
The Performance of MapReduce: An In-depth Study

Dawei Jiang Beng Chin Ooi Lei Shi Sai Wu

School of Computing
National University of Singapore

{jiangdw, ooibc, shilei, wusai}@comp.nus.edu.sg

ABSTRACT
MapReduce-based systems have been widely used for large-
scale data analysis. Although these systems achieve storage-
system independence, high scalability, and fine-grained fault
tolerance, their performance are not satisfactory. According
to a recent study [14], MapReduce-based systems are signif-
icantly slower than Parallel Database systems in performing
a variety of analytic tasks. Some attribute the performance
gap between MapReduce-based and Parallel Database sys-
tems to architectural design. This speculation yields an in-
teresting question: Must a system sacrifice performance to
achieve flexibility and scalability?

Inspired by the question above, we conducted an in-depth
performance study of MapReduce in its open source im-
plementation, Hadoop. We identify four factors that have
significant performance effect on MapReduce, and investi-
gate alternative strategies for each factor. Finally, we eval-
uate the performance of MapReduce on a representative yet
tractable combinations of the four factors using the same
benchmark in [14]. The results show that with proper im-
plementation, the performance of MapReduce can be im-
proved by a factor of 2.5 to 3.5 and approaches to Parallel
Databases. Our results show that it is possible to build a
MapReduce-based system that is not only flexible and scal-
able, but is also efficient.

1. INTRODUCTION
MapReduce-based systems are increasingly being used for

large-scale data analysis. There are several reasons for this.
First, the interface of MapReduce is simple yet expressive.
Although MapReduce only involves two functions map() and
reduce(), a number of data analytical tasks including tradi-
tional SQL query, data mining, machine learning, and graph
processing can be expressed with a set of MapReduce jobs.
Second, MapReduce is flexible. It is designed to be indepen-
dent of storage systems and is able to analyze various kinds
of data, structured and unstructured. Finally, MapReduce
is scalable. Installation of MapReduce on a 4,000 nodes

shared-nothing cluster has been reported [2]. MapReduce
also provides fine-grain fault tolerance whereby only tasks
on failed nodes need to be restarted.

Traditionally, the large-scale data analysis market is dom-
inated by Parallel Database systems. The popularity of
MapReduce gives rise to the question of whether there are
fundamental differences between MapReduce-based and Par-
allel Database systems. Along this direction, [14] reported a
comparative evaluation of the two systems in many dimen-
sions, including schema support, data access methods, fault
tolerance and so on. The authors also introduced a bench-
mark to evaluate the performance of both systems. The
results showed that the observed performance of a Parallel
Database system is much better than that of a MapReduce-
based system. The authors of [14] speculated about possible
architectural causes for the performance gap between the
two systems. For instance, MapReduce-based systems need
to repetitively parse records since it is designed to be in-
dependent of the storage system. Thus, parsing introduces
performance overhead. These speculations prompted an in-
teresting question: In achieving scalability and flexibility,
must MapReduce-based systems trade off performance? In
other words, is it not possible to have a flexible, scalable and
efficient MapReduce-based systems?

Inspired by the above question, we conducted an in-depth
performance study of MapReduce on an open source imple-
mentation, Hadoop. Based on our study, we identify several
performance bottlenecks, some of these have been previously
observed by other researchers. We then adopt/adapt well-
known engineering and database techniques to manage these
bottlenecks. Our performance evaluation using the bench-
mark developed in [14]. shows the effectiveness of these
techniques. Our findings are as follows:

• Although MapReduce is independent of the under-
line storage system, it still requires the storage sys-
tem to provide efficient I/O modes for scanning data.
We identify two kinds of I/O modes: direct I/O and
streaming I/O. Benchmark on HDFS shows that direct
I/O outperforms streaming I/O by 10%∼15%.

• We find that MapReduce can utilize an index in a
straightforward way. We show MapReduce can ben-
efit from three kinds of indices: range-indexes, block-
level indexes, and database indexed tables. Our bench-
marking shows that the range-index improves the per-
formance of MapReduce by a factor of 2 in the selection
task and a factor of 10 in the join task when selectivity
is high.

• Parsing records are not the source of poor performance.
Our conclusion is different from that reported in [14],
[15], and [6]. In our study, we identify two kinds of
record decoders: mutable decoders and immutable de-
coders. We find that only immutable decoders intro-
duce performance bottleneck. To handle database-like
workloads, MapReduce users should strictly use mu-
table decoders. We show that a mutable decoder is
faster than an immutable decoder by a factor of 10,
and improves the performance of selection by a fac-
tor of 2. Using a mutable decoder, even parsing text
record is efficient.

• We find that map-side sorting exerts negative perfor-
mance effect on large aggregation tasks which require
nontrivial key comparisons and produce millions of
groups. We show that fingerprinting-based sort can
significantly improve the performance of MapReduce
on such aggregation tasks. Our benchmarking shows
that fingerprinting-based sort outperforms direct sort
by a factor of 4 to 5, and improves overall performance
of the job by 20%∼25%.

• We also find scheduling strategy affects the perfor-
mance of MapReduce. The current scheduling strategy
in Hadoop is sensitive to the processing speed of slave
nodes, and slows down the execution time of the entire
job by 25%∼35%.

In summary, with proper implementation, the performance
of MapReduce-based systems can be improved by a factor
of 2.5 to 3.5. This means that, contrary to popular be-
lief, MapReduce-based systems are not inferior to Parallel
Database systems in terms of performance; instead, they can
offer a competitive edge as they are flexible, scalable and effi-
cient. The rest of the paper is organized as follows: Section 2
presents factors that affect the performance of MapReduce.
Section 3 presents the combination factors that we will eval-
uate. Section 4 presents implementation details. Section 5
presents our benchmark results. Section 6 discusses related
work, and we conclude in Section 7.

