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ABSTRACT
Locality Sensitive Hashing (LSH) and its variants, are generally
believed to be the most effective radius search methods in high-
dimensional spaces. However, many applications involve finding
the k nearest neighbors (k-NN), where the k-NN distances of dif-
ferent query points may differ greatly and the performance of LSH
suffers. We propose a novel indexing scheme called Selective Hash-
ing, where a disjoint set of indices are built with different granular-
ities and each point is only stored in the most effective index. The-
oretically, we show that k-NN search using selective hashing can
achieve the same recall as a fixed radius LSH search, using a radius
equal to the distance of the c1kth nearest neighbor, with at most
c2 times overhead, where c1 and c2 are small constants. Selective
hashing is also easy to build and update, and outperforms all the
state-of-the-art algorithms such as DSH and IsoHash.

1. INTRODUCTION
Efficient k-nearest neighbor (k-NN) search is essential for a wide

range of applications in the areas such as information retrieval,
data mining and machine learning. Objects are frequently char-
acterized as feature vectors, and represented as points in a multi-
dimensional space. Access methods in multi-dimensional space,
including the k-NN problem, have been studied extensively. How-
ever, most of them suffer from the so-called curse of dimension-
ality and demonstrate poor performance when the number of di-
mensions is high [27]. One technique that shows promise in high-
dimensional spaces is locality sensitive hashing (LSH) [10]. LSH is
designed for finding points within a fixed radius of the query point,
i.e., radius search. For a k-NN problem (e.g., the first page results
of search engine), the corresponding radii for different query points
may vary by orders of magnitude, depending on how densely the
region around the query point is populated. To consider a human
analogy: in a crowded city, we may be able to find the k-NN even
within our own building, whereas in the middle of the desert, we
may have to go many miles even to find the k-NN. In such a case,
LSH has to either (i) build index for different radiiR, cR, c2R, . . . ,
which increases the query time and index storage cost, or (ii) use
an ad-hoc radius, which voids any quality guarantee.
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Recently, there has been increasing interest in designing learning-
based hashing functions [2, 29, 9] to alleviate the limitations of
LSH. If the data distributions only have global density patterns,
good choices of hashing functions may be possible. However, it is
not possible to construct global hashing functions capturing diverse
local patterns. Actually, k-NN distance (i.e., the desired search
range) depends on the local density [26] around the query, e.g., a
local feature such as a dense group or sparse hull. Since every
global function is used for all the data points, when it is learnt to
adjust to one local pattern, it will also cause lots of side-effects for
other areas. In such cases, no global choice can be good.

We propose the concept of Selective Hashing to give a locally
optimized index option for every data point. It is a meta-algorithm
for k-NN search which works on the top of radius search algo-
rithms such as LSH. Our main innovation is to create multiple LSH
indices with different granularities (i.e., radii). Then, every data
object is only stored in one selected index, with certain granularity
that is especially effective for k-NN searches near it. Using this
idea, our method achieves good quality for k-NN search regardless
what the distance is, while avoiding having to maintain a huge set
of complete indices for various distance radii (and additional query
cost to visit multiple indices).

Within the framework of selective hashing, we further study what
kind of granularity is most effective for a data point. A main insight
here is that selecting the granularity has the equal effect of setting
a guard range for every data object, i.e., when a query point falls
into that range, this data object will be checked. Although k-NN is
not a symmetric relation, the inverse relation can be satisfied with
high confidence for only a small constant overhead. For example, a
20-NN of a point will have 99% probability to be a reverse 100-NN
of that point as well. Thus, for every data object, we estimate its
density, decide the guard range with certain confidence, and select
the index with corresponding granularity.

Comparing k-NN search with radius search, the only difference
is that k-NN search does not provide the radius in the query. Thus,
it is a strictly harder problem than the radius search where the ra-
dius equals to the distance of kth-NN. As LSH has been refined
as a technique, it is now near-optimal for high-dimensional radius
search, and the gap between the current solution [1] and the lower
bound [18] is almost closed. However, no such good results exist
for the k-NN problem and there remains a gap between efficient
k-NN search and fixed radius search. Theoretically, we show that
k-NN search using selective hashing can achieve the same recall as
fixed c1kth-NN radius LSH search with at most c2 times overhead,
where c1 and c2 are small constants. If the density does not change
dramatically from one object to its nearest neighbors, we can show
that c1 is less than 5 and c2 is less than 1.3. Experimentally, the
observed overheads is under a factor of two in all the cases.



We propose an efficient algorithm to build the selective hashing
index, as well as to handle updates. Unlike most learning-based ap-
proaches, selective hashing only needs to maintain the local density
for each area, and re-select the radius when necessary. The amor-
tized update cost is independent of the data size, and only depends
linearly on the number of indices. We also consider write-intensive
applications, for which we propose a lazy updating strategy to re-
select the radius when the check-rate (i.e., the proportion of data to
be accessed) for a certain object is high in the past queries.

We summarize the contributions of the paper as follows.
•We propose a novel meta-method for indexing, called Selective

Hashing, which combines multiple index instances together and
is especially suitable for k-NN queries. Compared with previous
works, selective hashing is the first to optimize the index structure
locally for every data point. Further, it provides good quality results
regardless of the distance of k-NN and does not incur extra storage
cost in consuming multiple indices (Section 3).
• We develop an effective index-selection scheme under the se-

lective hashing framework. Our scheme guarantees high recall
while achieving check-rate complexity comparable to a fixed ra-
dius search. In addition, this index is easy to construct and maintain
with a cost that is comparable to the conventional LSH (Section 4).
• Experimental results show that selective hashing is effective

for k-NN queries: producing high recall results while incurring
low query time (i.e., low check-rate), compared to several lead-
ing alternative strategies. It is also small in size and fast to update
incrementally (Section 4.4).

2. PRELIMINARIES
In this paper, we consider data objects represented as points in a

d-dimensional metric space Rd. We use ‖p, q‖ to denote the dis-
tance between two points p and q. Given a dataset, a point q ∈ Rd
and an integer k, the k-NN of the query q is the k data points that
are nearest to q in the dataset. In the high-dimensional case, for the
reason that the cost of exact k-NN problem usually grows linearly
with the size of dataset, approximate k-nearest neighbor problem
is accepted as a compromise.

Locality Sensitive Hashing [10] (LSH) is an efficient approxi-
mate algorithm for high-dimensional similarity search. It is effi-
cient and provides a rigorous quality guarantee for finding similar
points within a radius r. We denote the sphere centered at point q
by B(q, r). Formally, B(q, r) = {p|p ∈ Rd, ‖p, q‖ ≤ r}. The
general idea of LSH is that objects that are within a given distance
will be hashed to the same value with high probability, where the
set of hash functions called LSH family:

DEFINITION 1. (LSH Family, H) A family H = {h : Rd →
U} of functions is called (r, cr, p1, p2)-sensitive if ∀p, q ∈ Rd:
• if p ∈ B(q, r), then PrH(h(p) = h(q)) ≥ p1;
• if p /∈ B(q, cr), then PrH(h(p) = h(q)) ≤ p2;
LSH family for Euclidean distance is accomplished by random

Gaussian projection. There are also various versions of LSH family
for Jaccard similarity, cosine distance, Hamming distance etc.

