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Abstract

This paper introduces a fast data dissemination method
for structured peer-to-peer networks. The work is motivated
on one side by the increase in non-volatile memory avail-
able on mobile devices and, on the other side, by observed
behavioral patterns of the users. We envision a scenario
where users come together for short periods of time (e.g.
public transport, conference sessions) and wish to be able
to share large collections of data. With hundreds and even
thousands of data items stored on small devices, content
publication is simply too energy and time consuming. By in-
dexing summary information obtained by a combination of
multi-resolution analysis and k-means, our method (Hyper-
M) is able to cut down the overall construction time of an
overlay network such as CAN by an order of magnitude, as
well as provide fast approximate similarity search on such
a network. The results of our extensive experimental studies
confirm that Hyper-M is both energy and time efficient, and
provides good precision and recall.

1. Introduction
Recently, all major mobile phone producers have intro-

duced hand-held devices that boast gigabytes of storage ca-
pacity, as well as medium range communication facilities
(bluetooth). Such small, portable devices are capable of
storing hundreds of songs or photos, and tens of video files.
Given these facilities, one can imagine a scenario where

a group of co-workers, who share a confined space for about
eight hours per day, use their cellphones or mobile devices
to search and exchange files among themselves. Even more
familiar is a conference scenario where researchers come
together to share information. Data sharing goes hand in
hand with information sharing - the main purpose of any
conference.
In practice, it is common to see groups being formed
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ad − hocly for relatively short periods of time (one to a
few hours), during which there is limited mobility (e.g. in
the office, in school, on long-distance public transport). For
such data-sharing network to be useful, we have two contra-
dictory objectives to meet. Firstly, due to the short duration
of activities, the speed of deployment should be high. Sec-
ondly, while the retrieval could be approximate, the quality
of retrieval should remain high as well. To the best of our
knowledge, this is the first attempt to address such a prob-
lem.
Structured overlays have been proved to be efficient, but

even the best of them takeO(log N) for each insertion. This
may be too long if each peer has to publish hundreds of
items in only a few seconds. As a consequence, the only
possible solution is not to publish all the data items. Instead,
a summarization method should be used to derive represen-
tative summaries that describe the entire dataset of a peer.
Clustering allows us to achieve just that. It also reduces data
transfer across the network during insertion, saving band-
width and enforcing copyright restrictions. However, clus-
tering methods show a rapid decay in performance when
the data is very high dimensional. On the other hand, mul-
timedia data are often represented as very high dimensional
feature vectors, such as histograms of colors [21] or tones
[26]. We therefore need both clustering methods and di-
mensionality reduction techniques. While there have been
a number of such proposals [3, 10, 22], none of them maps
well to a distributed environment as they have to take into
account all the data points.
In this paper, we propose a novel approach called Hyper-

M1 for speedy data indexing on an existing peer-to-peer
structured network such as CAN [20]. Hyper-M’s combina-
tion of k-means clustering and Discrete Wavelet Transform
(DWT) enables publishing with low setup overhead and la-
tency and good approximate retrieval.
The indexing of clusters, instead of individual data items,

naturally and substantially reduces the index construction
time and even though Hyper-M does not index individual

1We coined the term Hyper-M to symbolize the hyperspace representa-
tion of data in a MANET. It also induces the idea of speed.

1



data items in each peer, it provides efficient support for
point, similarity range and k-nearest neighbor searches be-
cause it is able to exploit geometrical properties of its data
and query representation. As we will show, our proposed
approach offers good retrieval of up to 90% in terms of pre-
cision and recall with a tenfold increase in the speed of data
insertion. As a side-effect of the DWT approach, we have
observed that data is more equally dispersed in the network,
thus alleviating the need for an additional load balancing
mechanism. We make the following main contributions:

1. A fast data dissemination method based on a novel
combination of clustering and wavelet transform, that
works independently of the underlying overlay struc-
ture (Section 3). We include:

• A theoretical analysis of cluster behavior under
the wavelet transform;

• A peer scoring method to estimate the likelihood
that a particular peer holds query answers;

2. Query processing methods for the given framework
(Section 4):

• Theoretical proofs to guarantee accuracy and
lack of false dismissals for range queries;

• A heuristic method to answer k-nn queries;
3. Extensive experimental results regarding the speed of
data dissemination (Sections 5) and the retrieval effec-
tiveness (Section 6)

• We also show that a better balancing of data dis-
tribution in the p2p overlay is achieved due to the
orthogonality of vector spaces in the DWT.

