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ABSTRACT 

In a typical organizational scenario, hundreds of personal 

computers (PCs) are used mainly for simple office tasks. Typically, 

a central database management system (DBMS) receives requests 

internally or externally through an Internet connection that serves 

as a backend of Web services. The unpredictability and 

fluctuations of requests could result in the overload of the DBMS. 

Existing load management systems assume nodes are fully 

dedicated to sharing loads, which could cause interruptions of the 

existing tasks running on the office PCs. In addition, data are 

statically partitioned and cached in the nodes permanently even 

though the system may be under-loaded. Moreover, the nodes that 

are involved in load-balancing are not allowed to dismiss the 

processes. In this paper, we describe a novel framework, POEMS, 

that is transformable between a client-server and Peer-to-Peer 

(P2P) architecture; it operates as a conventional DBMS under 

normal load condition without interrupting the nodes, and 

transforms to P2P operation mode for processing in a heavy-load 

condition. In contrast to traditional systems, all nodes in our 

proposed framework contribute the spare capacity of their 

hardware resources for data manipulation, and this is done 

without the need to install any DBMS at any of the nodes. Data 

are partitioned online and operators are distributed to nodes 

similarly. The effectiveness of POEMS query processing is 

achieved by node cooperation. POEMS allows processes or 

operators to be dismissed online, so a user can allocate more 

resources to his/her own operation tasks as and when the need 

arises. We evaluate the performance of our proposed system with  

a prototype implementation. The results suggest that POEMS is a 

feasible and effective approach for solving the system overload 

problem. 

1. INTRODUCTION 
Many organizations and the research community are heading, 

nowadays, toward distributed database technology. One of the 

major motivations behind the use of distributed computing is the 

desire to provide an economical method of harnessing more 

computing power by employing multiple processing elements. 

Significant advancements have taken place in the development 

and deployment of the distributed data management system 

(DDMS). These include mechanisms to provide transparency in 

accessing data from multiple servers [9, 24], and the support of 

distributed transactions which facilitate transparency and can 

execute queries over fragmented and heterogeneous data sources 

[13, 19].  

 

 

 

 

 

In this paper, we investigate a common and practical problem: 

Imagine a typical business environment where a medium-size 

organization operates with hundreds of office personal computers 

(PCs) and a central DBMS. Most of the office-PCs are used 

mainly for simple word-processing and emailing, or as dumb 

terminals with no DBMS facilities installed at all. The central 

DBMS receives requests internally or externally through an 

Internet connection (e.g., it might serve as a backend of Web 

services). The unpredictability and fluctuations of the requests 

may overload the DBMS. In conventional DDMS approaches, 

overloading might be tackled with the introduction of additional 

database servers to handle the extra load. However, besides the 

additional costs, such approaches might not be flexible. This is 

especially true if the arrival rate of requests causing system 

overload is short and the fluctuations of requests are swift. In such 

a case, the server might end up under-loaded (and hence under-

utilized) most of the time. The motivation of our work is that we 

can exploit the spare capacity of the hardware resources of the 

office PCs, in order to assist the DBMS to maintain its 

performance under fluctuating overload conditions. The intuition 

is to distribute some of the DBMS load to the PCs during the peak 

periods, while not interrupting them when the DBMS’s workload 

is normal. 

Peer-to-Peer (P2P) technology provides an attractive alternative 

for building distributed systems. The P2P environment is dynamic 

and sometimes ad hoc. Peers are allowed to join the network at 

any point of time and may leave at will. This results in an 

evolving architecture where each peer is fully autonomous. With 

such a dynamic environment, maintaining inter-operability among 

peers is a great challenge. In addition, finding ways to cope with 

databases that are incomplete, overlapping and mutually 

inconsistent is an exciting challenge. A considerable amount of 

research has been conducted on data integration, data mapping, 

data discovering and query processing in P2P environments.  In 

[15], mapping tables are proposed for data integration in the P2P 

environment. The technique provides domain relation 

management by inferring new mapping tables and determining the 

consistency of mapping constraints. [11, 12] offer a schema 

mapping mechanism to capture the structures and terminologies 

between a source schema and a target schema. [17, 18] tackle the 

issues of data discovery and processing via an IR technique which 

allows SQL queries to be processed in a P2P environment without 

relying on a global schema.  

These systems assume that all participating peers have a DBMS 

installed and are willing to share their data with other peers. 
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Moreover, each peer is expected to play the role of data provider 

and data consumer. DBMS facilities such as language parser, 

indexes, query optimizer and various operators are granted at will. 

We refer to this architecture as peer-based DBMS (PDBMS). 

In contrast to DDMS, PDBMS offers a more cost effective 

solution where each of the peers in a PDBMS network has a 

DBMS installed and load or data is distributed among the peers in 

order to maintain system performance. The main concern in this 

case is not the additional costs, since the price of the peers (office 

PCs) are much cheaper than a server, but rather the complexity of 

maintaining the DBMS at each peer site.  This involves several 

difficulties especially for novice users. First, a complex DBMS 

would affect the ad hoc tasks running on a typical PC, unless the 

PC is fully dedicated to load balancing purposes. Second, there is 

the issue of the complexity of interconnectivity and integration 

between one DBMS and others. Third, introducing new operators 

or functions would involve the upgrade of all the participants. 

Furthermore, both DDMS and PDBMS suffer from the drawback 

of not having the capability to handle dynamically changing user 

requests. This is due to the initial data placement that might not 

guarantee good load balancing for different kinds of access 

patterns in the future.  

1.1 Our Proposal  
Most existing systems employ either a client-server based or P2P-

based architecture (Figure 1.1(a)), each having its pros and cons. 

A client-server architecture provides easy access to resources, and 

data control through a server; it also allows for new technology to 

be easily integrated into the system.  These features are absent in 

P2P systems. A P2P architecture, on the other hand, provides 

scalability in harnessing processing power for solving a given task.  

Here we describe POEMS (Peer-based OvErload Management 

System), a novel approach which handles the above-mentioned 

problems and inherits the advantages of both client-server and 

P2P systems. We propose an autonomic DBMS architecture with 

two operation modes: a centralized and a P2P mode. Under 

normal conditions, the DBMS operates in a client-server mode 

without interrupting other peers in the network. The administrator 

tells the system his expectation of performance, i.e., a minimum 

number of transactions it should be able to handle per minute. On 

overloading (exceeding the given threshold), the DBMS seeks 

ways to improve its performance, especially when the overload is 

caused by short and swiftly fluctuating requests.  In such a 

condition, the DBMS transforms its query processing operation 

into P2P mode and harnesses more power from the peers to assist 

the DBMS during the peak period (Figure 1.1(b)). 

