not take into account I/O efficiency.

Zhang and Lin [27] propose a histogram technique based on
the clustering paradigm. In particular, using a “distance”function
that combines both position and velocity differences, theyemploy
the K-center clustering algorithm [6] for histogram construction.
However, histogram maintenance lacks in efficiency—as stated
in the paper, a histogram must be reconstructed if too many
updates occur. Since there are usually a large amount of updates
at each timestamp in moving object databases, the histogram
reconstruction will occur frequently and thus this approach may
not be feasible.

Li et al. [16] apply micro-clustering [28] to moving objects,
thus obtaining algorithms that dynamically maintain bounding
boxes of clusters. However, the numbers of maintenance events
involved dominates the overall running times of the algorithms,

and the numbers of such events are usually prohibitively large.
Given a moving micro-cluster that containsn objects, the objects
at each edge of the bounding box can change up toO(n) times
during the motion, and each change corresponds to an event.

Kalnis et al. [13] study historical trajectories of moving objects,
proposing algorithms that discover moving clusters. A moving
cluster is a sequence of spatial clusters that appear in consecutive
snapshots of the object movements, so that consecutive spatial
clusters share a large number of common objects. Such moving
clusters can be identified by comparing clusters at consecutive
snapshots; however, the comparison cost can be very high. More
recently, Spiliopoulou et al. [22] propose a framework MONIC
which models and traces cluster transitions. Specifically,they
first cluster data at multiple timestamps by using the bisecting
K-means algorithm, and then detect the changes of clusters at
different timestamps. Unlike the above two works, which analyze
the relations between clusters after the clusters are obtained, our
proposal aims to predict the possible cluster evolution to guide
the clustering.

Finally, we note that clustering of moving objects involves
future-position modeling. In addition to the linear function model,
which is used in most work, a recent proposal considers non-
linear object movement [23]. The idea is to derive a recursive
motion function that predicts the future positions of a moving
object based on the positions in the recent past. However, this
approach is much more complex than the widely adopted linear
model and complicates the analysis of several interesting spatio-
temporal problems. Thus, we use the linear model. We also note
that we have been unable to find work on clustering in the
literature devoted to kinetic data structures (e.g., [4]).

III. M OVING-OBJECT CLUSTERING

This section first describes the representation of moving ob-
jects, then proposes a scheme to cluster moving objects, called
Moving-Object Clustering (MC for short).

A. Modeling of Moving Objects

We assume a population of moving objects, where each object
is capable of transmitting its current location and velocity to a
central server. An object transmits new movement information to
the server when the deviation between its current, actual location
and its current, server-side location exceeds a specified threshold,
dictated by the services to be supported. The deviation between
the actual location and the location assumed by the server tends
to increase as time progresses.

In keeping with this, we define themaximum update time(U)
as a problem parameter that denotes the maximum time duration
in-between any two updates to any object. ParameterU can be
built into the system to require that each object must issue at least
one update everyU time units. This is rational due to the concern
that if an object did not communicate with the server for a long
time, it is hard to know whether this object keeps moving in the
same way or disappears accidentally without being able to notify
the server.

Each moving object has a unique ID, and we model its point
position in two-dimensional Euclidean space as a linear function
of time. Specifically, an object with IDOID can be represented
by a four-tuple(OID , x̄u, v̄ , tu), wherex̄u is the position of the
object at timetu and v̄ is the velocity of the object at that time.

3

Then the (server-side) position of this object at timet can be
computed as̄x(t) = x̄u + v̄(t− tu), wheret ≥ tu.

B. Object Movement Dissimilarity

We aim to cluster objects with similar movements, taking into
account both their initial position and velocity. In particular, we
use weighted object positions at a series of time points to define
object dissimilarity. The computation of dissimilarity proceeds in
three steps.

We first selectm, m ≥ 1, sample timestampst1, ..., tm, each
of which is associated with a weightwi. Their properties are
described as follows, wheretnow denotes the current time:

∀i (ti < ti+1 ∧ tnow ≤ ti ≤ tnow + U ∧ wi ≥ wi+1)

We thus only consider trajectories of moving objects withina
period of durationU after the current time, and sample points are
given higher weight the closer they are to the current time. This
allows modeling of predicted positions that become less accurate
as time passes. The details of the selection of weight valuesfollow
in Section IV.

In the second step, object positions are computed at the chosen
timestamps according to their movement functions. Given an
object O, its positions at timest1, ..., tm are x̄(1), ..., x̄(m). The
Euclidean distance (ED) between a pair of positionsx̄

(i)
1 andx̄

(i)
2

of two objectsO1 andO2 at timeti is given byED(x̄
(i)
1 , x̄

(i)
2) =

|x̄(i)
1 − x̄

(i)
2 | =

√

(xi
11 − xi

21)
2 + (xi

12 − xi
22)

2, wherexi
jk is the

kth dimensional position value of objectOj at time ti.
Third, we define the dissimilarity function betweenO1 andO2:

M(O1, O2) =
m

∑

i=1

wi · ED2(x̄
(i)
1 , x̄

(i)
2) (1)

Note that whenm = 1 and w1 = 1, the function reduces to the
(squared) Euclidean distance.

We extend the function to apply to an object and a clusterC

that consists ofN objects and has centerOc:

M(O, C) =
N

N + 1

m
∑

i=1

wi · ED2(x̄(i), x̄
(i)
c) (2)

The centerOc of a cluster is defined formally in the following
section.

C. Clustering Feature

We proceed to define the clustering feature for moving objects,
which is a compact, incrementally maintainable data structure that
summarizes a cluster and that can be used for computing the
average radius of a cluster.

Definition 1: The clustering feature(CF) of a cluster is of the
form (N , CX, CX2, CV , CV 2, CXV , t), whereN is the number
of moving objects in the cluster,CX =

∑N
i=1 x̄i(t), CX2 =

∑N
i=1 x̄2

i (t), CV =
∑N

i=1 v̄i(t), CV 2 =
∑N

i=1 v̄2
i (t), CXV =

∑N
i=1 (x̄i(t)v̄i(t)), andt is the update time of the feature.

A clustering feature can be maintained incrementally underthe
passage of time and updates.

Claim 1: Let tnow be the current time andCF = (N , CX,
CX2, CV , CV 2, CXV , t), where t < tnow, be a clustering
feature. ThenCF at time t can be updated toCF ′ at time tnow

as follows:

CF ′= (N, CX + CV (tnow − t),
CX2 + 2CXV (tnow − t) + CV 2(tnow − t)2,
CV , CV 2, CXV + CV 2(tnow − t), tnow).

Proof: The number of moving objectsN , the sum of the velocities
CV , and the sum of the squared velocitiesCV 2 remain the same
when there are no updates. The three components that involve
positions need to be updated to the current time according tothe
moving function. For example,CX will be updated toCX

′

as
follows.