2. FACTORS AFFECTING PERFORMANCE
OF MAPREDUCE

This Section identifies factors that may have a significant
effect on the observed performance of MapReduce. The ex-
ecution of a single MapReduce job consists of seven steps:
1) invoke map functions to read data from a storage sys-
tem into memory, 2) parse/decode data into records, 3)
process the records, 4) sort the intermediate data emitted
by map functions according to keys, 5) shuffle intermediate
data from mappers to reducers, 6) merge data into groups
by intermediate keys, 7) invoke reduce functions and write
resulting records back to a storage system. In Hadoop, the
execution of a MapReduce job is monitored and managed
by a JobTracker node, i.e., a master node which manages
a MapReduce cluster. Map functions and Reduce functions
are executed on a number of slave nodes (called TaskTracker
nodes).

We find that different implementation strategies in Step
1), Step 2), and Step 4) are factors that have major per-
formance impact, namely: 1) the I/O mode that the map
function reads data off the storage system, 2) the decoding

method that transforms raw data into records, and 3) the
key comparison strategy used during sorting for computing
aggregations.

2.1 I/O mode
MapReduce is designed to be independent of the under-

lying storage system. A Map function takes input from a
reader instead of the storage system. The reader repeatedly
reads data from the storage system into a memory buffer
(64KB or 128KB in typical) for the map function to process
until all the data in the data chunk are exhausted. A reader
is conceptually similar to a wrapper in terms of database
terminology. To analyze data stored in a new storage sys-
tem, the user implements a new reader that can operate on
that storage system. Currently, Hadoop provides readers
for MapReduce jobs to read data from two kinds of storage
systems: HDFS and relational databases.

We now examine the overhead of reading data through
readers. Readers have two ways to read data from storage
systems: 1) direct I/O, namely read data from the disk di-
rectly, 2) streaming I/O, namely streaming data from the
storage system by an inter-process communication scheme,
such as TCP/IP or JDBC. Streaming I/O is more general
in that it can be used for reading data from both local node
and remote node. We call a map function a data-local map
if the map function reads data from the local node.

Streaming I/O is the only choice if a map function is not
a data-local map. However, for data-local maps, we would
expect direct I/O is more efficient. In Hadoop, all readers
use streaming I/O to extract data from storage systems, i.e.
HDFS or databases, no matter whether the data is stored in
the local node or a remote node. In this paper, we implement
a direct I/O mode on HDFS and evaluate the performance
of different I/O modes.

2.2 Indexing
The factor that we next consider is how MapReduce uti-

lizes indexing to speedup data process. We identify three
cases.

First, if the input of a MapReduce job is a set of files
stored in a distributed file system, i.e. HDFS, and each file is
already sorted on keys, MapReduce can use a range-index to
prune unnecessary data chunks and direct map functions to
only scan data chunks that store records of interest. In this
paper, we evaluate a simple range indexing scheme. This
indexing creates an index entry for each fixed sized data
chunk 1, sorts those index entries and store them in an index
file. Each index entry is of the form (kb, ke, Ds) where kb

and ke are the start key and end key of the indexed data
chunk, Ds is the offset of the data chunk in the HDFS file.
Index entries are sorted based on kb.

Second, if the input HDFS files of MapReduce are not
sorted but each data chunk in the files are indexed by keys,
MapReduce can also utilize this chunk-index by scheduling
a map task on each data chunk and configure the reader to
apply the index for searching desired records. This strategy
can be used when HDFS is used for backup or archiving a
set of database files where each database file is an indexed
table.

Finally, if the input of MapReduce are tables stored in
database servers, MapReduce can transparently utilize database

1The size is defined by the user

indexed tables by pushing SQL queries to database and pro-
cess the query results. This strategy is already used in [6].

We initially plan to evaluate all three possibilities. For
chunk-indexing, we implement a scheme which stores Berke-
ley DB’s database files in HDFS and enable MapReduce to
analyze records stored in those databases by using of index.
However, Berkeley DB application automatically performs
database recovery each time the application is launched.
This recovery process takes a long time and thus slows down
all benchmarks. Therefore, we remove the results of Berke-
ley DB.

2.3 Parsing
When a reader loads data into the memory buffer, before

the data can be processed by the map function, the raw
data must be converted into a set of records, i.e., key-value
pairs, and fields in each value part must also be decoded to
appropriate types. Previous studies show that parsing has
considerable performance overhead [14][15][6]. This Section
discusses this problem. Without loss of generality, we focus
our study on decoding structured records where value part
in each record consists of many attributes. We both consider
decoding text record and binary record.

In this paper, we identify two kinds of decoding scheme:
immutable decoding and mutable decoding. An immutable
decoder decodes raw data as immutable records. Immutable
records are read-only records whose fields in the value part
can only be set once and cannot be changed after the record
is created. Using immutable decoder, a new immutable
record is created each time the decoder is called by the map
function for parsing the next input record. As a result, pars-
ing four million records produces four million immutable
records.

One can also use mutable decoding scheme. Using this
approach, a mutable record whose fields can be reset is cre-
ated first and is reused for decoding all records. Each time
a mutable decoder is called by the map function, it decodes
the raw data and fills the fields of the mutable record with
next record. Thus, no matter how many records will be
decoded, only one mutable record is created.

We found that the poor performance of record parsing
observed in [14], [15], and [6] is mainly due to fact that
all these studies adopt an immutable decoder rather than a
mutable decoder. Immutable decoder is significantly slower
than mutable decoder as its produces a huge number of im-
mutable records in the decoding process. Creation of those
immutable records consumes a huge amount of memory and
incurs a huge overhead on CPU. In this paper, we will eval-
uate the performance of both decoders. In general, MapRe-
duce users should strictly use mutable decoders whenever
possible.

