
Towards Effective Indexing for Very Large Video Sequence
Database

Heng Tao Shen
School of Information

Technology and Electrical
Engineering

The University of Queensland
Brisbane QLD 4072 Australia

shenht@itee.uq.edu.au

Beng Chin Ooi
Department of Computer

Science
National University of

Singapore
Kent Ridge, Singapore 117543

ooibc@comp.nus.edu.sg

Xiaofang Zhou
School of Information

Technology and Electrical
Engineering

The University of Queensland
Brisbane QLD 4072 Australia

zxf@itee.uq.edu.au

ABSTRACT
With rapid advances in video processing technologies and
ever fast increments in network bandwidth, the popularity
of video content publishing and sharing has made similar-
ity search an indispensable operation to retrieve videos of
user interests. The video similarity is usually measured by
the percentage of similar frames shared by two video se-
quences, and each frame is typically represented as a high-
dimensional feature vector. Unfortunately, high complexity
of video content has posed the following major challenges for
fast retrieval: (a) effective and compact video representa-
tions, (b) efficient similarity measurements, and (c) efficient
indexing on the compact representations. In this paper,
we propose a number of methods to achieve fast similarity
search for very large video database. First, each video se-
quence is summarized into a small number of clusters, each
of which contains similar frames and is represented by a
novel compact model called Video Triplet (ViTri). ViTri
models a cluster as a tightly bounded hypersphere described
by its position, radius, and density. The ViTri similarity is
measured by the volume of intersection between two hyper-
spheres multiplying the minimal density, i.e., the estimated
number of similar frames shared by two clusters. The to-
tal number of similar frames is then estimated to derive the
overall similarity between two video sequences. Hence the
time complexity of video similarity measure can be reduced
greatly. To further reduce the number of similarity com-
putations on ViTris, we introduce a new one dimensional
transformation technique which rotates and shifts the orig-
inal axis system using PCA in such a way that the origi-
nal inter-distance between two high-dimensional vectors can
be maximally retained after mapping. An efficient B+-tree
is then built on the transformed one dimensional values of
ViTris’ positions. Such a transformation enables B+-tree to
achieve its optimal performance by quickly filtering a large

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD 2005June 14-16, 2005, Baltimore, Maryland,USA
Copyright 2005 ACM 1-59593-060-4/05/06$5.00.

portion of non-similar ViTris. Our extensive experiments
on real large video datasets prove the effectiveness of our
proposals that outperform existing methods significantly.

1. INTRODUCTION
In recent decades, multimedia retrieval has attracted plenty

of attention due to its data’s rich content. Among media
types, video presents the most complex data, including a
sequence of frames (or feature vectors), audio, motion, etc.
With ever more heavy usage of video devices and advances in
video processing technologies, the amount of video data has
grown rapidly and enormously for various usages, such as ad-
vertising, news video broadcasting, personal video archive,
medical video data, and so on. Interestingly, the popular-
ity of WWW enables enormous video data to be published
and shared. Web search engines provide users convenient
ways for finding videos of their interests. Due to the high
complexity of video data, retrieving the similar video con-
tent with respect to a user’s query from a large database
requires: (a) effective and compact video representations,
(b) efficient similarity measurement, and (c) efficient index-
ing on the compact representations.

Here we define a video as a sequence of frames, each of
which is a high-dimensional image feature vector. The num-
ber of frames is typically in the range of hundreds or more,
depending on the length of video. Generally, similarity be-
tween two video sequences is measured by identifying the
closest match for every single frame in each sequence. The
time complexity is linear to the product of the lengths of the
two sequences [6]. Obviously, such a process is impractical
for very large video databases. One promising way to reduce
the computational cost is to construct a compact summary
which is described by much fewer keyframes/representatives.
The video similarity is then approximated based on the sum-
mary similarity. Unfortunately, existing techniques all suffer
from the drawback of losing information localized to each
individual representative in the summary [13, 8, 14]. This
obviously limits the retrieval accuracy.

In this paper, we introduce a novel summary representa-
tion model called Video Triplet (ViTri). A sequence is first
summarized into a small number of clusters which contain
similar frames. Each cluster is then modelled as a hyper-
sphere in n-dimensional space, where n is the dimensional-
ity of feature vector. Each hypersphere is represented by a
video triplet: (position, radius, density), which determine

the cluster center, cluster range, and number of frames in
the cluster respectively. Particularly, we refine the cluster
radius by mean and standard deviation of the distances be-
tween frames to the cluster center. Unlike existing methods
that measure the similarity of two clusters by the distance
between two cluster centers, we evaluate their similarity by
the estimated number of similar frames shared by two clus-
ters, which is computed by the volume of intersection be-
tween two hyperspheres multiplied by the smaller density.
By doing so, the local information for each cluster can be
captured more accurately. Finally the total number of sim-
ilar frames shared by two video sequences can be computed
efficiently. Hence the time complexity of similar measure is
reduced to be linear to the product of number of clusters in
two sequences.

For a database containing a very large number of video
sequences, exhaustive search among all ViTris to identify
the similar videos are strongly undesirable. To mitigate this
problem for further improvement of retrieval response, one
strategy is to design an efficient indexing method to avoid
extensive accesses and redundant computation on the non-
similar ViTris. Inspired by the simplicity and efficiency of
B+-tree, we propose a novel one dimensional transforma-
tion method to map a n-dimensional feature vector into a
one dimensional distance value. By doing so, the positions
of ViTris can be indexed by an efficient B+-tree. We ro-
tate and shift the original axis system by using Principle
Component Analysis (PCA) to find an optimal reference
point such that the original inter-distance between two high-
dimensional feature vectors can be maximally retained after
the transformation. Given a search radius, fewer ViTris are
then expected to be accessed, so as to the number of simi-
larity computations.