 
 

 

 

 

 

 

When POEMS operates in a P2P mode, it treats each peer as an 

autonomic element (AE) [16] that will  contribute only its 

processing power and memory resources without any DBMS 

capabilities (i.e., a scenario similar to SETI@Home [22] where 

each peer provides computation resources for discovering 

extraterrestrial intelligence without any need to know about the 

details of the operations). Operators have to be shifted on demand 

to AEs based on the query’s execution plan.  POEMS interacts 

continually with AEs to manage their current resource status. 

When the system becomes overloaded, a query optimizer 

partitions the data considering the available AEs and the amount 

of underutilized resources1. A root operator that consists of all the 

optimized sub-operators (e.g., scan, selection or join and 

projection) will be generated based on the local query execution 

plan and be sent together with the partitioned data to the AEs for 

processing. All processing to be carried out at an AE must be 

main memory based in order to reduce the effects (I/O operations) 

of interruption on the existing tasks running at the AE. Intuitively, 

data shifting may incur high communication overhead, but this 

concern can be easily resolved: by moving only selected operators 

to remote peers to cooperate with the existing operators, peers can 

process subsequent queries effectively without any further data 

shifting from the DBMS (i.e., PUSH-based prefetching).  

 

(a) 

 

SELECT CUSTOMER.name, CUSTOMER.address 

FROM CUSTOMER 

WHERE CUSTOMER.cid > 1000 

(b) SELECT CART.cartid, CART.status 

FROM CART 

(c) 

 

SELECT CUSTOMER.cid, CUSTOMER.firstname, 

CUSTOMER.sex, CART.cartid, CART.status 

FROM CUSTOMER, CART 

WHERE CUSTOMER.cid=CART.cid 

 

As an example of query processing, Figure 1.2 shows three 

queries on the CUSTOMER and CART relations.  Assume Query 

(a), Query (b) and Query (c) arrive at the DBMS in this sequence.  

Query (a) is a selection-projection on CUSTOMER; Query (b) is 

a projection on  CART; and Query (c) is a projection-join on 

CUSTOMER and CART.  

Let X be a cluster of peers each of which receives a root operator 

consisting of Project(Select(CUSTOMER, CUSTOMER >100)) 

and a fraction of non-overlapped data from the CUSTOMER 

relation. Similarly, let Y be another cluster of peers each of which 

receives a root operator consisting of Project(CART) and a 

fraction of non-overlapped data of the CART relation (see cluster 

X and Y in Figure 1.3). Incorporating the operators generated 

from Query (a) and Query (c) at multiple peers can effectively 

process the subsequent projection-join query that involves 

relation CUSTOMER and CART (cluster Z in Figure 1.3) without 

the need for any data from the DBMS.  

 

Figure 1.3: Query Processing 

                                                                 

1 We refer the resource in an autonomic element as the number of 

data pages that it can store in its main memory. 

C
li

en
t-

S
er

v
er

  
B

as
ed

  

D
B

M
S

 

P2P-based DBMS C
li

en
t-

S
er

v
er

 B
as

ed
  

D
B

M
S

 

P2P-based DBMS 

Transformable 

architecture 

between CS 

and P2P 
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Figure 1.1: Transformable Architecture 

Figure 1.2: Sample Queries 



Recall that the term “peer” or autonomic element (AE) is used in 

this paper to identify office PCs that are dedicated to daily 

administration/office purposes (e.g., word processing) but 

contribute the spare capacity of their hardware resources to data 

manipulation. Therefore, an important property in this 

environment is that peers are allowed to dismiss a process at will 

during runtime when they need more resources for their local 

tasks. This is in vivid contrast to the traditional parallel or 

distributed database systems which are static.  

In the following sections we present the details of POEMS. The 

contributions of our work include:  

(i) The proposal of a dynamic framework that is transformable 

between the CS and P2P architecture, depending on the 

workload of the system.  

(ii) The introduction of operator-based query processing where 

there is cooperation between different operators at different 

hosts for query answering.  

(iii) The proposal of a movable operator architecture to handle 

the dynamism of peers where operators can freely move to 

another peer on request, e.g., when a peer is going offline or 

needs more resources for its local tasks.  

(iv) The development of several optimization techniques that 

decrease data transfer among nodes.  

(v) The evaluation of the proposed system in a real environment 

with 26 office PCs. 

The rest of the paper is organized as follows: Section 2 provides 

some essential background. Section 3 describes the POEMS 

framework and its architecture, while in Section 4 we analyze the 

proposed techniques. Section 5 presents an extensive 

experimental evaluation of the system. Finally, Section 6 

concludes the paper. 

2. BACKGROUND AND RELATED WORK 
POEMS can be categorized as an autonomic computing system. 

Kephart and Chess [16] present a vision of autonomic computing 

where self-management is an intrinsic property that deals with the 

complexity of modern computing systems. In autonomic 

computing, a system maintains and adjusts its operations in order 

to cope with changing workloads or conditions.  

The goal of overload management is to maintain the system’s 

performance close to optimal under overload conditions. 

Conceptually, overload management is a special case of load 

balancing. The key difference between overload management and 

load balancing is that the former deals with a special set of load 

conditions (i.e., overload) whereas load balancing focuses on 

distributing equal loads among nodes even in under-load 

conditions.  Load balancing in shared-nothing architecture [1, 7, 

21] has been well studied and deployed in several well-known 

distributed computing projects such as NOW [1], Condor [10] 

and Beowulf [7]. The methods can be categorized into static [5, 8] 

and dynamic load-balancing [14, 23, 25]. These systems follow a 

common assumption that loads are distributed to a cluster of 

machines or processing elements that are fully dedicated to 

sharing loads. In the case of dynamic environments such as P2P, 

the notion of “virtual-server” has been used [20] to propose a 

load-balancing algorithm in Distributed Hash Tables (DHT). Each 

node in the DHT-based structured network can be assigned one or 

several “virtual-servers”. The “virtual-server” is responsible for a 

contiguous region of the identifier space. Therefore, a load can be 

easily split among “virtual-servers”. In this regard, DHT is an 

example of static load-balancing as it performs an initial de-

clustering of key spaces with the intent of load balancing. As an 

alternative, [2] presents a dynamic load balancing P2P system, 

which explores balancing in terms of storage load and replication 

in the P-Grid [3] network.  

The P2P systems surveyed above provide support for increases in 

workload by means of increasing the number of replicas. Our 

approach is different in several aspects: (i) Operators are 

distributed among peers and operators cooperate in response to a 

query, compared to existing techniques which route a query to a 

single source for processing. The proposed technique therefore 

offers the advantage of distributing the load of a single query to 

multiple nodes and consequently, minimizing the burden of each 

node. (ii) The granularity of data partition is finer and can be 

adjusted dynamically, allowing data to be partitioned online based 

on the available resources. (iii) Peers are involved in query 

processing when POEMS is overloaded, in contrast to existing 

techniques in which replicated data are cached permanently while 

waiting for requests, either in under-loaded or overloaded 

conditions. 