The next section presents a summary of related work.

2. Background and Related Work
Hyper-M is part of a larger, comprehensive project un-

der development at the School of Computing, NUS, enti-
tled BESTPEER [1]. This framework provides a broad range
of querying and searching facilities over various types of
data sources and is built on a flexible P2P platform that can
switch smoothly between structured and unstructured over-
lay.

2.1. Rapid P2P Deployment
A few recent studies have examined the problem of fast

construction of overlay networks [2, 5]. The common ap-
proach is to parallelize network construction by initiating
insertion simultaneously, assuming that a fair number of
nodes are joining the network at the same time. Such works
assume the existence of an initial random connection graph
among the nodes and proceed by pairing them to form a
tree structure. Aberer et al [2] define a top-down trie build-
ing process where peers randomly interact with each other
and make parallel decisions on which regions of the data
key space each should maintain, possibly splitting a region.

Conversely, a bottom-up approach is taken in [5], where the
tree structure is built by representing subtrees that are al-
ready formed as virtual peers and coupling them to form
larger subtrees.
However, the main factor in the creation time of a use-

ful peer-to-peer network is, at least in our opinion, the
time of data dissemination. It is commonly expected that
the number of data items largely exceeds the number of
nodes. Thus, our approach complements the parallelization
method, employing clustering and dimensionality reduction
to achieve data summarization for a speedy data dissemina-
tion. In the next subsections, we review backgroundwork in
clustering and dimensionality reduction, with particular at-
tention to their potential use in the distributed environment.

2.2. Clustering Methods
For our system, we are interested in clustering methods

that work in vector space models and provide simple cluster
representations that can be used as a summary of the orig-
inal data. Given this prerequisite, we choose the k-means
algorithm whose results can be expressed as spheres in a
vector space. K-means is a popular clustering method due
to its invariance with respect to translations and orthogo-
nal transformations of data points and robustness to outliers.
Also, it does not depend on the order of appearance of the
data items.
A good example of usage of k-means for indexing high-

dimensional data is [23]. The work there is complementary
to our current work in the sense that it illustrates an exam-
ple of the type of information that could be inserted in the
Hyper-M framework.
Various extensions of the basic k-means approach have

been introduced [18, 19] mainly to speed up the process,
but all the methods share a main problem of the basic ap-
proach: the decay of distance comparison efficiency in very
high dimensional spaces. It has been shown [14] that for
Li-norms the difference between the closest and the furthest
away point to a query approaches zero if i > 2 or a constant
if i = 2, as dimensionality increases. Consequently, dimen-
sionality reduction techniques are vital for optimal perfor-
mance in the context of vector space models.

2.3. Dimensionality Reduction Techniques
In this section we review the techniques that achieve di-

mensionality reduction while maintaining enough informa-
tion to allow a meaningfull clustering process. That ex-
cludes data signature methods such as Bloom filters [6]
because, first, they do not maintain locality (except for
Locality-Sensitive Hashing [8]), and second, more impor-
tantly, the clusters that might be obtained give no informa-
tion about the appartenance of the original data items, be-
cause the hash functions used are not reversible.
Another way to reduce the dimensionality of the data is

to consider only some of the features [10], but if the selec-



Figure 1. DWT schema

tion is done independently at each peer, the features selected
may be different, making comparisons meaningless. A sim-
pler method would be to just group together neighboring
features [4, 22], but this method is too rigid and the density
of the grid needs to be considered on a case by case basis.

Another category of dimensionality reduction methods
consists of ‘space projections’. Here, Singular Value De-
composition [12] is a linear algebra method that is argued
to uncover latent semantic information present in the data.
However, it incurs a very high computing cost (O(m2n) for
am×nmatrix) and it relies on global information, which is
not easy to collect in p2p networks. Similar problems occur
with Principal Component Analysis [17]. It tries to iden-
tify key directions in the data such that differences among
documents are emphasized. Mathematically, this translates
into a projection onto a space whose basis vectors are cho-
sen based on the variance of the data. A similar projection
is obtained in FastMap [11], but in steps.

The Discrete Wavelet Transform (DWT) [9] is a signal
analysis method that has been imported from the engineer-
ing realm. It owes its success to its linear computation
time and the fact that it provides information not only about
which frequencies are present in a signal (as Fourier anal-
ysis does), but also about when these frequencies occur. It
has been shown to perform well in image compression and
analysis, being able to provide good approximations of the
original data as well as identify interesting features of the
original image. It can also be applied in the distributed con-
text because the vector spaces onto which it projects the data
are independent of the data itself.