2.4 Sorting
The fourth factor we consider is sorting. MapReduce em-

ploys a sort-merge strategy for performing all kinds of data
analysis tasks. This sort-merge strategy affects the perfor-
mance of aggregation tasks, especially when the aggregation
will produce a large number of groups and the cost of key
comparison is not trivial. Consider we are required to cal-
culate the total revenue of each sourceIP in the UserVisits
table, namely the aggregation benchmark used in [14]. To
perform this task, the MapReduce framework needs to sort
the intermediate records emitted by the map function ac-

cording to sourceIP. Each sourceIP is a variable-length string
with 16 bytes at most. Thus the comparison of two sour-
ceIPs need 16 byte-to-byte comparisons in the worst case.
Performing such string comparisons millions of times intro-
duces performance penalty.

This paper evaluates an alternative strategy. When an in-
termediate record is emitted, we store a fingerprint, a 32bits
integer, of the key along with that record. When MapRe-
duce sorts the intermediate records, we first compare their
fingerprints of keys. If two keys have the same fingerprint,
we compare the original keys. This fingerprints comparison
strategy reduces the cost of comparing two keys which are
fingerprinted to different values. In such cases, only one in-
teger comparison, typically finished in one CPU instruction,
is needed. Merging intermediate records at reduce side also
needs to be adjusted accordingly. This is achieved by first
grouping records with fingerprints and for records with the
same fingerprint, we group them with original keys.

3. PRUNING SEARCH SPACE
Combinations of the four factors discussed so far result

in a huge search space. In addition, as all benchmarks are
conducted on Amazon EC2, the budget on EC2 usage also
imposes a constraint on us. Therefore, we narrow down the
search space into a representative but tractable set. The
pruning approach that we used is as follows.

We evaluate the performance of MapReduce on two kinds
of storage systems: a distributed file system, i.e., HDFS and
a database system, i.e., PostgreSQL. These two storage sys-
tems, we believe, represent the typical usage of MapReduce
based data analysis. For HDFS, we report the performance
of all benchmark data analysis tasks. For PostgreSQL, we
only perform a subset of benchmark analysis tasks. This is
because loading data to PostgreSQL and building cluster in-
dex consumes a lot of time. Thus we only run analysis tasks
on those datasets whose loading time is within 3 hours.

We first conduct a micro benchmark on HDFS to study
the performance of streaming I/O and direct I/O when map
reads local data. The fastest I/O mode will be used in sub-
sequent benchmark. For PostgreSQL, streaming I/O with
JDBC is always used. There is a trend in database indus-
tries called ”In-Database MapReduce” which is a technology
of running map and reduce functions inside database query
engine. This ”In-Database MapReduce” strategy could be
characterized as direct I/O support for MapReduce from
databases. However, such a system is unavailable to us.

Second, we evaluate the performance of record parsing
with a special focus on the difference of performance between
immutable decoders and mutable decoders. Text record
parsing and binary record parsing are both considered. For
binary record parsing, we evaluate three schemes: 1) Hadoop’s
Writable, 2) Google’s protocol buffer [1], and 3) Berke-
ley DB’s tuple binding API (BDB API) [4]. We imple-
ment a mutable decoder and an immutable decoder for both
kinds of records, text and binary, with exception for BDB
API as BDB only supports mutable decoding. The decoder
with the best performance is then chosen for the bench-
mark. We have designed a KeyValueSequenceFile stor-
age format for storing binary records in HDFS files. We
do not use Hadoop’s SequenceFile since it only supports
Writable decoding. We initially plan to evaluate the effect
of compression on the performance of MapReduce. How-
ever, compression is only available in SequenceFile, port-

ing compress/uncompress codes from SequenceFile to our
KeyValueSequenceFile takes too many time. After a few
trials and errors, we finally discard this option and only
report results without compression. Enabling compression
should not change the conclusions of this paper dramatically,
as in previous study [15], compression only contributes a lit-
tle bit performance improvement for MapReduce jobs.

Finally, we evaluate the performance of MapReduce on a
real benchmark with HDFS with fastest I/O mode, decoders
with best performance, along with different sort schemes
(direct key comparison and fingerprint comparison). The
benchmark we used is identical to the one in [14] and [15].
Descriptions of datasets and queries are described in Ap-
pendix. We use three datasets (Grep, Rankings, and UserVis-
its) and four queries (grep, selection, aggregation, and join)
in this study. This benchmark consists of four datasets and
five queries. The dataset and query that we do not use is
designed for benchmarking user defined functions which is
not the focus of this paper. We choose this benchmark since
it is widely used in recent studies for benchmarking the per-
formance of MapReduce and Parallel Databases.

4. IMPLEMENTATION DETAILS
We use Hadoop v0.19.2 as the code base. All MapReduce

programs are written in Java, the default programming lan-
guage for MapReduce in Hadoop. All the source codes will
be available in our project’s website.

We implement direct I/O for HDFS to enable map func-
tions to read data directly from the disk on local data node
instead of streaming data through TCP. This is achieved by
modifications of data node implementation. HDFS stores a
large data file as a set of data chunks among available data
nodes. Each data chunk is stored as a local file in a certain
data node. When a data node receives a data request, it
first checks whether the data request is from a local map’s
reader 2. If that is the case, the data node passes the local
data chunk file’s name to the reader. The reader, then, can
read data from local disk to the memory buffer of the map
function.

Hadoop is already shipped with API for analyzing data
stored in databases using MapReduce. However, we found
using HadoopDB [6] is much easier. Since authors of HadoopDB
has already tuned the MapReduce code for the benchmark
that we used. Therefore, we use HadoopDB’s MapReduce
program for performing analysis tasks on PostgreSQL.

For text record decoder, we use the same immutable de-
coder presented in [14][15][6]. In Hadoop, a text record is
stored as a line in the file with key being the offset and value
consists of all fields separated by a field delimiter, such as
comma or vertical bar. The immutable decoder decodes the
value of a record by first splitting the value into a set of
immutable string fields and then converts each immutable
string field into a type.