LSH usually applies a concatenation of m hashing functions
randomly selected from the hashing family to build the hash ta-
ble(reducing check-rate), and builds l independent hash tables and
takes the union of results (raising recall). m and l are parameters
of LSH and the best value is related to the data size. In querying
phase, all points collide with the query point in any of the hash ta-
bles will be considered as candidates. The exact distances between
the query and all the candidates will be validated. For k-NN query,
the top-k in candidates will be returned and for radius query, those
satisfy the radius threshold will be returned. Consider a group of
LSH tables as a whole, it provides the following properties:

LEMMA 1. Given a group of LSH tables denoted as G, ∀p, q ∈
Rd, G(p, q) is true iff p and q collide in at least one of the hash
tables. Then:
• if p ∈ B(q, r), then Pr(G(p, q)) ≥ Pa;
• if p /∈ B(q, cr), then Pr(G(p, q)) ≤ Pb;
• Pa = 1− (1− pm1 )l, Pb = 1− (1− pm2 )l, Pb � Pa.

In subsequent sections, we will consider a group of LSH hash
tables G as a black-boxed index, offering a radius search with some
recall guarantee. Taking p1, p2 and m as inner parameters opti-
mized based on a certain approximation ratio c, and tuning l to
adjust the recall requirement, we have:

LEMMA 2. To get a recall Pa = 1 − δ, the check-rate Pb for
points outside B(q, cr) for G is bounded by log δ ∗ φ, where φ is
an inner property of G.

PROOF. δ = (1− pm1 )l

⇒l = log δ/ log (1− pm1 )

⇒Pb = 1− (1− pm2 )l

⇒Pb ≤ l ∗ pm2
⇒Pb ≤ log δ ∗ pm2 / log (1− pm1 )

Here, φ = pm2 / log (1− pm1 ) is an inner property of G.

The number of tables (i.e., index size) is also proportional to
log δ (it is also relevant to the data size in a theoretically optimized
solution). Note that achieving a high recall typically does not lead
to a significant increase in query complexity (or the number of ta-
bles), as it only affects the term log δ.

To simplify the analysis here we use Euclidean Selective Hash-
ing and Euclidean LSH (i.e., E2LSH) as a running example through-
out the rest of discussion. The Euclidean requirement is not com-
pulsory, since we only need a black-boxed radius search index that
can offer arbitrary high recall as required. In our subsequent anal-
ysis, we also only need the properties of a metric space. Given a
radius search algorithm for any metric space with such recall and
check-rate guarantee, selective hashing can support k-NN search
for such space by using it as a black box.

The theoretical bound of Euclidean LSH can be presented in two
ways depending on the problem requirement. If the checking pro-
cedure is terminated when sufficient number of points in B(q, cr)
is found, then it returns a c-approximate r-NN solution, and its
query time is O(dn1/c). If all the buckets are fully checked and
only those points within B(q, r) are returned, then the results are
exact r-NN with a constant recall δ. Usually there is no theoreti-
cal bound on the check rate for such an exact solution, since LSH
cannot distinguish the points in B(q, cr) - B(q, r) from those in
B(q, r). However, in practice, the worst case seldom happens. In
this paper, we only focus on the overhead using LSH to solve k-
NN problem, and the main result can be achieved by using both
versions of theoretical analysis. Since most LSH implementations,
such as E2LSH [7], choose to do exact search, and recall is the most
common measure for the k-NN problem, we adopt the exact search
LSH as the base algorithm for the rest of our analysis.

3. SELECTIVE HASHING FRAMEWORK
Selective hashing is a meta-method for indexing. It combines

multiple index instances together, e.g., black-boxed LSHs, and pro-
duces a more efficient index without extra storage or query cost.
Considering that we have multiple index choices for data objects, a
traditional approach usually includes all the objects in every index.
At query time, there is only one index or a few indices to be con-
sulted. In contrast, selective hashing builds multiple indices, with
each object in the dataset being placed in only one index. At query



(a) Indexing

(b) Querying

Figure 1: Overview Intuition of Selective Hashing.

time, all the indices have to be consulted to locate the objects of
interest. Thus, selective hashing works in a “select one, query all”
manner. It is easy to see that this scheme can provide correct and
complete results: each object exists in exactly one of those indices,
each of which will be accessed for any single query. The check
rate of each object only depends on the index in which it is stored.
Each index only contains a disjoint fraction of objects, and hence
selective hashing will not bring in any additional cost (especially
for hash-based methods with O(1) lookup cost). Moreover, there
is almost no extra storage overhead as well. In contrast, traditional
methods usually need to build multiple complete index instances
with all the data objects stored, which may lead to a huge index
size and limit the possibility of combining more indices.

We create multiple indices with different radii R, cR, c2R, . . . ,
and adopt selective hashing on the top of these indices. Figure 1
gives an example of our workflow. In the indexing phase, for each
data object, we select one index unit to use. The index selection
is based on the local density around that data point. Finally, we
will have a group of indices, and each data object is stored in only
the most suitable one. In Figure 1a we see how each data point is
mapped to one of three indices (with c=1.5). Data points in dense
regions are stored in the right (small granularity) index, while data
points in sparse regions are stored in the left (large granularity) in-
dex. In the querying phase, we push down the query to all the
indices and collect the results. Then we aggregate the results and
return the top k. In Figure 1b all the indices are used to retrieve the
nearest neighbors of the given query. The search range in each in-
dex is indicated by the shaded cell. The nearest neighbors are found
in the left two indices, with no nearby neighbors at all in the right
index. In the dense area, most of the data points tend to be in in-
dices with small granularities. When a query falls into such areas,
although indices with large granularity are also checked, the data
points are only stored and accessed in indices with small granular-
ities. Thus, the actual search range is small accordingly to avoid
unnecessary checking but large enough to get accurate results. In
the sparse area, however, the query needs a larger search range.
Data points are stored in indices with larger granularities to ensure
recall. In short, the search range for a query is automatically tuned
so that only the potential k-NN candidates will be checked.

