Robust and Secure Federated Learning with Low-Cost Zero-Knowledge Proof

Yizheng Zhu
National University of Singapore

Zhaojing Luo
National University of Singapore

Yuncheng Wu
National University of Singapore

Beng Chin Ooi
National University of Singapore

Xiaokui Xiao
National University of Singapore

Date: 1 September 2023

Abstract

Federated Learning (FL) enables multiple clients to collab-
oratively train a machine learning (ML) model under the
supervision of a central server while ensuring the confidential-
ity of their raw data. However, existing studies have unveiled
two main risks: (i) the potential for the server to infer sen-
sitive information from the client’s uploaded updates (i.e.,
model gradients), compromising client input privacy, and (ii)
the risk of malicious clients uploading malformed updates
to poison the FL. model, compromising input integrity. Re-
cent works utilize secure aggregation with zero-knowledge
proofs (ZKP) to ensure input privacy and input integrity si-
multaneously in FL. Nevertheless, they suffer from extremely
low efficiency and, thus, are impractical for real deployment.
In this paper, we propose a novel solution RiseFL, which is
robust, secure, and highly efficient to guarantee input privacy
and integrity. Firstly, we devise a probabilistic integrity check
method, significantly reducing the cost of ZKP generation
and verification. Secondly, we design a hybrid commitment
scheme to satisfy Byzantine robustness with improved perfor-
mance. Thirdly, we theoretically prove the security guarantee
of the proposed solution. Extensive experiments on synthetic
and real-world datasets suggest that our solution is effective
and is highly efficient in both client computation and commu-
nication. For instance, RiseFL is up to 53x and 164x faster
than two state-of-the-art baselines RoFL and EIFFeL for the
client computation.

1 Introduction

Federated Learning (FL) [20,31,32,35,39,53] is an emerging
paradigm that enables multiple data owners (i.e., clients) to
collaboratively train a machine learning (ML) model without
sharing their private data with each other. Typically, there is
a centralized server that coordinates the FL training process
as follows. The server first initializes the model parameter
and broadcasts it to all clients. Then, in each iteration, each

client computes a local update (i.e., model gradients) on its
own data and uploads it to the server. The server aggregates
all clients’ updates to generate a global update and sends it
back to the clients for iterative training [35].

Despite the fact that FL could facilitate data collaboration
among multiple clients, two main risks remain, as illustrated
in Figure 1. The first is the client’s input privacy. Even with-
out disclosing the client’s raw data to the server, recent stud-
ies [36, 38,56, 58] have shown that the server can recover the
client’s sensitive data through the uploaded update with a high
probability. The second is the client’s input integrity. In FL,
there may exist a set of malicious clients that aim to poison the
FL model via Byzantine attacks, such as contaminating the
training process with malformed updates to degrade the model
accuracy [4,18,21,25], imposing backdoors so that the FL.
model is susceptible to specific types of inputs [2, 12,40, 51],
and so on.

A number of solutions [1,3,5,7,11,28,34,41,49,52,54,55,
57] have been proposed to protect input privacy and ensure
input integrity in FL. On the one hand, instead of uploading
the plaintext local updates to the server, the clients can utilize
secure aggregation techniques [3,7,28,57], such as secret shar-
ing [29,46] and homomorphic encryption [16,22], to mask
or encrypt the local updates so that the server can aggregate
the clients’ updates correctly without knowing each update.
In this way, the client’s input privacy is preserved. However,
these solutions do not ensure input integrity because it is diffi-
cult to distinguish a malicious encrypted update from benign
ones. On the other hand, [1,5,11,34,41,52,54,55] present
various Byzantine-robust aggregation algorithms, allowing
the server to identify malformed updates and eliminate them
from being aggregated into the global update. Nevertheless,
these algorithms require the clients to send plaintext updates
to the server for the integrity check, which compromises the
client’s input privacy.

In order to ensure input integrity while satisfying input
privacy, [9,45] use secure aggregation to protect each client’s
update and allow the server to check the encrypted update’s
integrity using zero-knowledge proof (ZKP) protocols. The
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Figure 1: The input privacy and input integrity risks in FL.

general idea is to let each client compute a commitment of its
local update and generate a proof that the update satisfies a
publicly-known predicate, for example, the L-norm is within
a specific range; then, the server can verify the correctness
of the proofs based on the commitments without the need of
knowing the plaintext values and securely aggregate the valid
updates. However, these solutions suffer from extremely low
efficiency in proof generation and verification, making them
impractical for real deployments.

To introduce a practical FL system which ensures both in-
put privacy and input integrity, we propose a robust and secure
federated learning approach, called RiseFL, with high effi-
ciency. In this paper, we focus on the Lp-norm integrity check,
i.e., the Lr-norm of a client’s local update is less than a thresh-
old, which is widely adopted in existing works [9, 13,45,50].
Our key observation of the low-efficiency in [9,45] is that their
proof generation and verification costs are linearly dependent
on the number of parameters d in the FL. model. Therefore, we
aim to reduce the proof cost, which particularly makes sense
in the FL scenario because the clients often have limited com-
putation and communication resources. Our approach has the
following novelties. First, we propose a probabilistic L,-norm
check method that decreases the cryptographic operation cost
of proof generation and verification from O(d) to O(d/logd).
The intuitive idea is to sample a set of public vectors and let
each client generate proofs with respect to the inner prod-
uct between its update and each public vector, instead of
checking the Lp-norm of the update directly. This allows us
to reduce the proof generation and verification time signifi-
cantly. Second, we devise a hybrid commitment scheme based
on Pedersen commitment [42] and verifiable Shamir secret
sharing commitment [19, 46], ensuring Byzantine-robustness
while achieving further performance improvement on the
client computation. Third, although we consider the L,-norm
check, the proposed approach can be easily extended to vari-
ous Byzantine-robust integrity checks [5, 11,48, 54] based on
different Lr-norm variants, such as cosine similarity, sphere
defense [48], and so on.

In summary, we make the following contributions.

* We propose a novel and highly efficient federated learn-
ing solution RiseFL that simultaneously ensures each
client’s input privacy and input integrity.

* We present a probabilistic Lp-norm integrity check
method and a hybrid commitment scheme, which sig-
nificantly reduces the ZKP generation and verification
costs.

* We provide a formal security analysis of RiseFL and the-
oretically compare its computational and communication
costs with state-of-the-art solutions.

* We implement RiseFL and evaluate its performance with
a set of micro-benchmark experiments as well as FL
tasks on two real-world datasets. The results demonstrate
that RiseFL is effective in detecting malformed updates
and is up to 53x and 164x faster than RoFL [9] and
EIFFeL [45] for the client computation, respectively.

The rest of the paper is organized as follows. Section 2
introduces preliminaries and Section 3 presents an overview
of our solution. We detail the system design in Section 4 and
analyze the security and cost in Section 5. The evaluation
is provided in Section 6. We review the related works in
Section 7 and conclude the paper in Section 8.

2 Preliminaries

We first describe the notations used in this paper. Let G de-
note a cyclic group with prime order p, where the discrete
logarithm problem [44] is hard. Let Z, denote the set of in-
tegers modulo the prime p. We use x, X, and X to denote a
scalar, a vector, and a matrix, respectively. We use Enck (x)
to denote an encrypted value of x under an encryption key K,
and Deck (y) to denote a decrypted value of y under the same
key K. Since the datasets used in machine learning (ML) are
often in the floating-point representation, we use fixed-point
integer representation to encode floating-point values.

2.1 Cryptographic Building Blocks

Pedersen Commitment. A commitment scheme is a crypto-
graphic primitive that allows one to commit a chosen value
without revealing the value to others while still allowing the
ability to disclose it later [24]. Commitment schemes are
widely used in various zero-knowledge proofs. In this pa-
per, we use the Pedersen commitment [42] for a party to
commit its secret values. Given the independent group el-
ements (g,h), the Pedersen commitment encrypts a value
x€Zp, to C(x,r) = g'h", where r € Z, is a random num-
ber. An important property of the Pedersen commitment is
that it is additively homomorphic. Given two values x,x
and two random numbers ry, 7, the commitment follows:
C(x1,r1)-C(xp,rn) =C(x1 +x2,11 +12).

Verifiable Shamir’s Secret Sharing Scheme. Shamir’s #-
out-of-n secret sharing (SSS) scheme [46] allows a party to
distribute a secret among a group of n parties via shares so



that the secret can be reconstructed given any ¢ shares but
cannot be revealed given less than ¢ shares. The SSS scheme
is verifiable (aka. VSSS) if auxiliary information is provided
to verify the validity of the secret shares. We use the VSSS
scheme [19,46] to share a number r € Z,. Specifically, the
scheme consists of three algorithms SS.Share, SS.Verify, and
SS.Recover.