Our extensive performance study on large real life video
datasets indicate that the proposed ViTri method offers bet-
ter accuracy than existing video summarization methods
and our one dimensional transformation achieves significant
performance advantages over sequential scan and existing
indexing methods.

The rest of paper is organized as follows. In Section 2, we
review related work. Foundations of our work is presented
in Section 3, followed by ViTri and its measure in Section 4.
We present the method to index ViTris in Section 5. An
extensive performance study is reported in Section 6, and
finally, we conclude our paper in Section 7.

2. RELATED WORK
In content-based image retrieval, the similarity/distance

of two images is typically computed by the well-known Eu-
clidean distance. When extending the distance function to
video sequences, many proposals have been proposed. One
widely used video similarity measure is the percentage of
similar frames shared by two sequences [6]. Warping dis-
tance [13] is used to measure the temporal differences be-
tween two sequences. Hausdorff distance [5] is used to mea-
sure the maximal dissimilarity between two shots. Template
matching of shot-change duration [7] is used to compute the
overlap between two sequences. However, all these mea-
sures need to compare most, if not all, frames pairwise. The
full similarity computation requires storage of the entire se-
quence and time complexity is at least linear to the number
of frames multiplied by the dimensionality of frame. Obvi-
ously, such expensive compactions are strongly prohibited

for very large video datasets.
To reduce the computational cost, one approach is to sum-

marize the video sequences into compact representations,
hence the video similarity is approximated based on the
compact representation. In literature, two categories of sum-
marization techniques have been proposed: summarize the
sequence as a statistical distribution and summarize the se-
quence into fewer representatives. The first category typ-
ically assumes that the frames are distributed in a model
like Gaussian, or mixture of Gaussian [8, 14]. In the second
category, [5] identifies keyframes by selecting the k feature
vectors to minimize the distance between them and the orig-
inal sequence. [6] introduces a randomized summarization
method which randomly selects a number of seed frames
and assigns a small collection of closest frames (called video
signature) to each seed. However, the selection of seeds
may sample non-similar frames from two almost-identical
sequences. Furthermore, too many parameters need to be
tuned for better performance.

High-dimensional indexing is another topic related to our
research. High-dimensional indexing [3] have been exten-
sively researched in the database literature. Our work is
more closely related to techniques based on transforming
high-dimensional data to single dimensional space. The
Pyramid technique [2] and the iDistance scheme [15] are
two typical examples. The Pyramid technique divides the
D-dimensional data space into 2D pyramids and then cuts
each pyramid into slices each of which forms a data page.
It provides a mapping from D-dimensional space to single-
dimensional space. iDistance transforms a high-dimensional
point into a single-dimensional distance value with reference
to its corresponding reference point.

3. FOUNDATIONS
In this section, we provide the basic definitions that serve

as the foundations of our work.

3.1 Video Similarity Measure
We assume each frame in a video sequence is represented

by a high-dimensional feature vector (hence frame and fea-
ture vector are interchangeable). A video sequence X is then
represented as: X = {x1, x2, ..., xf} where f is the number
of frames in the sequence. d(x,y) is the distance function
to measure the similarity/dissimilarity of two frames x and
y. We say x and y are similar if d(x, y) <= ε, where ε is
a small positive value and called frame similarity threshold.
ε may depend on different feature spaces and is tuned for
precision-efficiency trade-off in retrieval performance. The
similarity between two sequences is then defined as [6]:

sim(X, Y) =

∑
x∈X

1{y∈Y :d(x,y)≤ε} +
∑

y∈Y

1{x∈X:d(x,y)≤ε}

|X|+ |Y |
Where | · | is the number of frames in the sequence. This

similarity is measured by the percentage of similar frames
in two sequences and robust to temporal order of frames.
In this paper, we use this definition to measure the video
similarity. Obviously, as mentioned, the time complexity
of this measure is too high to for practical usage. One of
our goals in this paper is to discover an efficient method
to estimate the number of similar frames precisely, without
computing the inter-similarity of frames.

3.2 Volumes

Figure 1: A 2-dimensional example.

In a n-dimensional feature space, hypersphere (often sim-
ply called the n-sphere) is a generalization of the circle in
2-dimensional space and usual sphere in 3-dimensional space
to dimensions. A hypersphere is therefore defined as a set
of n-dimensional vectors whose distances to the center are
less or equal to the radius. Similarly, hypersector, hyper-
cone, and hypercap are generalizations of the sector, cone
and cap respectively. As a 2-dimensional example shown in
Figure 1, the circle is determined by center O and radius R.
The sector inside of the circle, the cone inside of the sector
(light shaded area) and the cap inside of sector (dark shaded
area) are all determined by angle α since the heights of cone
and cap can be derived from α.

It is known that the volume of a n-dimensional hyper-
sphere centered at O with radius of R, denoted as V(O,R),
is computed as following:

Vhypersphere(O, R) = π
n
2

Γ(1+ n
2)

Rn

=

π
n
2

(n
2)!

Rn

2n+1π
n−1

2 (n+1
2)!

(n+1)!
Rn

In the above and following formulas on volume, the upper
formula inside of bracket is for even n and the lower one is
for odd n.

Similarly by using integral, the volume of hypersector is
computed as [9]:

Vhypersector(O, R, α) = Rn 2π
n−1

2

nΓ(n−1
2)

∫ α

0
(sin(α))n−2dα

=

Rn π
n−2

2
(n
2)!

