
POEMS: A Transformable Architecture for
Managing System Overload

ABSTRACT

In a typical organizational scenario, hundreds of personal

computers (PCs) are used mainly for simple office tasks. Typically,

a central database management system (DBMS) receives requests

internally or externally through an Internet connection that serves

as a backend of Web services. The unpredictability and

fluctuations of requests could result in the overload of the DBMS.

Existing load management systems assume nodes are fully

dedicated to sharing loads, which could cause interruptions of the

existing tasks running on the office PCs. In addition, data are

statically partitioned and cached in the nodes permanently even

though the system may be under-loaded. Moreover, the nodes that

are involved in load-balancing are not allowed to dismiss the

processes. In this paper, we describe a novel framework, POEMS,

that is transformable between a client-server and Peer-to-Peer

(P2P) architecture; it operates as a conventional DBMS under

normal load condition without interrupting the nodes, and

transforms to P2P operation mode for processing in a heavy-load

condition. In contrast to traditional systems, all nodes in our

proposed framework contribute the spare capacity of their

hardware resources for data manipulation, and this is done

without the need to install any DBMS at any of the nodes. Data

are partitioned online and operators are distributed to nodes

similarly. The effectiveness of POEMS query processing is

achieved by node cooperation. POEMS allows processes or

operators to be dismissed online, so a user can allocate more

resources to his/her own operation tasks as and when the need

arises. We evaluate the performance of our proposed system with

a prototype implementation. The results suggest that POEMS is a

feasible and effective approach for solving the system overload

problem.

1. INTRODUCTION
Many organizations and the research community are heading,

nowadays, toward distributed database technology. One of the

major motivations behind the use of distributed computing is the

desire to provide an economical method of harnessing more

computing power by employing multiple processing elements.

Significant advancements have taken place in the development

and deployment of the distributed data management system

(DDMS). These include mechanisms to provide transparency in

accessing data from multiple servers [9, 24], and the support of

distributed transactions which facilitate transparency and can

execute queries over fragmented and heterogeneous data sources

[13, 19].

In this paper, we investigate a common and practical problem:

Imagine a typical business environment where a medium-size

organization operates with hundreds of office personal computers

(PCs) and a central DBMS. Most of the office-PCs are used

mainly for simple word-processing and emailing, or as dumb

terminals with no DBMS facilities installed at all. The central

DBMS receives requests internally or externally through an

Internet connection (e.g., it might serve as a backend of Web

services). The unpredictability and fluctuations of the requests

may overload the DBMS. In conventional DDMS approaches,

overloading might be tackled with the introduction of additional

database servers to handle the extra load. However, besides the

additional costs, such approaches might not be flexible. This is

especially true if the arrival rate of requests causing system

overload is short and the fluctuations of requests are swift. In such

a case, the server might end up under-loaded (and hence under-

utilized) most of the time. The motivation of our work is that we

can exploit the spare capacity of the hardware resources of the

office PCs, in order to assist the DBMS to maintain its

performance under fluctuating overload conditions. The intuition

is to distribute some of the DBMS load to the PCs during the peak

periods, while not interrupting them when the DBMS’s workload

is normal.

Peer-to-Peer (P2P) technology provides an attractive alternative

for building distributed systems. The P2P environment is dynamic

and sometimes ad hoc. Peers are allowed to join the network at

any point of time and may leave at will. This results in an

evolving architecture where each peer is fully autonomous. With

such a dynamic environment, maintaining inter-operability among

peers is a great challenge. In addition, finding ways to cope with

databases that are incomplete, overlapping and mutually

inconsistent is an exciting challenge. A considerable amount of

research has been conducted on data integration, data mapping,

data discovering and query processing in P2P environments. In

[15], mapping tables are proposed for data integration in the P2P

environment. The technique provides domain relation

management by inferring new mapping tables and determining the

consistency of mapping constraints. [11, 12] offer a schema

mapping mechanism to capture the structures and terminologies

between a source schema and a target schema. [17, 18] tackle the

issues of data discovery and processing via an IR technique which

allows SQL queries to be processed in a P2P environment without

relying on a global schema.

These systems assume that all participating peers have a DBMS

installed and are willing to share their data with other peers.

Wee Siong Ng
1
, Panos Kalnis

2
, Beng Chin Ooi

1,2
, Kian-Lee Tan

1,2

1
Singapore-MIT Alliance

National University of Singapore
4 Engineering Drive 3, Singapore 117576

smangws@nus.edu.sg

2
Department of Computer Science
National University of Singapore

3, Science Drive 2, Singapore 117543

{kalnis, ooibc, tankl}@comp.nus.edu.sg

Moreover, each peer is expected to play the role of data provider

and data consumer. DBMS facilities such as language parser,

indexes, query optimizer and various operators are granted at will.

We refer to this architecture as peer-based DBMS (PDBMS).

In contrast to DDMS, PDBMS offers a more cost effective

solution where each of the peers in a PDBMS network has a

DBMS installed and load or data is distributed among the peers in

order to maintain system performance. The main concern in this

case is not the additional costs, since the price of the peers (office

PCs) are much cheaper than a server, but rather the complexity of

maintaining the DBMS at each peer site. This involves several

difficulties especially for novice users. First, a complex DBMS

would affect the ad hoc tasks running on a typical PC, unless the

PC is fully dedicated to load balancing purposes. Second, there is

the issue of the complexity of interconnectivity and integration

between one DBMS and others. Third, introducing new operators

or functions would involve the upgrade of all the participants.

Furthermore, both DDMS and PDBMS suffer from the drawback

of not having the capability to handle dynamically changing user

requests. This is due to the initial data placement that might not

guarantee good load balancing for different kinds of access

patterns in the future.

1.1 Our Proposal
Most existing systems employ either a client-server based or P2P-

based architecture (Figure 1.1(a)), each having its pros and cons.

A client-server architecture provides easy access to resources, and

data control through a server; it also allows for new technology to

be easily integrated into the system. These features are absent in

P2P systems. A P2P architecture, on the other hand, provides

scalability in harnessing processing power for solving a given task.

Here we describe POEMS (Peer-based OvErload Management

System), a novel approach which handles the above-mentioned

problems and inherits the advantages of both client-server and

P2P systems. We propose an autonomic DBMS architecture with

two operation modes: a centralized and a P2P mode. Under

normal conditions, the DBMS operates in a client-server mode

without interrupting other peers in the network. The administrator

tells the system his expectation of performance, i.e., a minimum

number of transactions it should be able to handle per minute. On

overloading (exceeding the given threshold), the DBMS seeks

ways to improve its performance, especially when the overload is

caused by short and swiftly fluctuating requests. In such a

condition, the DBMS transforms its query processing operation

into P2P mode and harnesses more power from the peers to assist

the DBMS during the peak period (Figure 1.1(b)).

When POEMS operates in a P2P mode, it treats each peer as an

autonomic element (AE) [16] that will contribute only its

processing power and memory resources without any DBMS

capabilities (i.e., a scenario similar to SETI@Home [22] where

each peer provides computation resources for discovering

extraterrestrial intelligence without any need to know about the

details of the operations). Operators have to be shifted on demand

to AEs based on the query’s execution plan. POEMS interacts

continually with AEs to manage their current resource status.