* ((1,r1),...,(n,ry),¥) < SS.Share(r,n,t,g). Given a
secret r € Zy, g € G, and 0 <t < n, this algorithm outputs a
set of n shares (i,r;) fori € [n] and a check string ¥ as the
auxiliary information to verify the shares. Specifically,
it generates a random polynomial f in Z, of degree at
most ¢ — 1 whose constant term is r. We set r; = f(i) and
Y= (g’,gf' een ,ng) where f; is the i-th coefficient.

* r< SS.Recover({(i,r;)}:i€A). For any subset A c [n]
with size at least ¢, this algorithm recovers the secret r.

 True/False < SS.Verify(W,i,r;,n,t,g). Given a share
(i,r;) and the check string P, it verifies the validity of
this share such that it outputs True if (i,r;) was indeed
generated by SS.Share(r,n,t,g) and False otherwise.

This scheme is additively homomorphic in both the shares and
check string. If ((1,r1),...,(n,r,),¥,) < SS.Share(r,n,t,g)
and ((1,s1),...,(n,s,),¥s) < SS.Share(s,n,t,g), then:

e r+s < SS.Recover({(i,r; +s;)} :i€A) for any subset
A c [n] with size at least 7,

* True < SS.Verify (¥, - Wy, i,r; +si,n,1,8).

Zero-Knowledge Proofs. A zero-knowledge proof (ZKP)
allows a prover to prove to a verifier that a given statement is
true, such as a value is within a range, without disclosing any
additional information to the verifier [6]. We utilize two ZKP
protocols based on Pedersen commitment as building blocks.

The first ZKP protocol is the X-protocol [10] for proof
of square and proof of relation. For proof of square
((x,r1,m2),(31,y2)), denote g, h € G the independent group el-
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ements, and let y; = g*4"! and y, = g* h"2 be the commitments,
where x, 71,1 € Z, are the secrets. To handle the square in
power, we rewrite y; = y{42"2~"1*. The function GenPrfSq()'

generates a proof T that (y1,y;) is of the form (g*h"! ,gxzhrz)
for x,ry,ry € Z,. Accordingly, the function VerPrfSq() ver-
ifies this proof based on (yi,y»). For proof of a relation
((r,v,5),(z,€,0)), denote g,q,h € G the independent group
elements, and we let z=g", e = g"h", 0 = g"¢’ be the commit-
ments, where r,v,s € Z, are the secrets. Then, the function
GenPrfWf() generates a proof T that (z,e,0) is of the form
(g",8""",g"q") given x,r and s, and the function VerPrfWf()
verifies the proof T according to (z,e,0).

'We detail the GenPrfSq(), VerPrfSq(), GenPrfWf(), VerPrfwf()
functions with batch forms in Algorithms 5-8 in Appendix A.1, respectively.
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Figure 2: An overview of the proposed RiseFL system.

The second ZKP protocol used is the Bulletproofs proto-
col [8] for checking the bound of x = (x1,...,x;) in the vector
of Pedersen commitments y = (g"14'1,..., g%h’*). To gener-
ate and verify a proof that x; € [0,2”) for every j = {1,...,k},
we express x; in binary: x; = zf?gol xj,-Zi, each x;; € {0,1}.
Then, we use group elements f € G to commit xj;and xj;—1
for each j={1,...,k} and each i € {0,---,;b— 1}, and use the
algorithm in [8] to prove and check that x j;(xj; —1) = 0. We de-
note GenPrfBd(g,h,f,b,y,x,r) and VerPrfBd(g,h,f,b,y,T)
the proof generation and verification functions for a statement
that x; € [0,2) for every j, and refer the interested readers
to [8] for more details.

3 System Overview

In this section, we present the system model and threat model,
and give an overview of the proposed RiseFL system to ensure
input privacy and input integrity.

3.1 System Model

There are n clients {Cy,---,C, } and a centralized server in the
system. Each client C;(i € [1,n]) holds a private dataset D; to
participate in the federated learning (FL) process for training
an FL model M. Let d be the number of parameters in M.
In each iteration, the training process consists of three steps.
Firstly, the server broadcasts the current model parameters
to all the clients. Secondly, each client C; locally computes a
model update (i.e., gradients) u; given the model parameters
and its dataset D;, and submits u; to the server. Thirdly, the
server aggregates the clients’ gradients to a global update
U = Yie[1,,)W and updates the model parameters of M for
the next round of training until convergence.

3.2 Threat Model

We consider a malicious threat model in two aspects. First,
regarding input privacy, we consider a malicious server (i.e.,
the adversary) that can deviate arbitrarily from the specified
protocol to infer each client’s uploaded model update. Also,
the server may collude with some of the malicious clients to



compromise the honest clients’ privacy. Similar to [45], we do
not consider the scenario that the server is malicious against
the input integrity because its primary goal is to ensure the
well-formedness of each client’s uploaded update. Second,
regarding input integrity, we assume there are at most m ma-
licious clients in the system, where m < n/2. The malicious
clients can also deviate from the specified protocol arbitrarily,
such as sending malformed updates to the server to poison
the aggregation of the global update, or intentionally marking
an honest client as malicious to interfere with the server’s
decision on the list of malicious clients.

3.3 Problem Formulation

We aim to ensure both input privacy (for the clients) and input
integrity (for the server) under the threat model described in
Section 3.2. Our problem is similar to the secure aggregation
with verified inputs (SAVI) problem in [45], but relaxing the
input integrity check for efficiency. Definition | formulates
our problem, namely (D, F')-relaxed SAVL

Definition 1. Given a security parameter X, a function D :
RY - R satisfying that u is malicious if and only if D(u) > 1,
a function F : (1,+00) = [0,1], a set of inputs {uy,-,u,}
Sfrom clients C = {Cy,...,C,} respectively, and a list of honest
clients Cy, a protocol 1 is a (D, F)-relaxed SAVI protocol

for Cy if:

* Input Privacy. The protocol 11 realizes the ideal functional-
ity F such that for an adversary A that consists of the mali-
cious server and the malicious clients Cy; = C \Cy attacking
the real interaction, there exist a simulator S attacking the
ideal interaction, and

|Pr[Realmy 4 ({uc, }) = 1] -Pr[Idealr s (Un) = 1]| < negl(x),

where Uy = Y.c.ccp, Wi

Input Integrity. The protocol I1 outputs ¥.c.cc., ., Wi With
probability at least 1 —negl(x), where Cy € Cyapia. For any
malformed input u ; from a malicious client Cj, the proba-
bility that it passes the integrity check satisfies:

Pr[C; € Cvaiia] < F(D(u;)).

For input privacy in Definition 1, it achieves the same pri-
vacy level as that in EIFFeL [45], ensuring that the server
can only learn the aggregation of honest clients’ updates. For
input integrity, Definition | relaxes the integrity check by in-
troducing a malicious pass rate function F'. F is a function that
maps the degree of maliciousness of an input to the pass rate
of the input. The degree of maliciousness is measured by the
function D. For instance, with an Ly-norm bound B, a natural
choice is D(u) = ||u||2/B. Intuitively, the higher the degree of
maliciousness, the lower the pass rate. So F is usually decreas-
ing. Our system also satisfies limsup,_, , .. F (x) < negl(k),

Algorithm 1 Probabilistic L,-norm bound check

Input: ue Rd, B, k, ¢

Qutput: “Pass” or “Fail”

Sample ay, ..., a; e RY i.i.d. from N'(0,1,)

Compute i ¢ which satisfies that PrtNx]% [f<Yie]=1-¢

if Y5, (a;,u)? < By, ¢ then
Return “Pass”

else
Return “Fail”

end if

which means that any malicious client’s malformed update
whose degree of maliciousness passes a threshold can be de-
tected with an overwhelming probability, ensuring robustness
of the system. When F = negl(x), a protocol that satisfies
(D, F)-relaxed SAVI will also satisfy SAVL

3.4 Solution Overview

To solve the problem in Definition 1, we propose an efficient,
robust, and secure federated learning system RiseFL. It toler-
ates m < n/2 malicious clients for input integrity, which means
the server can securely aggregate the clients’ inputs as long as
a majority of the clients are honest. Figure 2 gives an overview
of RiseFL, which is composed of a system initialization stage
and three iterative rounds: commitment generation, proof gen-
eration and verification, and aggregation. In the initialization
stage, all the parties agree on some hyper-parameters, such as
the number of clients n, the maximum number of malicious
clients m, the security parameters (e.g., key size), and so on.

In each iteration of the FL training process, each client
Ci(i € [n]) commits its model update u; using the hybrid com-
mitment scheme based on Pedersen commitment and verifi-
able Shamir’s secret sharing (VSSS) in Section 4.2, and sends
the commitment to the server and the secret shares to the
corresponding clients. In the proof generation and verifica-
tion round, there are two steps. In the first step, each client
verifies the authenticity of other clients’ secret shares. For
secret shares that are verified to be invalid, the client marks
the respective clients as malicious. With the marks from all
clients, the server can identify a subset of malicious clients. In
the second step, the server uses a probabilistic integrity check
method presented in Section 4.3 to check each client’s update
u;. Next, the server filters out the malicious client list C* and
broadcasts it to all the clients. In the aggregation round, each
client aggregates the secret shares from clients C;(j ¢ C*)
and sends the result to the server. The server can reconstruct
the sum of secret shares and securely aggregate the updates
u;(j ¢ C”) based on the Pedersen commitments.