We implement a mutable text decoder ourselves. The mu-
table text record decoder treats the input string (value of a
record) as a byte array. It iterates each byte in the array to
find field delimiters and converts bytes between two succes-
sive field delimiters into the desired type.

For binary decoder, we use the same immutable Writable

decoder released by the authors of [14] and implement our
own mutable decoder by using of Hadoop’s API. We use the

2This is performed by examining the IP address of the reader

compiler shipped with Google’s protocol buffer for generat-
ing its immutable decoder. The compiler could not generate
an immutable decoder for protocol buffer, so we implement
it by using Google’s API directly. The mutable decoder of
BDB binary record format is implemented by using of BDB
tuple binding API.

We store binary tuples in our own KeyValueSequenceFile

storage format. The KeyValueSequenceFile follows read-
optimized row storage format [12][11]. KeyValueSequenceFile
stores records together, one after another, in a set of pages.
The page size is 128KB with a five bytes header storing the
offset of the first record and the offset of the last record in the
page respectively. We found that our KeyValueSequenceFile
is much easier than Hadoop’s SequenceFile for file splitting.
Hadoop is able to automatically split the file into a set of file
chunks and launch corresponding maps to process, one map
for each file chunk. The split point could be happened at
any place in the file. Thus, the map function should be able
to deal with this and correctly locate the record boundary.
KeyValueSequenceFile is much easier than SequenceFile

to perform this task since it stores records in fixed size pages.
Thus, the boundary only occurs at multiples of page size.

We implement a range-index scheme described in Section
2.2. The index is built by a MapReduce job called Indexer.
The Indexer takes a set of files stored in HDFS as input and
outputs a set of files back to HDFS in terms of a sort key and
a partition key. The map functions of Indexer iterate each
record in the input files and shuffle the records to reducers
according to the user specified partition key. Each reduce
function of the Indexer collects all records emitted by map
functions, sorts them according to the user specified sort
key, and writes two output files to HDFS with one sorted
data file and one index file including all index entries. The
indexer can output both text and binary records.

We modify Hadoop’s MapTask implementation to support
fingerprinting based sort. When an intermediate record
is emitted by the map function and is placed in the out-
put buffer, we store a fingerprint of the key in an array.
When MapTask sorts records in the output buffer, we instruct
MapTask to compare fingerprints first. If two keys agree on
the same fingerprint, MapTask then performs an additional
comparison for comparing original keys. The fingerprinting
function we used is djb2 described in [3]

5. BENCHMARK
This Section reports our performance evaluation of Hadoop,

an open source MapReduce implementation, under various
settings.

5.1 Benchmark Environment
We run all experiments on Amazon EC2, an elastic com-

puting Cloud, with large instances. Each EC2 large instance
equips with 7.5 GB memory, 2 virtual cores, and two disks
with 850 GB instance storage (2 × 420 GB plus 10 GB root
partition), and runs 64-bit Fedora 8 Linux Operating Sys-
tem. EC2 automatically mount one 420 GB disk to /mnt

when the instance is booted. The other 420 GB disk needs
to be manually mounted.

We found the disk I/O performance of EC2 is not sta-
ble. According to hdparm, the buffered reads range from
100∼140 MB/sec (when the instance is launched in off-peak
hours) to 40∼70 MB/sec (when the instance is launched in
peak hours). In order to make the benchmark results consis-

tent, we try our best to launch instances in off-peak hours.
In average, the disk performance (buffered reads) that we
measured is approximately 90∼95 MB/sec in conducting an-
alytical tasks. We also measured that the network speed of
EC2 is approximately 100MB/s. We use Hadoop v0.19.2 for
all experiments. The Java system we used is 1.6.0 16. For
Berkeley DB, we use Berkeley DB Java Edition v4.0.9. For
protocol buffer, we use its latest version 2.3.0.

5.2 Hadoop settings
We have tried a lot of configurations for Hadoop and

choose the configuration with best observed performance.
Finally, we set 1) the block size of HDFS to be 512 MB, 2)
the heap size of JVM running the Map/Reduce task to be
1024 MB and enforce the JVM running in server mode with
(-server), 3) the I/O file buffer size to be 128 KB, 4) the
memory used for map-side sort to be 512 MB and the space
ratio for intermediate record metadata to be 0.25, 5) merge
factor to be 300.

We also set each TaskTracker node to run two map tasks
and one reduce task. We configure the HDFS to strip data
to two disks. To speedup the reducer-side merge, we set
input buffer percent to be 1.0 so that all heap memory of
a reducer can be used for holding merge results. We finally
store data in HDFS with no replication.

For HadoopDB settings, we carefully follow the instruc-
tions presented in [6]. Thus, we use PostgreSQL version
8.2.5, set shared buffers to 512MB. The working memory
size is 1GB. We store data in PostgreSQL without compres-
sion. We also set the number of concurrent map tasks to
one according to the suggestions in [6].

We run all experiments three times and report the average
execution time. We run all benchmarks on a 100 nodes clus-
ter with one additional node acting as a JobTracker and a
NameNode. For micro-benchmark, namely I/O modes and
record parsing benchmark, we only run one slave node. For
analytical tasks, we benchmark performance on cluster sizes
of 10, 50, 100 nodes, except for the Grep task. We found
generating 1TB data in 10 and 50 nodes takes too much
time. So, we only report the results for Grep task on 100
nodes. We found the instances launched on EC2 is not quite
stable. Thus, we only report results for trials where all
nodes are available, operating correctly. We have no Par-
allel Databases at hand. However, since we run the same
benchmark with [14] and [15], we reproduce the performance
numbers presented in [15] on our figures as a performance
estimation for two Parallel Databases: DBMS-X and Ver-
tica [5]. The authors of [15] claim that these performance
numbers represent the best performance that is observed (as
of August 2009). Note that these numbers are only available
on 100 nodes.