When the system becomes overloaded, a query optimizer

partitions the data considering the available AEs and the amount

of underutilized resources1. A root operator that consists of all the

optimized sub-operators (e.g., scan, selection or join and

projection) will be generated based on the local query execution

plan and be sent together with the partitioned data to the AEs for

processing. All processing to be carried out at an AE must be

main memory based in order to reduce the effects (I/O operations)

of interruption on the existing tasks running at the AE. Intuitively,

data shifting may incur high communication overhead, but this

concern can be easily resolved: by moving only selected operators

to remote peers to cooperate with the existing operators, peers can

process subsequent queries effectively without any further data

shifting from the DBMS (i.e., PUSH-based prefetching).

(a)

SELECT CUSTOMER.name, CUSTOMER.address

FROM CUSTOMER

WHERE CUSTOMER.cid > 1000

(b) SELECT CART.cartid, CART.status

FROM CART

(c)

SELECT CUSTOMER.cid, CUSTOMER.firstname,

CUSTOMER.sex, CART.cartid, CART.status

FROM CUSTOMER, CART

WHERE CUSTOMER.cid=CART.cid

As an example of query processing, Figure 1.2 shows three

queries on the CUSTOMER and CART relations. Assume Query

(a), Query (b) and Query (c) arrive at the DBMS in this sequence.

Query (a) is a selection-projection on CUSTOMER; Query (b) is

a projection on CART; and Query (c) is a projection-join on

CUSTOMER and CART.

Let X be a cluster of peers each of which receives a root operator

consisting of Project(Select(CUSTOMER, CUSTOMER >100))

and a fraction of non-overlapped data from the CUSTOMER

relation. Similarly, let Y be another cluster of peers each of which

receives a root operator consisting of Project(CART) and a

fraction of non-overlapped data of the CART relation (see cluster

X and Y in Figure 1.3). Incorporating the operators generated

from Query (a) and Query (c) at multiple peers can effectively

process the subsequent projection-join query that involves

relation CUSTOMER and CART (cluster Z in Figure 1.3) without

the need for any data from the DBMS.

Figure 1.3: Query Processing

1 We refer the resource in an autonomic element as the number of

data pages that it can store in its main memory.

C
li

en
t-

S
er

v
er

B

as
ed

D
B

M
S

P2P-based DBMS C
li

en
t-

S
er

v
er

 B
as

ed

D
B

M
S

P2P-based DBMS

Transformable

architecture

between CS

and P2P

(a) in Existing Systems (b) in POEMS

Figure 1.1: Transformable Architecture

Figure 1.2: Sample Queries

Recall that the term “peer” or autonomic element (AE) is used in

this paper to identify office PCs that are dedicated to daily

administration/office purposes (e.g., word processing) but

contribute the spare capacity of their hardware resources to data

manipulation. Therefore, an important property in this

environment is that peers are allowed to dismiss a process at will

during runtime when they need more resources for their local

tasks. This is in vivid contrast to the traditional parallel or

distributed database systems which are static.

In the following sections we present the details of POEMS. The

contributions of our work include:

(i) The proposal of a dynamic framework that is transformable

between the CS and P2P architecture, depending on the

workload of the system.

(ii) The introduction of operator-based query processing where

there is cooperation between different operators at different

hosts for query answering.

(iii) The proposal of a movable operator architecture to handle

the dynamism of peers where operators can freely move to

another peer on request, e.g., when a peer is going offline or

needs more resources for its local tasks.

(iv) The development of several optimization techniques that

decrease data transfer among nodes.

(v) The evaluation of the proposed system in a real environment

with 26 office PCs.

The rest of the paper is organized as follows: Section 2 provides

some essential background. Section 3 describes the POEMS

framework and its architecture, while in Section 4 we analyze the

proposed techniques. Section 5 presents an extensive

experimental evaluation of the system. Finally, Section 6

concludes the paper.

2. BACKGROUND AND RELATED WORK
POEMS can be categorized as an autonomic computing system.

Kephart and Chess [16] present a vision of autonomic computing

where self-management is an intrinsic property that deals with the

complexity of modern computing systems. In autonomic

computing, a system maintains and adjusts its operations in order

to cope with changing workloads or conditions.

The goal of overload management is to maintain the system’s

performance close to optimal under overload conditions.

Conceptually, overload management is a special case of load

balancing. The key difference between overload management and

load balancing is that the former deals with a special set of load

conditions (i.e., overload) whereas load balancing focuses on

distributing equal loads among nodes even in under-load

conditions. Load balancing in shared-nothing architecture [1, 7,

21] has been well studied and deployed in several well-known

distributed computing projects such as NOW [1], Condor [10]

and Beowulf [7]. The methods can be categorized into static [5, 8]

and dynamic load-balancing [14, 23, 25]. These systems follow a

common assumption that loads are distributed to a cluster of

machines or processing elements that are fully dedicated to

sharing loads. In the case of dynamic environments such as P2P,

the notion of “virtual-server” has been used [20] to propose a

load-balancing algorithm in Distributed Hash Tables (DHT). Each

node in the DHT-based structured network can be assigned one or

several “virtual-servers”. The “virtual-server” is responsible for a

contiguous region of the identifier space. Therefore, a load can be

easily split among “virtual-servers”. In this regard, DHT is an

example of static load-balancing as it performs an initial de-

clustering of key spaces with the intent of load balancing. As an

alternative, [2] presents a dynamic load balancing P2P system,

which explores balancing in terms of storage load and replication

in the P-Grid [3] network.

The P2P systems surveyed above provide support for increases in

workload by means of increasing the number of replicas. Our

approach is different in several aspects: (i) Operators are

distributed among peers and operators cooperate in response to a

query, compared to existing techniques which route a query to a

single source for processing. The proposed technique therefore

offers the advantage of distributing the load of a single query to

multiple nodes and consequently, minimizing the burden of each

node. (ii) The granularity of data partition is finer and can be

adjusted dynamically, allowing data to be partitioned online based

on the available resources. (iii) Peers are involved in query

processing when POEMS is overloaded, in contrast to existing

techniques in which replicated data are cached permanently while

waiting for requests, either in under-loaded or overloaded

conditions.

Several techniques have been proposed to deal with issues

concerning the management of data in the P2P environment [11,

17, 15, 4]. For example, [4] focuses on semantic interoperability

in a P2P network with a gossiping technique. In [11], the ppl, a

Peer-Programming Language combining both LAV- and GAV-

style reformulation in a uniform way, is able to chain through

multiple peer descriptions to reformulate a query. In [15],

mapping tables are proposed for data mapping in the P2P

environment. Bernstein et al. [6] introduced the Local Relational

Model (LRM) as a data model specifically designed for P2P

applications. LRM assumes a set of peers, each being a node with

a relational database. A peer exchanges data and services with

acquaintances, i.e., other peers. A peer is related to another by a

logical acquaintance link. For each acquaintance link, domain

relations are used to define translation rules between data items,

and coordination formulas define semantic dependencies between

two databases. PeerDB [17], on the other hand, employs

Information Retrieval (IR) techniques to allow peers to share data

without relying on a global shared schema. For each relation that

is created by the user, meta-data are maintained for each relation

name and attributes. These are essentially keywords/descriptions

provided by users upon creation of the table, and serve as a

thesaurus of synonyms. By matching keywords from the meta-data

of the relations, PeerDB is able to locate relations that are

potentially similar to the query relations.