DWT projects the high-dimensional vector into two
wavelet spaces resulting in two new vectors: the approxi-
mation (A) and the detail (D), each having half the length
of the original vector. The process recursively decomposes
each approximation (Figure 1) until the length of the vector
is 1. Finally, the original vector can be restored by com-
posing the last approximation (A0, which in the rest of the
paper will be denoted simply by A) and the series of de-
tails D0, D1, ... , DL. The maximum number of levels
is log2(d), where d is the dimensionality of the data. The
dimensionality of the data at each level l is 2l.

Table 1. Notations
N number of nodes
n total number of data items
d dimensionality of the dataset

Kp number of clusters on a node p

xi/qi an item in a data vector / query vector
α, β angles (see Figure 4)
r/ε radius of a data cluster / range query
l a level of the wavelet hierarchy

A,Dl levels of the wavelet hierarchy
L number of wavelet levels used

spherec/q sphere representing a data cluster / range query
itemsc number of data items in cluster c

Cl a cluster in the l vector space
Overlayl p2p overlay managing data on the lth level

3. Hyper-M
The Hyper-M framework provides a method to rapidly

spread high-dimensional data in a MANET. The problem
is not trivial because we need to summarize data such that
1. we maintain enough information to be able to provide
good retrieval and 2. we do this without knowing the en-
tire set of documents. Our solution involves both clustering
and wavelet transform, as sketched in Figure 2. It works as
follows: First, a peer decomposes all its data items using
DWT, resulting in a series of log(d) vectors (step i1). This
process could be done offline, and it does not add to the
overall time complexity of the method. In fact, for image
files, existing codecs already use the wavelet transform to
compress data [25]. Subsequently, each subspace obtained
by DWT is clustered independently (step i2), yielding a
maximum of log(d) sets of clusters. (We note here that the
reduced dimensionality at each level allows the formation
of tighter clusters.) For each subspace we consider a sep-
arate p2p overlay, into which we insert these clusters (step
i3). The number of subspaces used is a key factor in Hyper-
M – our effectiveness experiments in Section 6 show that
using more than four levels incurs additional overhead that
is not justified by the improvements in precision and recall.
Despite its use of summaries, Hyper-M is able to main-

tain high effectiveness due to our proposed retrieval method,
outlined in Figure 3. The search process works in two
phases: first, based on the published summaries, it identifies
which of the peers are most likely to contain the required
data (steps s1 and s2 in Figure 3) and, second, it retrieves
the actual data items from a subset of these peers (step s3).
Each of these two phases has its own problems: 1. How to

Insertion(Peer p)
i1 for each item d on p

{xl}l∈{A,D0,...,DL}=DWT(d)
for each level l ∈ {A,D0, ...,DL}

i2 {Cl
i}0≤i<Kp=K Means(l)

i3 Overlayl.insert(Cl
i), 0 ≤ i < Kp

Figure 2. Peer insertion in Hyper-M



Figure 3. Hyper-M retrieval method

determine the potential amount of useful information that a
peer holds and convert it into a score? 2. Based on these
scores, how do we determine how many nodes we actually
need to contact to retrieve the required amount of informa-
tion? We answer the first question in Section 3.2, while to
the second question we dedicate the entire Section 4, due to
its importance for the quality of retrieval. Before that, let us
briefly describe the nature of the clusters.

3.1. Cluster Representation

To reduce the complexity in representation and compu-
tation, clusters are represented as spheres in a vector space,
as in [23]. Each representative cluster is described by a cen-
troid and a radius, along with a count of the data items in
the cluster. The count is used for estimating the relevance
of a peer with respect to a query.

The representation of clusters as hyperspheres requires
us to study how these hyperspheres behave under wavelet
approximation. In particular, we want to know where the
approximations of the original points appear in the reduced
space.

Theorem 3.1. All the points inside a sphere of radius r in
the original vector space will be mapped inside a sphere
of radius r√

2log d−l
in the level l approximation (or detail)

space.

