
Robust and Secure Federated Learning with Low-Cost Zero-Knowledge Proof

Yizheng Zhu
National University of Singapore

Yuncheng Wu
National University of Singapore

Zhaojing Luo
National University of Singapore

Beng Chin Ooi
National University of Singapore

Xiaokui Xiao
National University of Singapore

Date: 1 September 2023

Abstract

Federated Learning (FL) enables multiple clients to collab-
oratively train a machine learning (ML) model under the
supervision of a central server while ensuring the confidential-
ity of their raw data. However, existing studies have unveiled
two main risks: (i) the potential for the server to infer sen-
sitive information from the client’s uploaded updates (i.e.,
model gradients), compromising client input privacy, and (ii)
the risk of malicious clients uploading malformed updates
to poison the FL model, compromising input integrity. Re-
cent works utilize secure aggregation with zero-knowledge
proofs (ZKP) to ensure input privacy and input integrity si-
multaneously in FL. Nevertheless, they suffer from extremely
low efficiency and, thus, are impractical for real deployment.
In this paper, we propose a novel solution RiseFL, which is
robust, secure, and highly efficient to guarantee input privacy
and integrity. Firstly, we devise a probabilistic integrity check
method, significantly reducing the cost of ZKP generation
and verification. Secondly, we design a hybrid commitment
scheme to satisfy Byzantine robustness with improved perfor-
mance. Thirdly, we theoretically prove the security guarantee
of the proposed solution. Extensive experiments on synthetic
and real-world datasets suggest that our solution is effective
and is highly efficient in both client computation and commu-
nication. For instance, RiseFL is up to 53x and 164x faster
than two state-of-the-art baselines RoFL and EIFFeL for the
client computation.

1 Introduction

Federated Learning (FL) [20,31,32,35,39,53] is an emerging
paradigm that enables multiple data owners (i.e., clients) to
collaboratively train a machine learning (ML) model without
sharing their private data with each other. Typically, there is
a centralized server that coordinates the FL training process
as follows. The server first initializes the model parameter
and broadcasts it to all clients. Then, in each iteration, each

client computes a local update (i.e., model gradients) on its
own data and uploads it to the server. The server aggregates
all clients’ updates to generate a global update and sends it
back to the clients for iterative training [35].

Despite the fact that FL could facilitate data collaboration
among multiple clients, two main risks remain, as illustrated
in Figure 1. The first is the client’s input privacy. Even with-
out disclosing the client’s raw data to the server, recent stud-
ies [36, 38, 56, 58] have shown that the server can recover the
client’s sensitive data through the uploaded update with a high
probability. The second is the client’s input integrity. In FL,
there may exist a set of malicious clients that aim to poison the
FL model via Byzantine attacks, such as contaminating the
training process with malformed updates to degrade the model
accuracy [4, 18, 21, 25], imposing backdoors so that the FL
model is susceptible to specific types of inputs [2, 12, 40, 51],
and so on.

A number of solutions [1,3,5,7,11,28,34,41,49,52,54,55,
57] have been proposed to protect input privacy and ensure
input integrity in FL. On the one hand, instead of uploading
the plaintext local updates to the server, the clients can utilize
secure aggregation techniques [3,7,28,57], such as secret shar-
ing [29, 46] and homomorphic encryption [16, 22], to mask
or encrypt the local updates so that the server can aggregate
the clients’ updates correctly without knowing each update.
In this way, the client’s input privacy is preserved. However,
these solutions do not ensure input integrity because it is diffi-
cult to distinguish a malicious encrypted update from benign
ones. On the other hand, [1, 5, 11, 34, 41, 52, 54, 55] present
various Byzantine-robust aggregation algorithms, allowing
the server to identify malformed updates and eliminate them
from being aggregated into the global update. Nevertheless,
these algorithms require the clients to send plaintext updates
to the server for the integrity check, which compromises the
client’s input privacy.

In order to ensure input integrity while satisfying input
privacy, [9, 45] use secure aggregation to protect each client’s
update and allow the server to check the encrypted update’s
integrity using zero-knowledge proof (ZKP) protocols. The

1

Server

Input Privacy

Input Integrity

Clients

Figure 1: The input privacy and input integrity risks in FL.

general idea is to let each client compute a commitment of its
local update and generate a proof that the update satisfies a
publicly-known predicate, for example, the L2-norm is within
a specific range; then, the server can verify the correctness
of the proofs based on the commitments without the need of
knowing the plaintext values and securely aggregate the valid
updates. However, these solutions suffer from extremely low
efficiency in proof generation and verification, making them
impractical for real deployments.

To introduce a practical FL system which ensures both in-
put privacy and input integrity, we propose a robust and secure
federated learning approach, called RiseFL, with high effi-
ciency. In this paper, we focus on the L2-norm integrity check,
i.e., the L2-norm of a client’s local update is less than a thresh-
old, which is widely adopted in existing works [9, 13, 45, 50].
Our key observation of the low-efficiency in [9,45] is that their
proof generation and verification costs are linearly dependent
on the number of parameters d in the FL model. Therefore, we
aim to reduce the proof cost, which particularly makes sense
in the FL scenario because the clients often have limited com-
putation and communication resources. Our approach has the
following novelties. First, we propose a probabilistic L2-norm
check method that decreases the cryptographic operation cost
of proof generation and verification from O(d) to O(d/ logd).
The intuitive idea is to sample a set of public vectors and let
each client generate proofs with respect to the inner prod-
uct between its update and each public vector, instead of
checking the L2-norm of the update directly. This allows us
to reduce the proof generation and verification time signifi-
cantly. Second, we devise a hybrid commitment scheme based
on Pedersen commitment [42] and verifiable Shamir secret
sharing commitment [19, 46], ensuring Byzantine-robustness
while achieving further performance improvement on the
client computation. Third, although we consider the L2-norm
check, the proposed approach can be easily extended to vari-
ous Byzantine-robust integrity checks [5, 11, 48, 54] based on
different L2-norm variants, such as cosine similarity, sphere
defense [48], and so on.

In summary, we make the following contributions.

• We propose a novel and highly efficient federated learn-
ing solution RiseFL that simultaneously ensures each
client’s input privacy and input integrity.

• We present a probabilistic L2-norm integrity check
method and a hybrid commitment scheme, which sig-
nificantly reduces the ZKP generation and verification
costs.

• We provide a formal security analysis of RiseFL and the-
oretically compare its computational and communication
costs with state-of-the-art solutions.

• We implement RiseFL and evaluate its performance with
a set of micro-benchmark experiments as well as FL
tasks on two real-world datasets. The results demonstrate
that RiseFL is effective in detecting malformed updates
and is up to 53x and 164x faster than RoFL [9] and
EIFFeL [45] for the client computation, respectively.

The rest of the paper is organized as follows. Section 2
introduces preliminaries and Section 3 presents an overview
of our solution. We detail the system design in Section 4 and
analyze the security and cost in Section 5. The evaluation
is provided in Section 6. We review the related works in
Section 7 and conclude the paper in Section 8.

2 Preliminaries
We first describe the notations used in this paper. Let G de-
note a cyclic group with prime order p, where the discrete
logarithm problem [44] is hard. Let Zp denote the set of in-
tegers modulo the prime p. We use x, x, and X to denote a
scalar, a vector, and a matrix, respectively. We use EncK(x)
to denote an encrypted value of x under an encryption key K,
and DecK(y) to denote a decrypted value of y under the same
key K. Since the datasets used in machine learning (ML) are
often in the floating-point representation, we use fixed-point
integer representation to encode floating-point values.

2.1 Cryptographic Building Blocks
Pedersen Commitment. A commitment scheme is a crypto-
graphic primitive that allows one to commit a chosen value
without revealing the value to others while still allowing the
ability to disclose it later [24]. Commitment schemes are
widely used in various zero-knowledge proofs. In this pa-
per, we use the Pedersen commitment [42] for a party to
commit its secret values. Given the independent group el-
ements (g,h), the Pedersen commitment encrypts a value
x ∈ Zp to C(x,r) = gxhr, where r ∈ Zp is a random num-
ber. An important property of the Pedersen commitment is
that it is additively homomorphic. Given two values x1,x2
and two random numbers r1,r2, the commitment follows:
C(x1,r1) ⋅C(x2,r2) =C(x1+x2,r1+ r2).
Verifiable Shamir’s Secret Sharing Scheme. Shamir’s t-
out-of-n secret sharing (SSS) scheme [46] allows a party to
distribute a secret among a group of n parties via shares so

2

that the secret can be reconstructed given any t shares but
cannot be revealed given less than t shares. The SSS scheme
is verifiable (aka. VSSS) if auxiliary information is provided
to verify the validity of the secret shares. We use the VSSS
scheme [19, 46] to share a number r ∈ Zp. Specifically, the
scheme consists of three algorithms SS.Share, SS.Verify, and
SS.Recover.

• ((1,r1), . . . ,(n,rn),Ψ) ← SS.Share(r,n,t,g). Given a
secret r ∈Zp, g ∈G, and 0 < t ≤ n, this algorithm outputs a
set of n shares (i,ri) for i ∈ [n] and a check string Ψ as the
auxiliary information to verify the shares. Specifically,
it generates a random polynomial f in Zp of degree at
most t −1 whose constant term is r. We set ri = f (i) and
Ψ = (gr,g f1 , . . . ,g ft−1) where fi is the i-th coefficient.

• r← SS.Recover({(i,ri)} ∶ i ∈ A). For any subset A ⊂ [n]
with size at least t, this algorithm recovers the secret r.

• True/False ← SS.Verify(Ψ, i,ri,n,t,g). Given a share
(i,ri) and the check string Ψ, it verifies the validity of
this share such that it outputs True if (i,ri) was indeed
generated by SS.Share(r,n,t,g) and False otherwise.

This scheme is additively homomorphic in both the shares and
check string. If ((1,r1), . . . ,(n,rn),Ψr)← SS.Share(r,n,t,g)
and ((1,s1), . . . ,(n,sn),Ψs)← SS.Share(s,n,t,g), then:

• r + s ← SS.Recover({(i,ri + si)} ∶ i ∈ A) for any subset
A ⊂ [n] with size at least t,

• True← SS.Verify(Ψr ⋅Ψs, i,ri+ si,n,t,g).

Zero-Knowledge Proofs. A zero-knowledge proof (ZKP)
allows a prover to prove to a verifier that a given statement is
true, such as a value is within a range, without disclosing any
additional information to the verifier [6]. We utilize two ZKP
protocols based on Pedersen commitment as building blocks.

The first ZKP protocol is the Σ-protocol [10] for proof
of square and proof of relation. For proof of square
((x,r1,r2),(y1,y2)), denote g,h ∈G the independent group el-
ements, and let y1 = gxhr1 and y2 = gx2

hr2 be the commitments,
where x,r1,r2 ∈ Zp are the secrets. To handle the square in
power, we rewrite y2 = yx

1hr2−r1x. The function GenPrfSq()1

generates a proof π that (y1,y2) is of the form (gxhr1 ,gx2
hr2)

for x,r1,r2 ∈ Zp. Accordingly, the function VerPrfSq() ver-
ifies this proof based on (y1,y2). For proof of a relation
((r,v,s),(z,e,o)), denote g,q,h ∈ G the independent group
elements, and we let z = gr, e = gvhr, o = gvqs be the commit-
ments, where r,v,s ∈ Zp are the secrets. Then, the function
GenPrfWf() generates a proof π that (z,e,o) is of the form
(gr,gvhr,gvqs) given x,r and s, and the function VerPrfWf()
verifies the proof π according to (z,e,o).