Our proposed system differs from the above-described techniques

in four ways: First the context is obviously different. The existing

systems do not focus on overload management but on data

management. Second, in our context, all peers contribute the spare

capacity of their hardware resources for data manipulation without

the need for any DBMS to be installed at any of the peers.

Consequently, there are no DBMS facilities (i.e., operators,

indexes, optimizer or data) at the peers. Third, unlike PDBMS

systems which require a DBMS or data repository to be installed

at each peer and thus preventing peers from dismissing processes

easily, POEMS allows processes or operators to be dismissed

online so that a user can channel more resources to his/her own

operation tasks. Fourth, since POEMS focuses on a single DBMS

with multiple peers (without DBMS), we are not restricted by

certain constraints. For instance, we may assume the use of global

schemas, which is not applicable to PDBMS.

It should be noted here that there are similarities between POEMS

and the classical R* system [26], e.g., the mechanism that is used

to minimize the cost of distributed joins. In contrast to POEMS,

however, the R* system assumes the existence of multiple DBMSs.

3. PROTOTYPE DESIGN AND

IMPLEMENTATION
POEMS is a Java-based implementation. It consists of two main

components: the DBMS (we implemented a custom-made DBMS)

which runs on a central server, and the AE component which runs

on autonomic elements. We shall describe in detail the

components of the architecture later in this section. Meanwhile,

we shall define the Processor, which is a widely used object in

our system. A root operator is an operator that encapsulates all

optimized sub-operators. In order to distinguish it from operators

commonly used in the DBMS, we name the root operator

Processor. The Processor plays an important role in query

processing in POEMS. It is a movable object that can be

dispatched to AEs as requested or it can replicate itself at other

AEs for load sharing.

Each Processor consists of operators (all sub-optimized operators

are encapsulated in a root operator), data and a Plan (Figure 3.1).

Data are subsets of relations partitioned by the DBMS. We shall

defer the discussion on Plan generating to a later section. It

suffices to say here that the Plan is used to guide operators on

how to process a query and where to retrieve other partitioned

data.

Figure 3.2 depicts the architecture of POEMS. From the network

point of view, it consists of a large number of AEs (i.e., AE1 to

AE7) which offer their spare resources, and a central DBMS that

offers services to internal or external users (outside the

organization). The solid lines denote connections among AEs in

the same cluster. For example, [AE1,.., AE5] and [AE6, AE7] are

two different clusters that are responsible for storing different

data/relations. Each AE in a cluster is responsible for storing part

of the data. Continuing our previous example of Figure 1.3,

[AE1,…, AE5] and [AE6, AE7] represent the clusters X and Y,

respectively. In this case, each of AE1 to AE5 is responsible for

storing the partial data of CUSTOMER and AE6 to AE7 store the

partial data of the CART relation. Each AE also connects directly

to the DBMS (denoted by dashed lines).

SQL requests are first directed to the central server. The DBMS

has all the features of a traditional DBMS (i.e., query parser,

query optimizer, various operators, etc.), which are subsystems

kept in its DBMS Modules. In addition, the DBMS includes

Resource Inventories and a Plan and Processor Generator (PPG).

Resource Inventories maintain an inventory of the location and

characteristics of AEs (e.g., how many memory pages an AE

contributes, etc.); this is essential for scheduling the execution of

query plans.

A transition from the CS to the P2P mode occurs when the system

is overloaded. For each query, the DBMS produces Processors to

handle the task and dispatch the Processors to a set of AEs. This

is the typical task of the PPG, which is also involved in data

partitioning during the generation of Processors. PPG tries to

partition and assign all data to the available AEs. If there are not

enough AEs to handle the required amount of data, the remaining

data are assigned to the DBMS. In such a case, the DBMS acts as

an AE that is responsible for the remaining data.

Figure 3.2: Architecture and a Typical POEMS Context

Environment

AEi has a very simple architecture that consists of two major

modules: the Execution Engine and the Resource Monitor. The

main purpose of the Execution Engine is to execute the Processor

that it receives without having to know what operators it consists

of. Other AEs can connect to AEi and request data. AEi may

answer a query by executing the operator (or part of it) locally, if

it has the required data, or by acquiring data from other AEs. All

processed results will be returned directly to the requester that

initiated the query without going though the DBMS. We assume

there is no firewall blocking the return of results to external users.

Since AEs are not fully dedicated to the task of load management

and their load may vary from time to time depending on the tasks

that they are currently running, a mechanism is necessary to

provide the current resource status of AEs to the DBMS. In our

prototype, we implemented a Resource Monitor (RM) module.

The RM monitors the main memory usage of its AE periodically

and calculates the number of available pages. This information is

uploaded periodically to the DBMS.

4. QUERY PROCESSING
Users pose queries by means of an SQL statement to a central

DBMS; incoming queries are put into a FIFO queue. In our

current implementation, a query q has the following form:

Figure 3.1: Processor Architecture

SELECT A

FROM R

WHERE C

where R is a set of relations, A is the set of target attributes and C

is the set of conditions. C in the WHERE clause supports the

<expression op expression> form, where an expression is a

column name, a constant or a string expression and op can be one

of the comparison operators {<, <=, =, >=, >}.

Let νsys be a function of the system load, defined as:

νsys =

where interval-t is a constant (eg., 1 min). For each interval-t, the

size of the FIFO queue is checked and νsys is computed by

dividing the number of completed transactions during the interval

by the size of the FIFO queue.

Overload is interpreted as a condition where the νsys < νadm, where

νadm∈(0,1] is a parameter set by the administrator. In this case,

query processing operations switch to P2P mode to harness more

computation power. Obviously, a large value of νadm causes the

system to always face an overloaded condition, and consequently

shifting the system towards P2P processing. In another extreme

case, a very small value of νadm causes the system to retain a CS

architecture. This tunable parameter that characterizes POEMS

provides better adaptation to user needs based on different

environment conditions.

We assume that the services offered by the DBMS are read-only,

meaning that no update requests are allowed. This is in line with

typical applications such as data warehousing (i.e., aggregation

queries), genomic databases which allow the public to analyze

existing data, or governmental service portals. In the following,

we shall focus on query processing mechanisms under the

overloaded condition.

4.1 Query Distribution
Assume that the DBMS notices an increase in load at an interval-t,

and attempts to solve the problem by transforming the processing

mechanism to P2P mode to achieve better performance through

simultaneous operations. Let firstQuery be the first query that the

central DBMS receives upon transformation to P2P mode or a

query that requires a table or tables not requested by previous

queries while the system was in an overloaded condition. Also, let

followingQuery be a subsequent incoming request that is inserted

into the DBMS FIFO queue waiting for processing. We shall

focus on join or select-join queries (e.g., CUSTOMER.cid =

CART.cid or CART.status = ‘1’ AND CUSTOMER.cid =

CART.cid) which require more processing resources; simple

selections are processed similarly.

The DBMS generates a set of Processors to handle each incoming

query. A Processor consists of three main components: data,

operators and a Plan. First, we discuss the data partition

mechanism. Let R(firstQuery) = {R1,…,Rn} denote the cross-product

of relations R1 to Rn for firstQuery. For each Ri, data have to be

partitioned and distributed to a set of AEs. The data size to be

assigned to each AE has to be small enough to fit into its main

memory in order to minimize any heavy I/O operation that may

cause serious interruption to the user’s currently running tasks.