CX
′

=
∑N

i=1 x̄i(tnow)

=
∑N

i=1 (x̄i(t) + v̄i(tnow − t))

=
∑N

i=1 x̄i(t) + (tnow − t)
∑N

i=1 v̄i

= CX + CV (tnow − t)

The other two components are derived similarly. 2

Claim 2: Assume that an object given by(OID, x̄,v̄ , t) is in-
serted into or deleted from a cluster with clustering feature CF =

(N, CX, CX2, CV , CV 2, CXV , t). The resulting clustering fea-
ture CF ′ is computed as:CF ′ = (N ± 1, CX ± x̄, CX2 ± x̄2,

CV ± v̄ , CV 2 ± v̄2, CXV ± x̄v̄ , t).

Proof: Omitted. 2

Definition 2: Given a clusterC, its (virtual, moving) center
object Oc is (OID, CX/N , CV /N , t), where theOID is
generated by the system.

This center object represents the moving trend of the cluster.

Definition 3: Theaverage radiusR(t) of a cluster is the time-
varying average distance between the member objects and the
center object. We termR(t) the average-radius function.

R(t) =

√

√

√

√

1

N

N
∑

i=1

ED2(x̄i(t), x̄c(t))

This function enables us to measure the compactness of a
cluster, which then allows us to determine when a cluster should
be split. More importantly, we can efficiently compute the time
when a cluster needs to be split without tracking the variation of
the bounding box of the cluster.

Claim 3: The average-radius functionR(t2) can be expressed
as a function of time,R(∆t), and can be computed based on the
clustering feature given at timet1 (t1 ≤ t2).

Proof: Let the clustering feature be given as of timet1 and assume
that we want to computeR(t2) for a later time t2. We first
substitute the time variation∆t = t2− t1 for every occurrence of
t2 − t1 in function R(t2).

ED2(x̄i(t), x̄c(t)) =
∑N

i=1(x̄i(t2)− x̄c(t2))
2

=
∑N

i=1(x̄
2
i (t2)− 2x̄i(t2)x̄c(t2) + x̄2

c(t2))

=
∑N

i=1((x̄i + v̄i∆t)2−
2(x̄i + v̄i∆t)(x̄c + v̄c∆t) + (x̄c + v̄c∆t)2)

Then we represent functionR(t2) as a function of∆t:

R(∆t) =
√

(A∆t2 + B∆t + C)/N where

A =
N

∑

i=1

v̄2
i − 2v̄c

N
∑

i=1

v̄i + Nv̄2
c

B = 2(
N

∑

i=1

(x̄iv̄i)− v̄c

N
∑

i=1

x̄i − x̄c

N
∑

i=1

v̄i + Nx̄cv̄c)

4

C =

N
∑

i=1

x̄2
i − 2x̄c

N
∑

i=1

x̄i + Nx̄2
c

Subsequently, the coefficients of function∆t can be expressed in
terms of the clustering feature.

A = CV 2 − (CV)2/N

B = 2(CXV − CXCV /N)

C = CX2 − (CX)2/N 2

D. Clustering Scheme

We are now ready to present our clustering scheme, which em-
ploys the proposed dissimilarity function and clustering feature,
thus enabling many traditional incremental clustering algorithms
based on cluster centers, to handle moving objects.

Our scheme utilizes the framework provided by the Birch clus-
tering algorithm, which, however, requires several modifications
and extensions: (i) concerning the data structure, we introduce
two auxiliary data structures in addition to the hierarchical data
structure; (ii) we propose algorithms for the maintenance of the
new clustering feature under insertion and deletion operations;
(iii) for the split and merge operations, we propose algorithms
that quantify the cluster quality and compute the split time.

1) Data Structures:The clustering algorithm uses a disk-based
data structure that consists of directory nodes and clusternodes.
The directory nodes store summary information for the clusters.
Each node contains entries of the form〈CF ,CP〉, where CF

is the clustering feature andCP is a pointer to either a cluster
node or the next directory node. The structure allows the clusters
to be organized hierarchically according to the center objects of
the clusters, and hence is scalable with respect to data size. The
directory node size is one disk page.

Each cluster node stores the data objects, each representedas
(OID , x̄, v̄ , t), according to the cluster they belong to. Unlike
the directory node, each cluster node may consist of multiple
disk pages. The maximum capacity of a cluster is an application
dependent parameter, which can be given by users. By using
the concept of maximum cluster capacity, we guarantee that the
clustering performance is stable, i.e., the maintenance cost for
each cluster is similar. it should be noted that the maximum cluster
capacity is only associated with the leaf cluster nodes. Thenodes
at higher levels correspond to bigger clusters and can also be
returned to the users according to their requests.

In addition to this clustering feature structure, two auxiliary
structures, an event queue and a hash table, are also employed.
The event queue stores future split events〈tsplit,CID〉 in ascend-
ing order oftsplit, wheretsplit denotes the split time andCID

is the cluster identifier. The hash table maps object IDs to cluster
IDs, i.e.,OIDs toCIDs, so that given the ID of an object, we can
efficiently locate the cluster that this object belongs to. These two
structures store much less data than the whole dataset (the event
queue and the hash table are only 1% and 10% of the whole data
set size, respectively), and hence they can be either cachedin main
memory or stored contiguously on disk for efficient scanningand
loading into main memory.

2) Insertion and Deletion:We proceed to present the algo-
rithms that maintain a clustering under insertions and deletions.

The outline of the insertion algorithm is given in Figure 2.
To insert an objectO given by (OID , x̄, v̄ , tu), we first find the
center object of some clusterC that is nearest to the object
according toM . A global partition thresholdρg is introduced

Insert (O)
Input: O is an object to be inserted

1. find the nearest center objectOc of O
// Oc belongs to clusterCID

2. if M(Oc, O) > ρgthen
3. create a new cluster forO
4. else
5. ts ← SplitTime(CID , O)
6. if ts is not equal to the current time

and clusterCID is not full then
7. insertO into clusterCID

8. adjust the clustering feature of clusterCID

9. if ts > 0 then
10. insert event(ts,CID) into the event queue
11. insertO to the hash table
12. else
13. split(CID , O, newCID)
14. if CanMerge(CID , CID1)
15. then merge(CID ,CID1)
16. if CanMerge(newCID , CID2)
17. then merge(newCID ,CID2)
end Insert.

Fig. 2. Insertion Algorithm

that controls the clustering. Thresholdρg gives the possible
maximum M distance between two objects belonging to two
closest neighboring clusters. To estimateρg, we first need to know
the average size of a clusterSc. Without any prior knowledge,Sc

is computed asSc = Area/(N/f) based on a uniform distribution
(Area is the area of the domain space,N is the total number of
objects, andf is the cluster capacity). If the data distribution is
known,Area can be computed as the area of the region covered
by most objects.