Proof. For simplicity, we consider a sphere of radius 1 cen-
tered at the origin of the vector space. The same calcula-
tions are valid for any sphere, plus the necessary scaling
and translations. All the points inside a d-sphere are given
by the following parametric equations:

x1 =
d−1∏
i=1

cosαi

...

xk = sin αk−1

d−1∏
i=k

cosαi, 2 ≤ k < d

...
xd = sin αd−1

where the angles αi, i ∈ {1, ..., d− 1} range between 0 and
2π to define all the points on the sphere.
When using the Haar wavelet2, pairs of coordinates are

taken and averaged. To build a hypersphere in the approxi-
mated space, the center is given by the approximation of the
center of the original hypersphere, but the radius is likely
to be smaller. To derive a formula for the new radius, we
need to find what points in the original sphere will form the
boundary of the new sphere. We thus need to find the max-
imum value on each new coordinate axis. Given the for-
mulas of the Haar wavelet, we need to maximize the sum
between two consecutive coordinates in the original space:

max
αk−1...αd−1

(
sin(αk−1)

d−1∏
i=k

cos(αi)+sin(αk)

d−1∏
i=k+1

cos(αi)

)

= max
αk−1...αd−1

d−1∏
i=k+1

cos(αi)(cos(αk) sin(αk−1)+sin(αk))

From the formulas, we can see that the maximization prob-
lem is reduced to:

max
αk−1,αk

(cos(αk) sin(αk−1) + sin(αk))

This function takes the maximumvalue of
√

2 in two points:
(π

4
, π

2
) and (3π

4
, 3π

2
). This, combined with the fact that we

are using averages (the sum divided by two), gives us a new
maximum distance from the center of r/

√
2.

Similarly, the same bound can be shown to exist for the
first level of detail (Dlog d), and generalizing, for the lth

level of detail (Dl), the radius is r/
√

2log d−l.

3.2. Peer Relevance Score
The peer relevance score is a measure of the likelihood

that a peer contains relevant information. This likelihood is
computed based on an intersection of spheres, as illustrated
in Figure 3. The formula is given by Equation 1.

Scorel =

Kp∑
c=0

V olspherec∩sphereq

V olspherec

itemsc (1)

whereKp is the number of clusters on peer p.

2We consider the Haar wavelet due to ease of proof. Similar, though
more laborious proofs, can be done for other wavelets



The score is indexed by l because we have a differ-
ent score at each detail level of our system. These values
need to be aggregated into a global score used to chose the
nodes that need to be contacted directly in order to retrieve
the data. Throughout the experiments shown in this pa-
per, we have used the minimum score approach:Score =
min{ScoreA, ScoreD0

, ScoreD1
, ...}. It has the desirable

property of pruningmany candidate peers, thus reducing the
amount of bandwidth required. For range queries, we show
in Section 4.1 that this policy yields no false dismissals.

4. Query Processing
Quick publishing over a MANET is only useful if var-

ious similarity queries could be answered efficiently and
with high accuracy. In Hyper-M, apart from point query,
two similarity queries are supported: 1. Range queries: re-
trieve all the items within an ε radius and 2. k-nearest neigh-
bor (k-nn) queries: retrieve the k closest items. Due to the
transformations adopted in publishing, we have to ensure
that queries can be answered with no false negatives. In
general, Hyper-M’s queries are resolved in two steps. First,
assessing the relevance of each peer involves the transla-
tion of the query in the approximation or detail space and
the aggregation of a peer relevance score based on cluster
intersections. Second, given the scores of each peer, we
must determine relevant nodes to answer the query and then
extract the minimum amount of information from each of
these nodes.
Point queries are straight forward. Due to space con-

straints, we shall focus on the more interesting range and
k-nn queries in the next two subsections.

4.1. Range queries
Range queries are easier in our context because of the

relevant mathematical proofs that can be derived for the be-
havior of such queries in the wavelet space. In this section,
we show that given Theorem 3.1 and our minimum-score
policy, no false dismissals can occur. Previous studies [7]
show that using only a number of detail levels when com-
paring data items results in no false dismissal. Here, we
complement that by showing that considering only those
items that on each level are closer than a particular threshold
yields no false dismissals.

Theorem 4.1. A point x that in every approximation
or detail space is within a distance R√

2log d−l
of another

point q (distance from Theorem 3.1), is within distance
R
√

(logd + 1) of the same point q in the original vector
space.

Proof. Formally, we know that each returned result x ∈ Vl

has the property that dist(x, q) < ε+r

2
log d−l

2

, where Vl is the

vector space corresponding to the l level of detail, ε is the

radius of the query sphere and r is the radius of the data
sphere whose center is x. In what follows, R = ε + r.
If a particular item x is in the final answer, then its

approximation and details are all within their respective
thresholds in their corresponding vector spaces. The most
restrictive case is where we consider all levels of detail. To
avoid a plethora of indices, we present here a vector with a
dimensionality of 4. Its decomposition has one approxima-
tion in R, a level of detail in R and one in R

2.
Equations 2, 3 and 4 show the conditions that must be

satisfied for a particular cluster to be retrieved.