The procedure of assigning data based on AEs’ available

resources is summarized in Figure 4.1.

1: Sort(R(firstQuery)) in descending order based on relation size

2: remaining pages = compute total size of R(firstQuery)

// AEs in the Resource Inventories are sorted according to the

available pages

3: forward = 0;

4: For each AE in Resource Inventories

 // n is the number of relations in R(firstQuery)

5: Partition size = AE.pageAvailable / (n +2)

6 : For each Ri

7: Assign pages to peer while

8: pages assigned to AE < Partition size + forward

9: remaining pages--;

10: Next Ri

11: If pages assigned to AE< Partition size then

12: forward = partition size – pages assigned to AE

13: Break If remaining pages = 0

14: Next AE

15: If remaining pages > 0, let DBMS handle

The relations in R(firstQuery) are first sorted based on the size of

each relation Ri. The information of each Ri size is collected from

the DBMS system catalog. The total number of pages that are

needed to store all the tuples of R(firstQuery) is computed, too. For

each AE that is registered in the Resource Inventories, its buffer

(number of pages that it can contribute) is partitioned to n+2

segments, where n is the number of relations in R(firstQuery) . Notice

that there are two additional segments; one is assigned as storage

for intermediate results and another segment is used as the output

buffer. Since all operations are performed in the main memory,

pointers instead of real values are stored in the intermediate-result

buffer. If the aggregate resources contributed by AEs happen to be

less than the minimum storage required for storing all R(firstQuery)

tuples, the DBMS will be responsible for the remaining data. In

such a case, the DBMS plays the role of an AE.

Figure 4.2 is a graphical view of how resources in AEs are

partitioned and assigned data. Assume R, S and T are three

relations of R(firstQuery) and Intm is the intermediate result buffer

and Out is the output buffer. The height of each rectangle is

proportional to the amount of data that has been assigned to it.

AE1 is assigned more data than the others since it contributes

more resources. No data from S has been assigned to AE3 and no

data from S or T has been assigned to AE4 (the shaded-rectangles)

as AE1 AE2 and AE3 contribute enough resources to cover the

entire S and T.

Apart from assigning partitioned data to each AE, there is a need

to migrate operators to AEs. An AE produces final results solely

from operators that are assigned to it by the DBMS. Although

query optimization is critical in a relational DBMS, we

concentrate in this work on a simple local optimization approach,

since we focus more on distributed parallel processing; the

optimizer can be replaced easily in the future without affecting the

general framework. For the current prototype, we employ an

iterative improvement algorithm for the randomized optimization

Number of completed transactions per interval-t

Number of incoming transactions per interval-t

Figure 4.1: Resource-based Data Assignment Algorithm

of the query plan. The output of the optimizer is an operator

consisting of many sub-operators, i.e., nested-join, selection,

projection and scan operators. For each scan operator in an AE, a

pointer of a corresponding set of partitioned data that have been

generated previously is assigned to it.

The Plan is the last component that resides in a Processor. It is a

simple data structure. A Plan has an n x m array, where n is the

number of relations and m is the number of AEs that are

participating in solving the given query (possibly from different

clusters). Each cell (ni, mj), 0<i<n, 0<j<m, in a Plan has a value

of 0 or 1. A cell is set if AEj is assigned data Ri, and it is reset

otherwise. Referring to Figure 4.2, the information of data

distribution among the AEs is transformed to a Plan as in Figure

4.3. The objective of a Plan is to assist query processing by

providing information on how and where a query should be

processed. In the following, we describe the mechanism of data

retrieval and processing in a set of AEs.

4.1.1 firstQuery Execution
On receiving a Processor, the AE starts processing the query. This

is divided into two sub-processes: local processing (LP) and

remote processing (RP). LP starts producing partial results

immediately by executing the operators that are attached to the

Processor if all the required data of R(firstQuery) are locally

available (e.g., in Figure 4.3, AE1 and AE2 can produce partial

results locally since all the relations R, S and T are available,

although the data are not complete). The results are returned to the

requester immediately.

Remote processing (RP) involves retrieving data from other AEs

to the peer for processing. One of the simplest ways to determine

the order of data retrieval from different AEs is the following: AEj

(0<j<m, m is the number of AEs) retrieves the data of relation Ri

from AEj+1 if and only if the cell of (i, j+1) in the Plan is set. For

example, in Figure 4.3, AE1 will retrieve R2, S2 and T2 from AE2,

R3 and S3 from AE3 and R4 from AE4. Similarly, R3 from AE3 and

R4 from AE4 will be retrieved by AE2. Observe that AE1 performs

more operations than AE2; similarly, AE2 performs more

operations than AE3 and so on. The advantage of this resource-

based data and task assignment is that AEs with more resources

are assigned more operations than others. As a result, the usage of

resources at each AE is optimized and the overloading of AEs

with low resources is avoided.

Note that the operators of each AE are generated based on an

execution plan produced by the DBMS query optimizer with only

local information to estimate the local result size and cost.

Therefore, strictly speaking, the plan is optimized if the query is

run on the DBMS host. Given the R, S and T relations as an

example, based on the associative property of joins, a query

optimizer may produce any of these alternative plans: R @ (S @

T), (R @ S) @ T or (R @ T) @ S. Also, since the size of R ≥ S ≥ T,

and assuming there are no indexes for the attributes to be joined

and each of the relation embodies a uniform distribution of values,

plan R @ (S @ T) is favored by the optimizer since S @ T has a

higher probability to produce smaller intermediate results.

Although R @ (S @ T) could be the most preferable plan, for LP,

choosing any other of the execution plans might not affect

performance since each AE is assigned an equal data size for each

relation as the result of data partition in the earlier stage (e.g., R, S

and T all have equal size in AE1). Furthermore, there are no

indexes in all the AEs and all the operations are performed in the

main memory. Therefore, the processing cost of any of the above-

mentioned plans is similar.

However, this might not be valid in RP. RP involves retrieving

data from remote AEk, where j<k<total AE, to AEj, where the size

of Rk in AEk is smaller than or equal to the size of Rj in AEj. In

this case, assigning a smaller set of data to the outer relation may

involve higher processing cost. Although we do not have to

consider any I/O operation since all operations are main memory-

based, accessing memory entails cost-related characteristics that

are similar to disk-based I/O operations [27]. We do not deal with

main memory optimization issues in this paper, but we need to

reduce L1 and L2 cache misses by avoiding the assignment of a

larger set of data to an inner relation and a smaller set of data to

an outer relation, as such assignments might cause more L1 and

L2 cache misses since the size of the L1 and L2 caches is small

compared to the main memory. Let Figure 4.4 be an example and

let R @ (S @ T) be the plan produced by the DBMS. Assume that

the right-most predicates are inner relations and the left-most

predicates are outer relations.

Figure 4.2: Data Assignment for AEs

Figure 4.3: A Plan Structure

Figure 4.3: Data Retrieving and Processing. Double-arrows-

solid-line denotes LP and dashed-arrow-line denotes RP.