From the perspective of data objects (or points), we can also
see that every data object has chosen its best local structure for
k-NN search. For a k-NN search problem, the best local structure
for a query is to only store k-NN while leaving other data objects
outside. Note that only query-object relations are considered and

queries are pushed to all the indices, so similar objects can choose
different radius and be placed in different indices. Thus, the radius
selected by each object is determined independently. Although all
the hash functions are defined globally, only those with suitable ra-
dius are used for each object. Essentially, we use the global hash
tables to offer locally optimized index structure. While there are
learning-based methods, such as DSH [9], that attempt to optimize
hash functions based on the data, they are much harder to tune,
since every hash function affects all objects. Now the only problem
is that we can only select the index for each data point, not each
query. Notice that data p is a k-NN of query q equals with q is a
reverse k-NN of p. We need to choose the radius that is similar to
the range that contains all the reverse k-NN (i.e., potential queries)
of the data point. k-NN is not a symmetric relation, however, we
will build a connection between them in the next section.

4. ALGORITHM AND ANALYSIS

4.1 Density Estimation
As mentioned before, our radius selection is based on the local

density near each object. Many methods have been proposed for
density estimation on multi-dimensional data [21, 26]. We shall
first define density to serve the need in radius selection, in a manner
inspired by these previous methods. Then we propose a simple
density estimation algorithm based on collisions in LSH tables.

4.1.1 Density Definition

DEFINITION 2. (Data Density Observation Do(p, r))
We define the density observation of one point p within radius r as
the number of points in the area B(p, r). For a given dataset O,
the density observation can be represented as Do(p, r) = |{o|o ∈
O, o ∈ B(p, r)}|.

This definition makes all the following analysis independent of
the properties of space: all we need is a distance measure. Note
also that LSH is considered as a black box with only radius r and
recall δ as parameters. Henceforth, we only need to consider the
k-NN problem in a metric space.

Further, we consider the generation model behind density obser-
vation. Points appearing in a certain area can be formally defined as
a spatial Point Process [14]. Although the density of different areas
may be different, by looking into two disjoint areas, the counts of
points are independent of each other but only depend on their own
densities. Thus, this point process can be described as a spatial



Poisson process [14] where the number of points in a certain area
(e.g., density observation) follows Poisson distribution. We define
the expectation of Do(p, r) as actual data density Da(p, r).

DEFINITION 3. (Actual Data Density Da(p, r))
We consider data objects that are generated from spatial Poisson
process. The number of points in a certain area B(p, r) is a ran-
dom variable following Poisson process, and its expectation value
is defined as the actual density Da(p, r). Do(p, r) is the observa-
tion of Poisson(Da(p, r)).

The above two definitions emphasize two different aspects of the
density concept respectively. From the original physical perspec-
tive, density is described as the mass divided by a unit volume,
which is an observation. And from the statistical view point, den-
sity refers to the probability density function (PDF) of a certain
random variable, which is the hidden parameter behind the obser-
vation. Therefore, we use two terms, density observation Do and
actual density Da, to eliminate this ambiguity. For a Poisson dis-
tribution FPoisson(x;λ), when λ is more than 10, its cumulative
distribution function (CDF) can be well approximated by the CDF
of Gaussian distribution [14] 1:

CDFPoisson(λ)(x) ≈ CDFGaussian(µ=λ;σ2=λ)(x) = Φ(
x− λ√

λ
)

In most of the density estimation works [21, 26], there is one
common but indispensable assumption: regardless of the random-
ness of observation, the actual density should be a continuous and
smooth enough function over its domain space. Only with this as-
sumption, can we recover the actual density from a set of isolated
points. In our work, we also make a similar assumption about the
continuity of actual density — λ-continuity for actual data density.
It assumes that for two points within a k-NN distance, the actual
density changes at most λ times.

DEFINITION 4. (λ-Continuity for Actual Data Density)
Given a dataset O, the λ-continuity for data density is satisfied
iff: ∀p, let R be its kth-NN distance, i.e., Da(p,R) = k, then
∀o ∈ B(p,R) and r ≤ R, Da(o, r) ≤ λDa(p, r).

λ-continuity for data density assumes that the actual density should
not change dramatically (i.e., λ times) among the nearest neighbor
pairs. For most typical real datasets, even with high skew, λ is no
more than 1.5-3. It is interesting that even when outlier clusters
exist, λ will still be relatively low (e.g., 3), since the actual density
is much smoother than the observation.

4.1.2 Observation Estimation
After having provided a formal definition of density, we are now

ready to discuss the estimation algorithm. Specifically, we aim to
get the observation Do(p, r). Indeed, the exact value of Do(p, r)
can be directly counted by enumerating the whole dataset. How-
ever, the computation cost is usually not affordable — the complex-
ity of computing the observations for all N data points is O(N2).
In the following analysis, we are only concerned with the lower and
upper bounds of such observations. It is therefore sufficient for us
to estimate these bounds for Do(p, r) effectively.

A natural idea here is that the estimation can be directly obtained
from LSH tables via collision counting. Collisions indicate how
many points are within the radius. Combining the counts from a
group of tables, the estimation can be quite accurate.

1In this paper, the main bulk of analysis are from the perspective of
the CDF of Gaussian. Note that we can also analyze from the CDF
of Poisson and similar results can be derived. However, the CDF
form of standard Gaussian Φ is more intuitive and commonly used.

THEOREM 1 (LOWER BOUND FOR Do(p, r)). Given an LSH
index G with radius r/c and properties Pa and Pb described in
Lemma 1, using #Collision(p, r) to denote the number of points
collides with p (i.e., G(p, q) is true), then with a probability of ζ,
Do(p, r) will be large than LB(p, r), where:

LB(p, r) = #Collision(p, r)−Pb ∗N−Φ−1(1−ζ)∗
√
Pb ∗N

PROOF. Recall that from an LSH group with a radius r′ = r/c
and approximate ratio c: for all collided points of p, the expected
number of points outsideB(p, cr′) (i.e.,B(p, r)) is at most Pb∗N .
Besides, the collision of one data point is independent with the oth-
ers. Thus, the count of such collisions follows a Poisson distribu-
tion with a λ (i.e., expectation) less than Pb ∗ N . Using Gaussian
to approximate Poisson, it follows Gaussian(Pb ∗ N,Pb ∗ N).
The PDF of Gaussian (or Poisson) drops exponentially in the tail
(3 standard variances or more), we can compute an upper bound
UB(p, r) for such a random variable with confidence 1− ζ:

x ∼ Poisson(Pb ∗N)

Pr(x < UB(p, r)) = 1− ζ

⇒UB(p, r) = CDFPoisson(Pb∗N)
−1(1− ζ)

⇒UB(p, r) = Pb ∗N + Φ−1(1− ζ) ∗
√
Pb ∗N

Φ is the CDF of the standard Gaussian. The collisions consist of
two parts: one part is from points outside B(p, r) which has an
upper bound derived above, the other part is from points within
B(p, r). Thus, we have the lower bound for Do(p, r) denoted as
LB(p, r), where LB(p, r) = #Collision(p, r)−UB(p, r).