We can now defineρg =
∑m

i=1 wi · (2
√

Sc)
2. The idea

underlying this definition is that if the distance between two
objects is always twice as large as the average cluster diameter
during the considered time period, these two objects most possibly
belong to two different clusters. By usingρg, we can roughly
partition the space, which saves computation cost. If the distance
between objectO and clusterC exceedsρg, we create a new
cluster for objectO directly. Otherwise, we check whether cluster
C needs to be split after absorbing objectO. If no split is needed,
we insert objectO into clusterC and then execute the following
adjustments.

• Update the clustering feature ofC to the current time,
according to Claim 1; then update it to cover the new object,
according to Claim 2.

• Calculate the split time, if any, of the new cluster and insert
the event into the event queue. Details to do with splits are
addressed in the next section.

• Update the object information in the hash table.

If cluster C is to be split after the insertion of objectO, we
check whether the two resultant clusters (CID andnewCID) can
be merged with other clusters. The function CanMerge may return
a candidate cluster for merge operation. Specifically, an invocation
of function CanMerge with argumentsCID andCID

′, looks for
a cluster that it is appropriate to merge clusterCID with, and if
such a cluster is found, it is returned asCID

′. The merge policy
will be explained in Section III-D.3.

Next, to delete an objectO, we use the hash table to locate
the clusterC that objectO belongs to. Then we remove objectO

5

Delete (O)
Input: O is an object to be deleted

1. CID = Hash(O)
// objectO belongs to clusterCID

2. deleteO from the hash table
3. deleteO from clusterCID

4. adjust the clustering feature of clusterCID

5. if clusterCID is in underflow
6. if CanMerge(CID ,CID

′)
7. then merge(CID ,CID

′)
8. else
9. delete old event of clusterCID from the event queue
10. insert new event of clusterCID into the event queue
end Delete.

Fig. 3. Deletion Algorithm

from the hash table and clusterC, and we adjust the clustering
feature. Specifically, we first update the feature to the current time
according to Claim 1 and then modify it according to Claim 2. If
clusterC does not underflow after the deletion, we further check
whether the split event ofC has been affected and adjust the
event queue accordingly. Otherwise, we apply the merge policy
to determine whether this clusterC can be merged with other
clusters (denoted asCID′). The deletion algorithm is outlined in
Figure 3.

3) Split and Merge of Clusters:Two situations exist where a
cluster must be split. The first occurs when the number of objects
in the cluster exceeds a user-specified threshold (i.e., themaxi-
mum cluster capacity). This situation is detected automatically
by the insertion algorithm covered already. The second occurs
when the average radius of the cluster exceeds a threshold, which
means that the cluster is not compact enough. Here, the threshold
(denoted asρs) can be defined by the users if they want to limit
the cluster size. It can also be estimated as the average radius of
clusters given by the equationρs = 1

4

√
Sc. We proceed to address

the operations in the second situation in some detail.
Recall that the average radius of a cluster is given as a function

of time R(∆t) (cf. Section III-C). SinceR(∆t) is a square root,
for simplicity, we considerR2(∆t) in the following computation.
Generally,R2(∆t) is a quadratic function. It degenerates to a
linear function when all the objects have the same velocities.
Moreover,R2(∆t) is either a parabola opening upwards or an
increasing line—the radius of a cluster will never first increase
and then decrease when there are no updates. Figure 4 shows the
only two cases possible for the evolution of the average radius
when no updates occur, where the shaded area corresponds to the
region covered by the cluster as time passes.

O3

O2

O1

4O

O1

O3
O2

x

time

x

4

time

O

Fig. 4. Average Radius Examples

Our task is to determine the time, if any, in-between the current
time and the maximum update time when the cluster must be split,
i.e., ∆t ranges from0 to U . Given the split thresholdρs, three

time

t

∆t

R2

∆t

2ρ
s

∆t

2ρ
s

R2

R2

time

time

∆t

2ρ
s

R2

t s

∆t

2ρ
s

R2

t s

R

time

2ρ
s

2

time

2ρ
s

2

time

∆

Fig. 5. Squared Average Radius Evolution

kinds of relationships betweenR2(∆t) andρ2
s are possible—see

Figure 5.
In the first, leftmost two cases, radiusR2 remains below

thresholdρ2
s, implying that no split is caused. In the second,

middle two cases, radiusR2(0) exceeds thresholdρ2
s, which

means that the insertion of a new object into clusterCID will
make the new radius larger than the split threshold and thus
cause an immediate split. In the last two cases, radiusR2 exceeds
thresholdρ2

s at time ts, causing an event〈ts,CID〉 to be placed
in the event queue.

The next step is to identify each of the three situations by
means of functionR2(∆t) itself. We first computeR2(0). If this
value exceedsρ2

s, we are in the second case. Otherwise,R2(U)

is computed. If this value is smaller thanρ2
s, we are in the first

case. If not, we are in the third case, and we need to solve the
equation(A∆t2 + B∆t + C)/N = ρ2

s, where the split timets is
the larger solution, i.e.,ts = (−B+

√

B2 − 4A(C − ρ2
sN))/(2A).

Note that when the coefficient of∆t2 equals0, functionR2(∆t)

degenerates to a linear function andts = (ρ2
sN −C)/B. Figure 6

summarizes the algorithm.
At the time of a split, the split starts by identifying the pair

of objects with the largestM value. Then, we use these objects
as seeds, redistributing the remaining objects among them,again
based on their mutualM values. Objects are thus assigned to
the cluster that they are most similar to. We use this splitting
procedure mainly because it is very fast and running time is an
important concern in moving object environments. The details of

SplitTime (CID ,O)
Input: ClusterCID and objectO
Output: The time to split the clusterCID with O

1. get functionR(t) from the clusterCID andO
2. if R2(0) > ρ2

s then
3. return current time

// need to split at the current time
4. else
5. if R2(U) ≤ ρ2

s then
6. return −1 // no need to split duringU
7. else
8. compute the split timets by R2(ts) = ρ2

s

9. return ts // return the future split time
end SplitTime.

Fig. 6. Split Time Algorithm

6

Split (CID1 , O,CID2)
Input: ClusterCID1 and objectO
Output: New cluster with IDCID2

1. pick the farthest pair of objects(seed1, seed2)
from clusterCID1 andO based onM

2. initialize clusterCID2

3. insertseed2 into clusterCID2

4. deleteseed2 from clusterCID1

5. for each remaining objectOr in CID1 do
6. Dm1 ←M(Or, seed1)
7. Dm2 ←M(Or, seed2)
8. if Dm1 > Dm2 then
9. insertOr into clusterCID2

10. modify the hash table
11. if Or belongs to clusterCID1 then
12. deleteOr from clusterCID1

13. adjust the clustering feature of clusterCID1

14. compute the clustering feature of clusterCID2

15. return CID2

end Split.