5.3 Datasets
The benchmark dataset we used for the performance eval-

uation of Hadoop is identical to [14]. Particularly, we choose
three datasets: Grep, Rankings, and UserVisits. The schemas
of these three datasets are as follows.

CREATE TABLE Data(
key VARCHAR(10) PRIMARY KEY,
field VARCHAR(90));

CREATE TABLE Rankings(
pageURL VARCHAR(100) PRIMARY KEY,
pageRank INT,

 0

 50

 100

 150

 200

 250

 300

 350

 400

40G20G10G5G

T
im

e
(s

)

StreamIO
DirectIO

Figure 1: Performance comparison of direct I/O
with streaming I/O

avgDuration INT);

CREATE TABLE UserVisits(
sourceIP VARCHAR(16),
destURL VARCHAR(100),
visitDate DATE,
adRevenue FLOAT,
userAgent VARCHAR(64),
countryCode VARCHAR(3),
languageCode VARCHAR(6),
searchWord VARCHAR(32),
duration INT);

We also use the same data generators presented in [14]
to generate data for all data analytical tasks. For Grep
task, we generate two datasets following the settings in [14]
for a 100 nodes cluster: 1TB per cluster and 535MB per
node. For other data analytical tasks, we generate 155 mil-
lion records (20GB) and 18 million Rankings records (1GB)
as plain texts in each node. These settings are also identical
to [14].

5.4 Results for different I/O modes
We first evaluate the performance of different I/O modes

using HDFS. We conduct this micro-benchmark on one node
cluster. In this setting, all data are stored on the unique
node. Thus, map functions always perform local reads. We
use a DFS I/O tool offered by Hadoop to generate dataset.
This I/O tool writes random bytes to a HDFS file. Note
we do not concern the concrete content of the file and only
evaluate the performance of data reading. We generate four
datasets: 5GB, 10GB, 20GB, and 40GB. We launch a No-Op
MapReduce job on each dataset and measure the execution
time of the launched job. The No-Op job only contains a
map function and has no reduce function. The map func-
tion repeatedly reads a 128KB data block from HDFS into
memory without further processing. Thus, in addition to the
cost introduced by MapReduce framework, data reading is
the only cost. Figure 1 shows the result of this benchmark.
From Figure 1, we can clear see that direct I/O outperforms
streaming I/O by approximately 15%. This performance
gap holds for all four datasets.

5.5 Results for record parsing
We evaluate the performance of different decoding schemes.

The structure of Grep record is simple. According to the
schema, each Grep record is of 100 bytes, consisting of a
unique key in the first 10 bytes, followed by a 90-byte ran-
dom value. Thus, decoding a Grep record is straightfor-

 0

 500

 1,000

 1,500

 2,000

 2,500

 3,000

 3,500
T

im
e

(n
s)

Immutable Text
Mutable Text
Immutable Writable
Mutable Writable
Immutable ProtocolBuffer
Mutable ProtocolBuffer
BDB

Figure 2: Performance of Decoding Rankings
Records

ward. We only report the results for decoding Rankings
and UserVisits records. The text record of Rankings and
UserVisits has of the same format. Each record occupies
a line in the file and fields are separated by a vertical bar.
We evaluate the immutable text decoder used in [14] and
our own mutable text decoder. We also evaluate immutable
and mutable decoders for Writable, Protocol Buffer, and
Berkeley DB’s tuple binding API. Totally, we evaluate seven
decoders

In order to obtain the accurate performance of decoders,
we adopt a different setting for this evaluation. We run all
benchmark program in stand alone Java processes instead
of MapReduce jobs. Thus, we have no additional overhead
introduced by MapReduce framework. For text decoders,
we first load all data that will be decoded into memory and
then call decoders to decode records loaded into the mem-
ory buffer. As a result, we have no disk I/O overhead. For
binary decoders, we first read records from plain text files
and then store the encoded records in the memory buffer.
After this loading process, the benchmark program call the
corresponding decoders to decode records in the memory.
Finally, we evaluate all seven decoders on decoding 8 mil-
lions Rankings records and 4 millions UserVisits records.
The raw data of each dataset (Rankings and UserVisits) is
roughly 512MB. This workload is representative since in real
MapReduce jobs, map functions typically process 256MB or
512MB data chunk.

The performance results for the seven decoders for this
task is shown in Figure 2 and Figure 3. We can clearly
see that in spite of decoding scheme, the mutable decoder
is almost faster than its immutable counterpart by a fac-
tor of 10. The mutable text decoder also outperforms im-
mutable binary decoders by a large gap. Profiling of the
benchmark program shows that immutable decoders spend
80∼90% CPU time on object creations. The huge CPU
overheads introduced by object creations make them signif-
icantly slower than immutable decoders.

5.6 Grep Task
The Grep task is included as one benchmark proposed by

[14] and adopted in [6]. The data set for this task consists of
records with fixed length of 100 bytes. The keys are unique
and stored as the first 10 bytes, and the rest 90 bytes are
treated as values. The task will parse all the records and
select the ones with a three-character pattern provided by
the user. For this specific benchmark, the search pattern
will only appear once in every 10,000 records.

 0

 1,000

 2,000

 3,000

 4,000

 5,000

 6,000

 7,000

T
im

e
(n

s)

Immutable Text
Mutable Text
Immutable Writable
Mutable Writable
Immutable ProtocolBuffer
Mutable ProtocolBuffer
BDB

Figure 3: Performance of Decoding UserVisits
Records

 0

 5

 10

 15

 20

 25

 30

HadoopBDBHdpDB_CacheHdpDB_no_CacheHadoop

T
im

e
(s

)

Figure 4: Grep Task Results – 535MB/node

Comparing to other benchmarks proposed in [14], Grep
task is relatively straight forward. To save both time and
expenses, we only conduct this benchmark on 100 nodes of
EC2. Same as [14], we have two categories of Grep tasks:
535MB/node, and 1TB/cluster.