Several techniques have been proposed to deal with issues 

concerning the management of data in the P2P environment [11, 

17, 15, 4]. For example, [4] focuses on semantic interoperability 

in a P2P network with a gossiping technique. In [11], the ppl, a 

Peer-Programming Language combining both LAV- and GAV-

style reformulation in a uniform way,  is able to chain through 

multiple peer descriptions to reformulate a query. In [15], 

mapping tables are proposed for data mapping in the P2P 

environment. Bernstein et al. [6] introduced the Local Relational 

Model (LRM) as a data model specifically designed for P2P 

applications. LRM assumes a set of peers, each being a node with 

a relational database. A peer exchanges data and services with 

acquaintances, i.e., other peers. A peer is related to another by a 

logical acquaintance link. For each acquaintance link, domain 

relations are used to define translation rules between data items, 

and coordination formulas define semantic dependencies between 

two databases. PeerDB [17], on the other hand, employs 

Information Retrieval (IR) techniques to allow peers to share data 

without relying on a global shared schema. For each relation that 

is created by the user, meta-data are maintained for each relation 

name and attributes. These are essentially keywords/descriptions 

provided by users upon creation of the table, and serve as a 

thesaurus of synonyms. By matching keywords from the meta-data 

of the relations, PeerDB is able to locate relations that are 

potentially similar to the query relations. 

Our proposed system differs from the above-described techniques 

in four ways: First the context is obviously different. The existing 

systems do not focus on overload management but on data 

management. Second, in our context, all peers contribute the spare 

capacity of their hardware resources for data manipulation without 

the need for any DBMS to be installed at any of the peers.  

Consequently, there are no DBMS facilities (i.e., operators, 

indexes, optimizer or data) at the peers. Third, unlike PDBMS 

systems which require a DBMS or data repository to be installed 

at each peer and thus preventing peers from dismissing processes 



easily, POEMS allows processes or operators to be dismissed 

online so that a user can channel more resources to his/her own 

operation tasks. Fourth, since POEMS focuses on a single DBMS 

with multiple peers (without DBMS), we are not restricted by 

certain constraints. For instance, we may assume the use of global 

schemas, which is not applicable to PDBMS.  

It should be noted here that there are similarities between POEMS 

and the classical R* system [26], e.g., the mechanism that is used 

to minimize the cost of distributed joins. In contrast to POEMS, 

however, the R* system assumes the existence of multiple DBMSs. 

3. PROTOTYPE DESIGN AND   

IMPLEMENTATION 
POEMS is a Java-based implementation. It consists of two main 

components: the DBMS (we implemented a custom-made DBMS) 

which runs on a central server, and the AE component which runs 

on autonomic elements. We shall describe in detail the 

components of the architecture later in this section. Meanwhile, 

we shall define the Processor, which is a widely used object in 

our system. A root operator is an operator that encapsulates all 

optimized sub-operators. In order to distinguish it from operators 

commonly used in the DBMS, we name the root operator 

Processor. The Processor plays an important role in query 

processing in POEMS. It is a movable object that can be 

dispatched to AEs as requested or it can replicate itself at other 

AEs for load sharing.  

 

 

Each Processor consists of operators (all sub-optimized operators 

are encapsulated in a root operator), data and a Plan (Figure 3.1). 

Data are subsets of relations partitioned by the DBMS. We shall 

defer the discussion on Plan generating to a later section. It 

suffices to say here that the Plan is used to guide operators on 

how to process a query and where to retrieve other partitioned 

data.  

Figure 3.2 depicts the architecture of POEMS. From the network 

point of view, it consists of a large number of AEs (i.e., AE1 to 

AE7) which offer their spare resources, and a central DBMS that 

offers services to internal or external users (outside the 

organization). The solid lines denote connections among AEs in 

the same cluster. For example, [AE1,.., AE5] and [AE6, AE7] are 

two different clusters that are responsible for storing different 

data/relations. Each AE in a cluster is responsible for storing part  

of the data. Continuing our previous example of Figure 1.3, 

[AE1,…, AE5] and [AE6, AE7] represent the clusters X and Y, 

respectively. In this case, each of AE1 to AE5 is responsible for 

storing the partial data of CUSTOMER and AE6 to AE7 store the 

partial data of the CART relation. Each AE also connects directly 

to the DBMS (denoted by dashed lines).  

SQL requests are first directed to the central server. The DBMS 

has all the features of a traditional DBMS (i.e., query parser, 

query optimizer, various operators, etc.), which are subsystems 

kept in its DBMS Modules. In addition, the DBMS includes 

Resource Inventories and a Plan and Processor Generator (PPG). 

Resource Inventories maintain an inventory of the location and 

characteristics of AEs (e.g., how many memory pages  an AE 

contributes, etc.); this is essential for scheduling the execution of 

query plans.  

A transition from the CS to the P2P mode occurs when the system 

is overloaded. For each query, the DBMS produces Processors to 

handle the task and dispatch the Processors to a set of AEs. This 

is the typical task of the PPG, which is also involved in data 

partitioning during the generation of Processors. PPG tries to 

partition and assign all data to the available AEs. If there are not 

enough AEs to handle the required amount of data, the remaining 

data are assigned to the DBMS. In such a case, the DBMS acts as 

an AE that is responsible for the remaining data. 

 

 
Figure 3.2: Architecture and a Typical POEMS Context 

Environment 

AEi  has a very simple architecture that consists of two major 

modules: the Execution Engine and the Resource Monitor. The 

main purpose of the Execution Engine is to execute the Processor 

that it receives without having to know what operators it consists 

of. Other AEs can connect to AEi and request data. AEi may 

answer a query by executing the operator (or part of it) locally, if 

it has the required data, or by acquiring data from other AEs. All  

processed results will be returned directly to the requester that 

initiated the query without going though the DBMS. We assume 

there is no firewall blocking the return of results to external users.  

 

Since AEs are not fully dedicated to the task of load management 

and their load may vary from time to time depending on the tasks 

that they are currently running, a mechanism is necessary to 

provide the current resource status of AEs to the DBMS. In our 

prototype, we implemented a Resource Monitor (RM) module. 

The RM monitors the main memory usage of its AE periodically 

and calculates the number of available pages. This information is 

uploaded periodically to the DBMS. 