Although this bound is not tight, it tells us that we can obtain a
similar estimation in a range that is c times larger sinceDo(p, r/c)∗
Pa points will appear in #Collision(p, r). Note that in the radius
selection, the step size of choosing the next radius is also c times.
Therefore at the worst case we select the next larger radius than the
most suitable one. In real applications, this estimation works well
that the lower bound is about a half of the actual value.

The upper bound for Do(p, r) can be derived analogously. In
what follows, we will directly use the value Do(p, r) without con-
sidering how it is estimated (or simply counted). Giving a more
accurate (or even faster) estimation is not the main focus of this
paper and we deal it only briefly here.

4.2 Radius Selection
Armed with the power of λ-continuity for data density and den-

sity observation of data points, we are ready to solve the core radius
selection problem. We first present the selection algorithm that sat-
isfies the quality guarantee, and then analyze the cost of query.

4.2.1 Selection Algorithm
The key problem of selective hashing is to choose an index with

suitable radius for each data point. A main insight here is that by
selecting a radius for a data point, we are in fact setting a guard
range for this point, i.e., when a query point falls into that range,
this point will be checked. We use the term target queries of data
p to denote those potential queries which contain p in their k-NN
results. Obviously, k-NN is not a symmetric relation and we can-
not guarantee that all target queries will fall into the guard range
(unless we set the guard range to be the full space). However, the
confidence of target queries falling into the guard range could be
arbitrary high by the following detailed analysis. Thus, to ensure
a recall of 1 − δ, we allocate the allowed error rate δ into two
parts: (1) δ/3 for cases where LSH fails to get k-NN when target
queries fall into guard range; and (2) 2δ/3 for cases where the tar-
get queries fall outside the guard range. The split parameter (1/3,
2/3) here is optional, since we only aim to build a linear connection



between radius search and k-NN search while the constant does not
matter at the theoretical level.

To match the first part, we will build our LSH table groups using
δ′ = δ/3. Then we consider how to find the guard range (i.e.,
radius to be selected) so that the overall probability of target queries
falling outside the guard range of their k-NN is bounded by 2δ/3.

THEOREM 2 (RADIUS SELECTION). Given a dataset under
λ-continuity assumption, and using φ to denote Φ−1(1− δ/3), let
Bk = λk′+ Φ−1(1− δ/3)

√
λk′, where k′ = k+φ(

√
φ2 + 4k+

φ). Given a data point o, the confidence 2 of target queries falling
into r where Do(o, r) ≥ Bk is larger than or equal to 1− 2δ/3.

PROOF. For a k-NN query q, we denote the distance between
the query and its kth-NN point as r′, and we have Do(q, r′) = k.
As Do(q, r′) is an observation of Poisson(Da(q, r′)), we know
that with a confidence of 1− δ/3:

Da(q, r′)− φ
√
Da(q, r′) ≤ k

⇒Da(q, r) ≤ k + φ(
√
φ2 + 4k + φ)

We denote this upper bound of confidence interval as k′.
Now we consider k-NN of q and we want to determine the guard

range. First we analyze Do(o, r′) for o ∈ B(q, r′) (i.e., o is a k-
NN of q). According to λ-density continuity, we have Da(o, r′) ≤
λDa(q, r′). Besides, we also knowDo(o, r

′) ∼ Poisson(Da(o, r′)).
Thus with probability 1 − δ/3 (splitting the error 2δ/3 again into
two halves):

Do(o, r
′) ≤ Da(o, r′) + φ

√
Da(o, r′)

≤ λDa(q, r′) + φ
√
λDa(q, r′)

Since Da(q, r′) ≤ k′ with confidence 1 − δ/3, the following
statement is satisfied with the probability larger than 1− 2δ/3:

Do(o, r
′) ≤ λk′ + φ

√
λk′

We denote this upper bound of confidence interval forDo(o, r′) as
Bk. Up to now, we know that with confidence larger than 1−2δ/3,
Do(o, r) will not exceed Bk. Therefore, if we set the guard range
of the data object to be r, where Do(o, r) ≥ Bk, with confidence
larger than 1− 2δ/3 we have r′ ≤ r, which means the query falls
into its guard range.

If this guard range assignment strategy is applied to all the data
points, for every <query, k-NN> pair, the guard range of k-NN
will cover the query with a confidence larger than 1− 2δ/3. Com-
bined with the failure probability of LSH which is smaller than
1− δ/3, the overall recall is larger than 1− δ.

In summary, for each data point o, we can select the radius r from
candidate set {R, cR, c2R, . . . } where r is the smallest value that
satisfies Do(o, r) ≥ Bk. Then for any query, the probability its k-
NN to be returned is larger than 1−δ. The algorithm for the overall
radius selection and index process is described in Algorithm 1.

Here we give a complexity analysis for the indexing cost of Se-
lective Hashing compared with E2LSH. E2LSH involves 3 steps:
1) Get the inner products between data points and projection vec-
tors in hashing family (using F to denote the size of hashing fam-
ily). O(FDN). 2) Get the integer codes based on the product,
bias and projection width. O(FN). 3) Compute the buckets for
points based on universal hashing. Insert the points into their cor-
responding buckets. O(MLN). Hence, the complexity of E2LSH
2There is a slight difference between probability and confidence,
since the parameter being estimated is not a random variable but a
fixed value. The confidence 1− δ here means that with probability
1− δ, the confidence interval based on the observation will contain
the actual parameter.

Algorithm 1: INDEX
Input: Dataset: List〈Point〉 O
/* smallest radius is R, increment ratio is c,

and number of indices is SH.size */
Output: Index: List〈LSH〉 SH

1 foreach p in O do
/* observation estimation */

2 find r where Do(p, r) = Bk;
/* insert into only one index. */

3 integer i = blogc (r/R)c;
4 if i < 0 then i = 0 ;
5 if i ≥ SH.size then i = SH.size− 1;
6 SH[i].insert(p);

7 return SH

is O(FDN + MLN). Selective Hashing involves 3 major steps:
1) step 1 in E2LSH. O(FDN). 2) For H radii: follow step 2 and
3 in E2LSH to build LSH, O(MLN); collision counting, O(LN);
radius selection by comparing LB(p, r) and threshold Bk, O(N).
O(HMLN) in total. 3) follow step 2 and 3 in E2LSH to insert
points into the selective hashing index. O(MLN). Hence, the
complexity of Selective Hashing is O(FDN + HMLN). Typi-
cally, M , L and H are about 20, D is more than 100, F is around
100. Since HML is usually smaller than FD, step 1 is the domi-
nant cost in Selective Hashing, which is consumed in all the hash-
ing indexes. That is why Selective Hashing does not involve H
times of cost compared with E2LSH.

4.2.2 Cost Analysis
We first introduce an optimal solution for k-NN using radius

search, which cannot be achieved in reality. After that, we discuss
the overhead of selective hashing compared to the optimal one.