For the first category, we have compared the performance
of these applications: Hadoop, HadoopDB (to examine the
effect of caches in DBMS, we have reported the results of
both with and without caches), and Hadoop with Berkeley
DB decoder. Both [14] and [6] provide their source codes
online, and we adopts their source codes for the first two
experiments. For Hadoop with Berkeley DB decoder, we
implemented by our own. Figure 4 demonstrates the results
for 535MB/node category. From the results we can see that
the DBMS caches significantly shorten the processing time
of HadoopDB. But without the caches, the processing time
of the three systems are close; and Hadoop with Berkeley

 0

 50

 100

 150

 200

 250

 300

DBMS−XVerticaHadoopBDBHadoop

T
im

e
(s

)

Figure 5: Grep Task Results – 1TB/cluster

 0

 10

 20

 30

 40

 50

 60

100nodes50nodes10nodes

T
im

e
(s

)

Hadoop
HadoopDB no Cache
HadoopDB with Cache
HadoopMT
HadoopMTi
HadoopBDB
HadoopBDBi

Figure 6: Selection Task Results

 0

 50

 100

 150

 200

 250

10.230.0260.002

T
im

e
(s

)

Selectivity=

HadoopMT
HadoopMTi
HadoopBDB
HadoopBDBi
HadoopDB

Figure 7: Selection Task with Various Selectivities

DB parser shows slight improvements than the other two.
For 1TB/cluster data set, each node processes 10GB of

records. We run the original Hadoop and Hadoop with
Berkeley DB parser. Figure 5 shows the results. We also
reproduce the performance of Vertical and DBMS-X pre-
sented in [15] in the result figure for comparison. In such
large dataset, the performance of all four systems are close.

5.7 Selection Task
The selection task operates on Rankings dataset. The

Rankings table is initially generated on each node, which
consists of 18 million of records, approximately 1GB. There
are three columns in this table, and each attribute is sepa-
rated by a vertical bar. In this task, the pageURL with its
corresponding pageRank higher than a user-specified thresh-
old will be selected. The benchmark sets the threshold to
10, which will select approximately 36,000 records out of
each node.

To process such dataset, Hadoop needs to do an entire
data scan in order to select the corresponding results. Dif-
ferent from Hadoop, the database system in HadoopDB can
take advantage of its index, and identify the valid records.
Same as [6], we build a clustered index on the pageRank
column. We have also implemented Hadoop with mutable
text decoding (HadoopMT), and Hadoop with Berkeley DB
parser (HadoopBDB); each of the two approaches also comes
with an alternative implementation with the indexing fea-
tures that we have discussed in Section 2.2 (we denote them
as HadoopMTi and HadoopBDBi respectively).

We have conducted the experiments on 10, 50, and 100
node clusters on Amazon EC2. Figure 6 illustrates the re-
sults. We notice that the original Hadoop has least satisfac-
tory result, due to its inefficient immutable text decoding
techniques. For HadoopDB, even though it has built-in in-

dexing features, the performance is close to Hadoop when
we clean the DBMS’s cache every time. However, when the
cache is kept, the performance of HadoopDB improved sig-
nificantly. If there is nothing in the cache, the DBMS need
to scan the data on the disk to generate the result set, which
is similar to the execution in Hadoop; but when the result
is cached, the DBMS does not need to scan the disk to get
the result. We have recorded the average time for map tasks
3 on 100-node cluster, the value is 33 seconds for the exe-
cution without cache, but only 3 seconds for the one with
cache.

The Rankings table uses vertical bar as separator, and by
adopting mutable text decoding, the performance of Hadoop
(HadoopMT) is improved significantly. Similar performance
improvements can be achieved by adopting Berkeley DB’s
parser (HadoopBDB). When we use indices on the two sys-
tems, the performance has another improvement, as HadoopMTi
and HadoopBDBi show. This time the performance is gained
by reducing the number of data chunks that need to be
scanned.

The original benchmark sets the threshold to 10, which
approximately selects 36,000 out of 18,000,000 records on
each node (selectivity=0.002). This selectivity is very high,
making index in database efficient for this kind of processing.
However, with the selectivity becomes lower, more records
will be selected, causing the cache insufficient to hold all
the results. Moreover, we intend to examine whether the
different systems are scalable when the selectivity becomes
lower. Therefore, we choose selectivity to 0.026, 0.23, 1,
and redo the experiments. We observe that when selec-
tivity reaches 23%, the influence of database cache can be
neglected. Therefore for HadoopDB we only recorded the
results without cache. Figure 7 shows the results. We can
see that both HadoopMT and HadoopBDB, together with
their corresponding implementation with indices, are scal-
able when selectivity becomes lower. But for HadoopDB,
the execution time of the database decreases greatly when
the result sets become larger, causing HadoopDB less scal-
able than the other systems. Note that when selectivity=1,
the entire dataset is selected; therefore HadoopMTi and
HadoopBDBi also need to do full data scan. The index
structure cannot be used to prune any unnecessary data
chunks; thus we do not record their execution time.