Fig. 7. Split Algorithm

the algorithm are shown in Figure 7.
We first pick up the farthest pair of objectsseed1 and seed2

(line 1), which will be stored in clusterCID1 and CID2

respectively. For each remaining objectOr in clusterCID1, we
compute its distances toseed1 andseed2 usingM (lines 6–7). If
Or is close toseed1, it will remain in clusterCID1. Otherwise,
Or will be stored in clusterCID2. After all the objects have been
considered, we compute the clustering features of both clusters
(lines 11–12).

After a split, we check whether each clusterC among the
two new clusters can be merged with preexisting clusters (see
Figure 8). To do this, we compute theM -distances between the
center object of clusterC and the center object of each preexisting
cluster. We consider thek nearest clusters that may accommodate
clusterC in terms of numbers of objects. For each such candidate,
we execute a “virtual merge” that computes the clustering feature
assuming absorption ofC. This allows us to identify clusters
where the new average radius is within thresholdρg. Among

CanMerge(CID1,CID2)
Input: ClusterCID1, waiting for a merge operation
Output: ClusterCID2, a candidate for a merge operation

1. for each clusterCIDx exceptCID1 do
2. if clusterCIDx has enough space to absorb clusterCID1

3. then
4. Dm ←M(Ox, O1)

// Ox is the center object of clusterCIDx

// O1 is the center object of clusterCID1

5. update listLc that records thek nearest clusters
6. for each clusterCID2 in Lc do
7. CF ← CF (CID2) + CF (CID1)
8. compute possible split timets from CF

9. if ts < 0 then // no need to split
10. return CID2

11. else
12. recordCID2 with the largestts

13. return CID2

end CanMerge.

Fig. 8. Identifying Clusters to be Merged

Merge(CID1,CID2)
Input: ClusterCID1 andCID2 to be merged

1. CF 1 ← CF (CID1) at the current time
2. CF 2 ← CF (CID2) at the current time
3. CF 1 ← CF 1 + CF 2

4. for each objectO in clusterCID2 do
5. storeO in clusterCID1

6. update the hash table
7. delete clusterCID2

8. delete split event of clusterCID2 from event queue
9. compute split timets of new clusterCID1

10. modify split event of clusterCID1 in event queue
end Merge.

Fig. 9. Merge Algorithm

these, we choose a cluster that will lead to no split during the
maximum update time, if one exist; otherwise, we choose the
one that will yield the latest split time. Finally, we execute the
real merge: we update the clustering feature, the hash table, and
the event queue. The merge algorithm is shown in Figure 9.

IV. A NALYSIS OF DISSIMILARITY VERSUSCLUSTERING

In this section, we study the relationship between dissimilarity
measureM and the average radius of the clusters produced by
our scheme.

To facilitate the analysis, we initially assume that no updates
occur to the dataset. This enables us to set the weights used in M

to 1—decreasing weights are used to make later positions, which
may be updated before they are reached, less important. Alsoto
facilitate the analysis, we replace the sum of sample positions in
M with the corresponding integral, denoted asM ′, from the time
when a clustering is performed andU time units into the future.
Note thatM ′ is the boundary case ofM that is similar to the
integrals used in R-tree based moving object indexing [21].

The next theorem states that inclusion of an object into the
cluster with a smallerM ′ value leads to a tighter and thus better
clustering during time intervalU .

Theorem 1:Let O = (OID , x, v, tu) denote an object to be
inserted at timetu; Ci, i = 1, 2, denote two existing clusters
with Ni objects, center objectsOci = (OIDci, xci, vci, tu), and
average radiiRi at time tu. Let Ri,O be the average radius of
Ci after absorbing objectO. If M ′(O, C1) < M ′(O, C2) then
the average squared distance between objects and cluster centers
after insertingO to clusterC1 is less than that after insertingO
to clusterC2:
∫ U

0

(N1 + 1)R2
1,O + N2R2

2

N1 + N2 + 1
dt <

∫ U

0

N1R2
1 + (N2 + 1)R2

2,O

N1 + N2 + 1
dt.

Proof: M ′(O, Ci) computes the difference between the position
of object O and the center objectOci of cluster Ci for the U

time units starting at the insertion timetu. Let x(t) and xci(t)

denote the positions of objectsO andOci at timetu + t. We first
reorganizeM ′ to be function of the timet that ranges from0 to
U .

M ′(O, Ci) = Ni

Ni+1

∫ U
0 [x(t)− xci(t)]

2dt

= Ni

Ni+1

∫ U

0 [(x + vt)− (xci + vcit)]
2dt

= Ni

Ni+1 [13 (v − vci)
2U3 + (x− xci)(v − vci)U

2

+(x− xci)
2U]

7

Next, we examine the variation of the radius of the cluster that
absorbs the new objectO.
∫ U

0 (Ni + 1)R2
i,Odt−

∫ U

0 NiR
2
i dt

=
∫ U
0 [(Ni + 1)

(Ai,Ot2+Bi,Ot+Ci,O)
Ni+1 −Ni

(Ait
2+Bit+Ci)

Ni
]dt

=
∫ U

0 [(Ai,O −Ai)t
2 + (Bi,O −Bi)t + (Ci,O − Ci)]dt

= 1
3 (Ai,O −Ai)U

3 + 1
2 (Bi,O −Bi)U

2 + (Ci,O − Ci)U

We proceed to utilize Theorem 3, which states that the average
radius of a cluster can be computed from the cluster’s clustering
feature. In the transformation from the third to the fourth line, we
useCV i = Nivci.

∆Ai = Ai,O −Ai

= (CV 2
i + v2 − (CV i+v)2

Ni+1)− (CV 2
i − CV

2

i

Ni
)

= 1
Ni(Ni+1)

CV
2
i − 2

Ni+1CV iv + Ni

Ni+1v2

= Ni

Ni+1v2 +
N2

i

Ni(Ni+1)
v2

ci − 2Ni

Ni+1vciv

= Ni

Ni+1 (v − vci)
2

We express∆Bi similarly. In the last transformation, we use
CV i = Nivci andCXi = Nixci.

∆Bi = Bi,O −Bi

= 2(CXV i + xv − (CXi+x)(CV i+v)
Ni

)−
2(CXV i − CXiCV i

Ni
)

= 2Ni

Ni+1 (x− xci)(v − vci)

Finally, we express∆Ci, utilizing CXi = Nixci.

