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ABSTRACT
Distributed graph processing has attracted a great deal of
research interest in recent years. Fueled by the needs for
processing huge graphs, the number of compute nodes in the
distributed graph processing systems is growing fast. How-
ever, an increasingly large number of compute nodes will
inevitably increase the chance of node failures. Therefore,
provisioning an efficient failure recovery strategy is very im-
portant for distributed graph processing systems.

In this paper, we propose a novel partition based failure
recovery method. Instead of traditional checkpoint based re-
covery or confined recovery, our recovery method distributes
the recovery tasks to multiple compute nodes to accelerate
failure recovery. Our recovery method pre-computes the re-
covery index for each of the compute nodes. The recovery
index is used to distribute the recovery jobs of the corre-
sponding failed compute nodes to other nodes. Furthermore,
our proposed failure recovery method is also applicable to
multiple node failures. We implement our recovery method
and conduct extensive experiments on the widely use Gi-
raph system to validate the performance of our proposed
method.

1. INTRODUCTION
Graphs capture complex relationships and data depen-

dencies, and are important to Big Data applications such as
social network analysis, spatio-temporal analysis and navi-
gation, and consumer analytics. Map-Reduce was proposed
as a programming model for the Big Data about a decade
ago, and since then, many Map-Reduce based distributed
systems have been designed for Big Data applications such
as large-scale data analytics. However, in recent years, Map-
Reduce has been shown to be ineffective for handling graph
data, and several new systems such as Pregel [16], Giraph
[1], GraphLab [15, 9], and Trinity [21] have been recently
proposed and designed for scalable distributed graph pro-
cessing.

With the explosion in graph size and increasing demand
of complex analytics, distributed graph processing systems
have to continuously scale out by increasing the number of
compute nodes in order to handle the load. Naturally, an
increasingly large number of compute nodes will inevitably
lead to an increase of node failures. Therefore, provision-
ing an efficient failure recovery strategy is very important
for distributed graph processing systems. In existing dis-
tributed processing systems, two recovery strategies, name-
ly checkpoint based recovery method and confined recovery
method, are commonly used.

In the checkpoint based recovery method, each compute
node is required to periodically and synchronously write its
data to a stable storage like distributed file system (DFS)
as a checkpoint. It requires all the active compute nodes to
rollback to the most recent checkpoint when there is a fail-
ure, and uses an unused active compute node to replace the
failed node and let all the nodes synchronously re-execute all
the supersteps. The failure is recovered when all the nodes
finish all the supersteps before the failure occurs.

In contrast to the checkpoint based recovery method, the
confined recovery method will not rollback all active com-
pute nodes. Instead, it requires every compute node to cache
all messages sent to other nodes. The confined recovery
method also uses an unused active node to replace the failed
node, but only the new node will re-execute all superstep-
s. Other active nodes would just resend the messages to
the new node. The failure is recovered when the new node
finishes all the supersteps before the failure occurs.

Although these two failure recovery methods are effective
in existing distributed graph processing systems, they stil-
l have two major weaknesses. First, both failure recovery
methods require a very long recovery time, especially for
computational intensive graph processing applications, such
as LDA [4] and restricted Boltzmann machine [18]. For these
computational intensive applications, both failure recovery
methods take very long time to re-execute each superstep.
Second, both failure recovery methods require a strict con-
dition to guarantee that the recovery processing converges
when there are multiple node failures. In fact when an ac-
tive node fails during the recovery processing, both failure
recovery methods need to rollback to the most recent check-
point and re-execute the recovery procedure. As a result,
they can terminate only if there are no more failures during
the recovery processing. However, this condition may not
be satisfied when the number of compute nodes in the dis-
tributed graph processing system is large enough such that
there may be some failed nodes at every superstep.

To alleviate the above two problems, we propose a novel
partition based failure recovery method in this paper. Our
method partitions the subgraph in the failed compute node
to distribute the complex computations to multiple active
nodes such that they can compute concurrently. By parti-
tioning and distributing the failed subgraph, the total time
of failure recovery can be significantly reduced. In addition,
our failure recovery method does not require any active com-
pute node to rollback when there are multiple node failures.
Instead, our method determines the cascading failures with-
in these multiple node failures and iteratively recover all



Table 1: Table of Notations

G = (V,E) computation graph
N compute node
P partition on N
v vertex on the node
t average computation time for a vertex
m average size of messages
B bandwidth of the network
C number of executed supersteps

when the failure occurs
Nf failed node
Vf vertices on the failed node

G∗ = (V ∗, E∗) weighted computation graph
w(vi, vj) weight on edge (vi, vj)
A(vi) associated vertex for vi

the failures from the most recent failure. Since there is no
rollback on the compute nodes, our method requires a much
weaker condition to guarantee that the recovery process con-
verges. Therefore, with a large probability, our proposed
recovery method finishes the recovery processing before the
two existing recovery methods.

The contributions of our work proposed in this paper are
as following:

• We propose a processing time based cost model to an-
alyze the performance of distributed graph processing
systems.

• We design a novel partition based failure recovery method
that can efficiently recover a single node failure using
precomputed recovery index.

• We extend our partition based failure recovery method
such that it handles multiple node failures. Further-
more, our method requires a much weaker condition to
guarantee the convergence of the recovery processing
than existing methods.

• We implement our proposed recovery method on the
widely used Giraph system.

• We conduct extensive experimental studies to validate
the performance of our proposed method.

The rest of this paper is organized as follows. Section 2
introduces the preliminaries of distributed graph processing.
Section 3 presents the cost model for the distributed graph
processing systems with respect to the processing time. Sec-
tion 4 discusses our partition based failure recovery method
for a single node failure. Section 5 extends the recovery
method presented in Section 4 for multiple node failures, in-
cluding both cascading failures and non- cascading failures.
Section 6 presents the implementation details of our method
on top of the widely used open source Giraph system. Sec-
tion 7 presents the experimental results. We discuss related
works in Section 8, and conclude in Section 9.