α− cos(α)

n−4
2∑

i=0

22i(i!)2

(2i+1)!
(sin(α))2i+1

Rn 2nπ
n−1

2 (n+1
2)

(n+1)!

1− cos(α)

n−3
2∑

i=0

(2i!)2

22i(i!)2
(sin(α))2i

And the volume of Hypercone is:

Vhypercone(O, R, α) = Rn π
n−1

2

nΓ(n+1
2)

cos(α)(sin(α))n−1

=

Rn 2n−1π
n−2

2
n!

cos(α)(sin(α))n−1

Rn π
n−1

2

n(n−1
2)!

cos(α)(sin(α))n−1

The volume of hypercap is simply derived by deducting
the volume of hypercone from that of hypersector:

Vhypercap(O, R, α)
= Vhypersector(O, R, α)− Vhypercone(O, R, α)

=

Rn π
n−2

2
(n
2)!

α− cos(α)

n−2
2∑

i=0

22i(i!)2

(2i+1)!
(sin(α))2i+1

Rn 2nπ
n−1

2 (n+1
2)

(n+1)!

1− cos(α)

n−1
2∑

i=0

(2i!)2

22i(i!)2
(sin(α))2i

Note that the term coming from the formula of the hyper-
cone constitutes an additional term which supplements the
series. The formula is identical to that of the hypersector,
except the number appearing in the top of sigma [9].

The above formulas pave the way to estimate the number
of similar frames shared by two clusters which are modelled
as ViTris in Section 4.

3.3 Principal Component Analysis

First PC

Second PC

O1

O2

Figure 2: PCs in 2-dimensional space.

Principal Component Analysis (PCA) [11] examines the
variance structure in the dataset and determines the direc-
tions along which the data exhibits high variance. The first
principal component is the eigenvector corresponding to the
largest eigenvalue of the dataset’s covariance matrix C and
exhibits the largest variance. The second component corre-
sponds to the eigenvector with the second largest eigenvalue
and exhibits the second largest variance, and so on. All
principal components are orthogonal to each other.

A 2-dimensional example is shown in Figure 2, where the
first principal component indicates the direction that ex-
hibits the largest variance, and the second principal compo-
nent that is orthogonal to the first one indicates the direc-
tion with the smallest variance. Next, we present a useful
definition called variance segment.

Definition 1 (Variance Segment). For a principle
component, denoted as Φi which identifies a line (or a di-
rection), its variance segment is a segment of the line de-
termined by two furthermost projections on Φi for all data
points.

In the example shown in Figure 2, on the line identified by
the first principle component Φ1, projections of O1 and O2,
computed as O1 · Φ1 and O2 · Φ1 (indicated as diamonds in
the figure), are two furthermost projections. The segment
between O1 · Φ1 and O2 · Φ1 is the variance segment for Φ1

(indicated as bold in the figure). The definition of variance
segment will help us in finding an optimal reference point
for one dimensional transformation.

4. VIDEO TRIPLET
In this section, we see how the time complexity of simi-

lar measure between two videos can be reduced. We first
present how to generate clusters of similar frames, followed
by its representation - ViTri. We then discuss how to mea-
sure the similarity of two ViTris, from which the similarity
of two videos is also derived.

4.1 ViTri Representation
The video similarity measure in this paper models a video

sequence as a collection of frames and is robust to tempo-
ral ordering. Observing that nearby frames in a video are
quite similar (for example, frames in a shot), we summarize
a video sequence into a small number of clusters which con-
tain similar frames, and one frame belongs to one and only
one cluster. An ideal cluster should satisfy two conditions:
contains similar frames only and no other frame similar to
the frames in the cluster can be found in any other cluster.
However, such an ideal cluster may not exist for any arbi-
trary sequence. Instead, we relax the cluster to only contain
similar frames, i.e., the similarity of any two frames in a
cluster should not greater than ε.

To generate clusters of similar frames, we deploy the well-
known k-means method to construct a recursively binary
clustering method as shown in Figure 3.

Generate Clusters(X)
1. clusters[] ← k-means(X,2);
2. for each cluster C centered at O
3. compute µ and σ of d(xi, O) ∀xi ∈ C;
4. if R=min(R, µ+σ) ≤ ε/2
5. record O, R, and |C|;
6. else
7. Generate Clusters(Ci);

Figure 3: Clusters Generation Algorithm.

The algorithm is initialized by a video sequence X. It first
generates two clusters based on k-means method (line 1).
For each cluster, we compute the mean, denoted as µ, and
the standard deviation of mean, denoted as σ, of the dis-
tances of all frames with respective to the cluster center
(line 3). The cluster radius R is refined as min(R, µ+σ).
If R is not greater than ε/2, we treat the cluster as a valid
cluster and record its center, radius, and size (i.e., number
of frames) of the cluster (line 4-5). Otherwise, we recur-
sively call Generate Clusters by passing in the cluster to get
smaller and more compact clusters (line 6-7).

The key of the above algorithm is the refinement of clus-
ter radius. To enforce the condition that all frames in a
cluster are similar, a safe requirement is to enforce the clus-
ter radius to be less than ε/2, i.e., R ≤ ε/2. However, in
our algorithm, we refine the radius to be min(R, µ+σ) to
get a tighter cluster for the following reasons. First, from
the formula on volume of hypersphere, a small enlargement
in radius will result in a significant enlargement on the
volume. For instance, increasing the radius by 10%, the
volume of a 64-dimensional hypersphere will be increased
by about 445 times (1.164). In real situations, it is not un-
common that there are few extreme values that are far away
from the mean. Eliminating the effect of those extremes will
tighten the space of a cluster and obviously result in a more
compact representation. Second, statistically, most frames
have distances less than or equal to µ+σ with respect to the
center. σ is a measure of the spread of the distances from
their mean and defined as:

σ =

√∑
(d(xi, O)− µ)2

|C|
The more spread apart the distances are, the higher the
deviation. Assume the distances values are normally dis-
tributed, then 68% of frames have distances between (µ-σ,
µ+σ). Thus it is about 84% (i.e., 68%+32/2%) of frames
have distances less than or equal to µ+σ from the cluster
center. For a 64-dimensional hypersphere, increasing µ+σ
by 10% means that only 16% of frames are distributed in
the enlarged (by 445 times) volume. Third, for normally
distributed hypersphere, it has also been proven that µ+σ
is very close to the radius [12]. In short, based on the above
analysis, in this paper we use min(R, µ+σ) as cluster C’s
radius.