∆Ci = Ci,O − Ci

= (CX2
i + x2 − (CXi+x)2

Ni
)− (CX2

i − CX
2

i

Ni
)

= Ni

Ni+1 (x− xci)
2

We observe thatM ′(O, Ci) =
∫ U
0 (Ni+1)R2

i,Odt−
∫ U
0 NiR

2
i dt.

Utilizing the premise of the theorem, we have
∫ U

0 (N1 +

1)R2
1,Odt −

∫ U

0 N1R2
1dt <

∫ U

0 (N2 + 1)R2
2,Odt −

∫ U

0 N2R2
2dt.

Then, both sides of the inequality are divided by the total number
of objects inC1 and C2, which is N1 + N2 + 1. The theorem
follows by rearranging the terms. 2

The following lemma, based on Theorem 1, shows which
cluster a new object should be inserted into.

Lemma 2:Placement of a new object into the clusterC with
the nearest center object according to dissimilarity measure M

minimizes the average squared distance between all objectsand
their cluster centers, termedD, in comparison to all other place-
ments.

Proof: Assume that inserting objectO into another clusterC′

results in a smaller average distance between all objects and their
cluster centers, denotedD′, thanD. SinceC′ is not the nearest
cluster ofO, M ′(O, C) ≤ M ′(O, C′). According to Theorem 1,
we haveD ≤ D′, which contradicts the initial assumption.2

In essence, Lemma 2 suggests how to achieve a locally optimal
clustering during continuous clustering. Globally optimal cluster-
ing appears to be unrealistic for continuous clustering of moving
objects—it is not realistic to frequently re-cluster all objects, and
we have no knowledge of future updates.

Next, we observe that use of the Euclidean distance among
objects at the time a clustering is performed or updated can be
expected to be quite sub-optimal for our setting, where we are to

maintain a clustering across time. This is because the Euclidean
distance only measures the difference of object positions at a
single point in time, whileM ′ measures the total difference during
a time interval. It may occur frequently that objects close to each
other at a point in time may be relatively far apart at later times.
Therefore, even if the Euclidean distance between the object and
the cluster center is at first small, the correspondingM ′ value
could be larger, meaning that the use of the Euclidean distance
results in larger average distance between objects and their cluster
centers.

We proceed to consider the effect of updates during the
clustering. LetF (t), where0 < F (t) ≤ 1 and0 ≤ t ≤ U , denote
the fraction of objects having their update interval being equal to
t. We define the weight valuewx at time tx, where0 ≤ tx ≤ U ,
as follows:

wx =

∫ U

tx

F (t)dt (3)

This weight value can reflect the update behavior. The reasons
are as follows. The update interval of any object is less thanthe
maximum update timeU . After the initial cluster construction,
the probability that an object will be updated before timetx
is

∫ tx

0 F (t)dt. Because
∫ U

0 F (t)dt = 1, the probability that an
objects will not be updated before timetx is then1−

∫ tx

0 F (t)dt

=
∫ U
tx

F (t)dt. This weight value gives the ’validity’ time of an
object. In other words, it indicates the importance of the object’s
position at timetx.

Moreover, the weight value also satisfies the property thattx ≤
ty implies wx ≥ wy. Let tx ≤ ty. Then:

wx − wy=
∫ U

tx
F (t)dt−

∫ U

ty
F (t)dt

=
∫ ty

tx
F (t)dt +

∫ U
ty

F (t)dt−
∫ U
ty

F (t)dt

=
∫ ty

tx
F (t)dt ≥ 0

In the empirical study, next, we use versions of dissimilarity
measureM that sum values at sample time points, rather than the
boundary (integral) case considered in this section. This is done
mainly for simplicity of computation.

V. EMPIRICAL PERFORMANCESTUDIES

We proceed to present results of empirical performance studies
of the proposed clustering algorithm. We first introduce the
experimental settings. We then compare our proposal with the
existing K-means and Birch clustering algorithms. Finally, we
study the properties of our algorithm while varying several
pertinent parameters.

A. Experimental Settings

All experiments are conducted on a 2.6G Hz P4 machine with
1Gbyte of main memory. The page size is 4K bytes, which results
in a node capacity of 170 objects in the MC data structures. We
assign two pages to each cluster.

Due to the lack of appropriate, real moving object datasets,
we use synthetic datasets of moving objects with positions in the
square space of size1000×1000 units. We use three types of gen-
erated datasets: uniform distributed datasets, Gaussian distributed
datasets, and network-based datasets. In most experiments, we
use uniform data. Initial positions of all moving objects are
chosen at random, as are their movement directions. Object speeds
are also chosen at random, within the range of0 to 3. In the

8

Gaussian datasets, the moving object positions follow a Gaussian
distribution. The network-based datasets are constructedby using
the data generator for the COST benchmark [5], where objects
move in a network of two-way routes that connect a given number
of uniformly distributed destinations. Objects start at random
positions on routes and are assigned at random to one of three
groups of objects with maximum speeds of 0.75, 1.5, and 3.
Whenever an object reaches one of the destinations, it chooses the
next target destination at random. Objects accelerate as they leave
a destination, and they decelerate as they approach a destination.
One may think of the space unit as being kilometers and the speed
unit as being kilometers per minute. The sizes of datasets vary
from 10K to 100K. The duration in-between updates to an object
ranges from1 to U , whereU is the maximum update time.

Unless stated otherwise, we use the decreasing weight valueas
defined in equation 3, and we set the interval between sample
timestamps to be 10. We store the event queue and the hash
table in memory. We quantify the clustering effect by the average
radius, and we examine the construction and update cost in terms
of both I/Os and CPU time.

Table I offers an overview of the parameters used in the ensuing
experiments. Values in bold denote default values.

TABLE I

PARAMETERS AND THEIR SETTINGS

Parameter Setting

Page size 4K
Node capacity 170
Cluster capacity 340
Maximum update time 60
Type of weight values Decreasing, Equal
Interval between sample timestamps5, 10, 20, 30, 60
Dataset size 10K, ..., 100K

B. Comparison with Clustering Algorithms for Static Databases

For comparison purposes, we choose the K-means and Birch
algorithms, which are representative clustering algorithms for
static databases. To directly apply both the K-means and Birch
algorithms to moving objects, both have to re-compute afterevery
update, everyk updates, or at regular time intervals in order to
maintain each clustering effectiveness.

The number of clusters generated by MC is used as the
desired number of clusters for the K-means and Birch algorithms.
Other parameters of Birch are set similarly to those used in the
literature [28]: (i) memory size is 5% of the dataset size; (ii) the
initial threshold is 0.0; (iii) outlier-handling is turnedoff; (iv)
the maximum input range of phase 3 is 1000; (v) the number of
refinement passes in phase 4 is one. We then study the average
radius across time. The smaller the radius, the more compactthe
clusters.