1. The client and server agree on independent g,q € G, w € G¢, f e G**max the bound By of sum of squares of inner
products, the maximum number of bits bmay of By, the number of bits of each inner product b, < bmax.

2. The client sends z; = g" € G and y; = C(u;,7;) € G? to the server.

3. The server randomly samples ag € Zf, from the uniform distribution, aj,...,a; € Zz from the discrete normal distribution
and sends A to the client, where A is the (k+ 1) x d matrix whose rows are ay, . .., a.

4. The server computes A, = [T, w" for ¢ € [0,k] and sends h = (h, ..., k) to the client.
5. The client generates a proof m < GenPrf(g,q,W,f,biy,bmax, Bo, A, h, z;, ri,u;) by Algorithm 3 and sends 7 to the server.
6. The server checks 7 using VerPrf(g,q,w.f,bip, bmax, Bo, A, h,z;,y;,T) in Algorithm 4.

Figure 3: Probabilistic input integrity check between the server and one client.

4 RiseFL Design

In this section, we describe our system design. We first present
the rationale of the protocol in Section 4.1. Then, we introduce
the hybrid commitment scheme and probabilistic integrity
check method in Sections 4.2 and 4.3, respectively. Finally,
we detail the protocol in Section 4.4.

4.1 Rationale

The most relevant work to our problem is EIFFeL [45], which
also ensures input privacy and integrity in FL training. How-
ever, its efficiency is extremely low and, thus, is impractical to
be deployed in real-world systems. For example, under the ex-
periment settings in Section 6, given 100 clients and 1K model
parameters, EIFFeL takes around 15.3 seconds for proof gen-
eration and verification on each client. More severely, the
cost is increased to 152 seconds when the number of model
parameters d is 10K. The underlying reason lies in that the
complexity of its proof generation and verification is linearly
dependent on d, making EIFFeL inefficient and less scalable.
We shall detail the cost analysis of EIFFeL in Section 5.2.
The rationale behind our idea is to reduce the complexity of
expensive group-exponential computations in ZKP generation
and verification. To do so, we design a probabilistic Ly-norm
integrity check method, as shown in Algorithm 1. The intu-
ition is that, instead of generating and verifying proofs for the
L,-norm of an update |[ul|,, where u € R?, we randomly sam-
ple k points ay, ..., a; from the normal distribution N'(0,1,).
Then, the random variable:
1 k
—5 > (aiu)’ (1)

[Jullz =
follows a chi-square distribution xi with k degrees of free-
dom (see Lemma 1). In Algorithm 1, if |[ul|, < B, then the
probability that u passes the check is at least 1 —€ (Lemma 4),
where € is chosen to be cryptographically small, e.g. 2728,
In this way, the probability that the client fails the check is
of the same order as the probability that the client’s encryp-
tion is broken. We shall present the detailed constructions

of proof generation and verification based on this method
in Section 4.3. Moreover, we propose a hybrid commitment
scheme to efficiently support this probabilistic check method,
as will be presented in Section 4.2. As a consequence, we can
significantly reduce the cryptographic operation costs from
O(d) to O(d/logd).

4.2 Hybrid Commitment Scheme

We first introduce our hybrid commitment scheme that will be
used in the probabilistic check method. After each client C;(i €
[n]) computes the local update u;, it first needs to commit
u; to the server before generating the proofs. Assume that
the clients and server agree on independent group elements
g Wi,...,wq € G, where w;(j € [d]) is used for committing
the j-th coordinate in u;. Then, C; generates a random secret
ri € Zp and encrypts u; with Pedersen commitment as follows:

C(ui7ri) = (C(ui17ri)7" 'aC(uid7ri))
= (8" w8 wy), )

where u;; is the j-th coordinate in u;. Each client C; sends
y; =C(u;,r;) and z; = g"1 to the server as commitments. Given
that r; is held by each client C;, the server knows nothing
regarding each update u;.

To facilitate the server to aggregate well-formed up-
dates, we also require each client C; to share its secret
r; with other clients using VSSS. Specifically, C; com-
putes ((1,71),...,(n,rin),¥;,) < SS.Share(ri,n,m +1,g)
and sends ((j,7i;),¥,,) to C;. Note that g'" = ¥,,(0). The
secret r; allows the server to correctly aggregate the updates
from honest clients. Let C;; be the set of honest clients identi-
fied by the server and clients (we will discuss how the server
and clients collaboratively identify this set in Section 4.4).
The server can compute U = ZC,-eCI; u; as follows. First, the



Algorithm 2 VerCrt(w,h,A)

Algorithm 3 GenPrf(g,q, w,f,biy, bmax, Bo,A h,z,r,u)

Input: w=(wy,...,wg) €G4 h=(ho,...,h) e Z8) Ae
Mgs1yxa(Zp)-

Randomly Sample b = (b, ...,b;) € Z’;”.

Compute ¢ = (cy,...,¢q) =b-Ac« Z%.

bo b __ . c1 Cd
return h0 ...hk =w...w/.

server aggregates the commitments from Cj; by:

C(uar) = (Hciéc;; C(Ll[],r,'),. "7HCI.€C;'I C(uidari))

ZC,-GC* uj1 ZCieCI’fI Ti ZCveC* Uiq Zciec;; Ti
H “n w, )

:(g W1 yeer8
= (8" wi,....8"wy), (©)

where r = Zcie% r;. Note that r can be computed by the clients

in Cf; using secure aggregation. That is, for each client C; €
Cj;. it sums the secret shares r} = chec;; rj; and sends it to

the server. The server checks the integrity of each r/ against
chéc; ;;, and uses the ones that pass the check to recover

r'. According to the homomorphic property of VSSS, ' =r.
Consequently, with the knowledge of r, the server computes
g" for [ € [d] and solves u; according to Eqn 3, which is the
aggregation of the /-coordinate in honest clients’ updates.

4.3 Probabilistic Input Integrity Check

Next, we present how the server and clients execute the prob-
abilistic integrity check. Suppose the server and clients agree
on some necessary parameters, including the number of sam-
ples k in Eqn | for the probabilistic L,-norm check. We will
discuss the effect of the choice of k in Section 5.1.

Without loss of generality, we describe the check for one
client C;, as summarized in Figure 3. The client first sends the
commitments z; = g" and y; = C(u;, ;) to the server using the
hybrid commitment scheme. Then, the server randomly gener-
ates k+ 1 random samples, say ag,...,a; € ZZ. ag is sampled
from the uniform distribution on Z, with cryptographically
secure pseudo-random number generator (PRNG) for check-
ing the integrity of Pedersen commitments y;. ay,...,a; are
sampled from the discrete normal distribution with insecure
PRNG for fast execution of probabilistic check in Algorithm 1.
After that, the server computes h, = [T, w" for 7 € [0,k]. Let
A =(ag,a;,-,a;) and h = (ho,hy,---, hy). The server sends
{A,h} to the client.

Upon receiving the information, the client generates the
proof T using Algorithm 3. Specifically, the client first verifies
the correctness of h using VerCrt(w,h,A) from Algorithm 2.
This is to ensure that the server does not steal information
from the client by sending incorrect h. Note that Algorithm 2
uses batch verification to accelerate the verification of &, =
I, w?” for t € [0,k]. If it is correct, the client computes the

Input: g,q,z€ G, we G, f e G*Pmax_ b < byax, By €
(0,2m>], A € M4y 1ya(Zp), he GE*D)  re 7, ueZd,
if not VerCrt(w,h,A) then
Abort
end if
Compute v* = u-AT e le‘,“. Denote v* = (vp,...,v), and
letv=(v,...,v).
Compute ¢; = g"h) forr € [0,k], and let e = (e, ey, ..., ex).
Randomly sample s,s’ € G¥.
2 1

Compute o, = g"q", 0] = g" ¢* fort € [1,k].
Compute p < GenPrfWf(g,q,h,z,e,0,r,v* s).
Compute T < GenPrfSq(g,q,0,0,v,s,s’).

bin—1
Compute & < GenPrfBd(g,q,f,bip,g> © -0,v+2%e~1.
1,s).
Compute u < GenPrfBd(g,q,f,bmax, g% (115, 0}) ™", B -
S Vi = 2 8)-
return 7= (e,0,0',p,T,0,u).