Figure 4.4: An Example of RP. A dashed box denotes a

Retrieve-from Relationship

As noted, AE1 retrieves R2, S2 and T2 from AE2 and R3 and S3

from AE3 to be processed locally. Notice that since R3 ≤ R2 ≤ R1,

S3 ≤ S2 ≤ S1 and T2 ≤ T1, there are two possible cases where the

plan R @ (S @ T) is inadequate for AE1. First, AE1 retrieves S2 or

S3 and replaces the local S1 with S2 or S3 for processing, R1 @

({S2, S3}@ T1). In this case, since the size of {S2, S3} ≤ T1 and

relation S is the outer relation, {S2, S3}@ T1 would be more costly

than T1 @ {S2, S3}. Similarly, in the second case, AE1 retrieves R2

or R3 and replaces the local R1 with R2 or R3 for processing {R2,

R3} @ (S1 @ T1). In this case, the size of the intermediate results

produced by (S1 @ T1) might be larger than the size of {R2, R3}

since the size of R1,= S1 = T1 and {R2, R3} ≤ R1. Piping the larger

intermediate results as an inner relation to its parent may affect the

cost significantly due to the cache misses of L1 and L2.

One of the solutions is to let the optimizer consider the resources

at different AEs while generating the execution plan. Different

plans can then be tailored for the various AEs. However, this

method adds extra load to the DBMS, which is especially

undesirable under an overload condition. In POEMS, all AEs are

assigned a single plan, which has the advantage of simplicity and

scalability. Nonetheless, RP still suffers from the above-

mentioned problem. We propose a simple yet effective mechanism

to minimize the effect of assigning smaller sets of data to outer

relations. Consider Figure 4.5 as an example. We remove S and T

from the figure and insert the additional AE5 for illustrative

purposes. For each AEi, a window Wj with a size that equals the

segment size is created. The window Wj is dispatched to AE(i+1)

and is filled with the data of R(i+1). If Wj is not full, it is dispatched

to AE(i+2) and the filing process is repeated. The process will stop

if Wj is full or AEn is the last AE in the cluster participating in

storing the data of R.

An exception happens when Wj is full, AEn is the last AE and

some data remain (e.g., in Figure 4.5, W2 is full, AE5 is the last

AE and the dashed-box is the remaining data). In this case, the

size of Wj is expanded to capture the remaining data. Note, when

expanding Wj, AEi would require more buffer than the initially

assigned segment to store the additional data. The extra buffer that

is needed can either be obtained from Intm buffer or Out buffer, or

in the worst case, the additional data may be put on disk. In any

case, this may not be an issue since the size of the remaining data

is always small (i.e., recall that the arrangement is sorted).

4.1.2 followingQuery Execution
When the DBMS receives a followingQuery, it checks its FROM

predicates. There are three possible cases: (i) all the required

relations have been previously distributed to remote AEs in one

cluster, (ii) the required relations are handled by two or more

clusters and (iii) only parts of the required relations have been

distributed to AEs. The DBMS determines the case by referring to

the Resource Inventories. In the first case, the DBMS generates

operators as usual based on its local cost information. The

operators are then attached to a new Processor. Each of the AEs

involved in the processing receives a similar Processor. Unlike

the Processor defined in firstQuery, no data or Plan is assigned in

the Processor of the followingQuery, since all such information

can already be found at the AEs. This is desirable, as in practice,

the workload of the DBMS can be reduced considerably.

If some of the required data are not found in the AEs (i.e, case

(iii)), a followingQuery will be processed in two steps. In the first

step, each part of the missing data is obtained from the DBMS and

then partitioned and distributed to a new set of AEs. The second

step is the same procedure that applies to the case (ii): In contrast

to firstQuery processing which involves a single cluster of

multiple AEs, the major challenge in this case lies in the

mechanism of joining relations from two or more clusters, each

with a set of AEs. Assume there are two clusters: Cluster (R, S)

consisting of {AE1, AE2, AE3, AE4} and Cluster (T) consisting of

{AE5, AE6, AE7} as shown in Figure 4.6. Cluster (R, S) stores the

data of R and S, while Cluster (T) stores the data of T. Observe

that there are several query processing issues. First, the cluster

selection problem of defining where an execution should be

performed (e.g., processing can be either running on Cluster (R, S)

and fetching T from Cluster (T) or vice versa). Second, the size of

the to-be-fetched relation in a cluster might be larger or smaller

than the available memory resources of the requester AE.

Fetching data larger than memory size incurs I/O operations since

data have to be stored in the disk. At the other end, resources are

underutilized when a small set of data is fetched.

Given a query R @ (S @ T) and two clusters as in Figure 4.6,

POEMS selects a cluster that has the maximum number of FROM

predicates stored, e.g., Cluster (R, S) has two predicates out of

three of R @ (S @ T). If there is a tie, random selection is used.

Notice that given two clusters, each of the AEs in the first cluster

has to fetch data from the AEs of the second cluster. Therefore, in

order to optimize the memory resources used, each AE in the first

cluster will define a window of the size of the segment as

described in firstQuery processing.

4.2 Reducing the Network Cost
There are two points that involve data transfer: (i) when the

DBMS distributes data to a set of AEs, and (ii) during data

fetching among AEs. We do not restrict data flow from the DBMS

Figure 4.5: Fixed-Size Window for Data Retrieval

Figure 4.6: Processing with Two Clusters

to AEs since any data missing from the AEs will entail reference

to the DBMS again, which means an additional load on the

already overloaded DBMS. On the other hand, data transfer

among AEs should be reduced to minimize network cost. Even

though the amount of data transfer from the DBMS could not be

reduced, it is worthwhile grouping similar queries together and

reducing the number of queries that will be posed to AEs for

processing. Therefore, our optimization strategy is two-fold: to

reduce the number of queries posed to AEs and to minimize data

transfer among AEs.

We propose a Windowed and Grouped (WG) algorithm to reduce

the number of queries that will be posed to AEs that aims to

minimize total execution cost by grouping concurrent queries that

require similar resources. Recall that all incoming queries are first

inserted into a processing FIFO queue in the DBMS. Let GWn be

a group window that takes n queries from the queue and groups

similar queries together (see Figure 4.7). Given two queries, Q1,

Q2, and their data sources R(Q1) and R(Q2) respectively, they can be

grouped if and only if R(Q1) ⊆ R(Q2) or R(Q2) ⊆ R(Q1), and the data

sources in R(Q1) are the same or a subset of the data sources in

R(Q2) and vice versa. Freezing queries and grouping them later

may not appear worthwhile at first glance because of the short

lifetime of the query since the strategy introduces additional delay

to query execution. However, there are two conditions that make

WG a desirable algorithm in a situation of overload. First, the

swiftness of requests enables a large number of candidates to be

considered for grouping in a very short period. Second, a

slowdown in the average query response time is unavoidable

when system overload sets in. By sacrificing a short delay as a

trade-off would reduce system workloads.

Two algorithms are used in POEMS to reduce the amount of data

to be shipped among AEs. Semijoin [28] reduces the tuples to be

shipped from site A to site B with the following steps (assuming

relation S at site A is to be joined with relation T at site B on

attribute a). First, compute the projection and sort S at site A on

the join column ‘a’ and then eliminate the duplicates. Let S’ be

the projection output of the tuples produced by this step. Next,

send S’ to site B and select the tuples of T that match S’.a,

yielding a reduction T’, and ship them to site A. Third, at site A,

join T’ with S and return the results to the user.