Obviously, the value of ε will affect the number of clusters
generated for a video sequence. The smaller the ε is, the
larger number of clusters; vice versa. When ε approaches to
0, each frame becomes a cluster. The degree of clustering
is 0 and the best precision is expected. On the other hand,
when ε tends to be large enough, all frames form a sin-
gle cluster. The degree of clustering is maximized and the
precision is expected to be low. Hence varying ε achieves
precision-efficiency tradeoff, as we will see in experiments.
The time complexity of the clusters generation algorithm
is ln(|C|) times the complexity of k-means. This is a pre-
processing step for indexing.

After we get the clusters of a video sequence, next is to
represent each cluster in a meaningful way such that effective
and fast similarity measurement can be made. To do so, we
introduce Video Triplet (ViTri).

Definition 2 (Video Triplet). Video Triplet is a triplet
of (position, radius, density). Position is the cluster cen-
ter (denoted as O) which indicates the position of the cluster
in the space. Radius (denoted as R) suggests the volume of
a hypersphere which bounds the cluster. Density (denoted
as D) is measured by the number of frame in the cluster C
divided by its volume, i.e.,

D =
|C|

Vhypersphere(O, R)

2

Clearly, ViTri(O,R,D) describes several properties of a
cluster. Unlike existing methods that only use the posi-

tion, we also investigate the properties on the volume and
density for more accurate representation.

So far, a video sequence has been summarized into a set
of clusters that are represented by ViTris. Next, we look at
how the similarity between two ViTris is computed.

4.2 Similarity Measure
Analogous to the similarity measure of two videos, we also

measure the similarity of two ViTris by the number of similar
frames, which is estimated by the volume of intersection be-
tween two ViTris multiplied by the minimal density. Given
two ViTris: V iTri1(O1, R1, D1) and V iTri2(O2, R2, D2),
their similarity is measured subjective to the following cases.
We assume R1 > R2 for easy illustration and d is the dis-
tance function used.

1. d(O1, O2) ≥ R1 + R2:

In this case, there is no intersection between two hy-
persphere identified by (O1, R1) and (O2, R2) as shown
in Figure 4. Hence sim(V iTri1, V iTri2)=0.

2. R2 ≤ d(O1, O2) < R1 + R2:

In this case, the value of β is less than or equal to
π
2

as shown in Figure 5. The volume of intersection
between two hypersphere is the sum of two hypercaps
identified by (O1, R1, α) and (O2, R2, β). That is

sim(V iTri1, V iTri2)=
(Vhypercap(O1, R2, α)+Vhypercap(O2, R2, β))*min(D1, D2)

3. R1 −R2 ≤ d(O1, O2) < R2:

In this case, the value of β is less than or equal to π
2

as
shown in Figure 6. Notice that the β here is equal to
π - β of Case 2. The intersection of two hyperspheres
consists of 2 parts. The first part is the hypercap iden-
tified by (O1, R1, α). The second part is the volume
of hypersphere identified by (O2, R2) deducted by the
volume of hypercap identified by (O2, R2, β). That is

sim(V iTri1, V iTri2)=
(Vhypercap(O1, R1, α) + Vhypersphere(O2, R2)−
Vhypercap(O2, R2, β))*min(D1, D2)

4. d(O1, O2) < R1 −R2:

In the last case, the smaller hypersphere is completely
contained in the larger one as shown in Figure 7. Straight-
forwardly,

sim(V iTri1, V iTri2)= Vhypersphere(O2, R2)*min(D1, D2)

Given d(O1, O2), R1 and R2 which form a triangle, α and
β can be derived easily by the law of sine or cosine. The
above similarity measure involves the computations on vol-
umes of hypersphere and hypercap. Recall the formulas on
hypersphere and hypercap. Since the dimensionality of data
space n is known, all the coefficients of Rn and sin(α) be-
come constants and can be pre-computed. Consequently, in
the worst case (Case 2 and 3), the complexity of similarity
measure on ViTri is on the sum of n

2
terms in computing the

volume of hypercap. However, the standard Euclidean dis-
tance even requires sum of n terms. Clearly, our similarity
measure on ViTri is efficient.

After computing the inter-similarity between any pair of
ViTris from two video sequences, the total number of similar
frames is then calculated to compute the final similarity of

O1 O2R1 R2

Figure 4: d(O1, O2) ≥ R1 + R2

R1

O1

H2H1

O2

R2

Figure 5: R2 ≤ d(O1, O2) < R1 + R2

R1

O2

H2
H1

O1

R2

Figure 6: R1 −R2 ≤ d(O1, O2) < R2

O2O1

R1

R2

Figure 7: d(O1, O2) < R1 −R2

Notation Description

ViTri Video Triplet
O Cluster Center
R Cluster Radius
D Cluster Density
ε Frame Similarity Threshold
V Volume
n Feature Space Dimensionality
d Distance Function
γ Search Radius
O′ Reference Point
Φ Principle Component

Table 1: A Table of Notations.

two videos. One distinct feature of our measure is that the
final similarity of two videos is still estimated based on the
number of similar frames, instead of the number of similar
clusters [6, 5, 7, 13].