Algorithm 4 VerPrf(g,q,w.£,bip,bmax, Bo,A,h,z,y,T)

Input: g G, g G, we GY, fe G bmax, bip < bmax, Bo €
(0,2Pm], A € M4 1yxa(Zp), h e GF, y e G*, .
Unravel 7t = (e,0,0’,p,T,0,u).
return VerCrt(y,e,A) and
VerPrfWf(g,q,h,z,e,0,p) and
VerPrfSq(g,q,0,0’,7) and

VerPrde(g,q,f,b;p,gzbip_] -0,0)) and
VerPrfBd(g,q,£, bmax, 8% (111 0]) ' 1)

following items for generating the proof that Eqn 1 is less
than a bound, based on Algorithm 1.

* The client computes the inner products between u; and each
row of A, obtaining v* = (vo, vy, -, ), where v, = (a,,u;)
for ¢ € [0,k]. The client commits e, = g" h;’ using its secret
r; for t € [0,k]. Let e* = (ep,e1, -, ex) and € = (eq,---, e ).
The commitment ey is used for integrity check of y;. The
commitments e are used for bound check of v.

e Letv=(vy,,v). The client commits v, using o; = g" ¢*
for ¢ € [1,k], where s, is a random number. Let o =
(o1,-+,0r) be the resulted commitment. ¢, and o, commit to
the same secret v, using different group elements %, and q.
As aresult, oq,...,0; use the same group element ¢, ready
for batch square checking and batch bound checking.

The client further commits o/ = g”l2 g forte [1,k], where
s; is a random number. Let o' = (0],--,0;) be the resulted
commitment. This commitment will be used in the proof
generation and verification for proof of square.

The client generates a proof p to prove that (z,e*,0) is well-



formed, which means that the secret in z is used as the blind
in e, t € [0,k], and that the secrets in ¢, and o, are equal,
t € [1,k]. Note that z = g"' = ¥,. (0) is the 0-th coordinate of
the check string of Shamir’s share of r;.

* The client generates a proof T to prove that the secret in
o} is the square of the secret in o, for ¢ € [1,k], using the
building block described in Section 2.1.

» The client generates a proof ¢ that the secret in o is in
the interval [-2%p, 2% for ¢ € [1,k]. This ensures the inner
product of a; and u; does not cause overflow when squared.

« The client generates a proof u that B— Y, v? is in the interval
[0,2bmax) using the commitment gZ([],0/)~!. This proof
is to guarantee that Eqn | is less than the bound of the
probabilistic check.

As aresult, the client sends the proof 7t = (e,0,0",p,7,0,u)
to the server. After receiving the proof, the server can ver-
ify it accordingly, including: checking the correctness of
arl

e = I1;y}/"s t €[0,k] using Algorithm 2, checking the well-
formedness proof p using Algorithm 8 in Appendix A.l,
checking the square proofs of (0’,0), and checking the two
bound proofs. If all the checks are passed, the server guaran-

tees that the client’s update passes the check in Algorithm 1.

4.4 Protocol Description

We present the full protocol of RiseFL in Figure 4, including a
system initialization stage, followed by three iterative rounds.

System Initialization. All parties are given the system pa-
rameters, including the number of clients n, the maximum
number of malicious clients m, the bound on the number of
bits b, of each inner product, the maximum number of bits
bmax > bjp, of the sum of squares of inner product, the bound of
the sum of inner products By < 2bmax | the number of samples
k for the probabilistic check, a set of independent group ele-
ments g € G,q € G,weG? fe G*Pmax the factor M > 0 used
in discretizing the normal distribution samples, and a crypto-
graphic hash function H(+). Since there is no direct channel
between any two clients, we let the server forward some of
the messages. To prevent the server from accessing the secret
information, each client C;(i € [n]) generates a public/private
key pair (pk;,sk;) and sends the public key pk; to a public bul-
letin. Then, each client fetches the other clients’ public keys
such that each pair of clients can establish a secure channel via
the Diffie-Hellman protocol [37] for exchanging messages.

Round 1: Commitment Generation. In every FL training
iteration, each client C; generates a random number 7; as the
secret. Then, C; adopts the hybrid commitment scheme in
Section 4.2 to commit its update u; using Eqn 2, obtaining
y; = C(u;,r;). Also, it generates the secret shares of ; using
VSSS, obtaining ((1,7;1),...,(n,rin), ¥y ), and encrypts each
share r;; (Vj e [1,n] A j # i) using the encryption key based

on (pkj,sk;). Next, C; sends the encrypted shares Enc(r;;)
and the check string ¥,, to the server. Afterward, the server
forwards the encrypted shares to respective clients and broad-
casts the check strings to all the clients. In addition, the server
initializes a list C* = & for the current iteration to record the
malicious clients that will be identified in the following round.

Round 2: Proof Generation and Verification. In this round,
the clients and the server jointly flag the malicious clients
in two steps. The first step is to verify the authenticity of
secret shares. After receiving the encrypted shares Enc(r;;)
and check strings ¥, for j e [1,n], each client C; decrypts
rji and checks against ¥, . Then, C; sends a list of candidate
malicious clients that do not pass the check to the server. The
server follows two rules to flag the malicious clients [45]:
(1) if a client C; flags more than m clients as malicious or is
flagged as malicious by more than m clients, the server puts
Ci to C*; (2) if a client C; is flagged as malicious by [1,m]
clients, the server requests the shares r;; in the clear for all
C; that flags C; and checks against ¥, if the clear r;; fails
the check, the server puts C; to C*. This ensures that if C; is
honest, then C; passes the check and its clear r;; is sent only
for malicious C; and at most m clear text shares are sent.

The second step is to verify the integrity of each client’s up-
date using the probabilistic method. Note that in Section 4.3,
we require the server to send k + 1 random samples with di-
mensionality d to the client. To reduce the communication
cost, we let the server select a random value s and broadcast it
to all clients. Based on s, the server and each client C;(i € [n])
first compute a seed H (s, { pk; }1<i<n) using s and all clients’
public keys. Hence, the clients and the server can generate
the same set of random samples A = (ag,ay,---,a;) because
the seed is the same. Then, the server computes h (see Sec-
tion 4.3) and broadcasts it to all clients. Next, each client
Ci(i€[1,n]) generates A, computes the proof m; according
to Algorithm 3, and sends 7; to the server. Consequently, the
server verifies the proof of each client C; and puts it to C* if
the verification fails. The list C* is broadcast to all the clients.

Round 3: Aggregation. In this round, each client C; selects
the corresponding shares from C; ¢ C*, aggregates them to
get r{, and sends r/ to the server. The server uses SS.Verify to
verify the integrity of each r] and uses SS.Recover with the
ones that pass the integrity check to recover ch¢c* r;. There-
fore, the server can solve the equation in Eqn 3 to compute
the aggregation of honest clients’ updates.

S Analysis

5.1 Security Analysis

Theorem 1. By choosing € = negl(k) and By = B>M*( /Yie +

T A]}d )2, for any list of honest clients Cy of size at least n—m,



¢ System Initialization.

- All parties are given the client number 7, the maximum malicious client number m, the bit number b;, for inner
products, the maximum bit number bp,ax > bip, the sum bound of the inner products By < 2bmax  the sample number k,
group elements g,q € G, we G¥ and f e G**max the factor M used in discretizing the normal distribution samples.

Each client C;(i € [1,n]):
- Generates a key pair (pk;,sk;) and sends pk; to the public Bulletin and fetches other clients’ public keys.
* Round 1 (Commitment Generation).
Each client C;(i € [1,n]):
- Generates a random secret r; and commits its update w; with y; = C(u;,r;) = (g"'wY', ..., g"4w’)).
- Computes the verifiable secret shares of r;: {(1,7;1),...,(n,rin), ¥, } < SS.Share(r;,n,m+1,g).
- Encrypts each share r;; with the symmetric key (pk;,sk;) for client C;(j € [1,n]).
- Sends the commitment y;, the encrypted share Enc(r;;)(j € [1,n]), and the check string ¥, to the server.
Server:
- Initializes the malicious client list C* = &, sends the encrypted shares Enc(r;;)(i € [1,n]) to client C;, and broadcasts
the check strings W, (i € [1,n]) to all clients.
¢ Round 2 (Proof Generation and Verification).
(i) Verify the authenticity of secret shares:
Each client C;(i € [1,n]):
- Downloads the check strings '¥,; and the encrypted Enc(r;;) for j € [1,n] from the server.
- Decrypts rj; using (pkj,sk;), checks rj; against ‘P';;, and sends the list of clients that fail the check to the server.
Server:
- If client C; flags more than m clients or more than m clients flag client C;, puts C; into C*.
- For a client C; that receives [1,m] flags, the server requests r; ; (in clear) for all C; that flags C; and checks them
against V,,. If any of the clear r;; does not pass the check, puts C; into C*; else, sends r;; (in clear) to C;.
(ii) Verify the Ly-norm of each client’s update:
Server:
- Generates a random number s and sends s to all the clients.
- Randomly samples ay € Zﬁ that follows the uniform distribution using H (s, ( pk;)1<i<n) as the seed.
- Randomly samples a; € Zﬁ for t € [1,k] that follows N (0,M?) and rounded to the nearest integer using
H (s, (pki)i<i<n) as the seed. Let A be the (k+ 1) x d matrix whose rows are ay, ..., ay.
- Computes h, = [T;w" for  =[0,k] and sends h = (ho,h1, ..., k) to all the clients.
Each client C;:
- Computes A using H (s, (pk;)1<i<n) as the seed.
- Computes 7; < GenPrf(g,q,w.f,bip,bmax, Bo, A, h, ¥, (0),r;,u;), and sends 7; to the server.
Server:
- Uses VerPrf(g,q,w.f,bip, bmax, Bo, A, h,¥,,(0),y;,m;) to verify Client i’s proof. Puts i into C* if check fails.
* Round 3 (Aggregation of Clients’ Updates).
Each client C;(i € [1,n]):
- Receives C* from the server and sends the aggregated share r{ = ), jec T'ji to the server.
Server:
- Sets R = @. Until R has size m+ 1: for each C; ¢ C*, checks r! using SS.Verify(I’ICjéc* W, i,rj,n,m+1,g), puts i
into R if check passes. Reconstructs ' < SS.Recover({(i,r]) :ie R}).