1We detail the GenPrfSq(), VerPrfSq(), GenPrfWf(), VerPrfWf()
functions with batch forms in Algorithms 5-8 in Appendix A.1, respectively.

ServerClients

ve
rif

ia
bl

e
se

cr
et

 sh
ar

es

secret share verification

ZK proofs

commitment

commitment

commitment

ZK proofs

ZK proofs

aggregation

ZKP verification

Figure 2: An overview of the proposed RiseFL system.

The second ZKP protocol used is the Bulletproofs proto-
col [8] for checking the bound of x = (x1, . . . ,xk) in the vector
of Pedersen commitments y = (gx1hr1 , . . . ,gxk hrk). To gener-
ate and verify a proof that x j ∈ [0,2b) for every j = {1, . . . ,k},
we express x j in binary: x j = ∑b−1

i=0 x ji2i, each x ji ∈ {0,1}.
Then, we use group elements f ∈G2bk to commit x ji and x ji−1
for each j = {1, . . . ,k} and each i ∈ {0,⋯,b−1}, and use the
algorithm in [8] to prove and check that x ji(x ji−1)=0. We de-
note GenPrfBd(g,h,f,b,y,x,r) and VerPrfBd(g,h,f,b,y,π)
the proof generation and verification functions for a statement
that x j ∈ [0,2b) for every j, and refer the interested readers
to [8] for more details.

3 System Overview
In this section, we present the system model and threat model,
and give an overview of the proposed RiseFL system to ensure
input privacy and input integrity.

3.1 System Model

There are n clients {C1,⋯,Cn} and a centralized server in the
system. Each client Ci(i ∈ [1,n]) holds a private dataset Di to
participate in the federated learning (FL) process for training
an FL modelM. Let d be the number of parameters inM.
In each iteration, the training process consists of three steps.
Firstly, the server broadcasts the current model parameters
to all the clients. Secondly, each client Ci locally computes a
model update (i.e., gradients) ui given the model parameters
and its dataset Di, and submits ui to the server. Thirdly, the
server aggregates the clients’ gradients to a global update
U =∑i∈[1,n]ui and updates the model parameters ofM for
the next round of training until convergence.

3.2 Threat Model

We consider a malicious threat model in two aspects. First,
regarding input privacy, we consider a malicious server (i.e.,
the adversary) that can deviate arbitrarily from the specified
protocol to infer each client’s uploaded model update. Also,
the server may collude with some of the malicious clients to

3

compromise the honest clients’ privacy. Similar to [45], we do
not consider the scenario that the server is malicious against
the input integrity because its primary goal is to ensure the
well-formedness of each client’s uploaded update. Second,
regarding input integrity, we assume there are at most m ma-
licious clients in the system, where m < n/2. The malicious
clients can also deviate from the specified protocol arbitrarily,
such as sending malformed updates to the server to poison
the aggregation of the global update, or intentionally marking
an honest client as malicious to interfere with the server’s
decision on the list of malicious clients.

3.3 Problem Formulation
We aim to ensure both input privacy (for the clients) and input
integrity (for the server) under the threat model described in
Section 3.2. Our problem is similar to the secure aggregation
with verified inputs (SAVI) problem in [45], but relaxing the
input integrity check for efficiency. Definition 1 formulates
our problem, namely (D,F)-relaxed SAVI.

Definition 1. Given a security parameter κ, a function D ∶
Rd →R satisfying that u is malicious if and only if D(u) > 1,
a function F ∶ (1,+∞)→ [0,1], a set of inputs {u1,⋯,un}
from clients C = {C1, . . . ,Cn} respectively, and a list of honest
clients CH , a protocol Π is a (D,F)-relaxed SAVI protocol
for CH if:

• Input Privacy. The protocol Π realizes the ideal functional-
ity F such that for an adversaryA that consists of the mali-
cious server and the malicious clients CM = C∖CH attacking
the real interaction, there exist a simulator S attacking the
ideal interaction, and

∣Pr[RealΠ,A({uCH}) = 1]−Pr[IdealF ,S(UH) = 1]∣ ≤ negl(κ),

where UH =∑Ci∈CH
ui.

• Input Integrity. The protocol Π outputs ∑Ci∈CValid
ui with

probability at least 1−negl(κ), where CH ⊆ CValid. For any
malformed input u j from a malicious client C j, the proba-
bility that it passes the integrity check satisfies:

Pr[C j ∈ CValid] ≤ F(D(u j)).

For input privacy in Definition 1, it achieves the same pri-
vacy level as that in EIFFeL [45], ensuring that the server
can only learn the aggregation of honest clients’ updates. For
input integrity, Definition 1 relaxes the integrity check by in-
troducing a malicious pass rate function F . F is a function that
maps the degree of maliciousness of an input to the pass rate
of the input. The degree of maliciousness is measured by the
function D. For instance, with an L2-norm bound B, a natural
choice is D(u) = ∣∣u∣∣2/B. Intuitively, the higher the degree of
maliciousness, the lower the pass rate. So F is usually decreas-
ing. Our system also satisfies limsupx→+∞F(x) ≤ negl(κ),

Algorithm 1 Probabilistic L2-norm bound check

Input: u ∈Rd , B, k, ε

Output: “Pass” or “Fail”
Sample a1, . . . ,ak ∈Rd i.i.d. from N (0,Id)
Compute γk,ε which satisfies that Prt∼χ2

k
[t < γk,ε] = 1−ε.

if ∑k
i=1⟨ai,u⟩2 ≤ B2

γk,ε then
Return “Pass”

else
Return “Fail”

end if

which means that any malicious client’s malformed update
whose degree of maliciousness passes a threshold can be de-
tected with an overwhelming probability, ensuring robustness
of the system. When F ≡ negl(κ), a protocol that satisfies
(D,F)-relaxed SAVI will also satisfy SAVI.

3.4 Solution Overview

To solve the problem in Definition 1, we propose an efficient,
robust, and secure federated learning system RiseFL. It toler-
ates m < n/2 malicious clients for input integrity, which means
the server can securely aggregate the clients’ inputs as long as
a majority of the clients are honest. Figure 2 gives an overview
of RiseFL, which is composed of a system initialization stage
and three iterative rounds: commitment generation, proof gen-
eration and verification, and aggregation. In the initialization
stage, all the parties agree on some hyper-parameters, such as
the number of clients n, the maximum number of malicious
clients m, the security parameters (e.g., key size), and so on.

In each iteration of the FL training process, each client
Ci(i ∈ [n]) commits its model update ui using the hybrid com-
mitment scheme based on Pedersen commitment and verifi-
able Shamir’s secret sharing (VSSS) in Section 4.2, and sends
the commitment to the server and the secret shares to the
corresponding clients. In the proof generation and verifica-
tion round, there are two steps. In the first step, each client
verifies the authenticity of other clients’ secret shares. For
secret shares that are verified to be invalid, the client marks
the respective clients as malicious. With the marks from all
clients, the server can identify a subset of malicious clients. In
the second step, the server uses a probabilistic integrity check
method presented in Section 4.3 to check each client’s update
ui. Next, the server filters out the malicious client list C∗ and
broadcasts it to all the clients. In the aggregation round, each
client aggregates the secret shares from clients C j(j ∉ C∗)
and sends the result to the server. The server can reconstruct
the sum of secret shares and securely aggregate the updates
u j(j ∉ C∗) based on the Pedersen commitments.

4

1. The client and server agree on independent g,q ∈ G, w ∈ Gd , f ∈ G2kbmax , the bound B0 of sum of squares of inner
products, the maximum number of bits bmax of B0, the number of bits of each inner product bip < bmax.

2. The client sends zi = gri ∈G and yi =C(ui,ri) ∈Gd to the server.

3. The server randomly samples a0 ∈Zd
p from the uniform distribution, a1, . . . ,ak ∈Zd

p from the discrete normal distribution
and sends A to the client, where A is the (k+1)×d matrix whose rows are a0, . . . ,ak.

4. The server computes ht =∏l watl
l for t ∈ [0,k] and sends h = (h0, . . . ,hk) to the client.

5. The client generates a proof π←GenPrf(g,q,w,f,bip,bmax,B0,A,h,zi,ri,ui) by Algorithm 3 and sends π to the server.

6. The server checks π using VerPrf(g,q,w,f,bip,bmax,B0,A,h,zi,yi,π) in Algorithm 4.

Figure 3: Probabilistic input integrity check between the server and one client.

4 RiseFL Design
In this section, we describe our system design. We first present
the rationale of the protocol in Section 4.1. Then, we introduce
the hybrid commitment scheme and probabilistic integrity
check method in Sections 4.2 and 4.3, respectively. Finally,
we detail the protocol in Section 4.4.

4.1 Rationale
The most relevant work to our problem is EIFFeL [45], which
also ensures input privacy and integrity in FL training. How-
ever, its efficiency is extremely low and, thus, is impractical to
be deployed in real-world systems. For example, under the ex-
periment settings in Section 6, given 100 clients and 1K model
parameters, EIFFeL takes around 15.3 seconds for proof gen-
eration and verification on each client. More severely, the
cost is increased to 152 seconds when the number of model
parameters d is 10K. The underlying reason lies in that the
complexity of its proof generation and verification is linearly
dependent on d, making EIFFeL inefficient and less scalable.
We shall detail the cost analysis of EIFFeL in Section 5.2.

The rationale behind our idea is to reduce the complexity of
expensive group-exponential computations in ZKP generation
and verification. To do so, we design a probabilistic L2-norm
integrity check method, as shown in Algorithm 1. The intu-
ition is that, instead of generating and verifying proofs for the
L2-norm of an update ∣∣u∣∣2, where u ∈Rd , we randomly sam-
ple k points a1, . . . ,ak from the normal distribution N (0,Id).
Then, the random variable:

1
∣∣u∣∣22

k

∑
i=1
⟨ai,u⟩2 (1)

follows a chi-square distribution χ
2
k with k degrees of free-

dom (see Lemma 1). In Algorithm 1, if ∣∣u∣∣2 ≤ B, then the
probability that u passes the check is at least 1−ε (Lemma 4),
where ε is chosen to be cryptographically small, e.g. 2−128.
In this way, the probability that the client fails the check is
of the same order as the probability that the client’s encryp-
tion is broken. We shall present the detailed constructions

of proof generation and verification based on this method
in Section 4.3. Moreover, we propose a hybrid commitment
scheme to efficiently support this probabilistic check method,
as will be presented in Section 4.2. As a consequence, we can
significantly reduce the cryptographic operation costs from
O(d) to O(d/ logd).

4.2 Hybrid Commitment Scheme

We first introduce our hybrid commitment scheme that will be
used in the probabilistic check method. After each client Ci(i ∈
[n]) computes the local update ui, it first needs to commit
ui to the server before generating the proofs. Assume that
the clients and server agree on independent group elements
g,w1, . . . ,wd ∈G, where w j(j ∈ [d]) is used for committing
the j-th coordinate in ui. Then, Ci generates a random secret
ri ∈Zp and encrypts ui with Pedersen commitment as follows:

C(ui,ri) = (C(ui1,ri), . . . ,C(uid ,ri))
= (gui1wri

1 , . . . ,g
uid wri

d), (2)

where ui j is the j-th coordinate in ui. Each client Ci sends
yi =C(ui,ri) and zi = gri to the server as commitments. Given
that ri is held by each client Ci, the server knows nothing
regarding each update ui.