Using radius search to solve a k-NN problem, the best result
it can achieve is to foresee distances of k-NN and to index/query
with the kth-NN distance as the radius. Obviously, the k-NN dis-
tances of different queries differ greatly, and for different queries
the whole dataset needs to be indexed with different radii. Thus,
this approach cannot be realized in practice. However, it represents
the best we can achieve with the idea of radius search algorithm for
k-NN search. Its cost is just the same as conducting a simple radius
search. We define this optimal solution as optimal k-NN. When the
radius search algorithm is LSH, we call it optimal LSH.

Now we analyze the overhead of selective hashing compared to
the optimal k-NN (e.g., optimal LSH). We start by comparing the
number of returned points in a radius, and the additional cost of
checking outside points will be discussed later. For optimal k-NN,
the number of points in the radius is exactly k, since the radius is
set as kth-NN distance. For selective hashing, some more points
will also be checked. The exact number equals to the count of
data points whose guard ranges cover the query. According to Sec-
tion 4.2.1, we know that all the reverse Bk-NN points have a guard
range which covers the query point. Thus, all the reverse Bk-NN
of this query need to be checked.

Unfortunately, we cannot tell how many reverse Bk-NN a given
query has. Intuitively, the average should be Bk, but the actual
number depends on the specific query. An adversary could deliber-
ately choose points with large number of reverse Bk-NN. However,
if the query distribution is expected to be “well-behaved”, this is
an upper bound for the expectation number. Similar to data dis-
tribution previously described, we define the query density as Qa,
and assume λ′-continuity for query density, which limits the rate of
change for Qa/Da.



DEFINITION 5. (λ′-Continuity for Query Density)
Using S to denote the whole space, Da to denote the data distri-
bution, and Qa to denote the query distribution, where Da and Qa
are the density function over the whole space, giving some area A,
the expectation of the number of data points can be expressed as the
integration of Da on A:

∫
p∈ADa(p) dp. 3 And it is analogous for

Qa. Using D−1
a (p, k) to denote the inverse function for Da(p, r),

which returns a radius r such that Da(p, r) = k, the λ′-continuity
for query density is satisfied iff:
∀p ∈ S, ∀o ∈ B(p,D−1

a (p,Bk)),Qa(o)/Da(o) ≤ λQa(p)/Da(p).

Note that we do not require the query distribution to follow the data
distribution, but the ratio should be a continuous function. Under
this assumption, we have the following theorem.

THEOREM 3 (EXPECTATION OF REVERSE Bk-NN). When the
query distribution follows λ′-continuity for query density, the ex-
pectation of reverse Bk-NN is at most λ′Bk per query.

PROOF. For any point p ∈ S (e.g., Rd for a multi-dimensional
space), its guard range is B(p,D−1

a (p, k)), and its expectation
number of reverse Bk-NN can be defined as E(p):

E(p) =

∫
q∈B(p,D−1

a (p,k))
Qa(q) dq

Using t(p) to denote the ratioQa(p)/Da(p), due to the λ′-continuity
for query density, we have Qa(q) ≤ λ′t(p)Da(q) for any q ∈
B(p,D−1

a (p, k)). On the other hand, Da(p,D−1
a (p,Bk)) is just

Bk. Consequently, we have an upper bound for E(p):

E(p) ≤
∫
q∈B(p,D−1

a (p,k))
λ′t(p)Da(q) dq

= λ′t(p)

∫
q∈B(p,D−1

a (p,k))
Da(q) dq

= λ′Bkt(p)

Thus, the expectation of<object, reverse Bk-NN query> pairs for
the whole space is

∫
p∈S Da(p)E(p) dp. And on the other hand,

we know the total number of query is the integration of Qa on S,
i.e.,

∫
p∈S Qa(p) dp. Therefore, the upper bound of the expectation

of reverse Bk-NN per query is:∫
p∈S Da(p)E(p) dp∫
p∈S Qa(p) dp

≤

∫
p∈S Da(p)λ′Bkt(p) dp∫

p∈S Qa(p) dp

= λ′Bk

∫
p∈S Da(p)

Qa(p)
Da(p)

dp∫
p∈S Qa(p) dp

= λ′Bk
Based on the above analysis, the search range of selective hash-

ing is smaller than the distance of λ′Bk-NN of the query. Thus,
the check rate is smaller than the cost of searching for λ′Bkth-NN
distance in radius search. In general, the cost of searching λ′Bk-
NN will be smaller than λ′Bk/k times the cost of searching k-NN,
since we can always search k objects each time and repeat λ′Bk/k
times, in the absence of ties. However, there exist some query cases
that other nearest neighbor points are much more difficult to find
than the k-NN (e.g., k points collide with the query, while all other
points in the dataset have almost the same distance to the query
point).

Recall that the LSH in selective hashing requires a recall of 1−
δ/3, and it will lead to additional (log δ− log 3)/ log δ times over-
head. When k increases, λ′Bk/k decreases, and when δ increases,
3This definition is also consistent with the previous one Da(p, r),
which can be represented as

∫
p∈B(p,r)

Da(p) dp.

Algorithm 2: QUERY
Input: Query: Point q, Index: List〈LSH〉 SH
Output: KNN result: List〈Point〉KNNcurrent

1 KNNcurrent = {};
2 List〈Point〉 pts;
/* search indices begining from the smallest

radius one */
3 for i = 0 to SH .size-1 do
4 pts = SH[i].search(q);
5 foreach p in pts do
6 KNN.checkAndUpdate(KNNcurrent, p);

/* density-based pruning */
7 dis = maxp∈KNNcurrent ‖p, q‖;
8 if dis < µ · SH[i].radius then break

9 return KNNcurrent

(log δ − log 3)/ log δ also decreases. Thus, λ′Bk/k and (log δ −
log 3)/ log δ can be bounded by some constants.

THEOREM 4 (EFFECTIVENESS OF SELECTIVE HASHING).
Selective hashing achieves the same quality for k-NN search as
the fixed radius LSH search, with radius equals the distance to the
c1kth-NN, with as most c2 times overhead, where c1 = λ′Bk/k
and c2 = (log δ−log 3)/ log δ. c1 and c2 are bounded by constant.

Theorem 4 is just a theoretical bound with several relaxations
made during its derivation. For typical datasets and query require-
ments, c1 is bounded by 4-5 and c2 is around 1.3. The real perfor-
mance is much better as we will see in the experimental study.

4.3 Density-based Pruning
In the query scheme discussed above, the query is pushed to all

the index instances. In this subsection, we discuss how to further
reduce the check rate by not checking some index instances while
still obtaining correct results.

We observe that indices with larger radii have the highest check
rate. Intuitively, the guard ranges for points in those indices are
very large, potentially including many irrelevant areas (e.g., a small
dense area nearby). In our experiments on real datasets, we found
that points in the top 20% indices with the largest radius typically
have 2-5x the average check rate. Thus, we would like to avoid
checking those indices if at all possible.