Bloomjoin [29] works similarly, but it uses Bloom filters to filter

out non-matching tuples in a join. A Bloom filter is a bit-vector of

size k. It works as follows: (i) It generates a k-bit-vector and set

each bit to 0. Then, it hashes each of the value of S.a column at

site A to a particular bit in the k-bit-vector and sets the bit to 1. (ii)

It sends the vector to site B. It hashes each value of T.a at site B

with the same hash function as in step (i). If the hashed bit is “1”,

the tuple can be a possible candidate. Assuming that T’ is the

reduction of all candidates, it is sent to site A. (iii) At site A, it

joins T’ with S and returns the results to the user. In our case,

there is a one-to-many operation in which a processing initial site

AEi (i.e., site A) sends projection tuples to a set of AEs

{AEi+1,…AEi+n}, each of which stores the partial data of relation

T (recall Figure 4.6) for requesting their reduction T’. Intuitively,

we can send the request to each of {AEi+1,…AEi+n} sequentially

by ignoring the size of the reduction T’. However, this would not

utilize the memory resources of AEi, i.e., the returned T’ might be

larger or smaller than AEi’s memory resources. Therefore, we

extend the algorithms as follows.

On RequestRemoteData

1: Generate v from the to-be-joined relation

 // v can be either a Bloom filter or a projection for bloomjoin

 //and semijoin respectively

2: If anchor is null send v and W to AEdata.

3: Else send v and W to anchor

 // W is a window of a size equal to AEi segment size

On ReductionRequestReceived(v, W)

 4: Generate reduction T’

 5: Fill W with reduction T’, starting from the last data accessed

 6: If W is not full and AEdata+1 is not null, Send v and W to AEdata+1

 7: Else set this as anchor and return W and anchor

Let AEreq be the requester AE and AEdata be the AE having the

data. AEreq generates a Bloom filter or a projection on the to-be-

joined column, depending on its policy (On RequestRemoteData

in Figure 4.8). An anchor is a pointer to the last item fetched. It

consists of this information: the AEdata identity of the last accessed

AE and its data pointer pointing to the last accessed data.

Obviously, the anchor is null if this is a fresh operation. If the

anchor is not null, AEreq starts fetching data from the AEdata that is

defined in it. The AEdata that receives the request (On

ReductionRequestReceived in Figure 4.8) then generates the

reduction T’ and fills W which is of the same size as the AEreq

segment. If W is not full, AEreq forwards the operation to AEdata+1,

where the identity of AEdata+1 can be obtained from the AEdata Plan.

The operation stops if AEdata+1 is null or W is full, which causes W

to be returned to AEreq.

We also consider Hash-based join algorithm, instead of the

Distributed Nested-Loop join which was mentioned previously.

Hash-based method has the advantage that no data need to be

transferred between AEs for processing the join. The disadvantage,

however, is that if a subsequent query joins the datasets on a

different attribute, all data must be re-hashed. Due to space

constraint, we omit the algorithm here. Section 5.3.1 presents the

experiment results of network load optimization based on the

Hash-based distributed joins.

4.3 Processor Reallocation
Recall that users are allowed to withdraw their contributed

resources anytime. When a user withdraws his resources, the

Processor (i.e., inclusive of data and operators) at the user AE has

to be reallocated. The AE interacts with the DBMS to find an

available AE’ to handle the Processor. Checking its Resource

Inventories, the DBMS informs the AE to migrate the Processor

if there is (i) an AE’ that has enough resources to take over the

Processor, or (ii) a set of AEs whose aggregate resources are

enough to take over the Processor. The first case is simple since it

involves only migrating the Processor to AE’. In the second case,

we need to split the Processor into several sub-Processors. Still,

Figure 4.8: Algorithm for Data Fetching among AEs

FIFO Queue

Processing
Incoming

queries

GWn

Figure 4.7: Windowed and Grouped Strategy

this is straightforward as we only need to split the data in the

Processor to several portions according to the new AEs’ resources.

If there are no AE’ available the Processor will be relocated to the

DBMS. All of these cases involve the updating of the Plan in

order to reflect the new location of the data. The DBMS generates

a new Plan and updates all other AEs who are members of the

same cluster as the requester on the new location of the Processor.

Notice that the above methods assume informed leave; handling

node failures is outside the scope of this paper.

4.4 Optimizing the Utilization of Resources
It should be obvious by now that the benefit of the system is

improved if during an overload period many queries can be

answered in the peers by data which are already cached there.

However, the peers need their resources for their individual needs;

ideally, they would like to contribute only in emergencies (i.e.,

server overload).

(a) Server workload

(b) Naïve resource utilization

(c) Microeconomics-based resource utilization

Figure 4.9: Server workload and Resource utilization at the peers

Figure 4.9a presents a scenario of server workload. When the

query rate is more than 100 queries/period, the server is

overloaded. During these periods, it requests resources from the

peers. Figure 4.9b presents the resource utilization of a naïve

algorithm, which uses 100% of the available peer resources

during peak periods, and releases all of them when the peak ends.

This is acceptable from the peers’ perspective; however, when a

new peak starts the server must retransmit all the required data.

To achieve a balance among the total amount of data transmitted

by the server, the throughput of the system and the peers’ desire to

avoid contributing resources, we adopted an algorithm based on

microeconomics (Figure 4.10). Each peer has a set of blocks

which is its resource. Each of the blocks can be reserved for

storing data by paying some amount of virtual currency. The

block is reserved and valid for a period of an interval-t. On

expiration, the peer has the right to regain it back if the requestor

does not pay for it. In order to reserve the blocks, the requestor

has to earn profit. The server earns profit for every query it

manages to serve while exceeding its capacity. On each interval-t,

the OnLoad function is called to compute the block reservation

strategy. It first pays for all the reserved blocks if the account has

enough currency, otherwise the peer will regain the blocks. After

clearing the payment, it checks if the number of reserved blocks

are enough to handle the incoming requests. If more blocks are

needed and the account has enough currency, it buys extra blocks.

Otherwise, it needs to loan extra blocks for storing the data. The

loaned blocks have to be paid back once it has earned the profit.

However, the profit may not always enough to pay for all blocks

and unpaid blocks are returned to peers. In this case, some of the

cache data are lost.

OnLoad(int load)

1: Pay for the reserved blocks;

2: If the amount of reserved blocks is not enough to handle the load then

3: If has some currency then

4: buy blocks, up to the maximum of currency it has

5: If the amount of reserved blocks is still not enough to handle

the load then loan blocks (needBlk);

7: ComputeProfit(load);

8: If loaned then PayLoan;

PayLoan()

1: If account has enough currency then pay and clear loan;

3: Else If account > 0 but not enough to pay for the loan then

4: pay whatever amounts exist in the account;

5: return n number of reserved blocks to peer as loan payment,

 where n is the number of loan in balance.;

6: Else

7: peer regains all resources;

8: clear loan;

Figure 4.9c shows the behavior of the algorithm for the server

workload of Figure 4.9a. It is evident that our algorithm follows

closely the workload, and avoids using all the available resources

on the peers if this is not necessary. Additionally, it keeps some

resources in the peers even when the server does not need them at

the time, since these will help increasing the query performance

during the next peak.