To facilitate the server to aggregate well-formed up-
dates, we also require each client Ci to share its secret
ri with other clients using VSSS. Specifically, Ci com-
putes ((1,ri1), . . . ,(n,rin),Ψri) ← SS.Share(ri,n,m + 1,g)
and sends ((j,ri j),Ψri) to C j. Note that gri = Ψri(0). The
secret ri allows the server to correctly aggregate the updates
from honest clients. Let C∗H be the set of honest clients identi-
fied by the server and clients (we will discuss how the server
and clients collaboratively identify this set in Section 4.4).
The server can compute U =∑Ci∈C∗H ui as follows. First, the

5

Algorithm 2 VerCrt(w,h,A)

Input: w = (w1, . . . ,wd) ∈Gd , h = (h0, . . . ,hk) ∈Z
(k+1)
p , A ∈

M(k+1)×d(Zp).
Randomly Sample b = (b0, . . . ,bk) ∈Zk+1

p .
Compute c = (c1, . . . ,cd) = b ⋅A ∈Zd

p.

return hb0
0 . . .hbk

k ==wc1
1 . . .wcd

d .

server aggregates the commitments from C∗H by:

C(U ,r) = (∏Ci∈C∗H
C(ui1,ri), . . . ,∏Ci∈C∗H

C(uid ,ri))

= (g∑Ci∈C
∗

H
ui1w

∑
Ci∈C

∗

H
ri

1 , . . . ,g
∑
Ci∈C

∗

H
uid w

∑
Ci∈C

∗

H
ri

d)
= (gu1wr

1, . . . ,g
ud wr

d), (3)

where r =∑Ci∈C∗H ri. Note that r can be computed by the clients
in C∗H using secure aggregation. That is, for each client Ci ∈
C∗H , it sums the secret shares r′i =∑C j∈C∗H r ji and sends it to
the server. The server checks the integrity of each r′i against
∏C j∈C∗H Ψr j , and uses the ones that pass the check to recover
r′. According to the homomorphic property of VSSS, r′ = r.
Consequently, with the knowledge of r, the server computes
gul for l ∈ [d] and solves ul according to Eqn 3, which is the
aggregation of the l-coordinate in honest clients’ updates.

4.3 Probabilistic Input Integrity Check
Next, we present how the server and clients execute the prob-
abilistic integrity check. Suppose the server and clients agree
on some necessary parameters, including the number of sam-
ples k in Eqn 1 for the probabilistic L2-norm check. We will
discuss the effect of the choice of k in Section 5.1.

Without loss of generality, we describe the check for one
client Ci, as summarized in Figure 3. The client first sends the
commitments zi = gri and yi =C(ui,ri) to the server using the
hybrid commitment scheme. Then, the server randomly gener-
ates k+1 random samples, say a0, . . . ,ak ∈Zd

p. a0 is sampled
from the uniform distribution on Zp with cryptographically
secure pseudo-random number generator (PRNG) for check-
ing the integrity of Pedersen commitments yi. a1, . . . ,ak are
sampled from the discrete normal distribution with insecure
PRNG for fast execution of probabilistic check in Algorithm 1.
After that, the server computes ht =∏l watl

l for t ∈ [0,k]. Let
A = (a0,a1,⋯,ak) and h = (h0,h1,⋯,hk). The server sends
{A,h} to the client.

Upon receiving the information, the client generates the
proof π using Algorithm 3. Specifically, the client first verifies
the correctness of h using VerCrt(w,h,A) from Algorithm 2.
This is to ensure that the server does not steal information
from the client by sending incorrect h. Note that Algorithm 2
uses batch verification to accelerate the verification of ht =
∏l wAtl

l for t ∈ [0,k]. If it is correct, the client computes the

Algorithm 3 GenPrf(g,q,w,f,bip,bmax,B0,A,h,z,r,u)

Input: g,q,z ∈ G, w ∈ Gd , f ∈ G2kbmax , bip < bmax, B0 ∈
(0,2bmax], A ∈M(k+1)×d(Zp), h ∈G(k+1), r ∈Zp, u ∈Zd

p.
if not VerCrt(w,h,A) then

Abort
end if
Compute v∗ = u ⋅AT ∈Zk+1

p . Denote v∗ = (v0, . . . ,vk), and
let v = (v1, . . . ,vk).
Compute et = gvt hr

t for t ∈ [0,k], and let e = (e0,e1, . . . ,ek).
Randomly sample s,s′ ∈Gk.
Compute ot = gvt qst , o′t = gv2

t qs′t for t ∈ [1,k].
Compute ρ←GenPrfWf(g,q,h,z,e,o,r,v∗,s).
Compute τ←GenPrfSq(g,q,o,o′,v,s,s′).
Compute σ ← GenPrfBd(g,q,f,bip,g2bip−1

⋅ o,v + 2bip−1 ⋅
1,s).
Compute µ ← GenPrfBd(g,q,f,bmax,gB(∏k

t=1 o′t)−1,B −
∑k

t=1 v2
t ,−∑

k
t=1 s′t).

return π = (e,o,o′,ρ,τ,σ,µ).

Algorithm 4 VerPrf(g,q,w,f,bip,bmax,B0,A,h,z,y,π)

Input: g ∈ G, q ∈ G, w ∈ Gd , f ∈ G2kbmax , bip < bmax, B0 ∈
(0,2bmax], A ∈M(k+1)×d(Zp), h ∈Gk, y ∈Gd , π.
Unravel π = (e,o,o′,ρ,τ,σ,µ).
return VerCrt(y,e,A) and

VerPrfWf(g,q,h,z,e,o,ρ) and
VerPrfSq(g,q,o,o′,τ) and
VerPrfBd(g,q,f,bip,g2bip−1

⋅o,σ)) and
VerPrfBd(g,q,f,bmax,gB(∏k

t=1 o′t)−1,µ).

following items for generating the proof that Eqn 1 is less
than a bound, based on Algorithm 1.

• The client computes the inner products between ui and each
row of A, obtaining v∗ = (v0,v1,⋯,vk), where vt = ⟨at ,ui⟩
for t ∈ [0,k]. The client commits et = gvt hri

t using its secret
ri for t ∈ [0,k]. Let e∗ = (e0,e1,⋯,ek) and e = (e1,⋯,ek).
The commitment e0 is used for integrity check of yi. The
commitments e are used for bound check of v.

• Let v = (v1,⋯,vk). The client commits vt using ot = gvt qst

for t ∈ [1,k], where st is a random number. Let o =
(o1,⋯,ok) be the resulted commitment. et and ot commit to
the same secret vt using different group elements ht and q.
As a result, o1, . . . ,ok use the same group element q, ready
for batch square checking and batch bound checking.

• The client further commits o′t = gv2
t qs′t for t ∈ [1,k], where

s′t is a random number. Let o′ = (o′1,⋯,o′k) be the resulted
commitment. This commitment will be used in the proof
generation and verification for proof of square.

• The client generates a proof ρ to prove that (z,e∗,o) is well-

6

formed, which means that the secret in z is used as the blind
in et , t ∈ [0,k], and that the secrets in et and ot are equal,
t ∈ [1,k]. Note that z = gri =Ψri(0) is the 0-th coordinate of
the check string of Shamir’s share of ri.

• The client generates a proof τ to prove that the secret in
o′t is the square of the secret in ot for t ∈ [1,k], using the
building block described in Section 2.1.

• The client generates a proof σ that the secret in ot is in
the interval [−2bip ,2bip) for t ∈ [1,k]. This ensures the inner
product of at and ui does not cause overflow when squared.

• The client generates a proof µ that B−∑t v2
t is in the interval

[0,2bmax) using the commitment gB(∏t o′t)−1. This proof
is to guarantee that Eqn 1 is less than the bound of the
probabilistic check.

As a result, the client sends the proof π = (e,o,o′,ρ,τ,σ,µ)
to the server. After receiving the proof, the server can ver-
ify it accordingly, including: checking the correctness of
et =∏l yatl

il , t ∈ [0,k] using Algorithm 2, checking the well-
formedness proof ρ using Algorithm 8 in Appendix A.1,
checking the square proofs of (o′,o), and checking the two
bound proofs. If all the checks are passed, the server guaran-
tees that the client’s update passes the check in Algorithm 1.

4.4 Protocol Description
We present the full protocol of RiseFL in Figure 4, including a
system initialization stage, followed by three iterative rounds.
System Initialization. All parties are given the system pa-
rameters, including the number of clients n, the maximum
number of malicious clients m, the bound on the number of
bits bip of each inner product, the maximum number of bits
bmax > bip of the sum of squares of inner product, the bound of
the sum of inner products B0 < 2bmax , the number of samples
k for the probabilistic check, a set of independent group ele-
ments g ∈G,q ∈G,w ∈Gd ,f ∈G2kbmax , the factor M > 0 used
in discretizing the normal distribution samples, and a crypto-
graphic hash function H(⋅). Since there is no direct channel
between any two clients, we let the server forward some of
the messages. To prevent the server from accessing the secret
information, each client Ci(i ∈ [n]) generates a public/private
key pair (pki,ski) and sends the public key pki to a public bul-
letin. Then, each client fetches the other clients’ public keys
such that each pair of clients can establish a secure channel via
the Diffie-Hellman protocol [37] for exchanging messages.
Round 1: Commitment Generation. In every FL training
iteration, each client Ci generates a random number ri as the
secret. Then, Ci adopts the hybrid commitment scheme in
Section 4.2 to commit its update ui using Eqn 2, obtaining
yi =C(ui,ri). Also, it generates the secret shares of ri using
VSSS, obtaining ((1,ri1), . . . ,(n,rin),Ψri), and encrypts each
share ri j (∀ j ∈ [1,n]∧ j ≠ i) using the encryption key based

on (pk j,ski). Next, Ci sends the encrypted shares Enc(ri j)
and the check string Ψri to the server. Afterward, the server
forwards the encrypted shares to respective clients and broad-
casts the check strings to all the clients. In addition, the server
initializes a list C∗ =∅ for the current iteration to record the
malicious clients that will be identified in the following round.

Round 2: Proof Generation and Verification. In this round,
the clients and the server jointly flag the malicious clients
in two steps. The first step is to verify the authenticity of
secret shares. After receiving the encrypted shares Enc(r ji)
and check strings Ψr j for j ∈ [1,n], each client Ci decrypts
r ji and checks against Ψr j . Then, Ci sends a list of candidate
malicious clients that do not pass the check to the server. The
server follows two rules to flag the malicious clients [45]:
(1) if a client Ci flags more than m clients as malicious or is
flagged as malicious by more than m clients, the server puts
Ci to C∗; (2) if a client Ci is flagged as malicious by [1,m]
clients, the server requests the shares ri j in the clear for all
C j that flags Ci and checks against Ψri , if the clear ri j fails
the check, the server puts Ci to C∗. This ensures that if Ci is
honest, then Ci passes the check and its clear ri j is sent only
for malicious C j and at most m clear text shares are sent.