(
x1+x2+x3+x4

4
−q1+q2+q3+q4

4

)
<

R2

22
(2)(

x1+x2−x3−x4

4
−q1+q2−q3−q4

4

)
<

R2

22
(3)(

x1−x2

2
−q1−q2

2

)
+

(
x3−x4

2
−q3−q4

2

)
<

R2

2
(4)

By simple transformations and summation of the three
equations, we have that

∑4

i=1 (xi − qi)
2 < 3R2. This

states that the distance between the data point and the query
in the original vector space is smaller thanR

√
3 and in gen-

eral R
√

log d + 1.

The above theorem guarantees no false dismissals. That
is, for a range query expressed in its original space, the re-
sults returned by resolving the transformed query in the re-
duced spaces are in a larger sphere than the original one.

4.2. K-nn Queries
The use of summaries restricts our ability to determine

exactly on which peers are the k-closest items. Instead, in
this section we provide a heuristic to estimate the radius of a
range query that will retrieve the required number of items.
The results of this heuristic are presented in Section 6.
Intuitively, given the sphere and the density, we can esti-

mate the number of items that are retrieved by a range query.
This number is a monotonically increasing function of the
radius of the query. In our case we need the inverse func-
tion: given the number of items, what is the range query that
we need to use in order to retrieve this number of items?. In
what follows, we will first show how we define the direct
function (from range value to number of items retrieved)
and then use a numerical method to get the inverse.
To estimate the number of data items that may be re-

trieved by a query of a given radius ε, we need to find the
proportion between the volume of the intersection of two
hyperspheres (query and data cluster) and the volume of one
of them (the data cluster). Considering the volume formulas
in [23], in the case of a vector space whose dimensionality



V olintersect

V olsphere

=1−1

π

⎛
⎝arccos

(
r2+ε2−b2

2rε

)
−

d−2
2∑

i=0

22i(i!)2

(2i + 1)!

(
1 −
(

b2+r2−ε2

4b2r2

)2
) 2i+1

2(
b2−ε2+r2

2br
+

b2+ε2−r2

2bε

(r

ε

)2i+1
)⎞⎠ (7)

Figure 4. Intersection of spheres

is an even number, we derive:

V olcap

V olsphere

=
1

π

⎛
⎝α−cos(α)

d−2
2∑

i=0

22i(i!)2

(2i + 1)!
(sin(α))2i+1

⎞
⎠ (5)

where α is the half-angle at the center, as depicted in Fig-
ure 4.
For the case where d is an odd number, the formulas are

slightly different, but we do not present them here due to
space constraints. The intersection of two spheres is the
sum of two caps, so we have:

V olintersect

V olsphere

=
1

π

⎛
⎝α−cos(α)

d−2
2∑

i=0

22i(i!)2

(2i + 1)!
(sin(α))

2i+1

⎞
⎠

+
1

π

⎛
⎝β−cos(β)

d−2
2∑

i=0

22i(i!)2

(2i + 1)!
(sin(β))2i+1

⎞
⎠

(6)

Using the cosine rule, we can transform the angles α and
β into functions of the radii of the two spheres and distance
between their centers, as shown in Equation 7.
To obtain ε, we have to solve Equation 8, where the vol-

umes are interpreted as functions of ε, and#clusters is the
number of all reachable3 clusters. Introducing Equation 7
in Equation 8 results in a high-order (almost) polynomial
function of ε that does not have an analytical solution. We
can compute the value of ε using numerical methods (e.g.,
the Newton method) which gives an approximated result.

k =

#clusters∑
c=1

V olspherec∩sphereq

V olspherec

itemsc (8)

3we provide details on reachability in Section 5

retrieveKnn(k:items required, L:levels used)
1 for l = 1 to L do
2 estimate ε from k and Equations 10 and 8

do range query in subspace l with radius ε
3 < peeri, scorei >=rangeQuery(l,ε)
4 < peeri, scorei >=mergeReturnedResults()

compute the sum of the top P scores
5 for p = 1 to P do
6 sum = sum + scorep

request a proportional number of items
from each peer

7 for p = 1 to P do
8 no itemsp = C × k(scorep/sum)
9 result.add(getFromPeer(p,no itemsp))
10 result.sort()