4. QUERY PROCESSING 
Users pose queries by means of an SQL statement to a central 

DBMS; incoming queries are put into a FIFO queue. In our 

current implementation, a query q has the following form: 

 

 

Figure 3.1: Processor Architecture 



SELECT A 

FROM R 

WHERE C 

 

where R is a set of relations, A is the set of target attributes and C 

is the set of conditions. C in the WHERE clause supports the 

<expression op expression> form, where an expression is a 

column name, a constant or a string expression and op can be one 

of the comparison operators {<, <=, =, >=, >}.  

Let νsys be a function of the system load, defined as: 

 

νsys =  

   

where interval-t is a constant (eg., 1 min). For each interval-t, the 

size of the FIFO queue is checked and νsys is computed by 

dividing the number of completed transactions during the interval 

by the size of the FIFO queue.  

Overload is interpreted as a condition where the νsys < νadm, where 

νadm∈(0,1] is a parameter set by the administrator. In this case,  

query processing operations switch to P2P mode to harness more 

computation power. Obviously, a large value of νadm causes the 

system to always face an overloaded condition, and consequently 

shifting the system towards P2P processing. In another extreme 

case, a very small value of νadm causes the system to retain a CS 

architecture. This tunable parameter that characterizes POEMS 

provides better adaptation to user needs based on different 

environment conditions.  

We assume that the services offered by the DBMS are read-only, 

meaning that no update requests are allowed. This is in line with 

typical applications such as data warehousing (i.e., aggregation 

queries), genomic databases which allow the public to analyze 

existing data, or governmental service portals. In the following, 

we shall focus on query processing mechanisms under the 

overloaded condition.  

 

4.1 Query Distribution 
Assume that the DBMS notices an increase in load at an interval-t, 

and attempts to solve the problem by transforming the processing 

mechanism to P2P mode to achieve better  performance through 

simultaneous operations. Let  firstQuery be the first query that the 

central DBMS receives upon transformation to P2P mode or a 

query that requires a table or tables not requested by previous 

queries while the system was in an overloaded condition. Also, let 

followingQuery be a subsequent incoming request that is inserted 

into the DBMS FIFO queue waiting for processing.  We shall 

focus on join or select-join queries (e.g., CUSTOMER.cid = 

CART.cid or CART.status = ‘1’ AND CUSTOMER.cid = 

CART.cid) which require more processing resources; simple 

selections are processed similarly. 

The DBMS generates a set of Processors to handle each incoming 

query. A Processor consists of three main components: data, 

operators and a Plan. First, we discuss the data partition 

mechanism. Let R(firstQuery) = {R1,…,Rn} denote the cross-product 

of relations R1 to Rn for firstQuery. For each Ri, data have to be 

partitioned and distributed to a set of AEs. The data size to be 

assigned to each AE has to be small enough to fit into its main 

memory in order to minimize any heavy I/O operation that may 

cause serious interruption to the user’s currently running tasks. 

The procedure of assigning data based on AEs’ available 

resources is summarized in Figure 4.1. 

 
1:    Sort(R(firstQuery)) in descending order based on relation size 

2:   remaining pages = compute total size of R(firstQuery)  

// AEs in the Resource Inventories are sorted according to the 

available pages  

3:    forward = 0; 

4:    For each AE in Resource Inventories  

      // n is the number of relations in R(firstQuery) 

5:       Partition size = AE.pageAvailable / (n +2) 

6 :      For each Ri 

7:           Assign pages to peer while  

8:                pages assigned to AE < Partition size  + forward 

9:           remaining pages--; 

10:     Next Ri 

11:     If pages assigned to AE< Partition size then 

12:         forward = partition size – pages assigned to AE 

13:      Break If remaining pages = 0 

14:  Next AE 

15:  If remaining pages > 0, let DBMS handle  

 

 

 

The relations in R(firstQuery)  are first sorted based on the size of 

each relation Ri. The information of each Ri size is collected from 

the DBMS system catalog. The total number of pages that are 

needed to store all the tuples of R(firstQuery)  is computed, too. For 

each AE that is registered in the Resource Inventories, its buffer 

(number of pages that it can contribute) is partitioned to n+2 

segments, where n is the number of relations in R(firstQuery) . Notice 

that there are two additional segments; one is assigned as storage 

for intermediate results and another segment is used as the output 

buffer. Since all operations are performed in the main memory, 

pointers instead of real values are stored in the intermediate-result 

buffer. If the aggregate resources contributed by AEs happen to be 

less than the minimum storage required for  storing all R(firstQuery) 

tuples, the DBMS will be responsible for the remaining data. In 

such a case, the DBMS plays the role of an AE. 

Figure 4.2 is a graphical view of how resources in AEs are  

partitioned and assigned data. Assume R, S and T are three 

relations of R(firstQuery) and Intm is the intermediate result buffer 

and Out is the output buffer. The height of each rectangle is 

proportional to the amount of data that has been assigned to it. 

AE1 is assigned more data than the others since it contributes 

more resources. No data from S has been assigned to AE3 and no 

data from S or T has been assigned to AE4 (the shaded-rectangles) 

as AE1 AE2 and AE3 contribute enough resources to cover the 

entire S and T.  

Apart from assigning partitioned data to each AE, there is a need 

to migrate operators to AEs. An AE produces final results solely 

from operators that are assigned to it by the DBMS. Although 

query optimization is critical in a relational DBMS, we 

concentrate in this work on a simple local optimization approach, 

since we focus more on distributed parallel processing; the 

optimizer can be replaced easily in the future without affecting the 

general framework. For the current prototype, we employ an 

iterative improvement algorithm for the randomized optimization 

Number of completed transactions per interval-t 

Number of incoming transactions per interval-t 

Figure 4.1: Resource-based Data Assignment Algorithm 



of the query plan. The output of the optimizer is an operator 

consisting of many sub-operators, i.e., nested-join, selection, 

projection and scan operators. For each scan operator in an AE, a 

pointer of a corresponding set of partitioned data that have been 

generated previously is assigned to it.  

 

 

The Plan is the last component that resides in a Processor. It is a 

simple data structure. A Plan has an n x m array, where n is the 

number of relations and m is the number of AEs that are 

participating in solving the given query (possibly from different 

clusters). Each cell (ni, mj), 0<i<n,  0<j<m, in a Plan has a value 

of 0 or 1. A cell is set if AEj is assigned data Ri, and it is reset 

otherwise. Referring to Figure 4.2, the information of data 

distribution among the AEs is transformed to a Plan as in Figure 

4.3. The objective of a Plan is to assist query processing by 

providing information on how and where a query should be 

processed. In the following, we describe the mechanism of data 

retrieval and processing in a set of AEs. 