The second step is to verify the integrity of each client’s up-
date using the probabilistic method. Note that in Section 4.3,
we require the server to send k+1 random samples with di-
mensionality d to the client. To reduce the communication
cost, we let the server select a random value s and broadcast it
to all clients. Based on s, the server and each client Ci(i ∈ [n])
first compute a seed H(s,{pki}1≤i≤n) using s and all clients’
public keys. Hence, the clients and the server can generate
the same set of random samples A = (a0,a1,⋯,ak) because
the seed is the same. Then, the server computes h (see Sec-
tion 4.3) and broadcasts it to all clients. Next, each client
Ci(i ∈ [1,n]) generates A, computes the proof πi according
to Algorithm 3, and sends πi to the server. Consequently, the
server verifies the proof of each client Ci and puts it to C∗ if
the verification fails. The list C∗ is broadcast to all the clients.

Round 3: Aggregation. In this round, each client Ci selects
the corresponding shares from C j ∉ C∗, aggregates them to
get r′i , and sends r′i to the server. The server uses SS.Verify to
verify the integrity of each r′i and uses SS.Recover with the
ones that pass the integrity check to recover∑C j∉C∗ r j. There-
fore, the server can solve the equation in Eqn 3 to compute
the aggregation of honest clients’ updates.

5 Analysis

5.1 Security Analysis

Theorem 1. By choosing ε = negl(κ) and B0 =B2M2(√γk,ε+√
kd

2M)
2, for any list of honest clients CH of size at least n−m,

7

• System Initialization.
- All parties are given the client number n, the maximum malicious client number m, the bit number bip for inner

products, the maximum bit number bmax > bip, the sum bound of the inner products B0 < 2bmax , the sample number k,
group elements g,q ∈G, w ∈Gd and f ∈G2kbmax , the factor M used in discretizing the normal distribution samples.
Each client Ci(i ∈ [1,n]):

- Generates a key pair (pki,ski) and sends pki to the public Bulletin and fetches other clients’ public keys.

• Round 1 (Commitment Generation).
Each client Ci(i ∈ [1,n]):

- Generates a random secret ri and commits its update ui with yi =C(ui,ri) = (gui1wri
1 , . . . ,g

uid wri
d).

- Computes the verifiable secret shares of ri: {(1,ri1), . . . ,(n,rin),Ψri}← SS.Share(ri,n,m+1,g).
- Encrypts each share ri j with the symmetric key (pk j,ski) for client C j(j ∈ [1,n]).
- Sends the commitment yi, the encrypted share Enc(ri j)(j ∈ [1,n]), and the check string Ψri to the server.

Server:
- Initializes the malicious client list C∗ =∅, sends the encrypted shares Enc(ri j)(i ∈ [1,n]) to client C j, and broadcasts

the check strings Ψri(i ∈ [1,n]) to all clients.

• Round 2 (Proof Generation and Verification).
(i) Verify the authenticity of secret shares:

Each client Ci(i ∈ [1,n]):
- Downloads the check strings Ψr j and the encrypted Enc(ri j) for j ∈ [1,n] from the server.
- Decrypts r ji using (pk j,ski), checks r ji against Ψr j , and sends the list of clients that fail the check to the server.

Server:
- If client Ci flags more than m clients or more than m clients flag client Ci, puts Ci into C∗.
- For a client Ci that receives [1,m] flags, the server requests ri j (in clear) for all C j that flags Ci and checks them

against Ψri . If any of the clear ri j does not pass the check, puts Ci into C∗; else, sends ri j (in clear) to C j.

(ii) Verify the L2-norm of each client’s update:

Server:
- Generates a random number s and sends s to all the clients.
- Randomly samples a0 ∈Zd

p that follows the uniform distribution using H(s,(pki)1≤i≤n) as the seed.

- Randomly samples at ∈ Zd
p for t ∈ [1,k] that follows N (0,M2) and rounded to the nearest integer using

H(s,(pki)1≤i≤n) as the seed. Let A be the (k+1)×d matrix whose rows are a0, . . . ,ak.
- Computes ht =∏l watl

l for t = [0,k] and sends h = (h0,h1, . . . ,hk) to all the clients.
Each client Ci:

- Computes A using H(s,(pki)1≤i≤n) as the seed.
- Computes πi←GenPrf(g,q,w,f,bip,bmax,B0,A,h,Ψri(0),ri,ui), and sends πi to the server.

Server:
- Uses VerPrf(g,q,w,f,bip,bmax,B0,A,h,Ψri(0),yi,πi) to verify Client i’s proof. Puts i into C∗ if check fails.

• Round 3 (Aggregation of Clients’ Updates).
Each client Ci(i ∈ [1,n]):

- Receives C∗ from the server and sends the aggregated share r′i =∑ j∉C∗ r ji to the server.
Server:

- Sets R =∅. Until R has size m+1: for each Ci ∉ C∗, checks r′i using SS.Verify(∏C j∉C∗Ψr j , i,r
′
i ,n,m+1,g), puts i

intoR if check passes. Reconstructs r′← SS.Recover({(i,r′i) ∶ i ∈R}).
- For each l ∈ [1,d], computes g∑Ci∉C∗

uil =w−r′
l ∏Ci∉C∗ yil and solves ∑Ci∉C∗ uil .

Figure 4: The overall description of the proposed RiseFL protocol.

8

RiseFL satisfies (D,Fk,ε,d,M)-SAVI, where D(u)= ∣∣u∣∣2/B and

Fk,ε,d,M(c) = Prx∼χ2
k

⎡⎢⎢⎢⎢⎣
x < 1

c2 (
√

γk,ε+
3
√

kd
2M
)

2⎤⎥⎥⎥⎥⎦
+negl(κ).

(4)

The security proof is composed of several parts. In the fol-
lowing, we outline the proof structure and defer the complete
proof to Appendix A.3.4.

Lemma 1 states that the sum of inner products of normal
distribution samples follows the chi-square distribution. Lem-
mas 2-3 bound the rounding errors occurring in discretizing
the normal distribution samples.

Lemma 1. Suppose that u ∈ Rd ∖ {0} and a1, . . . ,ak are
sampled i.i.d. from the normal distribution N (0,Id). Then,

1
∣∣u∣∣22
∑k

t=1⟨at ,u⟩2 follows the chi-square distribution χ
2
k .

Proof. In Appendix A.2.1.

Lemma 2. Suppose that u ∈Rd and ∣∣u∣∣2 ≤ B. Define round ∶
R→Z by round(n+α) = n for n ∈Z, −1/2 ≤α < 1/2. Suppose
that b1, . . . ,bk ∈Rd satisfy that

k

∑
t=1
⟨bt ,u⟩2 ≤ B2M2r. (5)

Define at by at j = round(bt j) for t ∈ [1,k]. Then

k

∑
t=1
⟨at ,u⟩2 ≤ B2M2(

√
r+
√

kd
2M
)

2

. (6)

Proof. In Appendix A.2.2.

Lemma 3. Suppose that u ∈Rd and ∣∣u∣∣2 >B. Define round as
in Lemma 2. Suppose that b1, . . . ,bk ∈Rd and at is defined by
at j = round(bt j) for t ∈ [1,k]. Suppose that ∑k

t=1⟨at ,u⟩2 ≤ B0.
Then,

1
∣∣u∣∣22

k

∑
t=1
⟨bt ,u⟩2 ≤

M2

D(ui)2
(√γk,ε+

3
√

kd
2M
)

2

. (7)

Proof. In Appendix A.2.3.

We prove input integrity and input privacy separately. For
integrity, we need to prove that: (1) an honest client has a
negligible failure rate (Lemma 4); (2) a malicious client’s
pass rate is bounded by Fk,ε,d,M (Lemmas 5-6); and (3) the
output is the correct aggregation (Lemma 7).

Lemma 4. If Ci is honest, then the probability that ui passes
the integrity check is at least 1−ε.

Proof. In Appendix A.3.1.

Lemma 5. The probability of Ci passing the integrity check
without committing to ui satisfying ∑k

t=1⟨at ,ui⟩2 ≤ B0 is
negl(κ).

1.0 1.2 1.4 1.6
c

0.0

0.2

0.4

0.6

0.8

1.0

F k
,

,d
,M

(c
)

k=1K
k=3K
k=9K

(a) k vs. Fk,ε,d,M

0 5000 10000
Number of samples

1.0

1.2

1.4

1.6

1.8

M
ax

. e
xp

ec
te

d
da

m
ag

e

(b) k vs. maximum damage

Figure 5: The effect of k when ε = 2−128, d = 106, M = 224: (a)
the trend of Fk,ε,d,M w.r.t. k; (b) the trend of the maximum
damage w.r.t. k.

Proof. In Appendix A.3.2.

Lemma 6. If Ci is malicious with ∣∣ui∣∣2 > B, then the
probability that ui passes the integrity check is at most
Fk,ε,d,M(D(ui)).

Proof. In Appendix A.3.3.

Lemma 7. With probability at most 1−negl(κ), the protocol
outputs ∑Ci∈CValid ui where CH ⊆ CValid.

Proof. By Lemma 4, the probability that every honest client
passes the integrity check is at least 1−negl(κ). The probabil-
ity that at least one malicious client breaks VSSS is negl(κ).
If VSSS is not broken and every honest client passes the in-
tegrity check, the protocol outputs∑Ci∈CValid ui and CH ⊆ CValid
as Shamir’s secret sharing is additively homomorphic.

In terms of input privacy, we prove in Lemma 8 that nothing
except the aggregation of honest updates can be learned.

Lemma 8. If CH is a list of honest clients with size at least
n−m, then with probability at least 1−negl(κ), nothing except
∑Ci∈CH

ui is revealed from the outputs of CH .

Proof. Cryptographically, the values of Ψri , C(ui,ri), and πi
do not reveal any information about xi or ri. VSSS ensures
that nothing is revealed from the ≤ m shares {ri j} j∉CH of
the secret ri. At Round 3, VSSS ensures that only∑Ci∈CH

ri is
revealed. From∑Ci∈CH

ri, the only value that can be computed
is ∑Ci∈CH

ui.

Discussion. Now we discuss the effect of k on Fk,ε,d,M and the
maximum damage, as illustrated in Figure 5. We set ε = 2−128

by default in this paper. We set M = 224 so that when k ≤ 104

and d ≤ 106, the term 3
√

kd
2M is insignificant in Eqn 4. Figure 5a

shows the trend of Fk,ε,d,M with d = 106 and different choices
of k. We can see that Fk,ε,d,M(c) is very close to 1 when
c is slightly bigger than 1, and drops rapidly to negligible
as c continues to increase. That means for instance, when
k = 1000, a malicious ui with ∣∣ui∣∣2 ≤ 1.2B will very likely

9

Table 1: Cost comparison (g.e. = group exponentiation, f.a. = field arithmetic)

EIFFeL RoFL RiseFL
g.e. f.a. g.e. f.a. g.e. f.a.