Figure 5. k-nearest neighbor retrieval method

In a centralized environment, we would simply use this
formula on the original dataset and obtain the necessary
query radius to retrieve the top k items. In fact, the idea
of obtaining a range based on a particular requirement of
retrieved items has been analyzed before in optimization
methods for k-nn queries [24], though in that work, the data
areas are rectangular rather than circular as in our case. The
main difference, however, is that in our context we perform
this at the different approximation and detail levels of the
wavelet representation and then merge the results. Our al-
gorithm is outlined in Figure 5.
Steps 2 to 3 perform range queries on each level with

different ε values. The intuition is to get from each level the
k items required. Step 4 computes the number P of peers
that need to be contacted.
The actual retrieval of data items is performed in Steps 5

to 10. In Step 8, the relative importance of a peer is com-
puted as the ratio between its score and the sum of all the P
relevant peers considered. The constant C is a tuning knob
that can increase precision or recall, depending on applica-
tion requirements (i.e. low bandwidth usage versus com-
pleteness of results).

5. Experiments on Data Dissemination
Our method has been designed independent of the under-

lying peer-to-peer overlays, and it could be implemented on
top of BATON[15], VBI-tree[16], CAN[20] or any peer-to-
peer overlays for that matter so long as they can support
multi-dimensional indexing. For demonstration and evalu-
ation purpose, we use CAN as the underlying peer-to-peer
overlay.



(a) Q cannot query C (b) replicate C in the regions it
overlaps

Figure 6. Ensuring reachability of all clusters
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(b) Sample synthetic signals
Figure 7. Synthetic dataset

The insertion method is as described in the original
CAN work [20]: the insertion point is given as a multi-
dimensional point and the next step in the routing pro-
cess is chosen to minimize the distance between the cur-
rent location and the insertion point. In our case, the multi-
dimensional vector used as an insertion point is the center
of a cluster that needs to be published.
A problem specific to CAN when used to index non-zero

sized objects is the possibility that the area of the object
(i.e. cluster) overlaps more than one region. As depicted
in Figure 6, the queryQ would not retrieve the information
present in data cluster C because the node its centroid be-
longs to does not have any information about that cluster.
Replication cannot be avoided in this context, but we show
that our method still provides a significant improvement in
insertion time compared to the usual CAN approach with-
out replication.

5.1. Synthetic Data
In order to test the speed of data dissemination we gener-

ated 100,000 512-dimensional feature vectors. To simulate
real data, we used aMarkov process with two states Increas-
ing and Decreasing, as depicted in Figure 7a. The transi-
tion probabilities p1, p2 were generated randomly as follow:
First, p1 was chosen uniformly between 0 and 0.5. Then,
p2 = p1 + x, where x was also chosen randomly between
−0.05 and 0.05. The starting value, the initial state, the
increase/decrease step, as well as the maximum step value
were all chosen randomly. A sample of the resulting dataset
is shown in Figure 7b. The data was subsequently clustered
using k-means in the original vector space and then each
cluster was redistributed among 8 to 10 nodes. This method
simulates user behavior in the sense that each user com-
monly has a limited set of interests, thus maintaining items
belonging to a subset of all the classes (i.e. clusters) in the

data space. The number of clusters on each node is indepen-
dent from other nodes, but in order to meaningfully test the
effects of clustering on the insertion times and retrieval ef-
fectiveness, we have considered a fixed number of clusters
on each node. Throughout the remaining of the section, ef-
ficiency tests were done in a 100-nodes network, each node
holding 1000 items.

5.2. Speed of Insertion
We implemented CAN in the Java programming lan-

guage and simulated the parallel behavior of a peer-to-peer
network with a scheduler class and an event queue. Ev-
ery message generated in the network is sent to the event
queue. Periodically, parallel execution is simulated by emp-
tying the queue.
First we need to assess the impact of data replication on

the speed of insertion. Figure 8a shows the average num-
ber of hops for different cluster sizes. As expected, if the
clustering is finer, the number of hops approaches the no-
replication standard. This happens because a smaller clus-
ter has less chances of overlapping other zones than the one
its centroid is located in.
Our method not only overcomes this overhead, but pro-