2. PRELIMINARIES
In this section, we explain some preliminaries related to

distributed graph processing and failure recovery.
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Figure 1: Partitioned Computation Graph

2.1 Computation Graph
In distributed graph processing, the computation in each

superstep (iteration) could be modeled as a connected undi-
rected graph G, where the vertices V represent the com-
putational unit and the edges E represent the dependency
between computational units. Edge eij represents the com-
putation of vertex vi that relies on the message of vertex vj
and vice versa. The computation graph is partitioned such
that the vertices in a partition are located on a single phys-
ical compute node. We denote ith compute node as Ni and
the partition on Ni as Pi. Furthermore, the vertices in com-
pute node Ni is denoted as Vi and the edges across compute
node Ni and Nj is represented as Eij . The communication
delay between two vertices in the same partition is negligible
and hence could be ignored. For example, Figure 1 shows
a computational graph distributed on five compute nodes,
namely N1 to N5.

In this paper, we do not make assumptions on the pri-
or distributions of the edges as our method can be applied
to any general graphs. Furthermore, we also do not make
assumptions on the method that the computation graph is
partitioned. In fact, the computation graph and the par-
titions are provided by the user of the distributed graph
processing system. However, our method could be further
optimized if each partition of the computation graph follows
the power law distribution.

2.2 Computation Model
The computational model of distributed graph processing

in this paper follows the Bulk Synchronous Parallel (BSP)
model, which has been adapted for the Google’s Pregel. In
the Bulk Synchronous Parallel model, the computation con-
sists of a number of supersteps. In each superstep, every
node starts to send messages to its neighbors after receiv-
ing a coordinating message from the master node. Then the
nodes that have received all the messages can start the com-
putation job. After completing the computation, each node
notifies the master node with an acknowledgement message,
indicating it has finished this superstep. The procedure of
a superstep specifies the behavior on a single node and the
supersteps are managed by the master node using global
synchronization.

3. COST MODEL OF DISTRIBUTED GRAPH
PROCESSING

Since we are motivated by efficient failure recovery in dis-
tributed graph processing systems, we shall introduce the



cost model of distributed graph processing in this section in
order to illustrate our idea.

The cost of distributed graph processing in this paper fo-
cuses on the execution time of graph processing rather than
the amount of migrated data or the energy consumptions
etc. This means that the objective of our failure recovery
method is to minimize the total amount of failure recovery
time.

Our cost model is proposed based on the synchronized
distributed graph processing systems that could be modeled
using the Bulk Synchronous Parallel model. In order to
simplify the problem, we assume the following properties.

Assumption 1 (General Property of Bulk Synchronous
Parallel model). Distributed graph processing systems obey

1. The computation ability of each compute node is invari-
ant during the supersteps.

2. The network between a pair of compute nodes is reliable.

3. The communication bandwidth B of the network between
a pair of compute nodes is invariant during the superstep-
s.

Note that these three general assumptions are required
to guarantee that the performance of the system is stable
while a distributed graph processing job is being executed.
Given the above assumptions on the stableness of the per-
formance, we denote the average computation time of each
vertex as t and the average amount of data in a message as
m. Therefore, the computation time Tcomp of compute node
Ni is

Tcomp = |Vi| ∗ t

and the message passing communication time Tcomm be-
tween compute node Ni and Nj is

Tcomm = |Eij | ∗m/B

In each superstep, the compute node Ni needs to com-
municate with all its neighbors. Therefore, the total mes-
sage passing time depends on the topological structure of the
network in the distributed graph processing system. To gen-
erally support all the distributed graph processing systems,
we model the network transportation among compute nodes
as types, namely serialized communication and concurrent
communication.

The serialized communication is described in the Assump-
tion 2.

Assumption 2 (Serialized Communication Property). The
transportation of all the data from one compute node to all
its neighbors through the physical network must be serialized.

Using the serialized communication assumption, the aver-
age processing time T of a superstep for a compute node Ni
in the Bulk Synchronous Parallel model is computed as

Ti = |Vi| ∗ t+
∑
j 6=i

|Eij | ∗m/B

In contrast to the serialized communication, the concur-
rent communication is described in the Assumption 3.

Assumption 3 (Concurrent Communication Property). The
transportation of all the data from one compute node to all
its neighbors through the physical network can be concurrent-
ly executed.

Using the concurrent communication assumption, the mes-
sages can be concurrently transported using the physical
network. Thus, the average processing time T of a superstep
for a compute node Ni is derived as

Ti = |Vi| ∗ t+ max
j 6=i
|Eij | ∗m/B

Obviously, when t or m is increased, the total processing
time is increased. Our model assumes that t and m are fixed
and they are determined by the architecture of distributed
graph processing systems. Thus, the average processing time
of a superstep can be minimized by properly partitioning
the computation graph. In the distributed graph processing
systems, failure recovery is usually designed as partial re-
execution of the supersteps from the most recent checkpoint.
Therefore, we apply our average processing time model to
analyze the time consumption in the failure recovery.

4. SINGLE NODE FAILURE RECOVERY
In this section, we present a graph re-partitioning based

method that reduces the failure recovery processing time.
We first discuss the case that only one compute node fails
in this section and we extend our algorithm in Section 5 to
solve the failure recovery problem of multiple nodes.

4.1 Re-partition based Failure Recovery
Traditional failure recovery methods in existing distribut-

ed graph processing systems like Google’s Pregel only let
the failed compute node re-execute all the supersteps after
the most recent checkpoint after it recovers. All the other
compute nodes have to keep the current intermediate results
in memory and resend all the messages in each superstep to
the failed compute node. As our main objective is to reduce
the processing time of failure recovery of computation inten-
sive applications, our idea is to distribute the computation
job of the failed node to several other compute nodes such
that these computation jobs can be executed concurrently.
Intuitively, for computation intensive applications, the time
spent on the node computation could be much larger than
the time spent on message passing. Therefore, the total time
of processing a superstep might become smaller if the com-
putation job is split into several concurrently executed jobs.
The computation structure on the failed node is represent-
ed by a partition of the computation graph, and hence the
main recovery process is to re-partition and distribute the
partition on the failed node to other healthy compute nodes.

Figure 2, 3 and 4 show the recovery process of our re-
partitioning based method. In Figure 2, the failed node is
re-partitioned into small partitions. Each partition is dis-
tributed to the active node that has most number of edges
as shown in Figure 3. By distributing the small partitions,
the recovery can be concurrently executed by those nodes.
After these nodes finish the recovery jobs, they send the data
back to the failed node, shown in Figure 4.