So far, we have reduced the time complexity of measuring
two video sequences to be linear to the product of numbers
of ViTris from the numbers of frames. ViTris are stored
in the database to facilitate the retrieval. For a very large
database containing tens of thousands of video sequences,
exhaustive search among millions of ViTris to identify the
similar videos are still strongly prohibitive. Case 1 suggests
that some ViTris are indeed not similar to each other, i.e.,
share none of similar frames. This provides large room for
further reducing the response time by only accessing and
comparing a small portion of ViTris in the database. In-
dexing is a primary method to utilize the data access. In
the next Section, we present how the ViTris are indexed to
avoid a large amount of non-similar ViTris from being ac-
cessed and compared. For easy reference, a list of notations
is shown in Table 1.

5. INDEXING VITRIS
In previous section, we have discussed how the time com-

plexity of similarity measure between two videos can be re-
duced effectively. In this section, we focus on how to reduce
the number of page accesses and similarity computations on
ViTris.

5.1 One Dimensional Transformation

The B+-tree has been used widely for many applications
in various domains for its known simplicity and efficiency.
Transforming high-dimensional feature vectors into one di-
mensional values which are indexed by a B+-tree has shown
its effectiveness recently [15, 10].

Generally, the design of one dimensional mapping was
motivated by two factors. First, high-dimensional feature
vectors can be ordered based on their distances to a refer-
ence point, and indexed based on such distance value. This
enables one to represent high-dimensional data in a single
dimensional space and use an existing B+-tree. Second, the
triangular inequality relationships enable the (dis)similarity
between a query vector and a database vector to be derived
with reference to the chosen reference point.

In [15], the one dimensional transformation for a data
space is simply achieved by the following mapping function:

key = d(Oi, O
′)

where Oi is a high-dimensional vector (or interchangeably
point), O′ is the chosen reference point and d is the distance
function to compute the distance between Oi and O′. Key is
the derived one dimensional distance value for Oi. The keys
of all points in the data space are then ordered and indexed
by a B+-tree. Given a search radius γ and a query Q, a
range search [d(Q, O′)-γ, d(Q, O′)+γ] is performed. Those
points whose keys (i.e., distances to the reference point) are
greater than d(Q, O′)+γ or less than d(Q, O′)-γ can be safely
pruned by the triangular inequality. Figure 8 depicts a 2-
dimensional example where only those points lying in the
shaded area are accessed. Obviously, such a one dimensional
mapping is information lossy in nature, i.e., far way points
in original space may have the same keys. Look at Figure 8
again, points on the circle have the same keys.

O’

Q
r

d(Q,O’)

Figure 8: Points accessed by using space center as
reference point

Notice that in B+-tree, if keys are evenly distributed, then
given a search radius, the larger the range of keys is, the less
portion of keys are compared. Hence the challenge now is
how to find a reference point such that the variance of inter-
distances of points in the transformed one dimensional space

can be maximized. The distance of two points in original
space is d(Oi, Oj). After being transformed into one dimen-
sional space with respective to O′, the distance of two points
becomes ‖d(Oi, O

′)−d(Oj , O
′)‖ which is the distance infor-

mation remained. d(Oi, Oj)-‖d(Oi, O
′) − d(Oj , O

′)‖ is the
distance information lost. An optimal reference point is a
point that maximizes the variance of ‖d(Oi, O

′)−d(Oj , O
′)‖.

Formally, we define the optimal reference point as follows:

Definition 3 (Optimal Reference Point). Given a
set of N n-dimensional points, denoted as (O1, O2, ..., ON),
and the transformation function of d, an optimal reference
point Q′ is a point maximizing the variance of the inter-
distances of points in transformed one dimensional space,
where the inter-distances of points in the transformed space
is ‖d(Oi, O

′)− d(Oj , O
′)‖, 1 ≤ i, j ≤ N .

2

An optimal reference point aims to minimize the inter-
distance information lost caused by transformation. Trans-
formation by an optimal reference point leads to the max-
imal variance of keys, hence to more effective indexing by
B+-tree. [15] investigated effects of various choices of ref-
erence points. In this paper, we aim to find an optimal
reference point to improve the performance. It is obviously
impossible to test very position in the space for finding an
optimal reference point. Fortunately, PCA can be used to
find the direction of largest variance for a dataset [11, 4], as
discussed in Section 3.3. By applying PCA, we have the fol-
lowing theorem on the positions of optimal reference points.

Theorem 1. Given a set of N n-dimensional points, de-
noted as (O1, O2, ..., ON), and the transformation function
of d, the optimal reference points lie on the line identified
by the first principle component Φ1 and out of Φ1’s variance
segment.

Proof: In PCA, the variance along a principle component
Φi for a dataset is measured by the inter-distances of points
along Φi. We first prove that a point O′ lying on the line
identified by Φi and out of Φi’s variance segment preserves
the variance of Φi.

We represent Φi’s variance by the distance of two points
O1 and O2 on Φi as shown in Figure 9. Based on the trian-
gle inequality, we have d(O1, O2) ≥ ‖d(O1, O

′)−d(O2, O
′)‖.