 
 

 

4.1.1 firstQuery Execution  
On receiving a Processor, the AE starts processing the query. This 

is divided into two sub-processes: local processing (LP) and 

remote processing (RP). LP starts producing partial results 

immediately by executing the operators that are attached to the 

Processor if all the required data of R(firstQuery)  are locally 

available (e.g., in Figure 4.3, AE1 and AE2 can produce partial 

results locally since all the relations R, S and T are available, 

although the data are not complete). The results are returned to the 

requester immediately. 

Remote processing (RP) involves retrieving data from other AEs 

to the peer for processing. One of the simplest ways to determine 

the order of data retrieval from different AEs is the following: AEj 

(0<j<m, m is the number of AEs) retrieves the data of relation Ri 

from AEj+1 if and only if the cell of (i, j+1) in the Plan is set. For 

example, in Figure 4.3, AE1 will retrieve R2, S2 and T2 from AE2, 

R3 and S3 from AE3 and R4 from AE4. Similarly, R3 from AE3 and 

R4 from AE4 will be retrieved by AE2. Observe that AE1 performs 

more operations than AE2; similarly, AE2 performs more 

operations than AE3 and so on. The advantage of this resource-

based data and task assignment is that AEs with more resources 

are assigned more operations than others. As a result, the usage of 

resources at each AE is optimized and the overloading of AEs 

with low resources is avoided. 

 
 

 

 

Note that the operators of each AE are generated based on an 

execution plan produced by the DBMS query optimizer with only 

local information to estimate the local result size and cost. 

Therefore, strictly speaking, the plan is optimized if the query is 

run on the DBMS host. Given the R, S and T relations as an 

example, based on the associative property of joins, a query 

optimizer may produce any of these alternative plans: R @ (S @ 

T), (R @ S) @ T or (R @ T) @ S. Also, since the size of R ≥ S ≥ T, 

and assuming there are no indexes for the attributes to be joined 

and each of the relation embodies a uniform distribution of values, 

plan R @ (S @ T) is favored by the optimizer since S @ T has a 

higher probability to produce smaller intermediate results. 

Although R @ (S @ T) could be the most preferable plan, for LP, 

choosing any other of the execution plans might not affect 

performance since each AE is assigned an equal data size for each 

relation as the result of data partition in the earlier stage (e.g., R, S 

and T all have equal size in AE1). Furthermore, there are no 

indexes in all the AEs and all the operations are performed in the 

main memory. Therefore, the processing cost of any of the above-

mentioned plans is similar. 

However, this might not be valid in RP. RP involves retrieving 

data from remote AEk, where j<k<total AE, to AEj, where the size 

of Rk in AEk is smaller than or equal to the size of Rj in AEj. In 

this case, assigning a smaller set of data to the outer relation may 

involve higher processing cost. Although we do not have to 

consider any I/O operation since all operations are main memory- 

based, accessing memory entails cost-related characteristics that 

are similar to disk-based I/O operations [27]. We do not deal with 

main memory optimization issues in this paper, but we need to  

reduce L1 and L2 cache misses by avoiding the assignment of a 

larger set of data to an inner relation and a smaller set of data to 

an outer relation, as such assignments might cause more L1 and 

L2 cache misses since the size of the L1 and L2 caches is small 

compared to the main memory. Let Figure 4.4 be an example and 

let R @ (S @ T) be the plan produced by the DBMS. Assume that 

the right-most predicates are inner relations and the left-most 

predicates are outer relations.  

 
 

 

Figure 4.2: Data Assignment for AEs 

Figure 4.3: A Plan Structure 

Figure 4.3: Data Retrieving and Processing. Double-arrows-

solid-line denotes LP and dashed-arrow-line denotes RP. 

Figure 4.4: An Example of RP. A dashed box denotes a 

Retrieve-from Relationship  



As noted, AE1 retrieves R2, S2 and T2 from AE2 and R3 and S3 

from AE3 to be processed locally. Notice that since R3 ≤ R2 ≤ R1, 

S3 ≤ S2 ≤ S1 and T2 ≤ T1, there are two possible cases where the 

plan R @ (S @ T) is inadequate for AE1. First, AE1 retrieves S2 or 

S3 and replaces the local S1 with S2 or S3 for processing, R1 @  

({S2, S3}@  T1). In this case, since the size of {S2, S3} ≤ T1 and 

relation S is the outer relation, {S2, S3}@  T1 would be more costly 

than T1 @  {S2, S3}. Similarly, in the second case, AE1 retrieves R2 

or R3 and replaces the local R1 with R2 or R3 for processing {R2, 

R3} @  (S1 @  T1). In this case, the size of the intermediate results 

produced by (S1 @  T1) might be larger than the size of {R2, R3} 

since the size of R1,= S1  = T1 and  {R2, R3} ≤ R1. Piping the larger 

intermediate results as an inner relation to its parent may affect the 

cost significantly due to the cache misses of L1 and L2.  

One of the solutions is to let the optimizer consider the resources 

at different AEs while generating the execution plan. Different 

plans can then be tailored for the various AEs. However, this 

method adds extra load to the DBMS, which is especially 

undesirable under an overload condition. In POEMS, all AEs are 

assigned a single plan, which has the advantage of simplicity and 

scalability. Nonetheless, RP still suffers from the above-

mentioned problem. We propose a simple yet effective mechanism 

to minimize the effect of assigning smaller sets of data to outer 

relations. Consider Figure 4.5 as an example. We remove S and T 

from the figure and insert the additional AE5 for illustrative 

purposes. For each AEi, a window Wj with a size that equals the 

segment size is created. The window Wj is dispatched to AE(i+1) 

and is filled with the data of R(i+1). If Wj is not full, it is dispatched 

to AE(i+2) and the filing process is repeated. The process will stop 

if Wj is full or AEn is the last AE in the cluster participating in 

storing the data of R.  

An exception happens when Wj is full, AEn is the last AE and 

some data remain (e.g., in Figure 4.5, W2 is full, AE5 is the last 

AE and the dashed-box is the remaining data). In this case, the 

size of Wj is expanded to capture the remaining data. Note, when 

expanding Wj,  AEi would require more buffer than the initially  

assigned segment to store the additional data. The extra buffer that 

is needed can either be obtained from Intm buffer or Out buffer, or 

in the worst case, the additional data may be put on disk. In any 

case, this may not be an issue since the size of the remaining  data 

is always small (i.e., recall that the arrangement is sorted).  

4.1.2 followingQuery Execution  
When the DBMS receives a followingQuery, it checks its FROM 

predicates. There are three possible cases: (i) all the required 

relations have been previously distributed to remote AEs in one 

cluster, (ii) the required relations are handled by two or more 

clusters and (iii) only parts of the required relations have been 

distributed to AEs. The DBMS determines the case by referring to 

the Resource Inventories. In the first case, the DBMS generates 

operators as usual based on its local cost information. The 

operators are then attached to a new Processor. Each of the AEs 

involved in the processing receives a similar Processor. Unlike 

the Processor defined in firstQuery, no data or Plan is assigned in 

the Processor of the followingQuery, since all such information 

can already be found at the AEs. This is desirable, as in practice, 

the workload of the DBMS can be reduced considerably.  