To analyze the time cost of the failure recovery proce-
dure, we first formally define the problem. We denote the
failed node as Nf and the partition on Nf as Pf . The cor-
responding vertices and edges of Pf are represented as Vf
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Figure 2: Re-partitioning the
failed node
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Figure 3: Distributing recovery
jobs
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Figure 4: Recoverng the failed n-
ode

and Ef . Instead of using the original computation graph
G, we construct a simplified weighted computation graph
G∗ = (V ∗, E∗) to formally define our problem. The ver-
tices V ∗ = Vf ∪ V of G∗ consist of two parts, namely the
vertices Vf in Pf and the abstract vertices V where each
vi ∈ V represents a compute node Ni other than Nf . The
edges E∗ = Ēf ∪ E of G∗ also contain two parts, namely
the internal edges Ēf in Pf and the edges E between each
vi ∈ Vf and each vj ∈ V. Note that the edge set Ef may
contain the edges across compute nodes. The internal edges
Ēf is defined as the edges between vertices in Vf , namely
Ēf = {(vi, vj)|(vi, vj) ∈ Ef , vi ∈ Vf , vj ∈ Vf}. For each
vi ∈ Vf and each vj ∈ V, we define the edge set between
vertex vi and the vertices in Vj as Eij . The weight function
w() of each edge is defined as

w(vi, vj) =


1 if (vi, vj) ∈ Ēf (1a)

|Eij | if (vi, vj) ∈ E (1b)

0 otherwise (1c)

We then define the failure recovery problem as an opti-
mal weighed k-partition problem (assuming the serialized
communication property).

Problem Definition (Optimal Weighed k-Partition Prob-
lem). Given the simplified weighted computation graph G∗ =
(V ∗, E∗) and the weight function w() of the edges E∗, the
optimal weighted k-partition problem is to find the best k-
partition G∗ = P ∗1 ∪ P ∗2 · · · ∪ P ∗k such that

1. ∀i 6= j, P ∗i ∩ P ∗j = ∅.

2. For any partition P ∗j , there exists a unique vertex a ver-
tex vs ∈ V ∗j − Vf such that very vertex vi ∈ V ∗j ∩ Vf is
associated with vs, denoted as vs = A(vi). The set of
associated vertex is denoted as A = {vs|∃vi, vs = A(vi)}.

3. The time

T = C ∗max
vs∈A
{|V ∗(vs) ∩ Vf | ∗ t

+
∑

A(vi)=vs

∑
A(vj)6=vs

w(vi, vj) ∗m/B}+ 2|Vf |m/B

is minimized, where C is the number of executed super-
steps before the failure since the most recent checkpoint
and V ∗(vs) refers to the vertices in the partition contain-
ing vs.

4. The workload of each associated node is about the same,
i.e.

∃ε > 0, ∀vs ∈ A, |{vi|vi ∈ Vf , vs = A(vi)}| < (1+ε)d |Vf |
k
e

In our definition of the optimal weighed k-partition prob-
lem, the processing time of the failure recovery includes three
components, namely:

1. Data migration from the failed node Nf to the k associ-
ated helper nodes in each partition P ∗i : The time cost is∑
vi∈Vf

m/B = |Vf |m/B.

2. Recomputation of each superstep from the most recent
checkpoint: The number of supersteps that need to be
recomputed is also C and the average time cost of each
superstep is maxvs∈A {|V ∗(vs) ∩ Vf | ∗ t+

∑
A(vi)=vs∑

A(vj)6=vs w(vi, vj) ∗m/B}.

3. Data migration from the k associated helper nodes back
to the failed node Nf : The time cost is also |Vf |m/B.

We shall prove that the optimal weighed k-partition prob-
lem falls into the NP-Hard complexity class, i.e.

Theorem 1 (NP-Hardness). The optimal weighed k-partition
problem is NP-Hard.

Proof. We prove the theorem by reducing the k-balanced
partitioning problem [8] to our problem, which is an NP-
Hard problem. For each instance graph G of k-balanced
partitioning problem, we construct an instance graph G of
the optimal weighed k-partition problem. The vertices V
and edges E of G are the same as those in G and the weight
w(e) = 1 for every edge e. Vf is an arbitrary set of vertices
with constant size. We let t = 0 such that

T = C ∗max
vs∈A
{

∑
A(vi)=vs

∑
A(vj)6=vs

w(vi, vj) ∗m/B}+ 2|Vf |m/B

Note that |Vf |m/B is a constant. Therefore,

minT

⇒ minC ∗max
vs∈A
{

∑
A(vi)=vs

∑
A(vj)6=vs

w(vi, vj) ∗m/B}

+2|Vf |m/B

⇒ min max
vs∈A
{

∑
A(vi)=vs

∑
A(vj)6=vs

w(vi, vj) ∗m/B

⇒ min |{(vi, vj)|A(vi) 6= A(vj)}|

The solution of the optimal weighed k-partition problem
in this configuration finds the partition that minimizes the
number of edges across the partitions. As a result, the solu-
tion of the optimal weighed k-partition problem also solves
the k-balanced partitioning problem. As the k-balanced par-
titioning problem has been proven to be NP-Hard in [8], the



Algorithm 1: Recovery Index Computation

Input: Graph partitions Pi on each worker node Ni
Output: Recovery Index RI

1 foreach partition Pi = (Vi, Ei) do
2 min cost map← ∅
3 min cost← +∞
4 Construct weighted graph G∗(Pi) for Pi
5 foreach possible k do
6 map← ∅
7 Partition G∗(Pi) into k-weighted partition using

METIS algorithm
8 foreach P ∗j in the k-weighted partition do
9 vmax ←

arg maxvm∈V ∗
j −Vf

∑
vn∈V ∗

j ∩Vf
w(vm, vn)

10 foreach vn ∈ V ∗j ∩ Vf do
11 map← map

⋃
< vn, vmax >

12 Compute the time cost T (map) of the
k-weighted partition

13 if T (map) < min cost then
14 min cost← T (map)
15 min cost map← map

16 RIi ← min cost map

17 return RI

optimal weighed k-partition problem is therefore also NP-
Hard.

We shall further prove that the optimal weighed k-partition
problem does not have any effective approximate solutions:

Theorem 2 (Inapproximability). There does not exist a

fully polynomial time (with respect to |V
∗|
ε

) approximate al-
gorithm that solves the optimal weighed k-partition problem

with an approximate ratio |V
∗|α

εβ
for any constants α and β

where α < 1
2

, unless P=NP.