Since O′ lie on Φi and is out of the segment identified by
O1 and O2. The above equation holds. That is, d(O1, O2)
= ‖d(O1, O

′) − d(O2, O
′)‖. Hence O′ preserves the vari-

ance of Φi. For any point O′′ that is not on the line, we
have d(O1, O2) > ‖d(O1, O

′′) − d(O2, O
′′)‖. For any point

O′′′ on the segment (excluding O1 and O2), d(O1, O2) =
‖d(O1, O

′′′)+d(O2, O
′′′)‖ implies d(O1, O2) > ‖d(O1, O

′′′)−
d(O2, O

′′′)‖.
Since the variance along Φ1 is largest, a point O′ on Φ1

and out of its variance segment preserves the largest vari-
ance. Based on the definition of optimal reference point,
such a O′ is an optimal reference point since it achieves the
largest variance.

2

Theorem 1 provides the theoretical reasoning for our one
dimensional transformation algorithm by using an optimal
reference point, as shown below in Figure 10. Our algorithm
mainly consists of two steps: finding an optimal reference
point and compute the keys.

PC
O2

O1

O’’’

O’’

O’

Figure 9: Illustration of variance preservation.

One Dimensional Transformation Algorithm
1. Finding an optimal reference point

1.1 Compute the data center of the dataset
1.2 Compute Φ1 and its variance segment by PCA
1.3 Compute an optimal reference point O′

2. Generating keys
2.1 for each point Oi, compute its key by d(Oi, O

′)

Figure 10: Mapping by an optimal reference point

 O’

O’
 Q

 r

move & rotate

Figure 11: Points accessed by using data center as
a reference point

 Shift

 O’ Q
r

 O’

Figure 12: Points accessed by using an optimal ref-
erence point

Finding an optimal reference point composes of three sub-
steps. First, the data center is computed. Second, PCA is
used to find the first principle component Φ1 and its vari-
ance segment. Third, an optimal point is determined by
shifting the data center along the direction of Φ1 out of Φ1’s
variance segment. Geometrically, three substeps can be vi-
sualized by changing the original axis system. Computing
the data center moves the center of axis system from its ori-
gin to the data center, and computing principle components
rotates the axis system to make each principle component
as one axis in the system (as shown in Figure 11). Locating
an optimal reference point is to shift the axis system along
the first principle Φ1 until the center of system is out of Φ1’s
variance segment (as shown in Figure 12). After an optimal
reference point has been found, the one dimensional trans-
formation by distance function d is then performed to get
keys. Finally, a B+-tree is then built on those keys. Given
a query Q and a search radius γ, the portion of points being
accessed for a dataset are shown in Figure 8, 11 and 12 when
the reference point is space center, data center, and optimal
respectively.

In ViTri model, the positions representing N cluster cen-
ters are high-dimensional points. Naturally, ViTris’ posi-
tions are first transformed into one dimensional distance
values, followed by being indexed by a B+-tree. At leaf
node level, the volume and density for each ViTri are also
stored for similarity computation in query processing.

Dynamic maintenance can be easily handled for indexing.
When a new video is added in the dataset, its features are
first extracted and summarized into ViTris. The one di-
mensional key value is then generated for each ViTri by an
optimal reference point, followed by the standard insertion
operation in B+-trees by inserting the key into the B+-tree
and ViTri into leaf node.

5.2 KNN Query Processing
In the previous subsection, the ViTris, denoted as (V iTri1,

V iTri2,...,V iTriN), are indexed based on the distances of
their positions corresponding to an optimal reference point.
In this subsection, we discuss how a K-Nearest Neighbors
(KNN) query is processed to find the top-K most similar

video clips given a query video.
The query video is first summarized into a set of M ViT-

ris based on our clustering algorithm, denoted as (V iTriQ1 ,

V iTriQ2 ,...,V iTriQM). In our ViTri similarity measure, the
information on positions, radii and densities of two ViTris
are taken into account. Particularly, the similarity of two
ViTris are zero when there is no intersection (Case 1 in Sec-
tion 4.2).

For a V iTrisi, its radius is at most ε/2 based on our

clustering algorithm. Hence for a V iTriQi (OQ
i , RQ

i , DQ
i), a

V iTrii(Oi, Ri, Di) has zero similarity if d(Oi, O
Q
i) ≥ RQ

i +
ε/2. Based on triangle inequality, a V iTrii in B+-tree

can be safely pruned away if ‖d(Oi, O
′) − d(OQ

i , O′)‖ ≥
RQ

i +ε/2. This can be done by performing an efficient range

search in B+-tree, with range of [d(OQ
i , O′)-(RQ

i + ε/2),

d(OQ
i , O′)+(RQ

i + ε/2)]. That is, for a V iTriQi , its search

radius γ is (RQ
i + ε/2). All the ViTris in the range are then

evaluated with the similarity with respective to V iTriQi .
A naive KNN method is first to compute the similar ViT-

ris for each V iTrisQ
i , followed by integrating all the results

of (V iTriQ1 , V iTriQ2 ,...,V iTriQM) to obtain the final KNN re-
sults. However, such a method will access B+-tree M times
and many ViTris are repeatedly accessed if the search ranges
of any two V iTriQi and V iTriQj overlap. Figure 13 shows
an example of complete overlapping between search ranges
of V iTriQi and V iTriQj . In this case, ViTris accessed by

V iTriQi are all re-accessed by V iTriQj . To alleviate this
problem, we introduce query composition.

Query composition analyzes the search ranges of ViT-
ris in the query video and composes the overlapped ranges
into single one to eliminate the duplicate accesses. As-
sume the search ranges of V iTriQi and V iTriQj overlap and

d(OQ
i , O′)+(RQ

i + ε/2) ≥ d(OQ
j , O′)+(RQ

j + ε/2), then the

composed range is [min(d(OQ
i , O′)-(RQ

i +ε/2),d(OQ
j , O′)-(RQ

j +

ε/2)), d(OQ
i , O′)+(RQ

i + ε/2)]. The composed range com-
pares with the rest ranges to perform further composition
until no overlap exists. Range searches are then processed
for those composed ranges. Notice that query composition
reduces the times of accessing B+-tree and duplicate page
accesses on leaf nodes.