5.8 Aggregation Task
This Section evaluates the performance of MapReduce

system on calculating aggregations on the UserVisits table.
This analytical task consists of two subtasks called Large
Aggregation Task and Small Aggregation Task respectively.
Regardless of the number of nodes in the cluster, Large Ag-
gregation Task always produces 2 millions records and Small
Aggregation Task produces 2,000 records. The SQL com-
mands of Large Aggregation Task and Small Aggregation
Task is as follows:

Large: SELECT sourceIP, SUM(adRevenue)
FROM UserVisits GROUP BY sourceIP;

Small: SELECT SUBSTR(sourceIP, 1, 7), SUM(adRevenue)
FROM UserVisits GROUP BY SUBSTR(sourceIP, 1, 7)

3in HadoopDB, since the execution is pushed to DBMS, the
map time is close to database execution time

 0

 200

 400

 600

 800

 1,000

 1,200

100nodes50nodes10nodes

T
im

e
(s

)
Hadoop
HadoopMT
HadoopMT(FP=true)
HadoopBDB
HadoopBDB(FP=true)
Vertica
DBMS−X

Figure 8: Large Aggregation Results (2.5 million
Groups

 0

 200

 400

 600

 800

 1,000

100nodes50nodes10nodes

T
im

e
(s

)

Hadoop
HadoopMT
HadoopMT(FP=true)
HadoopBDB
HadoopBDB(FP=true)

Figure 9: Small Aggregation Results (2,000 groups)

The MapReduce program performing this task consists of
both a map function and a reduce function. The map func-
tion iterates each record in the UserVisits table and emits
the sourceIP (Large Aggregation Task) or its first seven
bytes (Small Aggregation Task) and adRevenue field as an
intermediate record (key-value pair). The reduce function
merges all intermediate records and sums up all adRevenues
for each key. To reduce the intermediate records that will be
shuffled, a standard practice in MapReduce programming is
using a combiner function in map-side to perform a partial
aggregation.

We evaluate the performance of MapReduce programs
with five settings. First, the original MapReduce program
described in [14] is used as a baseline. This MapReduce pro-
gram adopts immutable text decoder for parsing UserVis-
its recrods and is denoted as Hadoop in the results fig-
ure. Second, we evaluate the performance of a MapReduce
program using mutable text decoder. This program is de-
noted as HadoopMT. Third, we evaluate the performance
of MapReduce program which utilizes BDB API for decod-
ing binary records. This setting is denoted as HadoopBDB.
For HadoopMT and HadoopBDB, we also evaluate two addi-
tional settings by enabling fingerprinting based key-comparison.
These two additional settings are denoted as HadoopMT(FP=ture)
and HadoopBDB(FP=true) respectively. For all five set-
tings, we set the number of reducers to be equal to the
number of salve nodes in the cluster.

Figure 8 and Figure 9 present the results for this task.
In Figure 8, for a 100 nodes cluster, we also reproduce the
performance numbers of Vertical and DBMS-X from [15] as
a comparison. From the Figure 8 and Figure 9, we can
clearly see that data parsing/decoding contributes a large
part of overall execution time of orignal MapReduce job.

By removing the cost of data decoding, the job performs al-
most two times faster. We also see that fingerprinting based
sorting can even reduce the total execution time by 20% to
25% in Large Aggregation Tasks. However, for small ag-
gregation task, fingerprinting based sort only contributes a
small performance improvements since at this case the total
number of unique keys is small. Thus fingerprinting based
comparison could not reduce the cost key comparison too
much. Again, we found Hadoop’s scheduling strategy intro-
duces non-trivial performance overhead. The scheduler is
too aggressive for assigning new map tasks to TaskTrackers
and thus is sensitive to processing speed of slave nodes. We
found that when the MapReduce job is approaching to end,
Hadoop aggressively assigns unprocessed data stored on slow
nodes to fast nodes who have finished processing their own
data. This aggressive assignment strategy results in a lot of
non-local maps. Regardless of the number of nodes in the
cluster, data-local maps of HadoopMT or HadoopBDB with
fingerprinting enabling are able to complete in 20 seconds.
However, non-local maps may take 160 seconds to finish.
These outliers (non-local maps) slow down the whole job by
approximately 30%.

5.9 Join Task
Join task is the final data analytical task that we used for

this performance study. This task consists of two subtasks.
The SQL commands that described this task are as follows.

SELECT INTO Temp sourceIP, AVG(pageRank) as avgPageRank,
SUM(adRevenue) as totalRevenue

FROM Rankings as R, UserVisits as UV
WHERE R.pageURL = UV.destURL

AND UV.visitDate BETWEEN Date(’2000-01-15’)
Date() GROUP BY UV.sourceIP;

SELECT sourceIP, totalRevenue, avgPageRank
FROM Temp
ORDER BY totalRevenue DESC LIMIT 1;

For this task, we evaluate the performance of MapRe-
duce jobs with three different implementations. Again, the
MapReduce program presented in [14] is used as a baseline
and is denoted as Hadoop in the results figure. This imple-
mentation performs the join task through three separated
MapReduce jobs. The first MapReduce job filters UserVis-
its records that are outside of the desired data range and
joins the qualified UserVisits records with Rankings records
on pageURL field. The second MapReduce job takes the
output of the first MapReduce job as input and compute
aggregation. Finally, the third MapReduce job sorts the
output of the second job and produces the final result.

In addition to this baseline implementation, we also eval-
uate two alternative implementations which utilize range
index. These two additional MapReduce implementations
only differs in decoding scheme. The first implementation
adopts mutable text record decoding is denoted as HadoopMTi
in the results figure. The second implementation uses BDB
API for record decoding and is denoted as HadoopBDBi.
These two additional implementations use the same execu-
tion strategy and launch one MapReduce job to perform
the join task. The map function of the MapReduce job first
utilizes a range-index built on visitDate field of UserVis-
its table for filtering UserVisits records and load qualified
records into in-memory hash table. Then the map func-
tion iterates each Rankings record and joins the Rankings

 0

 500

 1,000

 1,500

 2,000

 2,500

 3,000

 3,500

 4,000

 4,500

100nodes50nodes10nodes

T
im

e
(s

)

HadoopText
HadoopBinary

Figure 10: Index Building Times

 0

 200

 400

 600

 800

 1,000

 1,200

100nodes50nodes10nodes

T
im

e
(s

)

Hadoop
HadoopMTi
HadoopBDBi
Vertica
DBMS−X

Figure 11: Join Task Results

record with UserVisits record. Finally, the map function
emits the joined record as intermediate output and shuffle
them to reduce functions. The reduce function then simply
perform aggregation on the joined records and output the
record with the largest totalRevenue. Figure 10 reports the
time for building range-index on visitDate field for UserVis-
its dataset. Figure 11 shows the performance of all three
implementations.