ZC,-éC* uj

- Foreach [ €[1,d], computes g = wl_’, [c,ec+ yi and solves Yc.gcx i

Figure 4: The overall description of the proposed RiseFL protocol.




RiseFL satisfies (D, F.¢.q.m)-SAVI, where D(u) = ||u||>/B and

2
1 3Vkd
Fk,E,d,M(c) = PrxNX]% lx < 07 (\ /'ijg + 2]‘4) ] +neg1(K).

“)

The security proof is composed of several parts. In the fol-
lowing, we outline the proof structure and defer the complete
proof to Appendix A.3.4.

Lemma | states that the sum of inner products of normal
distribution samples follows the chi-square distribution. Lem-
mas 2-3 bound the rounding errors occurring in discretizing
the normal distribution samples.

Lemma 1. Suppose that u e R~ {0} and a,...,a; are
sampled i.i.d. from the normal distribution N'(0,1;). Then,
m Zle (a;,u)? follows the chi-square distribution X%

Proof. In Appendix A.2.1. O

Lemma 2. Suppose that u € R? and |ju|, < B. Define round :
R —Z by round(n+a) =nforneZ, —1/2 << 1/2. Suppose
thatby,... b € R? satisfy that

(b;,u)> < B*M°r. (5)

M=

t=1

Define a; by a;j = round(b;;) fort € [1,k]. Then

k N7A%
2 <B’M? — . 6
;(at,w < Ve (6)
Proof. In Appendix A.2.2. U

Lemma 3. Suppose thatu € RY and ||u||> > B. Define round as
in Lemma 2. Suppose that by ,. .. by € R? and a; is defined by
a;j = round(by ) for t € [1,k]. Suppose that ¥¥_, (a,,u)? < By.
Then,

2
L , M 3 /id
- b u) < —— +7\/ . ;
||u||%;< ! > D(ui)z (\/% M 7
Proof. In Appendix A.2.3. -

We prove input integrity and input privacy separately. For
integrity, we need to prove that: (1) an honest client has a
negligible failure rate (Lemma 4); (2) a malicious client’s
pass rate is bounded by Fj ¢ 4 i (Lemmas 5-6); and (3) the
output is the correct aggregation (Lemma 7).

Lemma 4. If C; is honest, then the probability that u; passes
the integrity check is at least 1 —¢€.

Proof. In Appendix A.3.1. O

Lemma 5. The probability of C; passing the integrity check
without committing to wu; satisfying ¥*_,(a,,u;)> < By is
negl(x).

1.0 v1.8
— k=1K | 8

S8 k=3K | 516
<06 — k=K | T
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204 ]
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é
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Figure 5: The effect of k when € = 27128 7=10% M = 224. (a)
the trend of Fy¢ 4 W.r.t. k; (b) the trend of the maximum
damage w.r.t. k.

Proof. In Appendix A.3.2. O

Lemma 6. If C; is malicious with |juj||x > B, then the
probability that u; passes the integrity check is at most

Freeam(D(ui)).

Proof. In Appendix A.3.3. O

Lemma 7. With probability at most 1 —negl(x), the protocol
OUIPULS Y. c,ecy g Wi WheTe Cu < Cvalid-

Proof. By Lemma 4, the probability that every honest client
passes the integrity check is at least 1 —negl(x). The probabil-
ity that at least one malicious client breaks VSSS is negl(x).
If VSSS is not broken and every honest client passes the in-
tegrity check, the protocol outputs Y¢ cc, .., Wi and Cr € Cvalid
as Shamir’s secret sharing is additively homomorphic. O

In terms of input privacy, we prove in Lemma 8 that nothing
except the aggregation of honest updates can be learned.

Lemma 8. If Cy is a list of honest clients with size at least
n—m, then with probability at least 1 —negl(x), nothing except
Yc;ecy, Wi is revealed from the outputs of Cy.

Proof. Cryptographically, the values of ¥,,, C(u;,r;), and ;
do not reveal any information about x; or r;. VSSS ensures
that nothing is revealed from the < m shares {r;;}j¢c, of
the secret r;. At Round 3, VSSS ensures that only Y ¢ cc,, 7i is
revealed. From } ¢ cc,, 1, the only value that can be computed

is ZC,—ECH u;. O]

Discussion. Now we discuss the effect of k on Fj ¢ 4 37 and the
maximum damage, as illustrated in Figure 5. We set € = 27128
by default in this paper. We set M = 2%* so that when k < 10*
and d < 10°, the term % is insignificant in Eqn 4. Figure 5a
shows the trend of Fy ¢ 4 With d = 10° and different choices
of k. We can see that Fy¢ 4 (c) is very close to 1 when
c is slightly bigger than 1, and drops rapidly to negligible
as ¢ continues to increase. That means for instance, when
k = 1000, a malicious w; with ||u;|]> < 1.2B will very likely



Table 1: Cost comparison (g.e. = group exponentiation, f.a. = field arithmetic)

EIFFeL RoFL RiseFL
g.e. f.a. g.e. f.a. g.e. f.a.

commit. O(md) O(nmd) o(d) small o(d) small
Client proof gen. 0 O(bnmd) 0(db) small O(d/logd) O(kd)
comp.  proof ver. O(nmd/log(md)) O(bnmd) 0 0 0 0

total O(md(1+n/log(md))) O(bnmd) 0(db) small o(d) O(kd)

prep. 0 0 0 0 O(kdlogM/logdlogp) small
Server proof ver. 0 small | O(ndb/log(db)) small O(nd/logd) small
comp.  ao0. 0 O(nmd) O(nd/logp)  small O(nd/logp) small

total 0 O(nmd) | O(ndb/log(db)) small | O(d(n+klogM/logp)/logd) small
Comm. per client ~ 2dnb elements ~ 12d elements ~ d elements

pass the integrity check, but when ||ju||; > 1.4B, the check
will fail with close-to-1 probability.

This is the downside of the probabilistic L,-norm checking:
slightly out-of-bound vectors may pass the check. We can
quantify the size of damage caused by such malicious vectors.
For example, with strict checking, a malicious client can use
a malicious u with |jul|, = B, which passes the check, so it
can do damage of magnitude B to the aggregate. With the
probabilistic check, the malicious client can use slightly larger
|lu||> at a low failure rate. The expected damage it can do to
the aggregate is |[u||2 - Fy¢.a.m(][u|l2/B), and by choosing a
suitable ||ul|,, the maximum expected damage is

B-max{c-Fyeam(c):ce(l,+00)}. 8)
Figure 5b shows the maximum expected damage with respect
to k when B = 1. It turns out that with € = 2728 and k > 103,
the maximum expected damage is close to 1. In other words,
the magnitude of damage that a malicious client can do to the
aggregate is only slightly more than the one under the strict L;-
norm check protocol. We will experiment with k = 1K, 3K,9K
in Section 6, corresponding to the ratio of the magnitudes of
damages 1.24, 1.13, 1.08, respectively.

5.2 Cost Analysis

We theoretically analyze the cost of RiseFL under the as-
sumption that d >> k by comparing it to EIFFeLL and RoFL,
as summarized in Table 1, where we count the number of
cryptographic group exponentiations (g.e.) and finite field
arithmetic (f.a.) separately.

EIFFeL. The commitment includes the Shamir secret shares
and the check string for each coordinate. The Shamir shares
incur a cost of O(nmd) f.a. operations. The check strings
use information-theoretic secure VSSS? [42], which involves
O(m) group exponentiations per coordinate for Byzantine

2The Feldman check string [19] is not secure because weight updates are
small. u;; can be easily computed from g"il because u;; has short bit-length.
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tolerance of m malicious clients. The proof generation® and
verification® (excluding verification of check strings) costs
O(bnmd) f.a. and about 2dnb elements of bandwidth on
the client side, where b is the bit length of the update. The
verification of the check strings of one client takes a mult-
exponentiation of length (m+ 1)d, or O(md/logmd) g.e. us-
ing a Pippenger-like algorithm [43]. The server cost is small
compared to client cost.