 O’

Figure 13: Repeated accesses due to range overlap

6. PERFORMANCE STUDY
In this section, we report the results of an extensive per-

formance study conducted to evaluate the proposed methods
on large real video data sets. We also compare with existing
video measures and one dimensional transformation meth-
ods.

6.1 Experiments Set up
Our dataset consists of about 6,500 video clips which are

TV advertisements captured from TV stations. They are
recorded by using Virtual Dub at PAL frame rate of 25fps
[1]. Each frame is at 192 x 144 pixels resolution and com-
pressed using PLCVideo Mjpegs.

Each frame is represented by a 64-dimensional feature vec-
tor in the RGB color space, where two most significant bits
are used for each color channel. The value of each dimension
is normalized by dividing the total number of pixels. The
detailed information of the dataset is listed in Table 2.

Time Length (s) Number of Video Number of Frame
30 2934 2,200,482
15 2519 566,772
10 1134 283,486

Table 2: Data statistics

It is impractical to browse very large video datasets to
generate the manually-identified ground-truth for a query.
In this paper we obtain a query’s ground-truth (the top-K
best results in KNN search) by comparing the query with
database videos at frame level using the similarity measure
defined in Section 3.1. Denote the set of ground-truth as rel,
and the set of results returned by a summarization method
as ret, the precision achieved by the summarization method
is defined as:

precision =
|rel ∩ ret|
|rel|

All the experiments were performed on a Sun Enterprise
E420 (4x450MHz CPU’s with 4GB RAM). We used a page
size of 4K. All results reported are the average based on
50 queries for 50NN. The distance function d we used is
Euclidean function.

Value of ε Number of clusters Average cluster size
0.2 141,334 22
0.3 69,477 44
0.4 33,285 92
0.5 21,213 168
0.6 9,411 324

Table 3: Summary statistics

6.2 Effectiveness of ViTri
In our method, frame similarity threshold ε is the only

parameter to be tuned. It affects the number and compact-
ness of clusters for each video sequence. Table 3 shows the
statistics on the summary of the video dataset while vary-
ing ε values. As ε increases, the number of cluster decreases
significantly due to enlarged cluster radii. When ε reaches
0.6, many video clips are summarized into single clusters,
and their average number of frame is about 324.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0.2 0.3 0.4 0.5 0.6

P
re

ci
si

o
n

Epsilon

ViTri
Keyframe

Figure 14: Retrieval precision vs. epsilon

Next, we test the effect of ε on the precision of our method.
We compare ViTri with existing keyframe method [5] whose
video similarity measure is the percentage of similar keyframes.
Figure 14 shows the retrieval precision for both methods
with a large spectrum of ε. We have two main observations.
First, the retrieval precisions of both methods drop as ε in-
creases. A larger ε leads to larger cluster sizes and radii,
so as to the cluster volumes. It is expected that clusters
with large radii are less compact, thus less accurate in rep-
resenting the original information. Hence it is reasonable
that the precision decreases as ε increases. Second, ViTri al-
ways outperforms keyframe method by a large margin, and
the margin becomes larger as ε increases. In addition to
the cluster center, ViTri also remembers local information
including its volume and density. ViTri similarity is mea-
sured by estimating number of similar frames in two clusters,
however, existing methods determine the similarity by sim-
ply checking whether the distance of the cluster centers is
greater than a threshold ε. This experiment conforms the
superiority of our method over existing ones. To enforce a
high retrieval precision, we set ε to be 0.3 for the rest of
experiments.

We also test the effect of K, the number of return results
in KNN search, on the precision with fixed ε of 0.3. As we
can see from Figure 15, ViTri outperforms keyframe method
by a noticeable gap, and the precision is not very sensitive to
the change of K. Actually, the precision of ViTri increases
slightly as K becomes larger. Based on the definition of
precision, single miss in a small K affects the precision more
significantly than a large K.

6.3 Efficiency of ViTri Indexing
In the following, we test the performance of our one di-

mensional indexing method on ViTris.

6.3.1 Effectiveness of Query Composition
We first test the effect of different KNN query processing

methods: naive method and query composition in B+-tree.
Figure 16 depicts the I/O improvement achieved by query
composition over the naive method. This experiment con-
firms that a large amount of ViTris are repeatedly accessed

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

10 20 30 40 50 60 70 80 90 100

P
re

ci
si

o
n

K

ViTri
Keyframe

Figure 15: Retrieval precision vs. K

for a query video sequence. Performing KNN Search for
ViTris in the query one by one will obviously increase the to-
tal number of page accesses (as shown by the naive method).
Query composition enables each ViTri in leaf node of B+-
tree to be accessed at most once for a query to reduce the
expensive I/O cost as shown in Figure 16.

0

1000

2000

3000

4000

5000

20000 30000 40000 50000 60000 70000

I/
O

Number of ViTris

Naive Method
Query Composition

Figure 16: Comparison of query processing methods

6.3.2 A Comparison Study
In this experiment, we compare our method with sequen-

tial scan and existing one dimensional transformation method
[15] where the data center and space center are chosen as
the reference points. We test the effect of number of ViTris
and dimensionality of feature spaces.