 
 

 

If some of the required data are not found in the AEs (i.e, case 

(iii)), a followingQuery will be processed in two steps. In the first 

step, each part of the missing data is obtained from the DBMS and 

then partitioned and distributed to a new set of AEs. The second 

step is the same procedure that applies to the case (ii): In contrast 

to firstQuery processing which involves a single cluster of 

multiple AEs, the major challenge in this case lies in the  

mechanism of joining relations from two or more clusters, each 

with  a set of AEs. Assume there are two clusters: Cluster (R, S) 

consisting of {AE1, AE2, AE3, AE4} and Cluster (T) consisting of 

{AE5, AE6, AE7} as shown in Figure 4.6. Cluster (R, S) stores the 

data of R and S, while Cluster (T) stores the data of T. Observe 

that there are several query processing issues. First, the cluster 

selection problem of defining where an execution should be 

performed (e.g., processing can be either running on Cluster (R, S) 

and fetching T from Cluster (T) or vice versa). Second, the size of 

the to-be-fetched relation in a cluster might be larger or smaller 

than the available memory resources of the requester AE. 

Fetching data larger than memory size incurs I/O operations since 

data have to be stored in the disk. At the other end, resources are 

underutilized when a small set of data is fetched.  

 
 

 

Given a query R @ (S @ T) and two clusters as in Figure 4.6, 

POEMS selects a cluster that has the maximum number of FROM 

predicates stored, e.g., Cluster (R, S) has two predicates out of 

three of R @ (S @ T). If there is a tie, random selection is used. 

Notice that given two clusters, each of the AEs in the first cluster 

has to fetch data from the AEs of the second cluster. Therefore, in 

order to optimize the memory resources used, each AE in the first 

cluster will define a window of the size of the segment as 

described in  firstQuery processing. 

4.2 Reducing the Network Cost 
There are two points that involve data transfer: (i) when the 

DBMS distributes data to a set of AEs, and (ii) during data 

fetching among AEs. We do not restrict data flow from the DBMS 

Figure 4.5: Fixed-Size Window for Data Retrieval  

Figure 4.6: Processing with Two Clusters  



to AEs since any data missing from the AEs will entail reference 

to the DBMS again, which means an additional load on the 

already overloaded DBMS. On the other hand, data transfer 

among AEs should be reduced to minimize network cost. Even 

though the amount of data transfer from the DBMS could not be 

reduced, it is worthwhile grouping similar queries together and 

reducing the number of queries that will be posed to AEs for 

processing. Therefore, our optimization strategy is two-fold: to 

reduce the number of queries posed to AEs and to minimize data 

transfer among AEs. 

 

 

 

 

 

 

 

We propose a Windowed and Grouped (WG) algorithm to reduce 

the number of queries that will be posed to AEs that aims to 

minimize total execution cost by grouping concurrent queries that 

require similar resources. Recall that all incoming queries are first 

inserted into a processing FIFO queue in the DBMS. Let GWn be 

a group window that takes n queries from the queue and groups 

similar queries together (see Figure 4.7). Given two queries, Q1, 

Q2, and their data sources R(Q1) and R(Q2) respectively, they can be 

grouped if and only if R(Q1) ⊆ R(Q2) or R(Q2) ⊆ R(Q1), and the data 

sources in R(Q1) are the same or a subset of the data sources in 

R(Q2)  and vice versa. Freezing queries and grouping them later 

may not appear worthwhile at first glance because of the short 

lifetime of the query since the strategy introduces additional delay 

to query execution. However, there are two conditions that make 

WG a desirable algorithm in a situation of overload. First, the 

swiftness of requests enables a large number of candidates to be 

considered for grouping in a very short period.  Second, a 

slowdown in the average query response time is unavoidable 

when system overload sets in. By sacrificing a short delay as a 

trade-off would reduce system workloads.  

Two algorithms are used in POEMS to reduce the amount of data 

to be shipped among AEs. Semijoin [28] reduces the tuples to be 

shipped from site A to site B with the following steps (assuming 

relation S at site A is to be joined with relation T at site B on 

attribute a). First, compute the projection and sort S at site A on 

the join column ‘a’ and then eliminate the duplicates. Let S’ be 

the projection output of the tuples produced by this step. Next, 

send S’ to site B and select the tuples of T that match S’.a, 

yielding a reduction T’, and ship them to site A. Third, at site A, 

join T’ with S and return the results to the user.  

Bloomjoin [29] works similarly, but it uses Bloom filters to filter 

out non-matching tuples in a join. A Bloom filter is a bit-vector of 

size k. It works as follows: (i) It generates a k-bit-vector and set 

each bit to 0. Then, it hashes each of the value of S.a column at 

site A to a particular bit in the k-bit-vector and sets the bit to 1. (ii) 

It sends the vector to site B. It hashes each value of T.a at site B 

with the same hash function as in step (i). If the hashed bit is “1”, 

the tuple can be a possible candidate. Assuming that T’ is the 

reduction of all candidates, it is sent to site A. (iii) At site A, it 

joins T’ with S and returns the results to the user. In our case, 

there is a one-to-many operation in which a processing initial site 

AEi (i.e., site A) sends projection tuples to a set of AEs 

{AEi+1,…AEi+n},  each of which stores the partial data of relation 

T (recall Figure 4.6) for requesting their reduction T’. Intuitively, 

we can send the request to each of {AEi+1,…AEi+n} sequentially 

by ignoring the size of the reduction T’. However, this would not 

utilize the memory resources of AEi, i.e., the returned T’ might be 

larger or smaller than AEi’s memory resources. Therefore, we 

extend the algorithms as follows. 

 
On RequestRemoteData 

1:  Generate v from the to-be-joined relation 

     // v  can be either a Bloom filter or a projection for bloomjoin      

     //and semijoin respectively 

2:  If anchor is null send v and W to AEdata.  

3:  Else send v and W to anchor 

     // W is a window of a  size equal to AEi segment size 

 

On ReductionRequestReceived(v, W) 

 4:  Generate reduction T’ 

 5:  Fill W with reduction T’, starting from the last data accessed                                                                                                                                                                                                                                   

 6:  If W is not full and AEdata+1 is not null, Send v and W to AEdata+1 

 7:  Else set this as anchor and return W and anchor 

 

 

 

Let AEreq be the requester AE and AEdata be the AE having the 

data. AEreq generates a Bloom filter or a projection on the to-be-

joined column, depending on its policy (On RequestRemoteData 

in Figure 4.8). An anchor is a pointer to the last item fetched. It 

consists of this information: the AEdata identity of the last accessed 

AE and its data pointer pointing to the last accessed data. 