1) Clustering Effect without Updates:In this initial experi-
ment, we evaluate the clustering effect of all algorithms across
time assuming that no updates occur. Clusters are created attime
0, and the average radius is computed at each time unit. It is worth
noting that the weight values in MC are equal to1 as there are
no updates. Figure 10 shows that the average cluster radius grows
much faster for the K-means and Birch algorithms than for the
MC algorithm, which intuitively means that MC clusters remain
“valid” longer than do K-means and Birch clusters. Specifically,

0

20

40

60

80

100

120

140

0 6 12 18 24 30 36 42 48 54 60

Time Units

A
ve

ra
ge

 R
ad

iu
s

K-means
Birch

MC

Fig. 10. Clustering Effect without Updates

at time60, the average radii of the K-means and the Birch clusters
are more than 35% larger than that of the MC clusters.

Algorithm MC achieves its higher cluster longevity by consid-
ering both object positions and velocities, and hence the moving
objects in the same clusters have similar moving trend and may
not expand the clusters too fast.

Observe also that the radii of the K-means and the Birch
clusters are slightly smaller than those of the MC clusters during
the first few time units. This is so because the MC algorithm
aims to achieve a small cluster radius along the cluster’s entire
life time, instead of achieving a small initial radius. For example,
MC may place objects that are not very close at first, but may
get closer later, in the same cluster.

2) Clustering Effect with Updates:In this experiment, we use
the same dataset as in the previous section to compare the clusters
maintained incrementally by the MC algorithm when updates
occur with the clusters obtained by the K-means and the Birch
algorithms, which simply recompute their clusters each time the
comparison is made. Although the K-means and the Birch clusters
deteriorate quickly, they are computed to be small at the time
of computation and thus represent the near optimal cases for
clustering.

Figure 11 shows the average radii obtained by all the algorithms
as time progresses. Observe that the average radii of the MC
clusters are only slightly larger than those of the K-means and
the Birch clusters. Note also that after the first few time units,
the average radii of the MC clusters do not deteriorate.

0

5

10

15
20

25

30

35

40

45

50

0 6 12 18 24 30 36 42 48 54 60

Time Units

A
ve

ra
ge

 R
ad

iu
s

K-means
Birch
MC

Fig. 11. Clustering Effect with Updates

3) Clustering Effect with Dataset Size:We also study the
clustering effect when varying the number of moving objects;

9

0

10

20

30
40

50

60

70

80

90

100

10K 30K 50K 70K 90K

Number of Moving Objects

A
ve

ra
ge

 R
ad

iu
s

K-means
Birch
MC

Fig. 12. Clustering Effect with Varying Number of Moving Objects

Figure 12 plots the average radius. The clustering producedby
the MC algorithm is competitive for any size of dataset compared
to those of the K-means and the Birch algorithms. Moreover, in
all algorithms, the average radius decreases as the datasetsize
increases. This is because the capacity of a cluster is constant
(in our case twice the size of a page), and the object density
increases.

4) Clustering Effect with Different Data Distributions:Next,
we study the clustering effect in different types of datasets. We
test two network-based datasets with 100 and 500 destinations,
respectively, and one Gaussian dataset. As shown in Figure 13, the
average radii obtained by the MC algorithm are very close to those
obtained by the K-means and Birch algorithms, especially for the
network-based and Gaussian datasets. This is because objects in

0

5

10

15

20

25

30

100 500 Gaussian Uniform

Data Type

A
ve

ra
ge

 R
ad

iu
s

K-means Birch MC

Fig. 13. Clustering Effect with Different Data Distributions

the network-based datasets move along the roads, enabling the
MC algorithm to easily cluster those objects that move similarly.
In the Gaussian dataset, objects concentrate in the center of the
space; hence there are higher probabilities that more objects move
similarly, which leads to better clustering by the MC algorithm.
These results indicate that the MC algorithm is more efficient
for objects moving similarly, which is often the case for vehicles
moving in road networks.

5) Inter Cluster Distance:In addition to using the average
radius as the measure of clustering effect, we also test the average
inter cluster distance. The average inter cluster distanceof a
clusterC is defined as the average distance between the center
of clusterC and the centers of all the other clusters. Generally,
the larger the inter cluster distance, the better the clustering
quality. Figure 14 shows the clustering results in different types

of datasets. We can observe that the average inter cluster distance
of MC clusters is slightly larger than those of K-means and Birch
clusters in the network-based datasets. This again demonstrates
that the MC algorithm may be more suitable for moving objects
such as vehicles that move in road networks.

0

100

200

300
400

500

600

700

800

900

1000

100 500 Gaussian Uniform

Data Type

A
ve

ra
ge

 In
te

rc
lu

st
er

 D
is

ta
nc

e K-means Birch MC

Fig. 14. Inter Cluster Distance

6) Clustering Speed:Having considered clustering quality, we
proceed to compare the efficiency of cluster construction and
maintenance for all three algorithms. Since K-means is a main-
memory algorithm, we assume all the data can be loaded into
main memory, so that Birch and MC also run entirely in main
memory.

0

5

10

15

20

25

30

35

40

45

10K 30K 50K 70K 90K

Number of Moving Objects

C
P

U
 T

im
e

(s
)

K-means
Birch
MC

Fig. 15. Construction Time

We first construct clusters at time0 for all algorithms. Figure 15
compares the CPU times for different dataset sizes. We observe
that MC outperforms K-means, with a gap that increases with
increasing dataset size. Specifically, in the experiments,MC is
more than 5 times faster than K-means for the 100K dataset.

In comparison to Birch, MC is slightly slower when the dataset
becomes large. The main reason is that Birch does not maintain
any information between objects and clusters. This can result in
time savings in Birch when MC needs to change object labels
during the merging or splitting of clusters. However, construction
is a one-time task, and this slight construction overhead inMC is
useful because it enables efficient support for the frequentupdates
that occur in moving-object databases.

After the initial construction, we execute updates until the max-
imum update time. We apply two strategies to enable the K-means
and Birch algorithms to handle updates without any modifications
to the original algorithms. One is the extreme case where the
dataset is re-clustered after every update, labeled “per update.”

10

0.1

1

10

100

1000

10000

100000

1000000

10K 30K 50K 70K 90K

Number of Moving Objects

C
P

U
 T

im
e

(s
) K-means (per update)

K-means (per time unit)

Birch (per update)

MC

(a)

0

1

2

3

4

5

6

10K 30K 50K 70K 90K

Number of Moving Objects

C
P

U
 T

im
e

(s
)

Birch (per time unit)

MC

(b)

Fig. 16. Maintenance Time

The other re-clusters the dataset once every time unit, labeled
“per time unit.” Figure 16 shows the average computational costs
per time unit of all the algorithms for different dataset sizes.
Please note that they-axis in Figure 16(a) uses a log scale, which
makes the performance gaps between our algorithms and other
algorithms seem narrow. Actually, the MC algorithm achieves
significant better CPU performance than both variants of each of
K-means and Birch. According to Figure 16(a), the MC algorithm
is up to106 times and50 times faster than the first and the second
variant of K-means, respectively. When comparing to Birch,the
MC algorithm is up to105 times faster than the first variant of
Birch (Figure 16(a)) and up to5 times faster than the second
variant of Birch (Figure 16(b)).