Client
comp.

commit. O(md) O(nmd) O(d) small O(d) small
proof gen. 0 O(bnmd) O(db) small O(d/ logd) O(kd)
proof ver. O(nmd/ log(md)) O(bnmd) 0 0 0 0
total O(md(1+n/ log(md))) O(bnmd) O(db) small O(d) O(kd)

Server
comp.

prep. 0 0 0 0 O(kd logM/ logd log p) small
proof ver. 0 small O(ndb/ log(db)) small O(nd/ logd) small
agg. 0 O(nmd) O(nd/ log p) small O(nd/ log p) small
total 0 O(nmd) O(ndb/ log(db)) small O(d(n+k logM/ log p)/ logd) small

Comm. per client ≈ 2dnb elements ≈ 12d elements ≈ d elements

pass the integrity check, but when ∣∣ui∣∣2 ≥ 1.4B, the check
will fail with close-to-1 probability.

This is the downside of the probabilistic L2-norm checking:
slightly out-of-bound vectors may pass the check. We can
quantify the size of damage caused by such malicious vectors.
For example, with strict checking, a malicious client can use
a malicious u with ∣∣u∣∣2 = B, which passes the check, so it
can do damage of magnitude B to the aggregate. With the
probabilistic check, the malicious client can use slightly larger
∣∣u∣∣2 at a low failure rate. The expected damage it can do to
the aggregate is ∣∣u∣∣2 ⋅Fk,ε,d,M(∣∣u∣∣2/B), and by choosing a
suitable ∣∣u∣∣2, the maximum expected damage is

B ⋅max{c ⋅Fk,ε,d,M(c) ∶ c ∈ (1,+∞)}. (8)

Figure 5b shows the maximum expected damage with respect
to k when B = 1. It turns out that with ε = 2−128 and k ≥ 103,
the maximum expected damage is close to 1. In other words,
the magnitude of damage that a malicious client can do to the
aggregate is only slightly more than the one under the strict L2-
norm check protocol. We will experiment with k = 1K,3K,9K
in Section 6, corresponding to the ratio of the magnitudes of
damages 1.24, 1.13, 1.08, respectively.

5.2 Cost Analysis

We theoretically analyze the cost of RiseFL under the as-
sumption that d >> k by comparing it to EIFFeL and RoFL,
as summarized in Table 1, where we count the number of
cryptographic group exponentiations (g.e.) and finite field
arithmetic (f.a.) separately.

EIFFeL. The commitment includes the Shamir secret shares
and the check string for each coordinate. The Shamir shares
incur a cost of O(nmd) f.a. operations. The check strings
use information-theoretic secure VSSS2 [42], which involves
O(m) group exponentiations per coordinate for Byzantine

2The Feldman check string [19] is not secure because weight updates are
small. uil can be easily computed from guil because uil has short bit-length.

tolerance of m malicious clients. The proof generation3 and
verification4 (excluding verification of check strings) costs
O(bnmd) f.a. and about 2dnb elements of bandwidth on
the client side, where b is the bit length of the update. The
verification of the check strings of one client takes a mult-
exponentiation of length (m+1)d, or O(md/ logmd) g.e. us-
ing a Pippenger-like algorithm [43]. The server cost is small
compared to client cost.

RoFL. It uses the ElGammal [22] commitment (guil hril ,gril)
for each coordinate uil with a separate blind ril , which costs
O(d) g.e. in total. The dominating cost of proof generation
includes the generation of a well-formedness proof, which
involves O(d) g.e., 4d elements, a commitment and a proof of
squares (O(d) g.e., 6d elements), and a proof of bound of each
coordinate (4log(bd) multi-exponentiations of length bd, or
O(bd) g.e.). The proof verification is executed by the server,
where the verification of the bound proof per client takes 1
multi-exponentiation of length about 2bd. The aggregation
cost is small.

RiseFL (Ours). We use Pederson commitment guil wri
i for

each coordinate, which costs O(d) g.e. in total. The main
cost of ZKP is the sub-protocol in Figure 3. On the client
side, the main cost of proof generation is to verify the cor-
rectness of h received from the server, using VerCrt. It costs
one multi-exponentiation of length d, or O(d/ logd) g.e., plus
O(kd) f.a. to compute b ⋅A. On the server side, the main cost
can be divided into two parts: (1) the computation of multi-
exponentiations h at the preparation stage; (2) the verification
of the correctness of e for each client using VerCrt at the proof
verification stage. Each ht , t ∈ [1,k] is a multi-exponentiation
of length d where the powers are discrete normal samples

3In order to prevent overflow in finite field arithmetic, client Ci has to
prove that each uil is bounded, so it has to compute shares of every bit of uil .

4We use the multiplicative homogeneity of Shamir’s share to compute
shares of the sum of squares at the cost of requiring that m < (n−1)/4. This
is discussed in [45, Section 11.1]. The corresponding cost is O(d) per sum of
squares. In comparison, the polynomial interpolation approach in [45, Section
11.1] is actually O(d2

) per sum of squares, because one needs to compute
d values of polynomials of degree d, even if the Lagrange coefficients are
precomputed.

10

Table 2: Breakdown cost comparison w.r.t. the number of model parameters d, where k = 1000

#Param. Approach Client Computation (seconds) Server Computation (seconds) Comm. Cost
per Client (MB)commit. proof gen. proof ver. total prep. proof ver. agg. total

d = 1K
EIFFeL 0.865 3.63 11.7 16.2 - - 0.182 0.182 125
RoFL 0.051 4.43 - 4.5 - 91.2 0.040 91.3 0.37

RiseFL (ours) 0.054 1.48 0.08 1.6 1.17 75.6 0.071 76.8 0.44

d = 10K
EIFFeL 8.38 36.8 115 161 - - 1.81 1.81 1250
RoFL 0.51 46.4 - 46.9 - 860 0.41 860 3.66

RiseFL (ours) 0.49 1.8 0.08 2.3 8.61 82.5 0.71 91.8 0.71

d = 100K
EIFFeL 84.7 382 1070 1536 - - 18.8 18.8 12500
RoFL 5.1 496 - 502 - 8559 4.1 8563 36.6

RiseFL (ours) 4.8 4.5 0.08 9.3 73.3 139 7.2 219 3.5

d = 1M
EIFFeL OOM OOM OOM OOM OOM OOM OOM OOM OOM
RoFL OOM OOM OOM OOM OOM OOM OOM OOM OOM

RiseFL (ours) 48.0 31.2 0.08 79.3 653 612 72.1 1338 30.9

from N (0,M2), whose bit-lengths are log(M). The cost of
computing such an ht is O(d logM/ logd log p), a factor of
logM/ log p faster than a multi-exponentiation whose powers
have bit-lengths log p. The verification of e costs O(d/ logd)
g.e. The aggregation cost is small.

6 Experiments
We implement the proposed RiseFL system in C/C++. The
cryptographic primitives are based on libsodium5 that imple-
ments the Ristretto group6 on Curve25519 that supports 126-
bit security. We compile it to a Python library using SWIG7,
and integrate the library into FedML8 [26]. The implementa-
tion consists of 9K lines of code in C/C++ and 1.1K lines of
code in Python.

6.1 Methodology
Experimental Setup. We conduct the micro-benchmark ex-
periments on a single server equipped with Intel(R) Core(TM)
i7-8550U CPU and 16GB of RAM and the federated learning
tasks on eight servers with Intel(R) Xeon(R) W-2133 CPU,
64GB of RAM, and GeForce RTX 2080 Ti. The default se-
curity parameter is 126 bits. We set ε = 2−128 to ensure the
level of security of RiseFL matches the baselines. For the
fixed-point integer representation, we use 16 bits to encode
the floating-point values by default. As discussed in Section 5,
we set M = 224 to make sure the rounding error of discrete
normal samples is small.
Datasets. We use two real-world datasets, i.e., MNIST [17]
and CIFAR10 [30], to run the FL tasks for measuring classi-
fication accuracy. The MNIST dataset consists of 70000 28

5https://doc.libsodium.org/
6https://ristretto.group/
7https://www.swig.org/
8https://github.com/FedML-AI/FedML

× 28 images in 10 classes. The CIFAR-10 dataset consists of
60000 32 × 32 color images in 10 classes. We also generate a
synthetic dataset for micro-benchmarking the computational
cost and communication cost.

Models. We employ a CNN model for the MNIST dataset and
ResNet-20 [27] for the CIFAR-10 dataset. The CNN model
consists of four layers and 1.2M parameters. The ResNet-20
model consists of 20 layers and 270K parameters. For the
micro-benchmark experiments on synthetic datasets, we use
synthetic models with 1K, 10K, 100K, and 1M parameters
for the evaluation.

Baselines. We compare RiseFL with two secure aggregation
with verified inputs (SAVI) baselines, namely RoFL [9] and
EIFFeL [45] using the same secure parameter, to evaluate
the performance. Furthermore, we compare RiseFL with two
non-private baselines for input integrity checking to evaluate
the model accuracy. The following describes the baselines:

• RoFL [9] adopts the ElGammal commitment scheme and
uses the strict checking zero-knowledge proof for integrity
check. It does not guarantee Byzantine robustness.

• EIFFeL [45] employs the verifiable Shamir secret sharing
(VSSS) scheme and secret-shared non-interactive proofs
(SNIP) for SAVI, ensuring Byzantine robustness. We imple-
ment EIFFeL (see Appendix A.4) as it is not open-sourced.

• NP-SC is a non-private baseline with strict integrity check-
ing. That is, the server checks each client’s update and
eliminates the update that is out of the L2-norm bound.

• NP-NC is a non-private baseline without any checking on
clients’ updates. In this baseline, malicious clients can poi-
son the aggregated models through malformed updates.

Metrics. We utilize three metrics to evaluate the performance
of the RiseFL system.

11

50 100 150 200 250
Number of clients

100

101

102

103

104
Co

st
 /

se
co

nd
s

RiseFL
EIFFeL
RoFL

(a) Client computational cost

50 100 150 200 250
Number of clients

100

101

102

103

104

105

Co
st

 /
se

co
nd

s

(b) Server computational cost

50 100 150 200 250
Number of clients

10 1

100

101

102

103

104

105

Ba
nd

wi
dt

h
/ M

B

Non-private

(c) Communication cost per client

Figure 6: Cost comparison w.r.t. the number of clients

• Computational Cost refers to the computation time on each
client and on the server, which measures the computational
efficiency of the protocol.

• Communication Cost per Client refers to the size of mes-
sages transmitted between the server and each client, which
measures the communication efficiency.

• Model Accuracy measures the ratio of correct predictions
for the trained FL model, which is used to measure the
effectiveness of the integrity check method in RiseFL.

6.2 Micro-Benchmark Efficiency Evaluation
We first compare the cost of our RiseFL with EIFFeL and
RoFL using micro-benchmark experiments. Unless otherwise
specified, we set the number of clients to 100 and the maxi-
mum number of malicious clients to 10 in this set of exper-
iments. We use 16 bits9 for encoding floating-point values
and run the experiments on one CPU thread on both the client
side and the server side.

Effects of d. Tables 2 shows the cost comparison of RiseFL,
EIFFeL and RoFL, w.r.t. the number of parameters d in the
FL model, on the client computational cost, the server compu-
tational cost, and the communication cost per client. We set
the number of samples k = 1000. We failed to run the experi-
ments with d = 1M on EIFFeL and RoFL due to insufficient
RAM, i.e., out of memory (OOM).