5. EXPERIMENTAL EVALUATION
We tested our prototype on a network with 26 Pentium IV,

1.6MHz, WinXP PCs (AEs) with 256MB RAM, and a Sun

Solaris server with 4GB RAM and two Ultra-SRARC processors

480MHz CPUs which served as the central DBMS. All machines

were physically connected to a LAN. The server-to-AE and the

AE-to-AE transfer rate was 10Mbps and 100Mbps, respectively.

We used the TPC-H schema to generate the dataset for our

experiments. It consists of eight separate tables; the largest has

600572 tuples, while the total number of tuples in all tables is

around 900,000. We defined a query set with a mixture of

selection and join queries. We used two metrics to evaluate the

Figure 4.10: Resource allocation Algorithm

system performance. (i) the number of completed transaction per

interval (i.e., throughput), denoted as CT(t), and (ii) the

effectiveness of a system, defined as: 100*CP(t)/Q(t), where Q(t)

is the number of incoming requests per interval t. The default

value of t was 60min. Obviously, when the server is not

overloaded, its effectiveness is 100%

5.1 Client-Server vs. POEMS
In the first set of experiments we compare a central DBMS that

employs static client-server architecture (CSDBMS) against

POEMS. For fairness, we do not employ any optimization

strategies for POEMS in this state. The server is considered

overloaded when the rate of incoming queries Q(t) ≥ 120. The

results are presented in Figure 5.1.

0

50

100

150

200

40 60 80 100 120 150 180 200

Q(t)

C
P

(t
)

CSDBMS

POEMS

When Q(t) (less than 120 for this setting) is low, both systems

achieve best results; notice that there is no overhead in POEMS

when it works in the CS mode. However, when Q(t) increases to

more than 120, the server cannot handle the additional load

anymore. Therefore CP(t) for CSDBMS becomes constant, while

the effectiveness drops, as shown in Figure 5.2.

50

60

70

80

90

100

40 60 80 100 120 150 180 200

Q(t)

E
ff
e

c
ti
v
e

n
e

s
s

 (
%

)

CSDBMS

POEMS

POEMS, on the other hand, switches into the peer-to-peer mode.

For Q(t)=120, the server is overloaded and additionally has to pay

the cost of transforming to P2P mode. This involves data

partitioning and data distribution, which are expensive processes

since they involve scanning large portions of the data and

preparing the Processor objects to be distributed to the remote

AEs. For this reason, POEMS’ performance at that point is

slightly worse than CSDBMS.

After POEMS has paid the initial cost, however, it can utilize the

peers’ resources to increase its throughput. Since the data are

already in the peers, only operators are sent to AEs for most

subsequent queries, which are much smaller in size. Moreover the

queries can be evaluated in parallel, from data which reside in the

peers’ main memory. These facts explain the performance boost

of POEMS over CSDBMS for high query rates.

5.2 Optimized POEMS
In these experiments we evaluate the query grouping optimization,

presented in Section 4.2. The settings are the same as the previous

experiments and the results are presented in Figure 5.3 (number of

completed queries) and Figure 5.4 (effectiveness). “Pure+Pure”

represents a POEMS system with all the optimizations turned off

(i.e., the same as in the previous section), while “FW+Pure”

denotes POEMS with the query grouping optimization.

Query grouping identifies similar queries and shares the execution

cost among them. Essentially, this optimization decreases the

number of distinct queries running simultaneously; therefore it

allows the system to complete more queries in a given period.

This is evident from the figures, where query grouping increases

the system’s performance by around 50%

0

100

200

300

400

500

600

100 200 300 400 500 600

Incoming Tr ansaction Rate Per Inter val

Pure+Pure

FW+Pure

Figure 5.3: CP(t) for the query grouping optimization

60

65

70

75

80

85

90

95

100

100 200 300 400 500 600

Incoming Transact ion Per Int erval

Pure+Pure

FW+Pure

Figure 5.4: Effectiveness for the query grouping optimization

We also tested several other optimizations, including Semijoins

and Bloomfilter joins. Both methods improved the results of pure

POEMS. Due to space constraint, we omit the results here.

5.3 Network Load Optimization
In this set of experiments, we implemented a simulator using the

parameters from the prototype in order to evaluate the

effectiveness of network load optimization on a larger network.

5.3.1 Effectiveness of Distributed Hash Joins
Figure 5.7a shows how the distribution of resources affects the

query performance based on Distributed Hash Joins. We keep the

total amount of resources constant, and vary the number of peers.

The first column, for instance represents a network of 2 peers,

each one having 50% of the available resources, while the last

Figure 5.1: CSDBMS vs. POEMS

Figure 5.2: CSDBMS vs. POEMS in term of Effectiveness

column is for a network of 50 peers, each having 2% of the total

resources. Figure 5.7b shows the network cost for the same

settings. From the results, it is obvious that hash-based join

benefits much from the increased number of peers. This is due to

the fact that the join can be performed in parallel with negligible

communication overhead.

0

20

40

60

80

100

120

140

160

180

50% 25% 10% 5% 3.30% 2.50% 2%

Resource Size

C
o
m

p
le

te
d
 Q

u
e
y

(a) Completed transactions (CT)

20000

40000

60000

80000

100000

120000

140000

160000

180000

50% 25% 10% 5% 3.30% 2.50% 2%

Resource Size

N
e
tw

o
rk

 C
o
s
t
(p

a
g
e
)

(b) Network cost (amount of transferred pages)

Figure 5.7: Hash-based Distributed Join

5.3.2 Effectiveness of Microeconomics Algorithm
In this experiment we compare the network load due to a naïve

resource utilization algorithm with that of the microeconomics-

based resource utilization introduced in Section 4.4. Figure 5.8a

presents a scenario of server workload. When the query rate is

more than 100 queries/period, the server is overloaded. During

these periods, the server requests resources from the peers. When

a naïve resource utilization algorithm is used, the server transmits

all the required data to the peer and the data is discarded at the

peer once the peak ends. When a new peak starts, the server must

retransmit all the required data to the peer. When the

microeconomics based method is used, some amount of data is

retained at the peer even when the peak is over, so that it can be

reused during the next peak. This avoids the need to retransmit all

the data at each peak, thus reducing the load on the network. In

the simulator, the network transfer rate is set to 10Mbps and a

simple selection query is being used in this experiment. The

workload scenario depicted in Figure 5.8a. We measured the data

transferred in two different settings: one using a naïve resource

utilization algorithm and the other one using the microeconomics

based resource utilization. Figure 5.8b shows the results obtained.

At intervals T6 and T7 the data cached at the peer is reused and

hence no new data needs to be transmitted in the case of

microeconomics based resource utilization, while all the data

needs to be retransmitted when the naïve resource utilization

algorithm is used. At T8 there has been a data transfer due to the

microeconomics based utilization, because the resources at the

peer are not enough to handle the load. Over the periods T1 to

T10, the naïve resource utilization algorithm causes a transfer of a

total of 5600 KB of data, while the microeconomics based

utilization causes a transfer of 3700 KB of data. We see that there

is about 33% of savings by the latter. Thus indicates that the

microeconomics based algorithm optimizes network utilization

more effectively.