These findings highlight the adaptiveness of the MC algorithm.
The first variants recompute clusters most frequently and thus
have by far the worst performance. The second variants have
lower recomputation frequency, but are then as a result not able
to reflect the effect of every update in its clustering (e.g.,they
are unable to support a mixed update and query workload). In
contrast, the MC algorithm does not do re-clustering, but instead
incrementally adjusts its existing clusters at each update.

C. Properties of the MC Algorithm

We proceed to explore the properties of the MC algorithm,
including its stability and performance under various parameters
and its update I/O cost.

1) The Number of Clusters:We first study the number of
clusters, varying the dataset size and time. As shown in Figure 17,
the number of clusters remains almost constant for the same

dataset as time passes. Recall also Figure 11 (in Section V-B.2).
We can derive from these results that the MC algorithm maintains
a similar number of clusters and similar sizes of radii for the same
dataset as time passes, which indicates that the MC algorithm has
stable performance. In other words, the passing of time has almost
no effect on the results produced by the MC algorithm.

0

50

100

150
200

250

300

350

400

450

500

0 6 12 18 24 30 36 42 48 54 60

Time Units

N
um

be
r

of
 C

lu
st

er
s MC-100K

MC-50K

MC-10K

Fig. 17. Number of Clusters with Different Data Sizes

2) Effect of Weight Values:Next, we are interested in the
behavior of the MC algorithm under the different types of weight
values used in the dissimilarity measurements. We take two
types of weight values into account: (i) decreasing weights(see
equation 3):wj > wj+1, 1 ≤ j ≤ k − 1; (ii) equal weights:
wj = wj+1, 1 ≤ j ≤ k − 1.

From now on, we use the total radius (i.e., the product of
the average radius and the number of clusters) as the clustering
effect measurement since the numbers of clusters are different
for the different weight values. Figure 18 shows the total radius
of clusters generated by using these two types of weight values.
It is not surprising that the one using decreasing weight values

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 6 12 18 24 30 36 42 48 54 60

Time Units

T
ot

al
 R

ad
iu

s

Decreasing Weight

Equal Weight

Fig. 18. Clustering Effect with Different Types of Weight Values

yields better performance. As we mentioned before, the closer
to the current time, the more important the positions of moving
objects are because later positions have higher probabilities of
being changed by updates.

3) Effect of Time Interval Length between Sample Points:
Another parameter of the dissimilarity measurement is the time
interval length between two consecutive sample positions.We
vary the interval length and examine the performance of the MC
algorithm as time progresses (see Figure 19(a)). As expected,
we can see that the one with the shortest interval length has the
smallest radius (i.e., best clustering effect). However, this does
not mean that the shortest interval length is an optimal value

11

0

5000

10000

15000

20000

25000

30000

0 6 12 18 24 30 36 42 48 54 60

Time Units

T
ot

al
 R

ad
iu

s

Interval length 5 Interval length 10
Interval length 20 Interval length 30
Interval length 60

(a) Clustering Effect

0

0.05

0.1

0.15
0.2

0.25

0.3

0.35

0.4

0.45

0.5

5 10 20 30 60

Interval Length

T
ot

al
 C

P
U

 T
im

e
(m

s)

I/O cost Computation cost

(b) Maintenance Time

Fig. 19. Effect of Different Interval Lengths

considering the overall performance of the MC algorithm. We
need to consider the time efficiency with respect to the interval
length. In addition, we also observe that the difference between
the time intervals equal to 60 and 30 is much wider than the
others. The possible reason is that when time interval is 60,there
are only two sample points (start and end points of an object
trajectory), which are not able to differentiate the two situations
shown in Figure 4. Therefore, it is suggested to use no less than
three sample points so that the middle point of a trajectory can
be captured.

Figure 19(b) shows the maintenance cost of the MC algorithm
when varying the time interval length. Observe that the CPU time
decreases with the increase of the time interval length, while the
I/O cost (expressed in milliseconds) does not change much. This
is because the longer time interval results in less sample positions,
and hence less computation. In contrast, the I/O cost is mainly
due to the split and merge events. When the time interval length
increases, the dissimilarity measurement tends to be less tight,
which results in less split and merge events.

Considering the clustering effect and time efficiency together,
the time interval length should not be larger than 30, as we need
at least three sample points, and it should not be too small, as
this will yield unnecessarily many computations. Therefore, we
choose the number of sample points to be a little more than 3 as
a tradeoff. In our experiments, the number of sample points is 6,
corresponding to the time interval length 10.

4) Update I/O Cost:We now study the update I/O cost of
the MC algorithm solely. We vary the dataset size from 10K to
100K and run the MC algorithm for the maximum update interval.
Figure 20 records the average update cost. As we can see, the
update cost is only 2 to 5 I/Os because each insertion or deletion

0

1

2

3

4

5

6

7

8

10K 30K 50K 70K 90K

Number of Moving Objects

U
pd

at
e

I/O
s

MC

Fig. 20. Update I/O Cost

usually affects only one or two clusters. This suggests thatthe
MC algorithm has very good update performance.

VI. CONCLUSION

This paper proposes a fast and effective scheme for the contin-
uous clustering of moving objects. We define a new and general
notion of object dissimilarity, which is capable of taking future
object movement and expected update frequency into account,
with resulting improvements in clustering quality and running
time performance. Next, we propose a dynamic summary data
structure for clusters that is shown to enable frequent updates to
the data without the need for global re-clustering. An average
radius function is used that automatically detects clustersplit
events, which, in comparison to existing approaches, eliminates
the need to maintain bounding boxes of clusters with large
amounts of associated violation events. In future work, we aim
to apply the clustering scheme in new applications.

ACKNOWLEDGEMENT

The work of Dan Lin and Beng Chin Ooi was in part funded
by anA∗STARproject on spatial-temporal databases.

REFERENCES

[1] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic
subspace clustering of high dimensional data for data mining application.
In Proc. ACM SIGMOD, pp. 94–105, 1998.

[2] M. Ankerst, M. Breunig, H.P. Kriegel, and J. Sander. OPTICS: Ordering
points to identify the clustering structure. InProc. ACM SIGMOD, pp. 49–
60, 1999.

[3] Applied Generics. RoDIN24. www.appliedgenerics.com/downloads/
RoDIN24-Brochure.pdf, 2006.