In selective hashing, usually none of the indices can be skipped,
as every point only exists in one index. However, if a query has
already found enough points within a very small radius, then all its
k-NN should fall in a high density area and therefore would not
have been placed in a large radius index. Thus, we can search the
applicable indices from the smallest radius to the largest radius one
by one, and stop searching when all the remaining indices will not
contain any potential k-NN. The following theorem gives a proof
for the correctness of this pruning.

THEOREM 5 (CORRECTNESS OF DENSITY-BASED PRUNING).
For a query q, if Do(q, r) ≥ k and Do(q, r′) ≥ Bk, all the indices
with a radius larger than c(r + r′) will not contain k-NN of q.

PROOF. Let kNN(q) to be the k-NN points of a query q. Since
Do(q, r) ≥ k, ∀o ∈ kNN(q), ||o, q|| ≤ r. Due to the triangle
inequality, ∀p ∈ B(q, r′), ||o, p|| ≤ r + r′. For this reason, we
have: Do(o, r + r′) ≥ Do(q, r′) ≥ Bk.

On the other hand, the indexing algorithm will select the smallest
radius r that satisfies Do(o, r) ≥ Bk. And the radius increases c
times each time. Thus, there will be a radiusR ∈ [r+r′, c(r+r′))



used in our selective hashing index. ∀o ∈ kNN(q), o should be
indexed in a radius equal to or smaller than R < c(r + r′).

Using this pruning, r is the bound of k-NN and is naturally up-
dated all the time. We may build another heap to maintain theBkth-
NN distance r′, or simply use a ratio µr to approximate c(r + r′)
for better performance. Algorithm 2 outlines our querying strategy.

4.4 Incremental Maintenance
Efficient update is an essential requirement for dynamic index

structures. Selective hashing can support efficient updates as well.
Inserting or removing an individual point from a hash table is straight-
forward. The challenge is that updates can change the density of
points in some regions, and therefore impact the choices made in
constructing the index.

In the framework of selective hashing, the update process not
only has to consider the insertion or deletion for the point to be
processed, but also the impact on nearby points. For example, if
there are many insertions in a sparse area, then the area becomes
denser and all the points in this area should be moved to a smaller
radius in order to reduce the check rate. Therefore, we need to
make sure that the radius selection is based on the correct density
observation. Thus, we need to maintain the density information for
each data point, and re-select the radius when necessary.

First, we observe that the radius selection for each point is per-
formed independently. That is, the choice of radius depends only
on the existence of nearby points and not on the radius choice
for these points. Therefore, when an update is applied, we only
need to re-compute the density observation of points that may be
affected. The number of affected points depends on the applied
algorithm that estimates the density observation. For example, if
it is estimated based on collisions in LSH, all the points that col-
lide with the updated point should update their count of collisions
and move to a new radius R where R is the smallest one satisfying
LB(p,R) ≥ Bk. The number of points being affected is around
Bk + Pb ∗N and such cost will not be high in most cases.

In write-intensive applications such as social networks and sen-
sory observations, data points arrive as a stream. Most updates
are new insertions and sub-optimal query performance may be ac-
ceptable in return for faster updates. To address this scenario, we
propose a lazy updating strategy to postpone the radius re-selection
to the moment when the check rate for an object becomes unac-
ceptably high. For new insertions, the radius is only reduced and
never increased. Thus, using the original radius will only affect the
check rate, while the recall is still guaranteed. Instead of monitor-
ing the density observation, lazy updating maintains the check rate
information for each point, re-computes its density observation and
re-selects its radius when its check rate is higher than some thresh-
old. When a new point comes, we simply insert it into selective
hashing index. Such updating strategy slight increases the query
time while achieving an update speed as fast as the naive LSH.

5. EXPERIMENTS

5.1 Experimental Setup
Datasets. We evaluate the performance using two real datasets:
an image dataset Flickr1M and an audio recording dataset Million-
Song, both of them represented as high-dimensional feature vec-
tors. Flickr1M [22] contains extracted features of 1 million images
from Flickr. Each image is represented as a 3,857-dimensional fea-
ture vector comprising a concatenation of SIFT feature, color his-
togram, etc. MillionSong [4] is a collection of audio features and
meta data for a million contemporary popular music tracks. We

split the audio into sections such that each contains 50 continu-
ous small voice segments. Each segment is described using 12
MFCC features. We get 2 million sections and each section is a
600-dimensional vector. For whitening, normalization and dimen-
sion reduction purposes, following common practice, we use PCA
to pre-process these two datasets and keep 200 and 100 dimensions
respectively.
Methods and implementations. We have implemented the fol-
lowing methods for comparison.
• Selective hashing (SH). Our algorithm presented in Section 4.
The default setting is with density-based pruning and normal up-
dating.
• Fixed radius LSH. E2LSH [7] is the most common LSH imple-
mentation for exact Euclidean search. For each dataset, one small
radius is selected for a more efficient solution small radius LSH
(SLSH), and one larger radius is selected for a more accurate so-
lution large radius LSH (LLSH). In general, the small radius one
is more effective when recall is low. However, its recall cannot be
further improved as there are many k-NN outside its radius. On
the other hand, the larger radius one can offer higher recall, but is
more likely to have too many collisions and hence requires a higher
check rate.
• Multi-radius LSH (MLSH). We build |G| E2LSHs using radii
{R, cR, c2R, . . . }. When a query is issued, we search the indices
from the smallest radius E2LSH to those with larger radii. When
there are at least k points in current radius R, all the k-NN are
within radius R; the recall guarantee holds and search procedure
is stopped. Its index size is |G| times that of the fixed radius LSH.
MLSH provides a strict theoretical guarantee for the recall.
• Optimal LSH (OPT). We have presented an Optimal LSH in Sec-
tion 4.2.2. It gives a lower bound for the cost of k-NN search. We
test its performance using multi-radius LSH, while only searching
the LSH which has the same radius as the distance of kth-NN (pre-
calculated and given as input).
• IsoHashing (ISO). ISO [15] is a learning-based hashing method
trying to give equal variance for all dimensions where quantizers
are applied.
• Data sensitive hashing (DSH). DSH [9] is a learning-based high-
dimensional data-sensitive hashing which is directly designed for
k-NN search and especially targeted to give high recall guarantee.