RoFL. It uses the ElGammal [22] commitment (g“i k"1 g"il)
for each coordinate u; with a separate blind r;;, which costs
0O(d) g.e. in total. The dominating cost of proof generation
includes the generation of a well-formedness proof, which
involves O(d) g.e., 4d elements, a commitment and a proof of
squares (O(d) g.e., 6d elements), and a proof of bound of each
coordinate (41log(bd) multi-exponentiations of length bd, or
O(bd) g.e.). The proof verification is executed by the server,
where the verification of the bound proof per client takes 1
multi-exponentiation of length about 2bd. The aggregation
cost is small.

RiseFL (Ours). We use Pederson commitment g“# wir" for
each coordinate, which costs O(d) g.e. in total. The main
cost of ZKP is the sub-protocol in Figure 3. On the client
side, the main cost of proof generation is to verify the cor-
rectness of h received from the server, using VerCrt. It costs
one multi-exponentiation of length d, or O(d/logd) g.e., plus
O(kd) f.a. to compute b-A. On the server side, the main cost
can be divided into two parts: (1) the computation of multi-
exponentiations h at the preparation stage; (2) the verification
of the correctness of e for each client using VerCrt at the proof
verification stage. Each Ay, t € [1,k] is a multi-exponentiation
of length d where the powers are discrete normal samples

3In order to prevent overflow in finite field arithmetic, client C; has to
prove that each u;; is bounded, so it has to compute shares of every bit of u;;.

“We use the multiplicative homogeneity of Shamir’s share to compute
shares of the sum of squares at the cost of requiring that m < (n— 1) /4. This
is discussed in [45, Section 11.1]. The corresponding cost is O(d) per sum of
squares. In comparison, the polynomial interpolation approach in [45, Section
11.1] is actually O(dz) per sum of squares, because one needs to compute
d values of polynomials of degree d, even if the Lagrange coefficients are
precomputed.



Table 2: Breakdown cost comparison w.r.t. the number of model parameters d, where k = 1000

#Param Approach Client Computation (seconds) Server Computation (seconds) Comm. Cost
' commit. proof gen. proof ver. total | prep. proof ver. agg. total | per Client (MB)

EIFFeL. 0.865 3.63 11.7 16.2 - - 0.182 0.182 125

d=1K RoFL 0.051 4.43 - 4.5 - 91.2 0.040 91.3 0.37
RiseFL (ours) | 0.054 1.48 0.08 1.6 | 1.17 75.6 0.071 76.8 0.44

EIFFeL. 8.38 36.8 115 161 - - 1.81 1.81 1250

d=10K RoFL 0.51 46.4 - 46.9 - 860 0.41 860 3.66
RiseFL (ours) | 0.49 1.8 0.08 23 | 8.61 82.5 0.71 91.8 0.71

EIFFeL 84.7 382 1070 1536 - - 18.8 18.8 12500

d =100K RoFL 5.1 496 - 502 - 8559 4.1 8563 36.6
RiseFL (ours) 4.8 4.5 0.08 93 | 733 139 72 219 3.5

EIFFeL. OOM OOM OOM OOM|OOM OOM OOM OOM OOM

d=1M RoFL OOM OOM OOM OOM|OOM OOM OOM OOM OOM
RiseFL (ours) | 48.0 31.2 0.08 79.3 | 653 612 72.1 1338 30.9

from N(0,M?), whose bit-lengths are log(M). The cost of
computing such an %, is O(dlogM/logdlogp), a factor of
logM /log p faster than a multi-exponentiation whose powers
have bit-lengths log p. The verification of e costs O(d/logd)
g.e. The aggregation cost is small.

6 Experiments

We implement the proposed RiseFL system in C/C++. The
cryptographic primitives are based on libsodium® that imple-
ments the Ristretto group® on Curve25519 that supports 126-
bit security. We compile it to a Python library using SWIG’,
and integrate the library into FedML® [26]. The implementa-
tion consists of 9K lines of code in C/C++ and 1.1K lines of
code in Python.

6.1 Methodology

Experimental Setup. We conduct the micro-benchmark ex-
periments on a single server equipped with Intel(R) Core(TM)
17-8550U CPU and 16GB of RAM and the federated learning
tasks on eight servers with Intel(R) Xeon(R) W-2133 CPU,
64GB of RAM, and GeForce RTX 2080 Ti. The default se-
curity parameter is 126 bits. We set € = 27128 to ensure the
level of security of RiseFL matches the baselines. For the
fixed-point integer representation, we use 16 bits to encode
the floating-point values by default. As discussed in Section 5,
we set M = 22* to make sure the rounding error of discrete
normal samples is small.

Datasets. We use two real-world datasets, i.e., MNIST [17]

and CIFAR10 [30], to run the FL tasks for measuring classi-
fication accuracy. The MNIST dataset consists of 70000 28

Shtps://doc.libsodium.org/
Ohttps://ristretto.group/
https://www.swig.org/
8https://github.com/FedML-Al/FedML

11

x 28 images in 10 classes. The CIFAR-10 dataset consists of
60000 32 x 32 color images in 10 classes. We also generate a
synthetic dataset for micro-benchmarking the computational
cost and communication cost.

Models. We employ a CNN model for the MNIST dataset and
ResNet-20 [27] for the CIFAR-10 dataset. The CNN model
consists of four layers and 1.2M parameters. The ResNet-20
model consists of 20 layers and 270K parameters. For the
micro-benchmark experiments on synthetic datasets, we use
synthetic models with 1K, 10K, 100K, and 1M parameters
for the evaluation.

Baselines. We compare RiseFL with two secure aggregation
with verified inputs (SAVI) baselines, namely RoFL [9] and
EIFFeL [45] using the same secure parameter, to evaluate
the performance. Furthermore, we compare RiseFL with two
non-private baselines for input integrity checking to evaluate
the model accuracy. The following describes the baselines:

* RoFL [9] adopts the EIGammal commitment scheme and
uses the strict checking zero-knowledge proof for integrity
check. It does not guarantee Byzantine robustness.

EIFFeL [45] employs the verifiable Shamir secret sharing
(VSSS) scheme and secret-shared non-interactive proofs
(SNIP) for SAVI, ensuring Byzantine robustness. We imple-
ment EIFFeL (see Appendix A.4) as it is not open-sourced.

* NP-SC is a non-private baseline with strict integrity check-
ing. That is, the server checks each client’s update and
eliminates the update that is out of the L,-norm bound.

* NP-NC is a non-private baseline without any checking on
clients’ updates. In this baseline, malicious clients can poi-
son the aggregated models through malformed updates.

Metrics. We utilize three metrics to evaluate the performance
of the RiseFL system.
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Figure 6: Cost comparison w.r.t. the number of clients

* Computational Cost refers to the computation time on each
client and on the server, which measures the computational
efficiency of the protocol.

* Communication Cost per Client refers to the size of mes-
sages transmitted between the server and each client, which
measures the communication efficiency.

* Model Accuracy measures the ratio of correct predictions
for the trained FL model, which is used to measure the
effectiveness of the integrity check method in RiseFL.

6.2 Micro-Benchmark Efficiency Evaluation

We first compare the cost of our RiseFL. with EIFFel. and
RoFL using micro-benchmark experiments. Unless otherwise
specified, we set the number of clients to 100 and the maxi-
mum number of malicious clients to 10 in this set of exper-
iments. We use 16 bits’ for encoding floating-point values
and run the experiments on one CPU thread on both the client
side and the server side.

Effects of d. Tables 2 shows the cost comparison of RiseFL,
EIFFeL and RoFL, w.r.t. the number of parameters d in the
FL model, on the client computational cost, the server compu-
tational cost, and the communication cost per client. We set
the number of samples k£ = 1000. We failed to run the experi-
ments with d = IM on EIFFeL and RoFL due to insufficient
RAM, i.e., out of memory (OOM).

We observe that RiseFL is superior to the baselines when
d >> k. For example, when d = 100K, the client cost of RiseFL.
is 53x smaller than RoFL and 164x smaller than EIFFeL.
Compared to RoFL, the savings occur at the proof generation
stage, which is because of our probabilistic check technique.
The cost of EIFFeL is large as every client is responsible
for computing a proof digest of every other client’s proof
in the proof verification stage, which dominates the cost. In
comparison, the client-side proof verification cost of RiseFL
is negligible since every client C; only verifies the check string

The effect of bit-length on the computational cost of RiseFL is small,
detailed in Appendix A.5.
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of the Shamir share of one value r; from every other client C;.
This is in line with the theoretical cost analysis in Table 1.

On the aspect of server cost, RiseFL is 39x faster than
RoFL when d = 100K, due to our probabilistic check method.
RiseFL incurs a higher server cost than EIFFeL because in
EIFFeL, the load of proof verification is on the client side,
and the dominating cost of the server is at the aggregation
stage. In fact, the total server cost of RiseFL is 7 times smaller
than the cost of EIFFeL of every client.