We observe that RiseFL is superior to the baselines when
d >> k. For example, when d = 100K, the client cost of RiseFL
is 53x smaller than RoFL and 164x smaller than EIFFeL.
Compared to RoFL, the savings occur at the proof generation
stage, which is because of our probabilistic check technique.
The cost of EIFFeL is large as every client is responsible
for computing a proof digest of every other client’s proof
in the proof verification stage, which dominates the cost. In
comparison, the client-side proof verification cost of RiseFL
is negligible since every client Ci only verifies the check string

9The effect of bit-length on the computational cost of RiseFL is small,
detailed in Appendix A.5.

1K 3K 9K
Number of samples

0

100

200

300

Co
st

 /
se

co
nd

s Total
Commit
Proof gen.

(a) Client cost

1K 3K 9K
Number of samples

0

2500

5000

7500

10000

Co
st

 /
se

co
nd

s Total
Prep.
Proof ver.
Agg.

(b) Server cost

Figure 7: Cost v.s. the number of samples (d = 1M)

of the Shamir share of one value r j from every other client C j.
This is in line with the theoretical cost analysis in Table 1.

On the aspect of server cost, RiseFL is 39x faster than
RoFL when d = 100K, due to our probabilistic check method.
RiseFL incurs a higher server cost than EIFFeL because in
EIFFeL, the load of proof verification is on the client side,
and the dominating cost of the server is at the aggregation
stage. In fact, the total server cost of RiseFL is 7 times smaller
than the cost of EIFFeL of every client.

For communication cost, when d = 100K, RiseFL results
in 16x more than transmitting the weight updates in clear text:
the committed value of a 16-bit weight update is 256-bit long.
The proof size is negligible because k << d. RoFL transmits
about 10x more elements than RiseFL in the form of proofs
of well-formedness and proofs of squares. The communica-
tion cost of EIFFeL is three orders of magnitude larger than
RiseFL as it transmits the share of every bit of every coordi-
nate of the weight update to every other client.

Effects of n. Figure 6 compares the computational
cost and communication cost per client in terms of the
number of clients. We vary the number of clients n ∈
{50,100,150,200,250}, and set the number of parameters
d = 100K, and the maximum number of malicious clients
m = 0.1n in EIFFeL and RiseFL. Besides, we set the num-
ber of samples k = 1K of RiseFL in this experiment. From
Figures 6a and 6c, we can observe that both the client compu-
tational cost and communication cost per client of RiseFL are

12

at least one order of magnitude lower than RoFL and EIFFeL,
while the server cost of RiseFL is linear in n. In comparison,
the cost of EIFFeL both on the client side and the server side
increases quadratically in n. When n gets larger, the advantage
of RiseFL is even larger compared to EIFFeL.

Effects of k. Figure 7 is the per-stage breakdown of RiseFL
with d = 1M by varying k ∈ {1K,3K,9K}. On the client side,
proof generation is the only stage that scales with k. On the
server side, as k gets larger, the preparation cost of computing
h becomes dominant. The effects of k on the cost breakdown
can be interpreted by Table 1. The terms that scale linearly
with k are the O(kd) f.a. term of the client’s proof genera-
tion and the server’s preparation costs. The linear-in-k terms
become dominant as k becomes larger.

6.3 Robustness Evaluation

To evaluate the effectiveness of our probabilistic input in-
tegrity check method, we test the FL model accuracy of
RiseFL on MNIST and CIFAR-10 against two commonly
used attacks. The first is the sign flip attack [15], where each
malicious client submits −c ⋅u as its model update and c > 1.
The second is the scaling attack [4], where each malicious
client submits c ⋅u as its model update and c > 1. In this set
of experiments, we choose c = 1.5 for the sign flip attack and
c = 10 for the scaling attack. We use 24 bits to encode the
floating-point values in the updates, and set n = 16 and m = 2.

Figure 8 compares the training curves of RiseFL with two
non-private baselines, NP-SC and NP-NC (see Section 6.1).
There are two main observations. First, RiseFL achieves bet-
ter accuracy than the no-checking baseline NP-NC. This is
expected as the malicious clients can poison the aggregated
models by invalid model updates when the server does not
check the input integrity, leading to lower accuracy (see Fig-
ures 8a and 8c) or non-converging curves (see Figures 8b and
8d). Second, the training curves of RiseFL and the strict L2
norm check baseline NP-SC are very close. This validates
the effectiveness of RiseFL in identifying malformed updates
and robust aggregation.

7 Related Works

Secure Aggregation. To protect the client’s input privacy in
federated learning (FL), a number of studies have explored
secure aggregation [3, 7, 28, 57], which enables the server to
compute the aggregation of clients’ model updates without
knowing individual updates. A widely adopted approach [7]
is to let each client use pairwise random values to mask the
local update before uploading it to the server. The server can
then securely cancel out the masks for correct aggregation.
Nonetheless, these solutions do not guarantee input integrity,
as malicious clients can submit arbitrary masked updates.

0 10 20 30
epochs

0.80

0.85

0.90

0.95

1.00

ac
cu

ra
cy

RiseFL
NP-SC
NP-NC

(a) MNIST sign flip attack

0 10 20 30
epochs

0.6

0.8

1.0

ac
cu

ra
cy

(b) MNIST scaling attack

0 50 100 150
epochs

0.2

0.4

0.6

0.8

ac
cu

ra
cy

(c) CIFAR10 sign flip attack

0 50 100 150
epochs

0.2

0.4

0.6

0.8

ac
cu

ra
cy

(d) CIFAR10 scaling attack

Figure 8: Comparison of training curves

Robust Learning. Several works have been proposed for
robust machine learning, including [1, 5, 11, 14, 33, 34, 41,
47, 48, 52, 54, 55]. However, some of these approaches, such
as [14, 33, 47, 48], are designed for centralized training and
require access to the training data, making them unsuitable for
FL. On the other hand, solutions like [1,5,11,34,41,52,54,55]
specifically address the FL setting and focus on ensuring
Byzantine resilient gradient aggregation. These solutions op-
erate by identifying and eliminating client updates that deviate
significantly from the majority of clients’ updates, as they are
likely to be malformed updates. However, it is worth noting
that these approaches require the server to access the plaintext
model updates, which compromises the client’s input privacy.

Input Integrity Check with Secure Aggregation. There
is Prio [13] that ensures both input privacy and input in-
tegrity with multiple non-collaborating servers. In contrast,
our paper focuses on a single-server setting. Under a single-
server setting, [9, 45] ensure both input privacy and input
integrity. RoFL [9] utilizes homomorphic commitments [22]
that are compatible with existing mask-based secure aggre-
gation methods and adopt the zero-knowledge proof [8] to
validate the clients’ inputs. However, it does not support
Byzantine-robust aggregation. EIFFeL [45] designs an ap-
proach based on verifiable secret sharing [46] and secret-
shared non-interactive proofs (SNIP) [13] techniques, which
tolerates Byzantine attacks. Nevertheless, the efficiency of
these two solutions is quite low, especially when the num-
ber of model parameters is large. In contrast, in RiseFL, we
propose a hybrid commitment scheme and design a proba-
bilistic input integrity check method, providing support for
Byzantine-robust aggregation and achieving significant effi-
ciency improvements.

13

8 Conclusions
In this paper, we propose RiseFL, a robust and secure feder-
ated learning system that guarantees both input privacy and
input integrity of the participating clients. We design a hy-
brid commitment scheme based on Pedersen commitment and
verifiable Shamir secret sharing, and present a probabilistic
L2-norm integrity check method, which achieves a compa-
rable security guarantee to state-of-the-art solutions while
significantly reducing the computation and communication
costs. The experimental results confirm the efficiency and
effectiveness of our solution.

References
[1] Dan Alistarh, Zeyuan Allen-Zhu, and Jerry Li. Byzan-

tine stochastic gradient descent. In NeurIPS, pages 4618–
4628, 2018.

[2] Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Deb-
orah Estrin, and Vitaly Shmatikov. How to backdoor
federated learning. In AISTATS, pages 2938–2948, 2020.

[3] James Henry Bell, Kallista A. Bonawitz, Adrià Gascón,
Tancrède Lepoint, and Mariana Raykova. Secure single-
server aggregation with (poly)logarithmic overhead. In
CCS, pages 1253–1269, 2020.

[4] Arjun Nitin Bhagoji, Supriyo Chakraborty, Prateek Mit-
tal, and Seraphin B. Calo. Analyzing federated learning
through an adversarial lens. In ICML, pages 634–643,
2019.

[5] Peva Blanchard, El Mahdi El Mhamdi, Rachid Guer-
raoui, and Julien Stainer. Machine learning with adver-
saries: Byzantine tolerant gradient descent. In NeurIPS,
pages 119–129, 2017.

[6] Manuel Blum, Paul Feldman, and Silvio Micali. Non-
interactive zero-knowledge and its applications (ex-
tended abstract). In STOC, pages 103–112, 1988.

[7] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio
Marcedone, H Brendan McMahan, Sarvar Patel, Daniel
Ramage, Aaron Segal, and Karn Seth. Practical secure
aggregation for privacy-preserving machine learning. In
CCS, pages 1175–1191, 2017.

[8] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew
Poelstra, Pieter Wuille, and Greg Maxwell. Bulletproofs:
Short proofs for confidential transactions and more. In
S&P, pages 315–334. IEEE, 2018.

[9] Lukas Burkhalter, Hidde Lycklama, Alexander Viand,
Nicolas Küchler, and Anwar Hithnawi. Rofl: Attestable
robustness for secure federated learning. arXiv preprint
arXiv:2107.03311, 2021.

[10] Jan Camenisch and Markus Stadler. Proof systems for
general statements about discrete logarithms. Technical
Report/ETH Zurich, Department of Computer Science,
260, 1997.

[11] Xiaoyu Cao, Minghong Fang, Jia Liu, and Neil Zhen-
qiang Gong. Fltrust: Byzantine-robust federated learn-
ing via trust bootstrapping. In NDSS, 2021.

[12] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and
Dawn Song. Targeted backdoor attacks on deep learning
systems using data poisoning. CoRR, abs/1712.05526,
2017.

[13] Henry Corrigan-Gibbs and Dan Boneh. Prio: Private,
robust, and scalable computation of aggregate statistics.
In NSDI, pages 259–282, 2017.

[14] Gabriela F. Cretu, Angelos Stavrou, Michael E. Locasto,
Salvatore J. Stolfo, and Angelos D. Keromytis. Cast-
ing out demons: Sanitizing training data for anomaly
sensors. In S&P, pages 81–95, 2008.

[15] Georgios Damaskinos, Rachid Guerraoui, Rhicheek Pa-
tra, Mahsa Taziki, et al. Asynchronous byzantine ma-
chine learning (the case of sgd). In ICML, pages 1145–
1154. PMLR, 2018.

[16] Ivan Damgård and Mads Jurik. A generalisation, a sim-
plification and some applications of paillier’s probabilis-
tic public-key system. In Public Key Cryptography,
pages 119–136, 2001.

[17] Li Deng. The mnist database of handwritten digit images
for machine learning research. IEEE Signal Processing
Magazine, 29(6):141–142, 2012.

[18] Minghong Fang, Xiaoyu Cao, Jinyuan Jia, and
Neil Zhenqiang Gong. Local model poisoning attacks
to byzantine-robust federated learning. In USENIX
Security, pages 1605–1622, 2020.

[19] Paul Feldman. A practical scheme for non-interactive
verifiable secret sharing. In FOCS, pages 427–438.
IEEE, 1987.