Proof. We again prove the theorem by reducing the k-balanced
partitioning problem to our problem. Using similar tech-
niques in the proof of Theorem 1, we construct an instance
graph G of the optimal weighed k-partition problem for each
instance graph G of the k-balanced partitioning problem.
The vertices V and edges E of G are the same as those in G
and the weight w(e) = 1 for every edge e. We let Vf = ∅ and
choose proper parameters C,m and B such that Cm

B
> 1.

Therefore, the time

T = C ∗max
vs∈A
{

∑
A(vi)=vs

∑
A(vj)6=vs

w(vi, vj) ∗m/B}

=
Cm

B
|{(vi, vj)|A(vi) 6= A(vj)}|

We denote the edge set {(vi, vj)|A(vi) 6= A(vj)} as E.
Suppose there exists a a fully polynomial time (with re-

spect to |V
∗|
ε

) approximate algorithm that solves the opti-
mal weighed k-partition problem with an approximate ratio
|V ∗|α

εβ
for some constants α and β where α < 1

2
. The time

cost T of this approximate algorithm satisfies

T 6 (1 +
|V ∗|α

εβ
)TOPT

Algorithm 2: Single Node Failure Recovery

Input: Graph partitions Pi on each worker node Ni,
the failed worker node Nf with the partition Pf
on Nf

Output: Recovered node Nf
1 Master node reads the recovery index RIf from its hard

disk
2 Master node sends each of the vertex v in Vf and the

neighbors of v to the worker node NRIf (v)
3 Master node sends the starting recovery message to

each of the worker node in RIf and waits for the
response of finishing recovery from the worker nodes

4 foreach worker node Ni in RIf do
5 foreach recovery superstep sj do
6 Ni does the computation of the jth superstep

for its received vertices
7 Ni sends messages to the neighbors of its

received vertices
8 Ni sends the computed data to Nf

9 return Nf

That leads to

|E| 6 (1 +
|V ∗|α

εβ
)|EOPT |

which contradicts with the fact that there does not exist a a
fully polynomial time approximate algorithm that solves the
k-balanced partitioning problem with an approximate ratio
nα

εβ
.

4.2 Recovery Index based Failure Recovery
Theorem 2 implies that effective approximate algorithms

for the optimal weighed k-partition problem does not exist.
To solve our problem, we therefore need to look for heuristic
solutions. We adapt the widely used METIS [11] graph par-
tition algorithm for the optimal weighed k-partition prob-
lem. Using the METIS graph partition algorithm, we can
compute strategy of distributing the recovery jobs offline.
We store the strategy in the hard disks of the master node
of the recovery index. The recovery index RI is actually a
mapping function for each of the partition Pi. Using RIi,
vj ∈ Vi should be migrated to the compute node NRIi(vj)
once node Ni fails. The recovery index computation algo-
rithm is outlined in Algorithm 1.

Having computed the recovery index, we now proceed to
outline the algorithm of failure recovery using the index in
Algorithm 2.

5. MULTIPLE NODES FAILURE RECOVERY
It is common for distributed graph processing systems

that have a large number of compute nodes to have multiple
nodes failing at the same time. All of traditional failure re-
covery methods like checkpoint based recovery and confined
recovery require all the compute nodes to rollback to the
most recent checkpoints to recompute the supersteps. How-
ever, these failure recovery methods suffer from the long
recovery time. In this section, we present a novel failure re-
covery method for multiple node failures by extending our
single node failure recover in Algorithm 2.

Following Theorem 1 and 2, we shall get the corollary that
the corresponding optimal k-weighted partition problem for
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Figure 6: Iterative Recovery for Cascading Fail-
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the multiple node failure recovery is also NP-Hard and in-
approximable, i.e.

Theorem 3 (Hardness of Multiple Node Failure Recov-
ery Problem). Given a optimal k-weighted partition problem
with respect to the multiple node failure recovery problem, we
have

1. The optimal k-weighted partition problem for multiple n-
ode failures is NP-Hard.

2. There does not exist a fully polynomial time (with re-

spect to |V
∗|
ε

) approximate algorithm that solves the opti-
mal weighed k-partition problem for multiple node failures

with an approximate ratio |V
∗|α

εβ
for any constants α and

β where α < 1
2

, unless P=NP.

Proof. This theorem can be shown by proving that the so-
lution of multiple node failure recovery problem implies a
solution of single node failure recovery problem. This is ob-
vious that for each instance of single node failure, it is also
an instance of “multiple” node failures with only one failed
node.

Therefore, we also need to apply the heuristic algorithm-
s to solve the multiple node failure recovery problem. We
modify and extend our recovery algorithm (Algorithm 2)
for single node failure to recover multiple node failures. We
present the modification to Algorithm 2 by discussing the t-
wo types of multiple node failures, namely cascading failures
and non-cascading failures.

5.1 Cascading Failures
Cascading failures are failures that occur when the recov-

ery nodes themselves also fail when they are performing a
recovery job for some other failed nodes. Suppose the first
failed node is Ni and the second one is Nj . In this case, un-
like traditional failure recovery methods, our method would
not rollback those nodes that have not failed, as they would
have already partially recovered the first failed node Ni. In-
stead, we let all active nodes that are running the recovery
job for Ni stop and wait for the node Nj to recover. Using
our method, we do not need to wait until Nj is fully recov-
ered. In contrast, suppose Nj fails when the recovery of Ni is
executed by s supersteps, we only need to recover Nj for the
first s supersteps and then recover Ni and Nj in the same
time. Note that for cascading failures, all failed nodes re-
quire the same number of supersteps to recover. Therefore,
some supersteps of the recovery process can be concurrently

Algorithm 3: Cascading Failure Recovery

Input: Graph partitions Pi on each worker node Ni,
the stack of already failed worker nodes
N = {< Ni, si >} with the number of executed
recovery supersteps, the newly failed node Nf ,
nodes have been used to execute recovery jobs
Nr

Output: Recovered nodes N ∪Nf
1 Master node reads the recovery index RIf from its hard

disk
2 if N = ∅ then
3 return Single Node Failure Recovery(P, Nf )

4 else
5 s← N .top().s
6 Master node sends the message to all worker nodes

in Nr to pause their recovery job
7 recover nodes← ∅
8 Assign Recover Node(vf )
9 foreach worker node Ni in recover nodes do

10 foreach 1 6 j 6 s do
11 Ni does the computation of the jth

superstep for its received vertices
12 Ni sends messages to the neighbours of its

received vertices
13 Ni sends the computed data to Nf

14 N .push(< Nf , s >)
15 return Non-Cascading Failure Recovery(P,N )

executed. Obviously, the number of executed recovery su-
persteps of newly failed node is never larger than that of
previously failed nodes.