[4] J. Basch, L. J. Guibas, and J. Hershberger. Data structures for mobile
data. Algorithms, 31(1): 1–28, 1999.

[5] C. S. Jensen, D. Tiesyte, and N. Tradisauskas. The COST Benchmark-
Comparison and Evaluation of Spatio-temporal Indexes.Proc. DASFAA,
pp. 125–140, 2006.

[6] T. F. Gonzalez. Clustering to minimize the maximum intercluster distance.
Theoretical Computer Science, 38: 293–306, 1985.

[7] S. Guha, R. Rastogi, and K. Shim. CURE: An efficient clustering
algorithm for large databases. InProc. ACM SIGMOD, pp. 73–84, 1998.

[8] M. Hadjieleftheriou, G. Kollios, D. Gunopulos, and V. J.Tsotras. On-
line discovery of dense areas in spatio-temporal databses. In Proc. SSTD,
pp. 306–324, 2003.

[9] S. Har-Peled. Clustering motion.Discrete and Computational Geometry,
31(4): 545–565, 2003.

[10] V. S. Iyengar. On detecting space-time clusters. InProc. KDD, pp. 587–
592, 2004.

[11] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering:A review.
ACM Computing Surveys, 31(3):264–323, 1999.

12

[12] C. S. Jensen, D. Lin, and B. C. Ooi. Query and update efficient B+-tree
based indexing of moving objects. InProc. VLDB, pp. 768–779, 2004.

[13] P. Kalnis, N. Mamoulis, and S. Bakiras. On discovering moving clusters
in spatio-temporal data. InProc. SSTD, pp. 364–381, 2005.

[14] G. Karypis, E.-H. Han, and V. Kumar. Chameleon: Hierarchical cluster-
ing algorithm using dynamic modeling. InIEEE Computer, 32(8):68–75,
1999.

[15] D. Kwon, S. Lee, and S. Lee. Indexing the current positions of moving
objects using the lazy update R-tree. InProc. MDM, pp. 113–120, 2002.

[16] Y. Li, J. Han, and J. Yang. Clustering moving objects. InProc. KDD,
pp. 617–622, 2004.

[17] J. Macqueen. Some methods for classification and analysisof multi-
variate observations. InProc. Berkeley Symp. Math. Statiss, pp. 281–297,
1967.

[18] S. Nassar, J. Sander, and C. Cheng. Incremental and effective data
summarization for dynamic hierarchical clustering. InProc. ACM
SIGMOD, pp. 467–478, 2004.

[19] R. Ng and J. Han. Efficient and effective clustering method for spatial
data mining. InProc. VLDB, pp. 144–155, 1994.

[20] J. M. Patel, Y. Chen, and V. P. Chakka. STRIPES: An efficient index
for predicted trajectories. InProc. ACM SIGMOD, pp. 637–646, 2004.

[21] S. Šaltenis, C. S.Jensen, S. T. Leutenegger, and M. A. Lopez. Indexing
the positions of continuously moving objects. InProc. ACM SIGMOD,
pp. 331–342, 2000.

[22] M. Spiliopoulou, I. Ntoutsi, Y. Theodoridis, and R. Schult. MONIC:
modeling and monitoring cluster transitions. InProc. KDD, pp. 706–
711, 2006.

[23] Y. Tao, C. Faloutsos, D. Papadias, and B. Liu. Prediction and indexing of
moving objects with unknown motion patterns. InProc. ACM SIGMOD,
pp. 611–622, 2004.

[24] Y. Tao, D. Papadias, and J. Sun. The TPR*-tree: An optimized spatio-
temporal access method for predictive queries. InProc. VLDB, pp. 790–
801, 2003.

[25] W. Wang, J. Yang, and R. Muntz. Sting: a statistical information grid
approach to spatial data mining. InProc. VLDB, pp. 186–195, 1997.

[26] M. L. Yiu and N. Mamoulis. Clustering objects on a spatialnetwork.
In Proc. ACM SIGMOD, pp. 443–454, 2004.

[27] Q. Zhang and X. Lin. Clustering moving objects for spatio-temporal
selectivity estimation. InProc. ADC, pp. 123–130, 2004.

[28] T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: An efficient data
clustering method for very large databases. InProc. ACM SIGMOD,
pp. 103–114, 1996.

Christian S. Jensen (Ph.D., Dr.Techn.) is a Pro-
fessor of Computer Science at Aalborg University,
Denmark, and an Adjunct Professor at Agder Uni-
versity College, Norway.

His research concerns data management and spans
issues of semantics, modeling, and performance.
With his colleagues, he has published widely on
these subjects. With his colleagues, he receives sub-
stantial national and international funding for his
research.

He is a member of the Danish Danish Academy
of Technical Sciences, the EDBT Endowment, and the VLDB Endowment’s
Board of Trustees. He received Ib Henriksen’s Research Award 2001 for his
research in mainly temporal data management and Telenor’s Nordic Research
Award 2002 for his research in mobile services.

His service record includes the editorial boards of ACM TODS, IEEE
TKDE and the IEEE Data Engineering Bulletin. He was the general chair
of the 1995 International Workshop on Temporal Databases anda vice PC
chair for ICDE 1998. He was PC chair or co-chair for the Workshop on
Spatio-Temporal Database Management, held with VLDB 1999, for SSTD
2001, EDBT 2002, VLDB 2005, MobiDE 2006, and MDM 2007. He is a
vice PC chair for ICDE 2008. He has served on more than 100 program
committees.

He serves on the boards of directors and advisors for a small number of
companies, and he serves regularly as a consultant.

Dan Lin received the B.S. degree (First Class Hon-
ors) in Computer Science from Fudan University,
China in 2002, and the Ph.D. degree in Computer
Science from the National University of Singapore in
2007. Currently, She is a visiting scholar in the De-
partment of Computer Science at Purdue University,
USA. Her main research interests cover many areas
in the fields of database systems and information
security. Her current research includes geographical
information systems, spatial-temporal databases, lo-
cation privacy, and access control policies.

Beng Chin Ooi received the B.S. (First Class
Honors) and Ph.D. degrees from Monash Univer-
sity, Australia in 1985 and 1989 respectively. He
is currently a professor of computer science at the
School of Computing, National University of Singa-
pore. His current research interests include database
performance issues, index techniques, XML, spatial
databases and P2P/grid Computing. He has pub-
lished more than 100 conference/journal papers and
served as a PC member for a number of international
conferences (including SIGMOD, VLDB, ICDE,

EDBT and DASFAA). He is an editor ofGeoInformatica, theJournal of GIS,
ACM SIGMOD Disc, VLDB Journaland theIEEE TKDE. He is a member
of the ACM and the IEEE.