For all these hash-based indices, we follow the typical index and
query strategy used in E2LSH which is described in Section 2. For
DSH and ISO, all the hashing functions are used to build the hash-
ing family. In table construction, universal hashing is applied to all
the hash tables and the total number of buckets per table is 9973
(the closest prime to 10000). For SH, MLSH and OPT, the num-
ber of radii |G| is set to 20, and the approximation ratio c is set to
1.2. The largest radius can be 30x larger than the smallest one. Fi-
nally, the memory is large enough for all the methods to keep the
original dataset and all the indices in memory. Parameters for all
methods are optimized to offer the best performance. All the ex-
periments were performed on a Ubuntu system equipped with one
Intel 3.4GHz processor, 16GB of memory.
Measurements. We evaluate the performance using the following
measures: Recall is used to measure the quality of query result.
Check Rate and Query Time are used to measure the efficiency of
algorithm. Precision or MAP is not used as measurement since all
the algorithms are used to generate a set of candidates. The exact
distances are calculated for the candidates, and the top-k are used
as k-NN result. As an example, to solve a 20-NN search problem
in 1M points, we expect the algorithm to return 2000 points that
contain all the k-NN (1% precision 100% recall), but not to return
20 points that contain 12 of them (60% precision & recall). We can



Table 1: Overall Comparison
(a) Flickr1M

method OPT SH MLSH SLSH LLSH DSH ISO

query
time(ms)

recall = 0.99 5.5 8.8 27.9 / / / /
recall = 0.96 4.2 5.5 19.5 / 52.3 14.5 28.5
recall = 0.90 3.1 3.7 14.5 11.4 21.5 7.9 6.9

check
rate(%)

recall = 0.99 0.61 0.97 2.33 / / / /
recall = 0.96 0.47 0.61 1.62 / 5.82 1.45 3.15
recall = 0.90 0.37 0.40 1.23 1.26 2.35 0.88 0.79

index
size(M)

recall = 0.99 283 3485 / / / /
recall = 0.96 170 1765 / 405 349 520
recall = 0.90 105 827 264 124 152 145

(b) MillionSong

OPT SH MLSH SLSH LLSH DSH ISO

5.3 9.8 26.3 / / 34.8 /
4.1 5.9 20.2 / 47.6 13.7 21.5
3.1 3.9 15.1 13.1 24.4 6.8 5.75
0.57 1.08 2.99 / / 3.62 /
0.44 0.66 2.31 / 5.28 1.43 2.24
0.33 0.42 1.71 1.46 2.71 0.71 0.64

148 1770 / / 347 /
101 832 / 207 137 160
66 441 113 70 90 80
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Figure 2: Comparison of Methods with Strict Query Guarantee

validate those 2000 points and obtain the exact answer. However,
we cannot expand the 12 points to obtain a higher recall. For this
reason, we only focus on the query performance under high recall
(90% - 99%) requirements. We also compare Index Size, Construc-
tion Time and Update Cost. 1000 points are randomly removed
from each dataset and used as query points. Unless specified other-
wise, k is set to 20 except in the experiment comparing the perfor-
mance of different methods under various k.

5.2 Query Performance
Query performance is the principal criterion for indexing. Table

1 summarizes the performance of the methods that are required to
reach a specified recall on the two datasets. Only SH and MLSH
(and the unrealizable OPT) can reach 99% recall on both datasets,
and can be considered as having strict quality guarantee. Although
DSH ensures the recall of the results on its training sets and per-
forms much better than the other methods (ISO, SLSH and LLSH),
there are still more than 1% missing results. In what follows, we
first present the comparison results for the methods with strict qual-
ity guarantee, and then show the comparison results for ad-hoc and
learning-based methods which are faster but achieve lower quality.
After that, we study how different values of k will affect the per-
formance for those methods, and also the effect of density-based
pruning on SH.
Methods with strict quality guarantee. We first present compar-
ison result for SH, MLSH and OPT. Figure 2 shows their perfor-
mance on check rate and query time to reach a certain recall. The
trends in two datasets are similar. Furthermore, the trends of check
rate are consistent with those of query time since most query time is
spent in computing the exact distances for the candidates. Specif-
ically, all the algorithms take about 9ms to scan 1% of data (about
8MB data). From the figure, we can see that SH almost reaches
the lower bound — OPT, when the recall is around 90%. When
recall increases, δ becomes smaller and Φ(1−δ/3) will be slightly
larger. For this reason, SH uses 1.5x-2x time than OPT when recall
is 99%. However, the effect of δ is bounded, since Gaussian CDF
decays fast to zero in its tail. Compared to MLSH, both query time
and check rate of SH are only about one third. The query time of
MLSH is about 5x larger than OPT. From the result we can see,
even if multiple indices for different radii have been built, the over-
head of attempting a suitable radius is still very high. If the distance

of k-NN varies W times, the overhead of query time can only be
bounded by O(logcW ), and index size is also O(logcW ) times
the fixed radius one. Moreover, SH also benefits from density-
based pruning, while MLSH does not.
Ad-hoc and learning-based methods. From Table 1, it is clear
that the index size of MLSH is huge and may not be acceptable in
lots of real scenarios. Here we give a comparison for the methods
using only one group of hash tables, including SLSH, LLSH, ISO,
DSH and SH. Figure 3 shows their check rate and query time as a
function of recall. SH performs more than 1.75x faster than DSH.
This is because although DSH also aims to offer a better structure
to maintain the k-NN relations, it is based on the optimization of
global hash functions, whereas SH offers a more fine-grained local
optimization for every data point. LLSH and SLSH give the worst
performance, due to the fact that they do not have any optimization
on k-NN at all. Since SLSH cannot provide high recall, say 96%,
we shall use LLSH as the representative of the fixed radius LSH in
subsequent comparisons.
Sensitivity to k. In most real-life applications (e.g., displaying the
first page of results, k-NN joins, k-NN classifier), k is typically
pre-defined throughout all the queries. However, it is important for
an index to be insensitive to the value of k so that we only need
to maintain one k-NN index to serve most potential applications.
Here we study the query performance when k of the query varies
while keeping k = 20 in index construction. Figure 4 shows the
query time for achieving 96% recall for queries with different val-
ues of k. Obviously, the query with a larger k is harder to compute
and needs longer query time. MLSH is the only method that does
not use k for index construction and hence is not sensitive to k. For
LSH-based methods SH and LLSH, their relative query time per-
formance compared with MLSH increase around 25% for k = 1,
20% for k = 100 and 90% for k = 500. This increase can be
viewed as the overhead due to using an incorrect k during index
construction. For all the cases, SH is 2-5x faster than all the other
methods. This is because the segment width of LSH may be ef-
fective for an interval of radius like [r, 1.2r], with the performance
dropping significantly outside the interval [7], while the distances
of 100th-NN (or 1-NN) and 20th-NN usually do not have a signif-
icant difference. Therefore a single index (e.g., k = 20) can serve
a moderate range of k values (e.g., 1 to 100), which serves the need
of most applications and searches.
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Figure 3: Comparison of Ad-hoc and Learning-based Methods
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Figure 5: Density-based Pruning

Density-based pruning. Here we study the effect of density-based
pruning on selective hashing. The distribution of data among dif-
ferent radii is more balanced in the Flickr1M dataset and therefore
we use it to show how the check rate is changed. The distribution of
data among all the 20 indices is shown in Figure 5a, where the first
bar represents the index with the smallest radius. Figure 5b reports
the check rate to reach 96% recall before and after the density-
based pruning is adopted. Although the proportion of points in 4
indices with largest radii are only 10%, they contribute about 40%
of the check rate. By using the density pruning strategy, their check
rate is reduced by almost a half.