For communication cost, when d = 100K, RiseFL results
in 16x more than transmitting the weight updates in clear text:
the committed value of a 16-bit weight update is 256-bit long.
The proof size is negligible because k << d. RoFL transmits
about 10x more elements than RiseFL in the form of proofs
of well-formedness and proofs of squares. The communica-
tion cost of EIFFeL is three orders of magnitude larger than
RiseFL as it transmits the share of every bit of every coordi-
nate of the weight update to every other client.

Effects of n. Figure 6 compares the computational
cost and communication cost per client in terms of the
number of clients. We vary the number of clients n €
{50,100, 150,200,250}, and set the number of parameters
d = 100K, and the maximum number of malicious clients
m =0.1n in EIFFeL and RiseFL. Besides, we set the num-
ber of samples k = 1K of RiseFL in this experiment. From
Figures 6a and 6¢, we can observe that both the client compu-
tational cost and communication cost per client of RiseFL are



at least one order of magnitude lower than RoFL and EIFFeL,
while the server cost of RiseFL is linear in #. In comparison,
the cost of EIFFeL both on the client side and the server side
increases quadratically in n. When n gets larger, the advantage
of RiseFL is even larger compared to EIFFeL.

Effects of k. Figure 7 is the per-stage breakdown of RiseFL
with d = IM by varying k € {1K,3K,9K}. On the client side,
proof generation is the only stage that scales with k. On the
server side, as k gets larger, the preparation cost of computing
h becomes dominant. The effects of k on the cost breakdown
can be interpreted by Table 1. The terms that scale linearly
with k are the O(kd) f.a. term of the client’s proof genera-
tion and the server’s preparation costs. The linear-in-k terms
become dominant as k becomes larger.

6.3 Robustness Evaluation

To evaluate the effectiveness of our probabilistic input in-
tegrity check method, we test the FL. model accuracy of
RiseFL on MNIST and CIFAR-10 against two commonly
used attacks. The first is the sign flip attack [15], where each
malicious client submits —c-u as its model update and ¢ > 1.
The second is the scaling attack [4], where each malicious
client submits c-u as its model update and ¢ > 1. In this set
of experiments, we choose ¢ = 1.5 for the sign flip attack and
¢ = 10 for the scaling attack. We use 24 bits to encode the
floating-point values in the updates, and set n = 16 and m = 2.

Figure 8 compares the training curves of RiseFL with two
non-private baselines, NP-SC and NP-NC (see Section 6.1).
There are two main observations. First, RiseFL achieves bet-
ter accuracy than the no-checking baseline NP-NC. This is
expected as the malicious clients can poison the aggregated
models by invalid model updates when the server does not
check the input integrity, leading to lower accuracy (see Fig-
ures 8a and 8c) or non-converging curves (see Figures 8b and
8d). Second, the training curves of RiseFL and the strict L,
norm check baseline NP-SC are very close. This validates
the effectiveness of RiseFL in identifying malformed updates
and robust aggregation.

7 Related Works

Secure Aggregation. To protect the client’s input privacy in
federated learning (FL), a number of studies have explored
secure aggregation [3,7,28,57], which enables the server to
compute the aggregation of clients’ model updates without
knowing individual updates. A widely adopted approach [7]
is to let each client use pairwise random values to mask the
local update before uploading it to the server. The server can
then securely cancel out the masks for correct aggregation.
Nonetheless, these solutions do not guarantee input integrity,
as malicious clients can submit arbitrary masked updates.
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Robust Learning. Several works have been proposed for
robust machine learning, including [1,5, 11, 14, 33, 34, 41,
47,48,52,54,55]. However, some of these approaches, such
as [14,33,47,48], are designed for centralized training and
require access to the training data, making them unsuitable for
FL. On the other hand, solutions like [1,5,11,34,41,52,54,55]
specifically address the FL setting and focus on ensuring
Byzantine resilient gradient aggregation. These solutions op-
erate by identifying and eliminating client updates that deviate
significantly from the majority of clients’ updates, as they are
likely to be malformed updates. However, it is worth noting
that these approaches require the server to access the plaintext
model updates, which compromises the client’s input privacy.

Input Integrity Check with Secure Aggregation. There
is Prio [13] that ensures both input privacy and input in-
tegrity with multiple non-collaborating servers. In contrast,
our paper focuses on a single-server setting. Under a single-
server setting, [9, 45] ensure both input privacy and input
integrity. RoFL [9] utilizes homomorphic commitments [22]
that are compatible with existing mask-based secure aggre-
gation methods and adopt the zero-knowledge proof [8] to
validate the clients’ inputs. However, it does not support
Byzantine-robust aggregation. EIFFeL [45] designs an ap-
proach based on verifiable secret sharing [46] and secret-
shared non-interactive proofs (SNIP) [13] techniques, which
tolerates Byzantine attacks. Nevertheless, the efficiency of
these two solutions is quite low, especially when the num-
ber of model parameters is large. In contrast, in RiseFL, we
propose a hybrid commitment scheme and design a proba-
bilistic input integrity check method, providing support for
Byzantine-robust aggregation and achieving significant effi-
ciency improvements.



8 Conclusions

In this paper, we propose RiseFL, a robust and secure feder-
ated learning system that guarantees both input privacy and
input integrity of the participating clients. We design a hy-
brid commitment scheme based on Pedersen commitment and
verifiable Shamir secret sharing, and present a probabilistic
L-norm integrity check method, which achieves a compa-
rable security guarantee to state-of-the-art solutions while
significantly reducing the computation and communication
costs. The experimental results confirm the efficiency and
effectiveness of our solution.
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Algorithm 5 GenPrfSq(g,h,y;,y,,X,r1,12)

Algorithm 7 GenPrfWf(g,q,h,z,e,0,r,v*s)

Randomly sample v, V5,3 € Zk.

Compute t1; = g"ih"2, 1 = y|'h"% for i e [1,k].

Compute ¢ = H(g,h,y,,¥s:t1,t2).

Compute s; = Vi —¢Xq, S =V —cry, and 83 = v3 —c(ry —
ry OX).

return T = (t;,t,81,8,83).

Randomly Sample w,xo, ..., Xk, X}, ..., X € Zp.

Compute u =g", t; = gh! (Vie[0,k]), 1] = gxicf‘l{ (Vie
[1,k]).

Compute ¢ = H(g,q,h,z,e,0,u,t.t*).

Compute y =w—cr, y; =x;i—cv; (Vie[0,k]), yi =x] —cs;
(Vie[l,k]), where v* = (vo,...,v)

return 7= (u,t,t* yy,y').

Algorithm 6 VerPrfSq(g,h,y,,y,,T)

Unravel 7 = (t;,t,81,82,83).
Randomly sample o;,B; € Z, fori=1,... k.
ComplneC:H(g7haYI7y27tlat2)'

k 851 k PR\ T o;c+D; . 3.
return gZim1 Ot X CisaitBissi TTE_ |y B’S“yzi,s' ==

ko
H 1tlzlt§ll

A Appendix

A.1 Preliminaries Extension

Z-protocol for proof of squares ((x,r;,r2),(y;,¥,)). De-
note g, h € G the independent group elements. Given secrets

. 2 .
X,r[,I) € Z’I‘, and commitments (y,,y,) = (g*h",g* h™2), i.e.

yii=g"h"i and yy; = g"t’zh’Zi fori e [1,k], the prover uses the
function GenPrfSq() in Algorithm 5 to generate a proof T that
the secret in y,; is the square of the secret in y;; for every i. The
verifies uses the function VerPrfSq() in Algorithm 6 to verify
this proof based on (y,,y,). In Algorithm 6, the random num-
bers o, B; are used for batch verification of multiple equalities:
gih*yS ==11;, h‘Y3in1;iy§i ==1,; for i € [ 1,k]. Batch-verifying
these equalities saves cost by a factor of O(log(k)).
X-protocol for proof of relation ((r,v*,s),(z,e,0)). Given
independent group elements g, q, o, ..., € G, the X- protocol
to prove and verify that z=g", ¢; = V'h (i€[0,k]), 0;=g"q"
(i €[1,k]), where v* = (vo,...,vk) is the pair of functions
GenPrfWf() and VerPrfWf(). The function GenPrfWf()
in Algorithm 7 generates a proof m that (z,e,0) is of the
form (g’,g"*hr,g"qs), where v = (v1,...,). The function
VerPrfWf() in Algorithm 8 verifies this proof. Again, we
use batch verification to verify multiple equalities: u == g"'z¢

ti==g"hef (i€[0,k]), 1} == gy"(f’I{Of (ie[1,k]).