Obviously, the anchor is null if this is a fresh operation. If the 

anchor is not null, AEreq starts fetching data from the AEdata that is 

defined in it. The AEdata that receives the request (On 

ReductionRequestReceived in Figure 4.8) then generates the 

reduction T’ and fills W which is of the same size as the AEreq 

segment. If W is not full, AEreq forwards the operation to AEdata+1, 

where the identity of AEdata+1 can be obtained from the AEdata Plan. 

The operation stops if AEdata+1 is null or W is full, which causes W 

to be returned to AEreq. 

We also consider Hash-based join algorithm, instead of the 

Distributed Nested-Loop join which was mentioned previously. 

Hash-based method has the advantage that no data need to be 

transferred between AEs for processing the join. The disadvantage, 

however, is that if a subsequent query joins the datasets on a 

different attribute, all data must be re-hashed. Due to space 

constraint, we omit the algorithm here. Section 5.3.1 presents the 

experiment results of network load optimization based on the 

Hash-based distributed joins. 

4.3 Processor Reallocation 
Recall that users are allowed to withdraw their contributed 

resources anytime. When a user withdraws his resources, the 

Processor (i.e., inclusive of data and operators) at the user AE has 

to be  reallocated. The AE interacts with the DBMS to find an 

available AE’ to handle the Processor. Checking its Resource 

Inventories, the DBMS informs the AE to migrate the Processor 

if there is (i) an AE’ that has enough resources to take over the 

Processor, or (ii) a set of AEs whose aggregate resources are 

enough to take over the Processor. The first case is simple since it 

involves only migrating the Processor to AE’. In the second case, 

we need to split the Processor into several sub-Processors. Still, 

Figure 4.8: Algorithm for Data Fetching among AEs  
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Figure 4.7: Windowed and Grouped Strategy  



this is straightforward as we only need to split the data in the 

Processor to several portions according to the new AEs’ resources. 

If there are no AE’ available the Processor will be relocated to the 

DBMS. All of these cases involve the updating of the Plan in 

order to reflect the new location of the data. The DBMS generates 

a new Plan and updates all other AEs who are members of the 

same cluster as the requester on the new location of the Processor. 

Notice that the above methods assume informed leave; handling 

node failures is outside the scope of this paper.  

4.4 Optimizing the Utilization of Resources  
It should be obvious by now that the benefit of the system is 

improved if during an overload period many queries can be 

answered in the peers by data which are already cached there. 

However, the peers need their resources for their individual needs; 

ideally, they would like to contribute only in emergencies (i.e., 

server overload).  

 

(a) Server workload 

 

(b) Naïve resource utilization 

 

(c) Microeconomics-based resource utilization 

Figure 4.9: Server workload and Resource utilization at the peers 

Figure 4.9a presents a scenario of server workload. When the 

query rate is more than 100 queries/period, the server is 

overloaded. During these periods, it requests resources from the 

peers. Figure 4.9b presents the resource utilization of a naïve 

algorithm, which uses 100% of the available peer resources 

during peak periods, and releases all of them when the peak ends. 

This is acceptable from the peers’ perspective; however, when a 

new peak starts the server must retransmit all the required data. 

To achieve a balance among the total amount of data transmitted 

by the server, the throughput of the system and the peers’ desire to 

avoid contributing resources, we adopted an algorithm based on 

microeconomics (Figure 4.10). Each peer has a set of blocks 

which is its resource. Each of the blocks can be reserved for 

storing data by paying some amount of virtual currency. The 

block is reserved and valid for a period of an interval-t. On 

expiration, the peer has the right to regain it back if the requestor 

does not pay for it. In order to reserve the blocks, the requestor 

has to earn profit. The server earns profit for every query it 

manages to serve while exceeding its capacity. On each interval-t, 

the OnLoad function is called to compute the block reservation 

strategy. It first pays for all the reserved blocks if the account has 

enough currency, otherwise the peer will regain the blocks. After 

clearing the payment, it checks if the number of reserved blocks 

are enough to handle the incoming requests. If more blocks are 

needed and the account has enough currency, it buys extra blocks. 

Otherwise, it needs to loan extra blocks for storing the data.  The 

loaned blocks have to be paid back once it has earned the profit. 

However, the profit may not always enough to pay for all blocks 

and unpaid blocks are returned to peers. In this case, some of the 

cache data are lost. 

 
OnLoad(int load) 

1: Pay for the reserved blocks; 

2: If the amount of reserved blocks is not enough to handle the load then 

3:  If has some currency then 

4:  buy blocks, up to the maximum of currency it has 

5: If the amount of reserved blocks is still not enough to handle 

the load then loan blocks (needBlk);  

7: ComputeProfit(load); 

8: If loaned then PayLoan; 

 

PayLoan() 

1: If account has enough currency then pay and clear loan;  

3: Else If account > 0 but not enough to pay for the loan then  

4: pay whatever amounts exist in the account; 

5: return n number of reserved blocks to peer as loan payment, 

 where n is the number of loan in balance.; 

6: Else  

7: peer regains all resources; 

8: clear loan; 

 

 

 

Figure 4.9c shows the behavior of the algorithm for the server 

workload of Figure 4.9a. It is evident that our algorithm follows 

closely the workload, and avoids using all the available resources 

on the peers if this is not necessary. Additionally, it keeps some 

resources in the peers even when the server does not need them at 

the time, since these will help increasing the query performance 

during the next peak.   

5. EXPERIMENTAL EVALUATION 
We tested our prototype on a network with 26 Pentium IV, 

1.6MHz, WinXP PCs (AEs) with 256MB RAM, and a Sun 

Solaris server with 4GB RAM and two Ultra-SRARC processors 

480MHz CPUs which served as the central DBMS. All machines 

were physically connected to a LAN. The server-to-AE and the 

AE-to-AE transfer rate was 10Mbps and 100Mbps, respectively.  