For example, consider the example shown in Figure 2
where N1 fails. The data on N1 are distributed to N2, N3,
N4 and N5 shown in Figure 3. Suppose that N2 fails when
it is executing the recover jobs for N1 as shown in Figure 5.
Our method will detect that the failure of N2 is a cascading
failure related to N1. Therefore, we will first recover N2 to
the status before it fails and later N2 will be used again to
recover N1 shown in Figure 6.

In this paper, we use a stack to store the cascading failure
information. The last failed node will be recovered first.
Our algorithm is presented in Algorithm 3. The process of
assigning recovery node is shown in Algorithm 5.

In Algorithm 3, when there is a cascading failure, we first
stop the processing of all active nodes (Line 6). We dis-
tribute the recovery jobs for the most recent failed node to



Algorithm 4: Non-Cascading Failure Recovery

Input: Graph partitions Pi on each worker node Ni,
the stack of already failed worker nodes N ,
nodes have been used to execute recovery jobs
Nr

Output: Recovered nodes N
1 Master node reads the recovery index RIf from its hard

disk
2 Master node sends the message to all worker nodes in
Nr to pause their recovery job

3 recover nodes← ∅
4 foreach node vi ∈ N do
5 Assign Recover Node(vi)

6 foreach worker node Ni in recover nodes do
7 Ni continues the computation supersteps for its

received vertices
8 Ni sends messages to the neighbours of its received

vertices
9 Ni sends the computed data back to the nodes in N

10 return N

several active nodes by reading the recovery index (Line 8
and Algorithm 5). The most recently failed node will be re-
covered for the same number of supersteps as the the earlier
failed node (Line 9-13). Then the latest two failed nodes
can be recovered together as neither of them needs to wait
for the other one. Therefore, the two latest failures can be
viewed as if the failure is a non-cascading failure after Line
14. Subsequently, we call the Non-cascading failure algo-
rithm to recover both nodes together in Line 15. Note that
Algorithm 3 needs to be invoked once a cascading failure
occurs.

In a cascading failure containing two nodes, we can con-
currently recover the two failed nodes after the second failed
node has been partially recovered by re-executing the super-
steps after the first node fails. Therefore, we can recursively
apply the failure recovery method for non-cascading failures
to recover multiple nodes together, which will be shown in
the next subsection.

5.2 Non-Cascading Failures
The non-cascading failure, in contrast to cascading fail-

ures, implies that the failed nodes are not executing recovery
jobs for other failed nodes. In this case, all the failed nodes
fail independently. Note that the recovery for these failed
nodes may not be isolated, as some failed nodes may require
the same active node to run the recovery jobs. Therefore,
to solve the conflict on distributing the recovery jobs, we
design the non-cascading failures recovery algorithm (shown
in Algorithm 4). Unlike the recovery algorithm for cascad-
ing failures, in Algorithm 4, when there is a non-cascading
failure, we just need to stop current jobs (Line 2), reassign
active nodes (Line 4, 5) and recover all the failed nodes in
one go (Line 6-9).

5.3 Convergence of the Recovery
The convergence of the failure recovery methods, i.e. whether

the recovery is guaranteed to finish, is always a critical prob-
lem. For distributed graph processing systems built on un-
stable compute nodes, it is common that the recovery pro-

Algorithm 5: Assigning Recovering Node

Input: Node vi
1 foreach node v ∈ RIi do
2 if v 6∈ Nr ∪N then
3 v′ ← v

4 else
5 v′ ← a random unused active node

6 Master node sends the starting recovery message to
v′ for vi waits for the response of finishing recovery
from v′

7 recover nodes← recover nodes ∪ {v′}
8 Nr ← Nr ∪ {v′}

cess is always being executed for the continuously failed n-
odes. Like the existing checkpoint based recovery and con-
fined recovery, our proposed partition based failure recov-
ery method cannot guarantee the convergence of the recov-
ery neither. However, our partition based recovery method
requires weaker condition to be converged than the check-
point based recovery method and confined recovery method.
Therefore, our partition based recovery method has a larger
probability to converge.

Suppose the recovery needs C supersteps to be execut-
ed. Both checkpoint based recovery method and confined
recovery method would let all the active compute node to
rollback to the most recent checkpoint to re-execute all the
supersteps. Thus, the condition of convergence for the ex-
isting two recovery methods is:

Theorem 4. The Checkpoint based recovery and confined
recovery converge if and only if there exist C supersteps in
the recovery processing such that any active compute node
does not fail.

The correctness of Theorem 4 is obvious. Note that The-
orem 4 requires that none of the active compute nodes fail
during the recovery is processed.

In contrast to the checkpoint based recovery method and
confined recovery, our proposed partition based recovery
method requires a much weaker condition to be converged,
i.e.:

Theorem 5. Partition based recovery method is converged
if there exist 2C − 1 supersteps in the recovery processing
such that there is at most one cascading failure.

Note that in practice, a compute node actually cannot fail
more than once in a short time, as typically the distributed
graph processing systems will replace the failed node with an
unused active node instead of waiting for the failed node to
restart. However, in fact these two nodes execute the same
jobs and as a result, we treat these two nodes as one compute
node for simplicity. Theorem 5 seems to require more super-
steps than Theorem 4 does. However, the execution time for
a single superstep of the partition based recovery method is
shorter than that of the existing two recovery methods, due
to the fact that the recovery job is distributed to multiple
compute nodes. Therefore, the total executing time in the
condition of Theorem 5 should be shorter than Theorem 4.

Before we prove that Theorem 5 is correct, we first show
three important lemmas:



Lemma 1. Non-cascading failures do not affect the conver-
gence of partition based recovery method.