A.2 Chi-square Distribution of Sampling
A.2.1 Proof of Lemma 1

Proof of Lemma 1. Since a, follows A/ (0,1,), its projection
on the direction of u, (a,, ﬁ), follows A (0,1). Therefore,

the sum of squares of these inner products for 7 € [1,k],

1
Tulg 22
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Algorithm 8 VerPrfWf(g,¢,h,z,e,0,7)

Unravel = (u,t,t*)y,y,y’).
Compute ¢ = H(g,q,h,z,e,0,u,t t*).
Randomly sample o, B;(i € [0,k]), Y,(ie [1, k]) € Z .
W TIiot; g Hz 1"

5K By Sh v e ,
gOWJrz,-:o BIYI'*‘Zi:l'YI}IZO“ Hf:()(h?ly ?’ )q l:]YIy[ Hi=] 0?“{1_

return

follows ;. O

A.2.2 Proof of Lemma 2

Proof of Lemma 2. We have |b,; —a,j| < 1/2 for all 1, j. So
||la; = b;||> < \/d/2. For every t, we have

<at7“>2_ (btau)z = (a _bt7u>2+2<blau><at -b;,u)
<|[a; = by|3]lull3 +2/|a; = by |- [ul] - |{by , w)|

1
§Zde+\/c_1-B-|(bt,u)|.

kYk_ (b, u)2, we

k
— (b, u)?) < %kde+\/3-B\ | k> (b, u)?
t=1

Adding this to the assumption that Zle(bt,u)2 < B2M?*r
yields the desired inequality. O

Summing up and using Y¥_, |(b;,u)| <
have

5 ({aru

t=1

A.2.3 Proof of Lemma 3

Proof of Lemma 3. Continuing with the idea of the proof of
Lemma 2, we have

(at,u)2 - (bhu)2 = (a, —b,,u)2 +2(b;,u)({a; —b;,u)
> =2||a, —by||-[[u]]- |(b, u)|
>—\/d-B-|(b;,u)|.

Summing up, we have

((ar,u)> - (b, u)?) > —Vd-By ki(bt,u)z.

M=

~
Il
—_



After moving ¥'¥_, ((b;,u)? to the right and completing the
square, we get

. Bvkd

g (2

w2\ Sanu+ (%5

t=1 t=1
S\ (3[7 )2+B\/ kd

<\/_+B\/_

)

1~

= BM( Tke +

After squaring both sides and dividing by ||u||3, we obtain the
desired inequality. O

A.3 The Complete Security Proof
A.3.1 Proof of Lemma 4
Proof. We have |[u;||, < B. By Lemma |, the probability that

(by,u;)* < B*M*Yy e

M=

Il
—_

t

is at least 1 —€. By Lemma 2, the probability that

<at7ui)2 < BO

M»

Il
—

t

is at least 1 —¢€. If Eqn A.3.1 holds, C; can produce a proof
which passes the integrity check. O

A.3.2 Proof of Lemma 5

Proof of Lemma 5. The function VerPrfWf and the large
sampling space Z, on each coordinate ensures that C; must
be able to efficiently respond to any ag by producing v and
r that satisfies g"0/j = eg. The function VerCrt ensures that

eo =TI, ¥". Thatis,

d
ghy =TT ©)
I=1

If we change ag to a), C; produces v;, and r’ that satisfies
g0 (k)" =TTy vy

! d ap r'—a()lr d an;—ag;
vo—vo (] _ (
8 II_IWI - Hyzl :
=1

=1

! Therefore,

For each [, by setting a(’)j =agj+0;; where §;; =1if [ = j,
8;;=0if [ # j, we get that each y; can be expressed into the
form

i = g%

T
=
=
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We would like to have f3;; = 0 whenever [ # j. Suppose not
and without loss of generality, B, # 0. Equation 9 becomes

W raop; _
gOTIw ™ =¢
1

Xiaoy H lej “OJ'B-/'I.
1

If we change ag to aj where a(), = ao1 + 1, af,
and C; produces v(, and r’, we get

A r'a(’),
g Iw, " =¢
l

=aq forl>2
!
ag,oy jagBj
TTwEoP,
I

Dividing these two inequalities, we get
V=0 rag~rag _ _a, Bu
8 [Iw =g" [[wi".
! !

Because g, wi,...,w, are independent, we must have v, —vg =
o, r,a61—7a01 = B]l- So (r'—r)a01 +r' = Bll’ (r’—r)a()l = Bll
for [ > 2. If ¥’ # r, then we must have a(jz' aps = szl Bi3. So
whenever aazl aos # By) B3, we must have ' = r, and then r =
B]], SO
V’“(’)z = [311“61 = Za()jﬁﬂ'
J

for any /. So By1 = B;; and Bj; = 0 whenever j # [. This is a
contradiction.
We have concluded that f3;; = 0 whenever [ # j. So

v rag _ 3 ao0, aoBir
gOHWI =g lO[lHWl .
I I

Therefore, vo = Y ;ag0y and r = B;. This ensures that client
Ci’s commitment must satisfy y; = g*w}, which is exactly the
required form in the protocol.

So far, we have shown well-formedness of y;. To pass the
integrity check, client C; must submit correct computations of
¢;, submit 0,,0; of the correct form, and submit boundedness
proofs for each inner product and final sum. So u; must satisfy
equation A.3.1. O

A.3.3 Proof of Lemma 6
Proof. By Lemma 3, the probability that Eqn A.3.1 holds
is at most Pr__ »[x <

15 < 5oy ( yke+3\/_)] If Eqn A 3.1
does not hold, by Lemma 5, the probability that C; produces a
valid proof is negl(x). The sum of these two probabilities is
Frgam(D(w;)). [

A.3.4 Proof of Theorem 1

Proof. Input integrity is already proved in Lemma 7. We now
prove input privacy. Given an adversary A that consists of the
malicious server and the malicious clients Cys attacking the
real interaction, we define a simulator S as required.

S is defined by modifying A at each step when the server
or the malicious clients Cys read inputs from one of the honest
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Figure 9: Cost comparison w.r.t. bit-length

clients Cpy. In the ideal functionality F, the honest clients Cy
hold values {u’}c.cc, that is randomly picked from

{0}y = 3w =Usy, Vil <B}.

C,-ECH

In S, the client C; € Cy, uses u; and random value 7/ as its
weight update to make commitments. After receiving the
samples A from the server, the client C; € Cy, sends a proof
to the server if Eqn A.3.1 holds, and aborts if Eqn A.3.1 does
not hold. By Lemma 4, the probability that one of the clients
in Cy fails in A or S is negl(k). At the aggregation step,
in both A and S, the property of Shamir’s sharing ensures
that the server can only infer the sum of the secrets Yc.ec,, 7is
Yciecy ri respectively. The only information that the server
can infer from this sum is Uy.

Therefore, if Eqn A.3.1 holds for all C; € Cy in both A and
S, the colluding party of the server and malicious clients Cyy
cannot infer anything from the proofs generated by Cy except
Uy, which means that

|Pr[Realry 4 ({uc, }) = 1]-Pr[Ideal z s (U ) = 1]| < negl(x).

This inequality still holds after counting in the probability
negl (i) that one of the clients in Cpy fails the check. O

A.4 The Implementation Detail of EIFFeL

Since EIFFeL is not open-sourced, we implement it from
scratch for a fair comparison. Two differences exist between
our EIFFeL experiments and those in the original paper.
First, we add bound checks for every coordinate of the
model updates, use the information-secure VSSS and the
multiplicative homogeneity of Shamir’s share to compute
shares of the sum of squares, and use the batch checking to
verify the check strings of VSSS, as discussed in Section 5.
Second, we use 3m + 1 shares, instead of n shares, to
perform robust reconstruction [23] that tolerates m errors.
This saves the cost of robust reconstruction by a factor of
n?/(3m+1)? compared to their original implementation.

19

A.5 Effects of bit-length of weight updates

We compare the effect of the integer bit-length that encodes
clients’ model updates on the client computational time and
server computational time. We fix the number of parameters
d = 1M, the number of samples k = 1K, the number of clients
n = 100, the maximum number of malicious clients m = 10,
and vary bit-length in {16,24,32}. Figure 9 shows the experi-
mental results. We can observe that the effect of the bit-length
on the cost is small.



	Introduction
	Preliminaries
	Cryptographic Building Blocks

	System Overview
	System Model
	Threat Model
	Problem Formulation
	Solution Overview

	RiseFL Design
	Rationale
	Hybrid Commitment Scheme
	Probabilistic Input Integrity Check
	Protocol Description

	Analysis
	Security Analysis
	Cost Analysis

	Experiments
	Methodology
	Micro-Benchmark Efficiency Evaluation
	Robustness Evaluation

	Related Works
	Conclusions
	Appendix
	Preliminaries Extension
	Chi-square Distribution of Sampling
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Lemma 3

	The Complete Security Proof
	Proof of Lemma 4
	Proof of Lemma 5
	Proof of Lemma 6
	Proof of Theorem 1

	The Implementation Detail of EIFFeL
	Effects of bit-length of weight updates