We used the TPC-H schema to generate the dataset for our 

experiments. It consists of eight separate tables; the largest has 

600572 tuples, while the total number of tuples in all tables is 

around 900,000. We defined a query set with a mixture of 

selection and join queries. We used two metrics to evaluate the 

Figure 4.10: Resource allocation Algorithm  



system performance. (i) the number of completed transaction per 

interval (i.e., throughput), denoted as CT(t), and (ii) the 

effectiveness of a system, defined as: 100*CP(t)/Q(t), where Q(t) 

is the number of incoming requests per interval t. The default 

value of t was 60min. Obviously, when the server is not 

overloaded, its effectiveness is 100% 

5.1 Client-Server vs. POEMS 
In the first set of experiments we compare a central DBMS that 

employs static client-server architecture (CSDBMS) against 

POEMS. For fairness, we do not employ any optimization 

strategies for POEMS in this state. The server is considered 

overloaded when the rate of incoming queries Q(t) ≥ 120. The 

results are presented in Figure 5.1.  
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When Q(t) (less than 120 for this setting) is low, both systems 

achieve best results; notice that there is no overhead in POEMS 

when it works in the CS mode. However, when Q(t) increases to 

more than 120, the server cannot handle the additional load 

anymore. Therefore CP(t) for CSDBMS becomes constant, while 

the effectiveness drops, as shown in Figure 5.2. 
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POEMS, on the other hand, switches into the peer-to-peer mode. 

For Q(t)=120, the server is overloaded and additionally has to pay 

the cost of transforming to P2P mode. This involves data 

partitioning and data distribution, which are expensive processes 

since they involve scanning large portions of the data and 

preparing the Processor objects to be distributed to the remote 

AEs. For this reason, POEMS’ performance at that point is 

slightly worse than CSDBMS. 

After POEMS has paid the initial cost, however, it can utilize the 

peers’ resources to increase its throughput. Since the data are 

already in the peers, only operators are sent to AEs for most 

subsequent queries, which are much smaller in size. Moreover the 

queries can be evaluated in parallel, from data which reside in the 

peers’ main memory. These facts explain the performance boost 

of POEMS over CSDBMS for high query rates. 

5.2 Optimized POEMS 
In these experiments we evaluate the query grouping optimization, 

presented in Section 4.2. The settings are the same as the previous 

experiments and the results are presented in Figure 5.3 (number of 

completed queries) and Figure 5.4 (effectiveness). “Pure+Pure” 

represents a POEMS system with all the optimizations turned off 

(i.e., the same as in the previous section), while “FW+Pure” 

denotes POEMS with the query grouping optimization. 

Query grouping identifies similar queries and shares the execution 

cost among them. Essentially, this optimization decreases the 

number of distinct queries running simultaneously; therefore it 

allows the system to complete more queries in a given period. 

This is evident from the figures, where query grouping increases 

the system’s performance by around 50% 
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Figure 5.3: CP(t) for the  query grouping optimization 
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Figure 5.4: Effectiveness for the  query grouping optimization 

We also tested several other optimizations, including Semijoins 

and Bloomfilter joins. Both methods improved the results of pure 

POEMS.  Due to space constraint, we omit the results here. 

5.3 Network Load Optimization  
In this set of experiments, we implemented a simulator using the 

parameters from the prototype in order to evaluate the 

effectiveness of network load optimization on a larger network. 

5.3.1 Effectiveness of Distributed Hash Joins  
Figure 5.7a shows how the distribution of resources affects the 

query performance based on Distributed Hash Joins. We keep the 

total amount of resources constant, and vary the number of peers. 

The first column, for instance represents a network of 2 peers, 

each one having 50% of the available resources, while the last 

Figure 5.1: CSDBMS vs. POEMS  

Figure 5.2: CSDBMS vs. POEMS in term of Effectiveness 



column is for a network of 50 peers, each having 2% of the total 

resources. Figure 5.7b shows the network cost for the same 

settings. From the results, it is obvious that hash-based join 

benefits much from the increased number of peers. This is due to 

the fact that the join can be performed in parallel with negligible 

communication overhead. 
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(a) Completed transactions (CT) 
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(b) Network cost (amount of transferred pages) 

Figure 5.7: Hash-based Distributed Join 

5.3.2 Effectiveness of Microeconomics Algorithm  
In this experiment we compare the network load due to a naïve 

resource utilization algorithm with that of the microeconomics-

based resource utilization introduced in Section 4.4. Figure 5.8a 

presents a scenario of server workload. When the query rate is 

more than 100 queries/period, the server is overloaded. During 

these periods, the server requests resources from the peers. When 

a naïve resource utilization algorithm is used, the server transmits 

all the required data to the peer and the data is discarded at the 

peer once the peak ends. When a new peak starts, the server must 

retransmit all the required data to the peer. When the 

microeconomics based method is used, some amount of data is 

retained at the peer even when the peak is over, so that it can be 

reused during the next peak. This avoids the need to retransmit all 

the data at each peak, thus reducing the load on the network. In 

the simulator, the network transfer rate is set to 10Mbps and a 

simple selection query is being used in this experiment. The 

workload scenario depicted in Figure 5.8a. We measured the data 

transferred in two different settings: one using a naïve resource 

utilization algorithm and the other one using the microeconomics 

based resource utilization. Figure 5.8b shows the results obtained. 

At intervals T6 and T7 the data cached at the peer is reused and 

hence no new data needs to be transmitted in the case of 

microeconomics based resource utilization, while all the data 

needs to be retransmitted when the naïve resource utilization 

algorithm is used. At T8 there has been a data transfer due to the 

microeconomics based utilization, because the resources at the 

peer are not enough to handle the load. Over the periods T1 to 

T10, the naïve resource utilization algorithm causes a transfer of a 

total of 5600 KB of data, while the microeconomics based 

utilization causes a transfer of 3700 KB of data. We see that there 

is about 33% of savings by the latter. Thus indicates that the 

microeconomics based algorithm optimizes network utilization 

more effectively. 
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(a) Server workload 
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(b) Data transferred from server to peer 

Figure 5.8: Server workload and network utilization 

6. CONCLUSION 
In this paper we investigated the practical problem of dealing with 

overloads in enterprise database servers. Motivated by the fact 

that current solutions are either too expensive or too complicated 

to be deployed, we developed POEMS. Our system utilizes the 

available resources in numerous office PCs by asking them to 

perform some data manipulation in order to relieve the database 

server during the peak periods. The whole procedure is 

transparent to the user, and does not require the installation of any 

DBMS on the PCs, since all the data together with the required 

operator are sent from the server as Java objects. Furthermore the 

PCs contribute their resources only when it is absolutely 

necessary, thus minimizing the disturbance to the office user. 

We implemented POEMS and deployed it on a network with 26 

PCs and a UNIX server. The implementation illustrates the 

feasibility of the proposed framework, and the experimental 

results demonstrate its potential: it managed to increase the 

throughput by 400% based on the naïve methods and it achieved 

an additional boost of 200% by employing obvious optimizations. 

We also showed that under known query patterns, the system can 

be very scalable. We are confident that by incorporating 

sophisticated optimization methods, POEMS has the potential to 

achieve even better performance in a wide range of practical 

applications.   
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