Lemma 1 actually indicates that the execution of recov-
ery for non-cascading failures are isolated. Therefore, the
convergence of our partition based recovery method is not
affected by the non-cascading failures.

Lemma 2. In the cascading failures, a failed node cannot
be recovered before any node failed after it.

Lemma 2 directly follows Algorithm 3. The later failed
node will be pushed into the cascading failure stack after
the previously failed nodes. Algorithm 3 is executed for the
top failure in the cascading failure stack. Therefore, the
most recent failed node will be recovered first.

Lemma 3. When a failed compute node is recovered, the
nodes failed before this node have been recovered at this su-
perstep.

Now we prove Theorem 5 using these lemmas.

Proof. By Lemma 1, if there are no cascading failures during
the 2C − 1 supersteps, our partition based recovery method
converges.

Suppose there is only one cascading failure in the 2C − 1
supersteps. We denote the two failed nodes as N1, N2 to
represent the first and second failed nodes. We consider the
number s of supersteps that have been executed between
the failures of N1 and N2. Obviously 0 < s < C, otherwise
N2 must fail at least C supersteps after N1 fails. Due to
that there are no other cascading failures, especially relat-
ed to N1. Therefore, N1 should have been recovered in C
supersteps and this conclusion conflicts with the fact that
the failures of N1 and N2 are cascading failures. Because
there are no other cascading failures, the recovery for both
N1 and N2 takes s + s + (C − s) = C + s supersteps after
N1 fails. Here we incur s supersteps to recover N1 before
N2 fails. Next, we need to incur s supersteps to recover
N2 to the state just before N2 fails, according to Lemma 2.
Thereafter we use C − s supersteps to recover both N1 and
N2. Note that s 6 C − 1. Thus, C + s 6 2C − 1, indicating
that both N1 and N2 will be recovered during the 2C − 1
supersteps by Lemma 3. As a result, our partition based
recovery method converges.

Theorem 5 indeed implies that our partition based recov-
ery method requires a much weaker condition to be con-
verged than checkpoint based recovery and confined recov-
ery. The convergence of our method is mainly affected by
cascading failures. However, any multiple node failures will
lead to the divergence of checkpoint recovery and confined
recovery, as they need to rollback all the active compute
nodes.

6. IMPLEMENTATIONS
We implement our partition-based failure recovery method

on Apache Giraph [1], an open-source implementation of
Pregel. Before delving into the implementation details, we
first introduce some background of Giraph.

6.1 Giraph Overview
Giraph is an iterative graph processing system that sup-

ports large-scale graph analysis applications. It consists of

ZooKeeper
(2)(3)(1) (4)

(5)

(6) (10)

(7) (8)

(2) assign partition

(6) synchronize checkpointing if necessary

Master

(10) synchronize the current superstep

(1) wait for partition assignment

(3) get partition assignment

Worker

(4) exchange partitions and messages among workers if necessary

(8) update vertex, send and collect messages

(9) report that current superstep finishes

(5) if necessary, do checkpointing , and wait until all workers finish checkpointing

(7) load checkpoint from HDFS if necessary

(9)

Figure 7: Overview of Giraph System

three components: master, worker and zookeeper. The mas-
ter is responsible for the coordinations among the workers
such as assigning data to the workers, and coordinating syn-
chronization. The workers perform vertex computations as
well as message passing for each iteration. Zookeeper main-
tains various statuses that are shared among the master and
workers, including computation statuses and worker health
statuses. Giraph system is built on top of Hadoop infras-
tructure and each Giraph program is executed as a Map-
only job. Figure 7 shows the runtime of Giraph. When a
job starts, both the master and workers become active. The
workers load graph partitions from HDFS after the master
has written the partition assignment into zookeeper. Work-
ers will then exchange partitions based on the assignment
and start computations iteratively. During each iteration, a
worker processes the messages received in the last iteration,
execute compute function for each vertex in its partitions
and sends messages to other workers. After the computa-
tion of all vertices is completed, the worker then writes the
computation status into zookeeper and waits for all other
workers to finish their computations. The master checks the
computation statuses of all workers via zookeeper periodical-
ly and coordinates the synchronization when all the workers
finish an iteration. Finally, the workers flush the results to
HDFS and the job is completed.
Failure recovery in Giraph. The recovery mechanism
implemented in Giraph is simply checkpoint based. At the
beginning of each superstep, each worker will check whether
it needs to do the checkpointing. If so, the workers will flush
partitions as well as the messages received in the last super-
step into HDFS as a checkpoint. When a worker fails, a
new worker thread will be initiated to redo the computation
for the current superstep, and the whole job can proceed s-
moothly. However, when a compute node fails, all the work-
ers residing on that node become inactive and the master
will terminate the whole job. During the recovery, a new
compute node will be involved as a substitute for the failed
one. A new job will then be launched where the master
requests the workers to load partitions and messages from
the latest checkpoint and continue the computation after-
wards. In the current implementation of Giraph, the new
job cannot be scheduled automatically. In fact, we have to
manually launch a new job and request it to load data from
the latest checkpoint.



6.2 Our Extensions to Giraph
We make two major extensions to Giraph to support our

partition based recovery. First, we extend Giraph to support
confined recovery. Confined recovery requires each worker
to flush all its sending messages to the local disk at the end
of each superstep. However, we require the workers to flush
their own partitions as well. This is because the recovery
in Giraph is performed as a new job and all the partitions
are lost regardless whether they reside on a failed node or
not. In the experiments, we observe the overhead of writing
to local disk is negligible compared to the whole processing
time. Suppose the latest checkpoint is made at the begin-
ning of superstep i and a node failure occurs in superstep j
(j > i). During the recovery, we divide the workers into two
groups, and denote by NEW and OLD the workers in the
newly-added node and original ones, respectively. Workers
in NEW will load partitions and messages from the latest
checkpoint stored in HDFS. Essentially, these workers roll-
back to the beginning of superstep i and restart the compu-
tation from that superstep. Workers in OLD read from local
disk the partitions flushed at the end of superstep j in the
original job as there is no need for them to rollback. When
restarting from superstep i, the workers in NEW perform
as per normal. Namely, they process the messages, execute
compute function for their own vertices and send messages
to the other workers. For the workers in OLD, the messages
that will be sent from superstep i to j are already stored in
the local disk. Hence, they read messages from the disk and
forward them directly without performing any computation.
After superstep j, all the workers will perform as usual.