[20] Chong Fu, Xuhong Zhang, Shouling Ji, Jinyin Chen,
Jingzheng Wu, Shanqing Guo, Jun Zhou, Alex X. Liu,
and Ting Wang. Label inference attacks against vertical
federated learning. In USENIX Security Symposium,
pages 1397–1414, 2022.

[21] Clement Fung, Chris J. M. Yoon, and Ivan Beschastnikh.
Mitigating sybils in federated learning poisoning. CoRR,
abs/1808.04866, 2018.

[22] Taher El Gamal. A public key cryptosystem and a signa-
ture scheme based on discrete logarithms. IEEE Trans.
Inf. Theory, 31(4):469–472, 1985.

14

[23] Shuhong Gao. A new algorithm for decoding reed-
solomon codes. Communications, information and net-
work security, pages 55–68, 2003.

[24] Oded Goldreich. The Foundations of Cryptography -
Volume 1: Basic Techniques. Cambridge University
Press, 2001.

[25] Jamie Hayes and Olga Ohrimenko. Contamination at-
tacks and mitigation in multi-party machine learning. In
NeurIPS, pages 6604–6616, 2018.

[26] Chaoyang He, Songze Li, Jinhyun So, Mi Zhang,
Hongyi Wang, Xiaoyang Wang, Praneeth Vepakomma,
Abhishek Singh, Hang Qiu, Li Shen, Peilin Zhao, Yan
Kang, Yang Liu, Ramesh Raskar, Qiang Yang, Murali
Annavaram, and Salman Avestimehr. Fedml: A research
library and benchmark for federated machine learning.
arXiv preprint arXiv:2007.13518, 2020.

[27] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
CVPR, pages 770–778, 2016.

[28] Peter Kairouz, Ziyu Liu, and Thomas Steinke. The
distributed discrete gaussian mechanism for federated
learning with secure aggregation. In ICML, pages 5201–
5212, 2021.

[29] Marcel Keller. MP-SPDZ: A versatile framework for
multi-party computation. In CCS, pages 1575–1590,
2020.

[30] Alex Krizhevsky. Learning multiple layers of features
from tiny images. pages 32–33, 2009.

[31] Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Vir-
ginia Smith. Federated learning: Challenges, methods,
and future directions. IEEE Signal Processing Maga-
zine, 37(3):50–60, 2020.

[32] Junxu Liu, Jian Lou, Li Xiong, Jinfei Liu, and Xiaofeng
Meng. Projected federated averaging with heteroge-
neous differential privacy. PVLDB, 15(4):828–840,
2021.

[33] Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg.
Fine-pruning: Defending against backdooring attacks on
deep neural networks. In RAID, pages 273–294, 2018.

[34] Xu Ma, Xiaoqian Sun, Yuduo Wu, Zheli Liu, Xiaofeng
Chen, and Changyu Dong. Differentially private
byzantine-robust federated learning. IEEE Trans. Paral-
lel Distributed Syst., 33(12):3690–3701, 2022.

[35] Brendan McMahan, Eider Moore, Daniel Ramage, Seth
Hampson, and Blaise Aguera y Arcas. Communication-
efficient learning of deep networks from decentralized
data. In AISTATS, pages 1273–1282, 2017.

[36] Luca Melis, Congzheng Song, Emiliano De Cristofaro,
and Vitaly Shmatikov. Exploiting unintended feature
leakage in collaborative learning. In S&P, pages 691–
706, 2019.

[37] Ralph C. Merkle. Secure communications over insecure
channels. Commun. ACM, 21(4):294–299, 1978.

[38] Milad Nasr, Reza Shokri, and Amir Houmansadr. Com-
prehensive privacy analysis of deep learning: Passive
and active white-box inference attacks against central-
ized and federated learning. In S&P, pages 739–753,
2019.

[39] Thien Duc Nguyen, Phillip Rieger, Huili Chen, Hossein
Yalame, Helen Möllering, Hossein Fereidooni, Samuel
Marchal, Markus Miettinen, Azalia Mirhoseini, Shaza
Zeitouni, Farinaz Koushanfar, Ahmad-Reza Sadeghi,
and Thomas Schneider. FLAME: taming backdoors
in federated learning. In USENIX Security Symposium,
pages 1415–1432, 2022.

[40] Thuy Dung Nguyen, Tuan Nguyen, Phi Le Nguyen,
Hieu H. Pham, Khoa Doan, and Kok-Seng Wong. Back-
door attacks and defenses in federated learning: Sur-
vey, challenges and future research directions. CoRR,
abs/2303.02213, 2023.

[41] Xudong Pan, Mi Zhang, Duocai Wu, Qifan Xiao, Shoul-
ing Ji, and Min Yang. Justinian’s gaavernor: Robust
distributed learning with gradient aggregation agent. In
USENIX Security, pages 1641–1658, 2020.

[42] Torben Pryds Pedersen. Non-interactive and
information-theoretic secure verifiable secret sharing.
In CRYPTO, pages 129–140. Springer, 2001.

[43] Nicholas Pippenger. On the evaluation of powers and
monomials. SIAM Journal on Computing, 9(2):230–250,
1980.

[44] C. Pomerance and S. Goldwasser. Cryptology and Com-
putational Number Theory. AMS short course lecture
notes. American Mathematical Society, 1990.

[45] Amrita Roy Chowdhury, Chuan Guo, Somesh Jha, and
Laurens van der Maaten. Eiffel: Ensuring integrity for
federated learning. In CCS, pages 2535–2549, 2022.

[46] Adi Shamir. How to share a secret. Communications of
the ACM, 22(11):612–613, 1979.

[47] Yanyao Shen and Sujay Sanghavi. Learning with bad
training data via iterative trimmed loss minimization. In
ICML, pages 5739–5748, 2019.

[48] Jacob Steinhardt, Pang Wei Koh, and Percy Liang. Cer-
tified defenses for data poisoning attacks. In NeurIPS,
pages 3517–3529, 2017.

15

[49] Timothy Stevens, Christian Skalka, Christelle Vincent,
John Ring, Samuel Clark, and Joseph P. Near. Efficient
differentially private secure aggregation for federated
learning via hardness of learning with errors. In USENIX
Security Symposium, pages 1379–1395, 2022.

[50] Ziteng Sun, Peter Kairouz, Ananda Theertha Suresh,
and H Brendan McMahan. Can you really backdoor
federated learning? arXiv preprint arXiv:1911.07963,
2019.

[51] Chulin Xie, Keli Huang, Pin-Yu Chen, and Bo Li. DBA:
distributed backdoor attacks against federated learning.
In ICLR, 2020.

[52] Chang Xu, Yu Jia, Liehuang Zhu, Chuan Zhang, Guoxie
Jin, and Kashif Sharif. TDFL: truth discovery based
byzantine robust federated learning. IEEE Trans. Paral-
lel Distributed Syst., 33(12):4835–4848, 2022.

[53] Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin
Tong. Federated machine learning: Concept and ap-
plications. ACM TIST, 10(2):12:1–12:19, 2019.

[54] Dong Yin, Yudong Chen, Kannan Ramchandran, and
Peter L. Bartlett. Byzantine-robust distributed learning:
Towards optimal statistical rates. In ICML, pages 5636–
5645, 2018.

[55] Dong Yin, Yudong Chen, Kannan Ramchandran, and
Peter L. Bartlett. Defending against saddle point attack
in byzantine-robust distributed learning. In ICML, pages
7074–7084, 2019.

[56] Hongxu Yin, Arun Mallya, Arash Vahdat, Jose M. Al-
varez, Jan Kautz, and Pavlo Molchanov. See through
gradients: Image batch recovery via gradinversion. In
CVPR, pages 16337–16346, 2021.

[57] Yifeng Zheng, Shangqi Lai, Yi Liu, Xingliang Yuan,
Xun Yi, and Cong Wang. Aggregation service for fed-
erated learning: An efficient, secure, and more resilient
realization. IEEE Trans. Dependable Secur. Comput.,
20(2):988–1001, 2023.

[58] Ligeng Zhu, Zhijian Liu, and Song Han. Deep leakage
from gradients. In NeurIPS, pages 14747–14756, 2019.

16

Algorithm 5 GenPrfSq(g,h,y1,y2,x,r1,r2)

Randomly sample v1,v2,v3 ∈Zk
p.

Compute t1i = gv1ihv2i , t2i = yv1i
1i hv3i for i ∈ [1,k].

Compute c =H(g,h,y1,y2,t1,t2).
Compute s1 = v1 − cx1, s2 = v2 − cr1, and s3 = v3 − c(r2 −
r1 ○x).
return π = (t1,t2,s1,s2,s3).

Algorithm 6 VerPrfSq(g,h,y1,y2,π)
Unravel π = (t1,t2,s1,s2,s3).
Randomly sample αi,βi ∈Zp for i = 1, . . . ,k.
Compute c =H(g,h,y1,y2,t1,t2).
return g∑

k
i=1 αis1ih∑

k
i=1 αis2i+βis3i∏k

i=1 yαic+βis1i
1i ycβi

2i ==
∏k

i=1 tαi
1i tβi

2i .

A Appendix

A.1 Preliminaries Extension
Σ-protocol for proof of squares ((x,r1,r2),(y1,y2)). De-
note g,h ∈G the independent group elements. Given secrets
x,r1,r2 ∈Zk

p and commitments (y1,y2) = (gxhr1 ,gx2
hr2), i.e.

y1i = gxihr1i and y2i = gx2
i hr2i for i ∈ [1,k], the prover uses the

function GenPrfSq() in Algorithm 5 to generate a proof π that
the secret in y2i is the square of the secret in y1i for every i. The
verifies uses the function VerPrfSq() in Algorithm 6 to verify
this proof based on (y1,y2). In Algorithm 6, the random num-
bers αi,βi are used for batch verification of multiple equalities:
gs1ihs2iyc

1i == t1i, hs3iys1i
1i yc

2i == t2i for i ∈ [1,k]. Batch-verifying
these equalities saves cost by a factor of O(log(k)).
Σ-protocol for proof of relation ((r,v∗,s),(z,e,o)). Given
independent group elements g,q,h0, . . . ,hk ∈G, the Σ-protocol
to prove and verify that z = gr, ei = gvihr

i (i ∈ [0,k]), oi = gviqsi

(i ∈ [1,k]), where v∗ = (v0, . . . ,vk), is the pair of functions
GenPrfWf() and VerPrfWf(). The function GenPrfWf()
in Algorithm 7 generates a proof π that (z,e,o) is of the
form (gr,gv∗hr,gvqs), where v = (v1, . . . ,vk). The function
VerPrfWf() in Algorithm 8 verifies this proof. Again, we
use batch verification to verify multiple equalities: u == gwzc,
ti == gyihy

i ec
i (i ∈ [0,k]), t∗i == gyiqy′i oc

i (i ∈ [1,k]).

A.2 Chi-square Distribution of Sampling
A.2.1 Proof of Lemma 1

Proof of Lemma 1. Since at follows N (0,Id), its projection
on the direction of u, ⟨at ,

u
∣∣u∣∣ ⟩, follows N (0,1). Therefore,

the sum of squares of these inner products for t ∈ [1,k],

1
∣∣u∣∣22

k

∑
t=1
⟨at ,u⟩2,

Algorithm 7 GenPrfWf(g,q,h,z,e,o,r,v∗,s)
Randomly Sample w,x0, . . . ,xk,x′1, . . . ,x

′
k ∈Zp.