0

20

40

60

80

100

120

140

160

180

200

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

Interval

Q
u
e
ry

 r
a
te

 p
e
r
in

te
rv

a
l

(a) Server workload

0

200

400

600

800

1000

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

Interval

D
a
ta

 T
ra

n
fe

rr
e
d

 (
in

 K
B

)

Microeconomics based utilization Naive Resource Utilization

(b) Data transferred from server to peer

Figure 5.8: Server workload and network utilization

6. CONCLUSION
In this paper we investigated the practical problem of dealing with

overloads in enterprise database servers. Motivated by the fact

that current solutions are either too expensive or too complicated

to be deployed, we developed POEMS. Our system utilizes the

available resources in numerous office PCs by asking them to

perform some data manipulation in order to relieve the database

server during the peak periods. The whole procedure is

transparent to the user, and does not require the installation of any

DBMS on the PCs, since all the data together with the required

operator are sent from the server as Java objects. Furthermore the

PCs contribute their resources only when it is absolutely

necessary, thus minimizing the disturbance to the office user.

We implemented POEMS and deployed it on a network with 26

PCs and a UNIX server. The implementation illustrates the

feasibility of the proposed framework, and the experimental

results demonstrate its potential: it managed to increase the

throughput by 400% based on the naïve methods and it achieved

an additional boost of 200% by employing obvious optimizations.

We also showed that under known query patterns, the system can

be very scalable. We are confident that by incorporating

sophisticated optimization methods, POEMS has the potential to

achieve even better performance in a wide range of practical

applications.

REFERENCES
[1] T. E. Anderson, D. E. Culler and D. A. Paterson, “A case for

NOW (network of workstations)”, IEEE Micro, 15(1), 1994,

pp. 54—64.

[2] K. Aberer, A. Datta, M. Hauswirth, “The Quest for

Balancing Peer Load in Structured Peer-to-Peer Systems”,

EFPL Technical Report IC/2003/32, 2003.

[3] K. Aberer, P. Cudré-Mauroux, A. Datta, Z. Despotovic, M.

Hauswirth, M. Punceva, R. Schmidt, J. Wu, “Advanced Peer-

to-Peer Networking: The P-Grid System and its

Applications”, PIK Journal Special Issue on P2P Systems,

2003.

[4] K. Aberer, P. Cudré-Mauroux, M. Hauswirth, “A framework

for semantic gossiping”, SIGMOD Record, 31(4), 2002.

[5] H. Boral, W. Alexander, L. Clay, G. Copeland, S. Danforth,

M. Franklin, B. Hart, M. Smith and P. Valduriez,

“Prototyping Bubba, a highly parallel database system”,

IEEE TKDE, 2 (1), March 1990, pp 4—24.

[6] P. Bernstein, F. Giunchiglia, A. Kementsietsidis, J.

Mylopoulos, L. Serafini and I. Zaihrayeu, “Data management

for peer-to-peer computing: A vision”, WebDB, 2002.

[7] D. J. Becker, T. Sterling, D. Savarese, E. Dorband, U.A.

Ranawake, and C.V. Packer, “BEOWULF: A Parallel

Workstation for Scientific Computation”, ICPP, 1995.

[8] G. Copeland, W. Alexander, E. Boughter, and T Keller,

“Data placement in bubba”, ACM SIGMOD, 1995, pp 99—

108.

[9] M. J. Carey, L. M. Haas, P. M., et.al. “Towards

heterogeneous multimedia information systems: The Garlic

approach”, Int’l Workshop on Research Issues in Data

Engineering (RIDE): Distributed Object Management, 1996.

[10] D. H. J. Epema, M. Livny, R. van Dantzig, X. Evers and J.

Pruyne, “A worldwide flock of Condors: load sharing among

workstation clusters”, Journal on Future Generations of

Computer Systems, 1996.

[11] A. Y. Halevy, Z. G. Ives, P. Mork and I. Tatarinov, “Schema

Mediation in Peer Data Management Systems”, ICDE, 2003.

[12] A. Y. Halevy, Z. G. Ives, P. Mork and I. Tatarinov, “Piazza:

Data Management Infrastructure for Semantic Web

Applications”, W3C Conf., 2003.

[13] L. M. Haas, R. J. Miller, B. Niswonger, M. T. Roth, P. M.

Schwarz and E. L. Wimmers, “Transforming heterogeneous

data with database middleware: Beyond integration”, IEEE

Data Engineering Bulletin 22 no. 1, 1999, pp. 31—36.

[14] A. Helal, D. Yuan, H. El-Rewini, “Dynamic Data

Reallocation for Skew Management in Shared-Nothing

Parallel Databases”, Distributed and Parallel Databases vol 5

no. 3, 1997, pp. 271—288.

[15] A. Kementsietsidis, M. Arenas and R. J. Miller, “Mapping

Data in Peer-to-Peer Systems: Semantics and Algorithmic

Issues”, ACM SIGMOD, 2003, pp. 325—336.

[16] J. O. Kephart and D. M. Chess, “The vision of autonomic

computing”, IEEE Computer, 36(1), January 2003, pp 41—

50.

[17] W. S. Ng, B. C. Ooi, K. L. Tan and A. Y. Zhou, “A P2P-

based System for Distributed Data Sharing”, ICDE, 2003, pp.

633–644.

[18] W. S. Ng, B. C. Ooi, K. L. Tan and A. Y. Zhou, “PeerDB:

Peering into Personal Databases (Demo)”, ACM SIGMOD,

2003, pp. 659.

[19] C. Parent and S. Spaccapietra, “Database integration: an

overview of issues and approaches”, Communications of the

ACM 41 no. 5, 1998, 166—178.

[20] A. Rao, K. Lakshminarayanan, S. Surana, R. Karp and I.

Stoica, “Load Balancing in Structured P2P Systems”,

International Workshop on Peer-to-Peer Systems, 2003.

[21] M. Stonebraker, “A Case for Shared Nothing”, Database

Engineering, 9(1):4-9, 1986.

[22] SETI@Home Home Page, http://setiathome.ssl.
berkeley.edu/.

[23] P. Scheuermann, G. Weikum and P. Zabback, “Data

Partitioning and Load Balancing in Parallel Disk Systems”,

VLDB Journal vol 7, no 1, 1998, pp. 48—66.

[24] A. Tomasic, L. Raschid, and P. Valduriez, “Scaling

heterogeneous databases and the design of Disco”, ICDCS,

1996, pp. 449—457.

[25] R. Vingralek, Y. Breitbart and G. Weikum, “SNOWBALL:

Scalable Storage on Networks of Workstations with

Balanced Load”, Distributed and Parallel Databases vol 6, no

2, 1998, pp. 117—156.

[26] L.F. Mackert and G.M. Lohman, “R* Optimizer Validation

and Performance Evaluation for Distributed Queries”, VLDB

1986.

[27] P. A. Boncz, S. Manegold, and M. L. Kersten., “Database

Architecture Optimized for the New Bottleneck: Memory

Access”, VLDB, 1999, pp 54–65.

[28] P.A. Bernstein and D.W. Chiu, Using semijoins to solve

relational queries, Journal of the ACM 28,1, 1981, pp. 25-40.

[29] K. Bratbergsengen, Hanshing Methods and Relational

Algebra Operations, VLDB, 1984, pp. 323-333