The above processing ignores an important factor that
there is no need to forward messages to the workers in OLD
from superstep i to j as their partitions are the ones pro-
duced in superstep j. To achieve this, we maintain a list L
of partition status in the zookeeper where each element is
a pair of partition id and the most recent superstep accom-
plished by the partition. The list will be updated by the
master. For any superstep k, each worker will first check
partition status and forward a message only if its destina-
tion vertex belongs to partition p and there exists s ≤ k such
that (p, s) ∈ L.

Second, we implement our partition based recovery on Gi-
raph. The major difference between our approach and con-
fined recovery is that we assign the partitions in a failed
node to the workers based on our pre-computed recovery in-
dex. Therefore, we modify the partition assignment strategy
for the master in Giraph. During the recovery, the master
will assign a partition p to worker w iff the index indicates
that. We note that our proposed recovery method can be
applied to other distribute graph processing platforms, and
we chose Giraph mainly as a platform to illustrate the idea
and validate the performance.

7. EXPERIMENTAL STUDIES
We compare our partition based failure recovery mecha-

nism with checkpoint based failure recovery mechanism on
top of Giraph graph processing engine. The open source im-
plementation of Giraph system is provided in Apache web-
site [1] and we use the latest version-1.0.0.

7.1 Experiment Setup
The experimental study was conducted on our in-house

cluster. The cluster includes 72 compute nodes, each of
which is equipped with one Intel X3430 2.4GHz processor,
8GB of memory, two 500GB SATA hard disks and gigabit
ethernet. On each compute node, we installed CentOS 5.5
operating system, Java 1.6.0 with a 64-bit server VM and
Hadoop 0.20.203.0 1. All the nodes are connected via three
high-speed switches. Since Giraph runs as a MapReduce job
on top of Hadoop, to adapt the Giraph environment to our
application, we made the following changes to the default
Hadoop configurations: (1) the size of virtual memory for
each task is set to 4GB; (2) each node was configured to run
one map task. We chose 40 nodes out of the 72 nodes in our
experiment and among them, one node acted as the master
for running Hadoop’s NameNode, JobTracker daemons.

7.2 Benchmark Tasks and Datasets
We evaluate our partition based recovery via the execu-

tion of PageRank algorithm. As PageRank algorithm is not
a traditional computation intensive task, we extend it into
PageRankX where the computation of each vertex is repeat-
ed by X times. We conduct the experiments on two real-life
large graphs.
• LiveJournal. LiveJournal is an online social network,
in which the vertices represent the users and the edges rep-
resent the friendship relationship. LiveJournal graph [14]
contains more than 4 million vertices and about 70 million
directed edges.
• Twitter. Twitter dataset 2 is a segment of Twitter graph
with more than 10 million vertices and 60 million edges.

We compare our proposed partition based recovery method
(PBR) with the checkpoint based recovery method (CBR)
using the benchmark tasks on these two datasets. By de-
fault, we evaluate the performance in term of recovery time
and message passing over LiveJournal dataset by running
PageRank algorithm.

7.3 Effect of Message Caching
In this study, we report the performance of using message

caching mechanism in each superstep. We show that similar
to the confined recovery method, our partition based recov-
ery method only incurs a small overhead over the checkpoint
based recovery method. Figure 8 illustrates the average run-
ning time of each superstep for both PBR and CBR for dif-
ferent number of compute nodes. PBR takes slightly more
time compared with CBR as PBR needs to allow all compute
nodes to cache all the sent messages. Moreover, when the
number of used nodes is increased, the average running time
is also increased for both methods. This is caused by the fact
that communication among the nodes is also increased when
there are more compute nodes.

7.4 Single Failure Recovery
We show the experimental results on the single failure

recovery in this subsection. Figure 9 and 10 present the
experimental results on the LiveJournal dataset.

Figure 9 presents the total number of messages that have
been sent in order to recover a single failed node. The num-
ber of sent messages in CBR is almost 7 times than that
in PBR. This is because in PBR, each active compute node
only needs to send messages to the failed node. On the con-
trary, in CBR, all the computation and message sending are

1http://hadoop.apache.org/
2http://grafia.cs.ucsb.edu/sedge/dataset.html
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required to be re-executed. Therefore, CBR needs to send a
lot more messages to recover a single node than PBR.

Figure 10 reports the recovery in each superstep for both
PBR and CBR. In Figure 10, the failure occurs at superstep
29. As the checkpoint interval is 10 supersteps, all active
nodes recover the failed node from superstep 20. Thus, both
PBR and CBR read the data of checkpoint at superstep
20. In PBR, as partitions that were assigned to the failed
node are lost, workers that are responsible for such partitions
need to read them from the HDFS while other partitions are
loaded from local disks. However, In CBR, all partitions are
required to fetch from HDFS. Hence, PBR spends less time
than CBR in superstep 20. During supersteps 21 to 28,
PBR distributes the recovery tasks to multiple active nodes
while CBR only recovers the failed node by assigning a new
node only. As a result, the processing time of PBR is much
less than that of CBR. In superstep 29, all the active nodes
finish the recovery tasks. Since PBR requires the recovered
data to be migrated back to the failed node, regarding the
communication cost is comparable to the computation cost,
we find that PBR spends fairly more time than CBR in
this superstep. However, the total processing time of PBR
is much less than that of CBR, due to the distribution of
recovery processing.

7.5 Computation-Intensive Task
In this subsection, we show that our proposed PBR method

can be used for a variety of computational intensive tasks.
As it is fairly difficult to design real world tasks with a spe-
cific CPU computation time, we vary the computational in-
tensity by repeatedly running the computational task on
each node for multiple times. In this experiments, we ex-
ecute the computation function over each vertex for 100,
500, 1000 and 2000 times on both LiveJournal dataset and
Twitter dataset.

In Figure 11, the total processing time of PBR is much less
compared with that of CBR. Furthermore, when the number
of times the computational tasks being run increases, the
gap between the total recovery time of PBR and CBR grows
larger. This is because our PBR method can benefit more by
distributing the recovery task when the CPU computation
time is significantly larger than the communication time.
PBR is about 7 times faster than the CBR method on the
LiveJournal dataset.