6. RELATED WORK
MapReduce is first proposed by Dean and Ghemawat in

[8] as a programming model for processing and generating
large data sets. MapReduce is original designed for con-
struction of the inverted index. The ability of using MapRe-
duce as a data analysis tool for processing relational queries
is demonstrated in [17][16][13][7][10].

In [14] and [15], the authors compared MapReduce with a
traditional data analysis tool, namely a Parallel Database.
This work compares two kinds of systems from a number of
dimensions, including schema support, programming model,
flexibility, execution strategy, fault tolerance and so on. To
the end, the authors introduced a benchmark consisting of
five data analytical tasks for evaluation the performance of
the two kinds systems. The authors found although the
process to load data into and tune the execution of Par-
allel DBMSs took much longer time than MapReduce sys-
tem, the performance of Parallel DBMSs is stinkingly bet-
ter. The authors also speculate the possible causes of the
performance gap. For example, record parsing is recognized
as a contributing factor [15]. Since many speculated causes
are related to the architectural design of MapReduce, e.g.,
record parsing, the natural question is that whether the poor

performance of MapReduce is due to the fact that MapRe-
duce is designed to be flexible and scalable and yet it defi-
nitely tradeoffs performance. Our work is mainly motivated
from this question. According to our study, the flexible and
scalable design does not put fundamental obstacles on the
performance of MapReduce. However, the individual com-
ponents have to be properly implemented.

During preparation of the paper, we notice the work in [9]
published in Jan 2010. This work also figures out three cases
that MapReduce is able to utilize index. This idea is identi-
cal to us. However, our work is an independent work and we
backup out claim with benchmark data. This also discusses
the problem of record parsing. It suggests MapReduce users
to avoid using text format and prefers protocol buffers for
encoding and decoding binary structured records. However,
according to our study, the problem of records parsing ac-
tually does not stems from record storage format, text or
binary. The problem is actually closely related to the decod-
ing scheme. Even protocol buffer is adopted, as the default
output of protocol buffer’s compiler is an immutable record
parser, the performance is still slow. If the user needs to
process millions of records, he/she should use mutable de-
coder no matter whether the record is encoded as text or
binary layout.

7. CONCLUSION
This paper conducts an in-depth performance study of

MapReduce on its open source implementation, Hadoop.
We figure out four factors that affect the performance of
MapReduce significantly and investigate alternative imple-
mentation strategies for each factor. To the end, we evaluate
the performance of MapReduce with a representative com-
binations of those four factors on a benchmark consisting of
four kinds of analytical tasks. The results show that with
proper implementation, the performance of MapReduce can
be significantly improved by a factor of 2.5 to 3.5 and ap-
proaches to Parallel databases. This result indicates that
a system that achieves scalability and flexibility does not
necessarily sacrifice performance. We believe the experi-
mental results would be useful for the future development
of MapReduce based data processing systems.

8. REFERENCES
[1] http://code.google.com/p/protobuf.

[2] http://developer.yahoo.net/blogs/hadoop/2008/09/.

[3] http://www.cse.yorku.ca/ oz/hash.html.

[4] http://www.oracle.com/database/berkeley-
db/je/index.html.

[5] http://www.vertica.com.

[6] A. Abouzeid, K. Bajda-Pawlikowski, D. J. Abadi,
A. Silberschatz, and A. Rasin. Hadoopdb: An
architectural hybrid of mapreduce and dbms
technologies for analytical workloads. In VLDB, Lyon,
France, 2009.

[7] R. Chaiken, B. Jenkins, P.-A. Larson, B. Ramsey,
D. Shakib, S. Weaver, and J. Zhou. Scope: easy and
efficient parallel processing of massive data sets.
PVLDB, 1(2):1265–1276, 2008.

[8] J. Dean and S. Ghemawat. Mapreduce: Simplified
data processing on large clusters. pages 137–150.

[9] J. Dean and S. Ghemawat. Mapreduce: a flexible data
processing tool. Commun. ACM, 53(1):72–77, 2010.

[10] D. DeWitt, E. Paulson, E. Robinson, J. Naughton,
J. Royalty, S. Shankar, and A. Krioukov. Clustera: an
integrated computation and data management system.
VLDB, 2008.

[11] S. Harizopoulos, V. Liang, D. J. Abadi, and
S. Madden. Performance tradeoffs in read-optimized
databases. In VLDB ’06: Proceedings of the 32nd
international conference on Very large data bases,
pages 487–498. VLDB Endowment, 2006.

[12] A. L. Holloway and D. J. DeWitt. Read-optimized
databases, in depth. Proc. VLDB Endow.,
1(1):502–513, 2008.

[13] C. Olston, B. Reed, U. Srivastava, R. Kumar, and
A. Tomkins. Pig latin: a not-so-foreign language for
data processing. In SIGMOD, 2008.

[14] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J.
Dewitt, S. Madden, and M. Stonebraker. A
comparison of approaches to large-scale data analysis.
In SIGMOD. ACM, June 2009.

[15] M. Stonebraker, D. Abadi, D. J. DeWitt, S. Madden,
E. Paulson, A. Pavlo, and A. Rasin. Mapreduce and
parallel dbmss: friends or foes? Communications of
the ACM, 53(1):64–71, 2010.

[16] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka,
S. Anthony, H. Liu, P. Wychoff, and R. Murthy. Hive
- a warehousing solution over a map-reduce
framework. In VLDB, 2009.

[17] H.-C. Yang, A. Dasdan, R.-L. Hsiao, and D. S. Parker.
Map-Reduce-Merge: simplified relational data
processing on large clusters. In SIGMOD, 2007.