vides up to 400% reduction in the number of hops compared
with the basic CAN insertion method. Figure 8b shows the
performance of insertion, when the amount of data inserted
into CAN is considered. The tests clearly show that Hyper-
M sets up the network overlay much faster, even if it incurs
some replication overhead. In these tests, Hyper-M used
four layers of network overlay. For illustration purposes, we
implemented 2-dimensional CAN for the 512-dimensional
dataset by indexing in only 2 dimensions. Though it cannot
be used to retrieve meaningful data, it shows that Hyper-
M, even with 4 levels of overlay, performs better than a 2-
dimensional CAN that has to insert all its data items indi-
vidually.
It is important to see how the system behaves when dif-

ferent number of overlays are used. Figure 8c shows the
average number of insertion hops necessary to build the
overlay(s). We see that Hyper-M greatly reduces the num-
ber of hops required to publish each item when compared
to the CAN approach in the original vector space (512-
dimensional). Again, in this figure, we plotted the insertion
performance of 2-dimensional CAN to have a feel on the
magnitude of the performance gap.
We note that some values for the average number of hops

are smaller than 1 because we are averaging over the num-
ber of items on a peer, but insert only cluster centroids. This
is the main point of our work - summarization allows us to
reduce drastically the total number of hops for inserting all
the data items, while maintaining sufficient information to
allow for good precision and recall of retrieval, as demon-
strated in Section 6.



(a) Cluster replication overhead (b) Average number of hops per item insertion,
function of the number of clusters on a peer

(c) Average number of hops per item insertion,
function of the number of layers in the overlay
(log scale)

Figure 8. Insertion speed tests

5.3. Data Distribution in the CAN Network

Our experiments in the previous section also pointed out
an unexpected, beneficial side-effect of the wavelet trans-
form. We refer here to the uniform data distribution among
the nodes of the network: throughout our many experiments
with different datasets, we have observed that data distribu-
tion in the CAN overlay tended to be fairly smooth, regard-
less of the data we used. Our assumption is that this is due to
the orthogonality property among the different wavelet sub-
spaces. This property formally guarantees the independence
between the location of the different projections of the same
vector. This means that different levels of the wavelet trans-
form of the same data item are placed independently, thus
achieving a better overall distribution.

To further prove this observation, we intentionally skew
our data and observe its behavior in the wavelet subspaces.
We cluster our original data and select only a fixed number
of clusters (two to five in our experiments). We then apply
the wavelet transform to the items in each cluster, and in-
sert them into their respective overlays. Figure 9 shows the
number of items on a peer in each of the possible overlays,
as well as the average number of peers holding the data.
As expected, the CAN overlay of the dimensionality of the
original dataset performs among the worst, having most of
the data on a very small number of nodes. The absolute
worst case in terms of data distribution occurs with the us-
age of only the approximation level. This is to be expected
because each wavelet space clusters the data better than the
original space, thus putting the data only on very few nodes.
However, as detail levels are added, the nodes used turn out
to be from different parts of the overlay due to the orthogo-
nality of the spaces.

The average number of data items on each peer provides
a good indication that the wavelet spaces naturally distribute
the data among the nodes. It is important to note that this is
achieved without any explicit data redistribution.

Figure 9. Data distribution among nodes

6. Effectiveness of Retrieval
In this section, we present our experiments to evaluate

the effectiveness of retrieval, using a real dataset [13] (The
Amsterdam Library of Object Images). We use the standard
precision and recall measures to evaluate the accuracy of
our method. We implemented a centralized flat file system
that indexes the data using the original vectors, and use the
retrieval results as the basis for evaluating the effectiveness
of our proposal. We show that Hyper-M achieves the nec-
essary retrieval effectiveness, despite the fact that we only
use summaries to represent the data items.
Throughout our experiments we also evaluate how the

number of clusters on each peer influence the retrieval re-
sults. We expect that the finer the clusters, the higher the
precision and recall because the data that is actually inserted
into the network overlay is closer to the actual data.
The subsequent figures plot averages of recall as vertical

bars accompanied by error bounds showing the minimum
and maximum value obtained in our experiments for some
particular parameters. The variation is obtained by testing
with different radii in the case of range queries, or different
numbers (k) of requested items in the case of k-nn queries.

6.1. Retrieval Effectiveness on Real Data
We tested our prototype system on an image dataset

where each item was represented by a histogram of colors.
The dataset contains 12,000 images representing a diverse
set of objects under different angles and illuminations. Our
purpose in this test is not to propose a new image retrieval
method, but to assess the effectiveness of the image retrieval
process when performed in a distributed environment using



(a) range queries (b) k-nn queries (c) insertions without update
Figure 10. Retrieval results

Hyper-M. In the following tests, we use a network of 50
nodes, each node containing, on average, a little over 200
image histograms.