Compute u = gw, ti = gxihw
i (∀i ∈ [0,k]), t∗i = gxiqx′i (∀i ∈

[1,k]).
Compute c =H(g,q,h,z,e,o,u,t,t∗).
Compute y = w− cr, yi = xi − cvi (∀i ∈ [0,k]), y′i = x′i − csi
(∀i ∈ [1,k]), where v∗ = (v0, . . . ,vk)
return π = (u,t,t∗,y,y,y′).

Algorithm 8 VerPrfWf(g,q,h,z,e,o,π)
Unravel π = (u,t,t∗,y,y,y′).
Compute c =H(g,q,h,z,e,o,u,t,t∗).
Randomly sample α,βi(i ∈ [0,k]), γi(i ∈ [1,k]) ∈Zp.
return uα∏k

i=0 tβi
i ∏

k
i=1 t∗γi

i ==
gαw+∑k

i=0 βiyi+∑k
i=1 γiyizαc∏k

i=0(h
βiy
i eβic

i)q∑
k
i=1 γiy

′

i∏k
i=1 ocγi

i .

follows χ
2
k .

A.2.2 Proof of Lemma 2

Proof of Lemma 2. We have ∣bt j − at j ∣ ≤ 1/2 for all t, j. So
∣∣at −bt ∣∣2 ≤

√
d/2. For every t, we have

⟨at ,u⟩2− ⟨bt ,u⟩2 = ⟨at −bt ,u⟩2+2⟨bt ,u⟩⟨at −bt ,u⟩
≤ ∣∣at −bt ∣∣22∣∣u∣∣22+2∣∣at −bt ∣∣ ⋅ ∣∣u∣∣ ⋅ ∣⟨bt ,u⟩∣

≤ 1
4

dB2+
√

d ⋅B ⋅ ∣⟨bt ,u⟩∣.

Summing up and using ∑k
t=1 ∣⟨bt ,u⟩∣ ≤

√
k∑k

t=1⟨bt ,u⟩2, we
have

k

∑
t=1
(⟨at ,u⟩2− ⟨bt ,u⟩2) ≤

1
4

kdB2+
√

d ⋅B

¿
ÁÁÀk

k

∑
t=1
⟨bt ,u⟩2

Adding this to the assumption that ∑k
t=1⟨bt ,u⟩2 ≤ B2M2r

yields the desired inequality.

A.2.3 Proof of Lemma 3

Proof of Lemma 3. Continuing with the idea of the proof of
Lemma 2, we have

⟨at ,u⟩2− ⟨bt ,u⟩2 = ⟨at −bt ,u⟩2+2⟨bt ,u⟩⟨at −bt ,u⟩
≥ −2∣∣at −bt ∣∣ ⋅ ∣∣u∣∣ ⋅ ∣⟨bt ,u⟩∣

≥ −
√

d ⋅B ⋅ ∣⟨bt ,u⟩∣.

Summing up, we have

k

∑
t=1
(⟨at ,u⟩2− ⟨bt ,u⟩2) ≥ −

√
d ⋅B

¿
ÁÁÀk

k

∑
t=1
⟨bt ,u⟩2.

17

After moving ∑k
t=1⟨⟨bt ,u⟩2 to the right and completing the

square, we get

¿
ÁÁÀ k

∑
t=1
⟨bt ,u⟩2 ≤

¿
ÁÁÁÀ

k

∑
t=1
⟨at ,u⟩2+(

B
√

kd
2
)

2

+ B
√

kd
2

≤

¿
ÁÁÀ k

∑
t=1
⟨at ,u⟩2+B

√
kd

≤
√

B0+B
√

kd

= BM(√rk,ε+
3
√

kd
2M
) .

After squaring both sides and dividing by ∣∣u∣∣22, we obtain the
desired inequality.

A.3 The Complete Security Proof
A.3.1 Proof of Lemma 4

Proof. We have ∣∣ui∣∣2 ≤ B. By Lemma 1, the probability that

k

∑
t=1
⟨bt ,ui⟩2 ≤ B2M2

γk,ε

is at least 1−ε. By Lemma 2, the probability that

k

∑
t=1
⟨at ,ui⟩2 ≤ B0

is at least 1− ε. If Eqn A.3.1 holds, Ci can produce a proof
which passes the integrity check.

A.3.2 Proof of Lemma 5

Proof of Lemma 5. The function VerPrfWf and the large
sampling space Zp on each coordinate ensures that Ci must
be able to efficiently respond to any a0 by producing v0 and
r that satisfies gv0 hr

0 = e0. The function VerCrt ensures that
e0 =∏d

l=1 ya0l
il . That is,

gv0hr
0 =

d

∏
l=1

ya0l
il . (9)

If we change a0 to a′0, Ci produces v′0 and r′ that satisfies

gv′0(h′0)r =∏
d
l=1 ya′0l

il . Therefore,

gv′0−v0
d

∏
l=1

wa′0lr
′−a0lr

l =
d

∏
l=1

ya′0l−a0l
il .

For each l, by setting a′0 j = a0 j + δl j where δl j = 1 if l = j,
δl j = 0 if l ≠ j, we get that each yil can be expressed into the
form

yil = gαl
d

∏
j=1

w
βl j
j .

We would like to have βl j = 0 whenever l ≠ j. Suppose not
and without loss of generality, β12 ≠ 0. Equation 9 becomes

gv0∏
l

wra0l
l = g∑l a0lαl∏

l
w∑ j a0 jβ jl

l .

If we change a0 to a′0 where a′01 = a01 +1, a′0l = a0l for l ≥ 2
and Ci produces v′0 and r′, we get

gv′0∏
l

wr′a′0l
l = g∑l a′0lαl∏

l
w
∑ j a′0 jβ jl
l .

Dividing these two inequalities, we get

gv′0−v0∏
l

wr′a′0l−ra0l
l = gα1∏

l
wβ1l

l .

Because g,w1, . . . ,wd are independent, we must have v′0−v0 =
α1, r′a′0l −ra0l = β1l . So (r′−r)a01+r′ = β11, (r′−r)a0l = β1l
for l ≥ 2. If r′ ≠ r, then we must have a−1

02 a03 = β
−1
12 β13. So

whenever a−1
02 a03 ≠ β

−1
12 β13, we must have r′ = r, and then r′ =

β11, so
r′a′0l = β11a′0l =∑

j
a′0 jβ jl .

for any l. So β11 = βll and β jl = 0 whenever j ≠ l. This is a
contradiction.

We have concluded that βl j = 0 whenever l ≠ j. So

gv0∏
l

wra0l
l = g∑l a0lαl∏

l
wa0lβll

l .

Therefore, v0 =∑l a0lαl and r = βll . This ensures that client
Ci’s commitment must satisfy yil = gαl wr

l , which is exactly the
required form in the protocol.

So far, we have shown well-formedness of yi. To pass the
integrity check, client Ci must submit correct computations of
et , submit ot ,o′t of the correct form, and submit boundedness
proofs for each inner product and final sum. So ui must satisfy
equation A.3.1.

A.3.3 Proof of Lemma 6

Proof. By Lemma 3, the probability that Eqn A.3.1 holds

is at most Prx∼χ2
k
[x < 1

D(ui)2
(√γk,ε+ 3

√
kd

2M)
2
]. If Eqn A.3.1

does not hold, by Lemma 5, the probability that Ci produces a
valid proof is negl(κ). The sum of these two probabilities is
Fk,ε,d,M(D(ui)).

A.3.4 Proof of Theorem 1

Proof. Input integrity is already proved in Lemma 7. We now
prove input privacy. Given an adversaryA that consists of the
malicious server and the malicious clients CM attacking the
real interaction, we define a simulator S as required.
S is defined by modifying A at each step when the server

or the malicious clients CM read inputs from one of the honest

18

16 24 32
bit-length

0

25

50

75

100

125

150
Cl

ie
nt

 C
os

t /
 se

co
nd

s

Client
0

500

1000

1500

2000

Se
rv

er
 C

os
t /

 se
co

nd
sServer

Figure 9: Cost comparison w.r.t. bit-length

clients CH . In the ideal functionality F , the honest clients CH
hold values {u′i}Ci∈CH that is randomly picked from

{{u′′i }Ci∈CH ∶ ∑
Ci∈CH

u′′i = UH,∀i ∣∣u′′i ∣∣ ≤ B}.

In S, the client Ci ∈ CH , uses u′i and random value r′i as its
weight update to make commitments. After receiving the
samples A from the server, the client Ci ∈ CH , sends a proof
to the server if Eqn A.3.1 holds, and aborts if Eqn A.3.1 does
not hold. By Lemma 4, the probability that one of the clients
in CH fails in A or S is negl(κ). At the aggregation step,
in both A and S, the property of Shamir’s sharing ensures
that the server can only infer the sum of the secrets ∑Ci∈CH

ri,
∑Ci∈CH

r′i respectively. The only information that the server
can infer from this sum is UH .

Therefore, if Eqn A.3.1 holds for all Ci ∈ CH in both A and
S , the colluding party of the server and malicious clients CM
cannot infer anything from the proofs generated by CH except
UH , which means that

∣Pr[RealΠ,A({uCH}) = 1]−Pr[IdealF ,S(UH) = 1]∣ ≤ negl(κ).

This inequality still holds after counting in the probability
negl(κ) that one of the clients in CH fails the check.

A.4 The Implementation Detail of EIFFeL
Since EIFFeL is not open-sourced, we implement it from
scratch for a fair comparison. Two differences exist between
our EIFFeL experiments and those in the original paper.

First, we add bound checks for every coordinate of the
model updates, use the information-secure VSSS and the
multiplicative homogeneity of Shamir’s share to compute
shares of the sum of squares, and use the batch checking to
verify the check strings of VSSS, as discussed in Section 5.

Second, we use 3m + 1 shares, instead of n shares, to
perform robust reconstruction [23] that tolerates m errors.
This saves the cost of robust reconstruction by a factor of
n2/(3m+1)2 compared to their original implementation.

A.5 Effects of bit-length of weight updates
We compare the effect of the integer bit-length that encodes
clients’ model updates on the client computational time and
server computational time. We fix the number of parameters
d = 1M, the number of samples k = 1K, the number of clients
n = 100, the maximum number of malicious clients m = 10,
and vary bit-length in {16,24,32}. Figure 9 shows the experi-
mental results. We can observe that the effect of the bit-length
on the cost is small.

19

	Introduction
	Preliminaries
	Cryptographic Building Blocks

	System Overview
	System Model
	Threat Model
	Problem Formulation
	Solution Overview

	RiseFL Design
	Rationale
	Hybrid Commitment Scheme
	Probabilistic Input Integrity Check
	Protocol Description

	Analysis
	Security Analysis
	Cost Analysis

	Experiments
	Methodology
	Micro-Benchmark Efficiency Evaluation
	Robustness Evaluation

	Related Works
	Conclusions
	Appendix
	Preliminaries Extension
	Chi-square Distribution of Sampling
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Lemma 3

	The Complete Security Proof
	Proof of Lemma 4
	Proof of Lemma 5
	Proof of Lemma 6
	Proof of Theorem 1

	The Implementation Detail of EIFFeL
	Effects of bit-length of weight updates