Figure 12 shows similar trends as shown in Figure 11. The
total processing time of PBR is also less compared with that
of CBR for most of the cases. PBR is about 6 times faster
than the CBR method on the Twitter dataset.

7.6 Non-Cascading Failure Recovery
In this subsection, we compare the performance of our

proposed PBR method to the CBR method on recovering
multiple non-cascading failures.

Figure 13 shows the comparison between PBR and CBR
for the recovery processing time when multiple nodes fail at
the same superstep. We have two observations. First, P-
BR spends less time to recover non-cascading failures than
CBR. The reason is similar to that of Figure 11 and 12 as
the multiple non-cascading failures on several compute n-
odes can be viewed as a large failed compute node that con-
tains all the data on those failed nodes. Second, when the
number of non-cascading failures increases, the processing
time of both PBR and CBR almost remains flat. This can
be explained by the fact that for both PBR and CBR, the
non-cascading failures are recovered concurrently on those
failed nodes. Therefore, the time of the recovery process-
ing should be almost independent to the number of failed
nodes. In fact, the recovery processing time depends on the
number of supersteps to recover these failed nodes and the
communication time between the nodes.

Figure 14 shows the number of sent messages during the
recovery processing for both PBR and CBR. We can observe
that the number of sent messages for CBR remains quite flat
while the number of sent messages for PBR increase slightly
as the number of failed nodes increases. CBR requires all
the active nodes to rollback to the most recent checkpoint
and every node to send the message to all its neighbors.
Therefore, no matter how many non-cascading failures oc-
cur, the total amount of messages needed to recovery these
failed nodes are the same. However, for PBR, the messages
are sent to the failed nodes, and hence, the number of mes-
sages almost linearly increases with the number of failed
non-cascading nodes.

7.7 Cascading Failure Recovery
We compare the performance of our proposed PBR method

with CBR method on cascading node failures. Figure 15
shows the recovery time while Figure 16 presents the num-
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ber of sent messages for recovering a cascading failure with
two node failures. In our case, the first node N1 fails at
superstep 29. During the recovery to superstep 29 from the
latest checkpoint (superstep 20) for N1, the second node N2

fails. Let P1 be the partitions that are assigned to N1 before
the first failure, and P2 be the partitions that are assigned
to N2 before the second failure. When the failure of node
N1 emerges, both PBR and CBR rollback to superstep 20,
and execute a single node failure recovery. For the second
failure of node N2, as partitions in P1|−P2 have been recov-
ered to superstep 29, PBR only recovers data from partitions
P2 − P1. When a cascading failure happens, although the
overall recovery time increases, the time gap in cascading
failure recovery basically follows the same trend in the sin-
gle node failure recovery, that is, the recovery time of PBR
is nearly half of the recovery time of CBR for this cascading
failure (shown in Figure 15).

Figure 16 shows the total amount of sent messages to re-
cover the cascading failures. As PBR only needs to send
messages to all the failed nodes, the number of sent mes-
sages for PBR is significantly less than that of CBR, which
reduces the communication time in PBR.

8. RELATED WORK
Recently, a wide range of parallel graph processing sys-

tems such as Pregel [16], Trinity [21], GraphLab [15, 9],
GraphX [23] have been introduced to support graph compu-
tations over large-scale graph data. Both Pregel and Trinity
follow the Bulk Synchronous Parallel (BSP) computation
model, where a graph analysis job is executed in a sequence
of iterations, i.e., supersteps, and a synchronization among
all the compute nodes is performed at the end of each su-
perstep. Alternatively, GraphLab adopts asynchronous pro-
cessing model where compute nodes have shared access to
other nodes during the computation.

Existing systems aim to support large-scale graph analy-
sis applications over hundreds or even thousands of compute
nodes. To achieve this goal, one of the major challenges is
to handle the node failure, which is inevitable during the
execution of a long-running graph application. Various re-
covery mechanisms are proposed to tolerate the failure of
compute nodes in a distributed environment, among which
rollback recovery is widely adopted [5, 6, 10, 3, 17, 22]. As
surveyed in [7], rollback recovery is classified into two cate-
gories: checkpoint based and log based.

To the best of our knowledge, most existing distributed
graph processing systems adopt checkpoint based rollback
recovery such as Giraph [1], GraphLab [15], PowerGraph
[9], GPS [19], Mizan [12]. Pregel proposes confined recovery
which is a hybrid recovery mechanism of checkpoint based
and log based recovery. Specifically, only the newly-added



node that substitutes the failed one has to rollback and re-
peats the computations from the latest checkpoint. Graphx
adopts log (called lineage) based failure recovery, and uti-
lizes a novel mechanism called resilient distributed dataset
(RDD) to speedup failure recovery. However, when a node
fails, graph data lying in this node still need to be recov-
ered. Regarding our partition based recovery mechanism
that distributes graph data residing on failed nodes to dif-
ferent compute nodes for parallel processing, our method is
orthogonal to these systems.

Another direction closely related to our work is the par-
titioning methods on large-scale graphs. In this paper, we
adopt a widely used partitioning algorithm called METIS
[11]. METIS has been extended in several aspects, includ-
ing partitioning power-law graph [2], multi-threaded graph
partitioning [13] and dynamic multi-constraint graph parti-
tioning [20]. In practice, METIS has been adopted in other
distributed graph processing systems such as PowerGraph.

9. CONCLUSION
In this paper, we present a novel partition based failure re-

covery method to accelerate failure recovery processing. D-
ifferent from traditional checkpoint based recovery and con-
fined recovery, our recovery method distributes the recov-
ery jobs to multiple compute nodes such that the recovery
processing can be executed concurrently. We have proven
that the partition based failure recovery problem is both
NP-Hard and inapproximatable even for a single node fail-
ure. We adapt the METIS algorithm [11] based heuristic
method to pre-compute the recovery index for each of the
compute nodes. The recovery index is used to distribute
the recovery jobs of the corresponding failed compute nodes
to other nodes. Furthermore, our proposed failure recovery
method is also applicable to multiple node failures includ-
ing both cascading failures and non-cascading failures. We
implement our recovery method and conduct extensive ex-
periments on the widely used Giraph system to validate the
performance of our proposed method. The experimental re-
sults show that our proposed partition based failure recovery
method outperforms existing recovery methods especially on
computational intensive tasks.
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