Effectiveness of Range Queries. Range queries perform
well thanks to the theoretical results in the previous sec-
tions. Precision is constantly 100% because once we decide
which peers to contact, the query is performed directly on
those peers, thus retrieving only the relevant items. It is
more interesting to look at the recall of the method. Figure
10a shows that the recall reaches as high as 96% if enough
peers are contacted. This is natural, as no system will ever
be able to retrieve data without contacting the nodes that
hold it.

Effectiveness of K-nn Queries. We test our method pre-
sented in Figure 5, in particular, the estimation of relevant
items present on a peer, as calculated in Line 8 of this fig-
ure (no itemsp = C × k(scorep/sum)). The formula first
normalizes the scores among the contacted peers and then
requests from each of them a proportional amount of items.
Figure 10b shows that the system performs well, balancing
precision and recall at over 50%. As mentioned in Sec-
tion 4.2, the constant C can be used to trade recall against
precision and experiments (not shown here) confirm this ex-
pectation. It takes any positive value, but reasonable values
are between 1 and 2 (i.e. demanding exactly the estimated
number of documents or demanding the double). In brief,
our experiments show that we obtain a 14.51% increase in
recall when C is 1.5 (50% more data items retrieved) but
also a drop of 21.05% in precision. Increasing C further to
2 adds an additional 4.23% to recall and substracts 6.67%
from precision. It is thus, in general, more costly to have a
higher value for C and it should be used only when com-
pleteness of results is very important.
Our expectation that a higher number of clusters on each

peer improves the overall performance of the retrieval has
been proved by the experiments. We note that using ten
clusters instead of five almost doubles the performance, but
using twenty instead of ten only increases it slightly. This
shows that the performance is almost at its maximum even
when using only ten clusters, which, considering the fact

Figure 11. Clustering performance in different
vector spaces

that we have around 200 items on each peer, represents a
reduction by a factor of 20 - similar to the one used for our
performance tests in Section 5.
Finally, we note that our application scenario emphasizes

the creation speed of the overlay. During the short life-time
of the network, we expect that most new data items fit into
the existing clusters. However, we have evaluated the im-
pact of inserting documents after the creation of the overlay.
Figure 10c shows the loss in recall versus the number of new
documents inserted after the creation of the overlay. We can
see that even if we insert as much as 45% new documents
(3600 new data items, versus 8400 existing), the recall loses
only up to 33%.

6.1.1. Effects of Multiresolution Decomposition Over
Clustering Performance

After analyzing the results, we observe that one of the rea-
sons for which Hyper-M is able to retrieve data reliably is
the fact that the different levels of the multiresolution analy-
sis allow for a better clustering, as measured by the propor-
tion between cohesion and separation. Cohesion is the av-
erage distance of elements within the same cluster and sepa-
ration measures the average distance between the centroids
of different clusters. Thus, the proportion between them
is a measure of the ‘goodness’ of the clusters. Figure 11
shows that the clusters created in the first three wavelet vec-
tor spaces are tighter and better separated than clusters cre-
ated by the same algorithm in the original data space. Figure
11 also shows that as the level of detail increases, cluster-
ing stops performing as well. Certainly, this is mainly due
to the dimensionality reduction present in the first levels of
the wavelet transform, but also because those levels concen-



trate the summary of the information present in the original
vectors. These results also motivated us to use only four
wavelet levels when performing the effectiveness tests pre-
sented in the previous sections.

7. Conclusion
In this paper we studied the problem of fast index con-

struction in an ad-hoc structured p2p network, with possi-
ble applications for short-lifespan mobile networks such as
a MANET. We proposed a novel solution called Hyper-M
for fast data dissemination. At each peer, it first transforms
the data space using the discrete wavelet transform, and
then applies a simple clustering method, k-means, on the
transformed dataset to generate summaries that represent
the dataset. It uses spheres to represent these summaries in
the transformed space, and exploits geometrical properties
in its range and k-nn search strategies. Our extensive ex-
perimental studies show that insertion cost per item drops
by an order of magnitude compared with conventional ap-
proaches, while retrieval performance is as high as 90% in
terms of precision and recall.
We have observed that applying the DWT before dis-

tributing the data results in a more homogeneous distribu-
tion across the network and conclude that this is due to the
mathematical properties of this transformation. This allevi-
ates the need for data balancing in the p2p network.
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