5.3 Index Construction
The index size of each method has already been described in

Table 1, and SH requires the least storage space to reach a given
recall. Compared with MLSH, the index size of SH is only 7% -
10%. Compared with the other methods, the hash tables of SH are
also the most space efficient. It will be fairer to compare the index
size, construction time and update cost of each method to reach a
given recall. For this reason, the cost of the fixed radius LSH can be
higher than the other methods where fewer tables are constructed.

Efficient construction is also an essential requirement for index-
ing, since periodical index reconstruction is commonly adopted as a
way to improve the query efficiency. Table 2 summarizes the index
construction time for all the methods. We also conduct a scalability
test where all the data points are duplicated 10 times. All the meth-
ods take about 9x-10x longer time in the 10x dataset, suggesting
that the construction time is linear with respect to the size of the
dataset. SH and LLSH incur the least time to construct the tables,
followed by ISO and DSH. The construction time typically consists
of four components: training hashing functions (or estimating den-
sity for SH); computing the inner product between data points and
projection vectors; getting the key for each hash table; and insert-

Table 2: Index Construction Time(s)
Flickr1M MillionSong

Methods #table 1x 10x #table 1x 10x
SH 15 112 1020 17 86 800
MLSH 11 205 1922 10 143 1346
LLSH 40 112 1098 44 85 833
DSH 34 135 1215 26 122 1188
ISO 30 120 1140 24 90 880

Table 3: Update Cost
Flickr1M MillionSong

Methods insertion throughput insertion throughput
SH 196 2.14 301 2.79
SH-Lazy 97 4.33 165 5.09
MLSH 236 1.78 329 2.55
LLSH 146 2.88 221 3.80
DSH 310 1.36 448 1.86

ing points into hash tables. Most approaches have the same inner
product computation step and have the same cost if their hashing
families have the same size. The major differences of construction
time happen in the last two components, i.e., table construction.
For SH, its hash tables are very efficient, thus fewer tables are built
and the cost of insertions is therefore lower.

5.4 Update
We also evaluate the update cost, measured by the average pro-

cessing time per thousand insertions, and the throughput, measured
by the amount (MB) of data processed per second. Table 3 sum-
marizes the results. Lazy updating version of SH, named SH-Lazy,
is the fastest, reaching a throughput of 5MB per second which is
usually sufficient to handle sensor data. This is because the update
cost per table for lazy updating is very close to LLSH, while fewer
tables are maintained to get the same quality of results. The update
for DSH is relatively slow since it involves re-training a fraction of
hashing functions. ISO does not support update, limiting its appli-
cability as an indexing structure for dynamic databases.

We also study the effect of lazy updating in different scenarios.
Table 4 shows the performance under different update/query ratios.
In this experiment, the query and insertion of points are processed
at the same time. Half of the points are selected as original points
in the dataset and the other half are used as points for updating.
Thus, the average density changes 2x during update when all the
update points are processed. For lazy updating, the query perfor-
mance degrades about 5% to 30%, whereas the update cost is re-
duced by half. Interestingly, query performance converges to the
density monitoring approach when more queries are issued. This
is because more queries may lead to more frequent updates, and
therefore the estimation is more accurate. In general, when the
update/query ratio is larger than 100, lazy updating is definitely a
better choice.

6. RELATED WORK
There is extensive work on high-dimensional indices for k-NN

queries, described in good literature surveys [5, 11]. In the high-



Table 4: Lazy Updating
Ratio Method Update(ms) Query(ms) Total(ms)

1:1 SH 3.0 97.7 100.7
SH-Lazy 1.7 104.2 105.9

1:10 SH 30.2 97.7 127.9
SH-Lazy 16.8 112.8 129.6

1:100 SH 301.6 97.7 399.3
SH-Lazy 166.3 119.1 285.4

1:1000 SH 3015.3 97.7 3113.0
SH-Lazy 1650.7 126.3 1777.0

dimensional scenario, most tree-based solutions suffer from the
curse of dimensionality [27]. Locality sensitive hashing (LSH)
methods [10, 7] are the best known approaches for approximate
high-dimensional nearest neighbor search. Recent result [1] about
the complexity of LSH has almost reaches the lower bound for
radius search [18]. However, as illustrated earlier, there remains
a huge gap between effective k-NN search and effective radius
search. C2LSH [8] was proposed as alternatives of LSH for effec-
tive radius search, which consume significantly less index storage.
Fast LSH [6] was proposed to accelerate the computation of Eu-
clidean distance between high-dimensional vectors. These meth-
ods are orthogonal to our proposed SH, which is designed as an
effective k-NN search mechanism on the top of them.

Recently, there has been increasing attention focusing on data-
sensitive hashing structures to solve the k-NN search problems.
The LSB-tree [24] leverages the intrinsic features of the B-tree to
provide a data-sensitive solution. Spectral hashing [29, 28], data
sensitive hashing [9], Boostmap [2] and other learning-based meth-
ods [16, 12, 19, 25] aim to optimize the hash functions. Although
these learning-based methods are effective to capture most global
distribution trends, they fail to catch specific local patterns such as
dense groups or sparse hulls. In contrast, SH is designed to give
a local optimal structure for each data point individually. There
are also many methods [17, 20, 13] focusing on exploiting more
buckets in a table to search far away k-NN. However, radius is the
decisive parameter in LSH, and it remains hard to retrieve far away
points.

SH is also inspired by the idea of partial indexing [23] in Post-
gres. Both partial indexing and SH consider the effectiveness of
the index for each data object. However, there are major differ-
ences between the two concepts, especially in query processing.
In partial indexing, the index method chosen for use is still based
on the query. Thus, its starting point is to build a set of small but
effective partial indices to facilitate a wider range of query tasks.
However, in selective hashing, the index to be accessed for a cer-
tain data object depends on itself, but not the query. SH is also
related to some density estimation topics [3, 21, 26]. In SH, we
follow some common assumptions in density estimation, but adapt
the definition of density to serve our analysis. Moreover, our focus
is on the data observation, while most density-related works aim to
discover a smooth function behind the observation.

7. CONCLUSION
The LSH family of algorithms is considered to be very good at

similarity search in high-dimensional space. However, it has been
designed to address the problem of fixed radius search, rather than
the k-NN problem. In this paper, we introduced Selective Hashing
(SH) as a meta-technique for k-NN search, constructed on top of
any fixed radius search techniques, such as LSH. The key innova-
tion in SH is the ability of choosing the index independently for
each point, and then consulting multiple disjoint indexes for each
query. The effectiveness of the proposed technique was established

theoretically through careful analysis and demonstrated experimen-
tally through performance studies using real datasets.
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