Figure 17 shows their I/O cost and CPU cost as the num-
ber of ViTris increases. It is observed that sequential scan
is the worst, followed by data center and space center as
the reference point. Transformation by an optimal reference
point performs best and outperforms others by 2-5 times.
This proves that one dimensional mapping with respective to
difference reference points will cause different performances

of B+-tree which is affected by the inter-distances of trans-
formed one dimensional values. An optimal reference point
maximizes the variance of inter-distances of one dimensional
values and enables B+-tree to achieve the best performance.

Figure 18 shows their I/O cost and CPU cost as the di-
mensionality of feature space increases. The similar trends
of Figure 17 are observed that both I/O cost and CPU cost
increase as the dimensionality increases. Again, transforma-
tion by an optimal reference point performs best, followed
by data center and space center as the reference point. In-
terestingly, the I/O cost and CPU cost for one dimensional
transformation increase in a faster rate as dimensionality in-
creases. This is reasonable since relatively more information
is lost when a higher dimensional vector is transformed into
one distance value. Fortunately, an optimal reference point
offsets part of negative effect of higher dimensionality and
its cost increases in a much slower rate than those of data
center and space center.

6.3.3 Effect of Dynamic Insertion
In this experiment, we test the effect of dynamic inser-

tion on our indexing method. We initialize the B+-tree by
randomly choosing the first batch of videos which consist
of about 20,000 ViTris, then insert other batches of videos
which contain about 20,000, 20,000, and 9,477 ViTris re-
spectively. After each insertion of batch videos, we perform
KNN search to see how the insertion affects the performance.
Figure 19 shows the changing trends of I/O cost and CPU
cost for sequential scan and our method as more videos are
inserted. Obviously, a larger number of ViTris correspond
to a larger B+-tree which naturally leads to larger I/O and
CPU costs. Figure 19 depicts such trends. However, com-
paring with the linear increasing rate of sequential scan, the
increasing rates of our method are much slower.

Compared to the performance of index with one-off con-
struction (i.e., index rebuilt upon each insertion) given in
Figure 17, we notice that the performance of our method
slightly degrades by dynamic insertion. An optimal refer-
ence point is chosen from the first principle component of
ViTri dataset. As more ViTris are inserted, the correla-
tion of ViTris may change from original direction. As a
result, the original reference point may not be optimal any
more. Hence it is reasonable for the performance to degrade
slightly. The larger degree of correlation is changed, the far-
ther the reference point away from its optimal position. To
preserve the effectiveness of one dimensional indexing, one
way is to compute the angle between original first principle
component and current first principle component. Once the
angle has shifted more than a degree allowed, the index is
rebuilt.

7. CONCLUSION
In this paper, we introduce a novel video summary model

called Video Triplet (ViTri). ViTri models a cluster as a
tightly bounded hypersphere described by its position, ra-
dius, and density. The ViTri similarity is measured by the
volume of intersection between two hyperspheres multiply-
ing the minimal density, i.e., the estimated number of similar
frames shared by two clusters. The total number of similar
frames is then estimated to derive the overall similarity be-
tween two video sequences. Hence the time complexity of
video similarity measure can be reduced to be linear to the
product of number of ViTris from two sequences. To further

0

1000

2000

3000

4000

5000

20000 30000 40000 50000 60000 70000

I/
O

Number of ViTris

Sequential Scan
Data Center

Space Center
An Optimal Reference Point

(a) I/O Cost

0
1
2
3
4
5
6
7
8
9

10

20000 30000 40000 50000 60000 70000

C
PU

 (
s)

Number of ViTris

Sequential Scan
Data Center

Space Center
An Optimal Reference Point

(b) CPU Cost

Figure 17: Effect of Number of ViTris

0

1000

2000

3000

4000

5000

8 16 24 32 40 48 56 64

I/
O

Dimensionality

Sequential Scan
Data Center

Space Center
An Optimal Reference Point

(a) I/O Cost

0
1
2
3
4
5
6
7
8
9

10

8 16 24 32 40 48 56 64

C
PU

 (
s)

Dimemsionality

Sequential Scan
Data Center

Space Center
An Optimal Reference Point

(b) CPU Cost

Figure 18: Effect of Dimensionality

0

1000

2000

3000

4000

5000

20000 30000 40000 50000 60000 70000

I/
O

Number of ViTris

Sequential Scan
Dynamic Insertion

(a) I/O Cost

0

1

2

3

4

5

6

7

20000 30000 40000 50000 60000 70000

C
PU

 (
s)

Number of ViTris

Sequential Scan
Dynamic Insertion

(b) CPU Cost

Figure 19: Effect of dynamic insertion.

speed up the search in ViTris, we introduce a new one di-
mensional transformation technique which rotates and shifts
the original axis system using PCA in such a way that the
original variance of inter-distances between points can be
maximally retained. By applying this transformation, the
ViTris’ positions are mapped into one dimensional values
which are then indexed by a B+-tree. Such transforma-
tion enables B+-tree to achieve its optimal performance by
quickly filtering a larger portion of non-similar ViTris given
a search radius. Our extensive experiments on real large
video datasets prove the effectiveness of our proposals that
outperform existing methods significantly.

For our future work, we plan to further investigate the
effect of data correlation on our one dimensional transfor-
mation method. Second, indexing techniques in other cat-
egories will be also studied on video sequence database.
Third, the sequence alignment and temporal-order will be
also considered in video retrieval.

8. ACKNOWLEDGEMENT
We thank Mr Yijun Li for his help in providing video

datasets for our experiments.

9. ADDITIONAL AUTHORS
Additional authors: Zi Huang (School of Information Tech-

nology and Electrical Engineering,The University of Queens-
land, email: huang@itee.uq.edu.au).

10. REFERENCES
[1] http://www.virtualdub.org/.

[2] S. Berchtold, C. Böhm, and H.-P. Kriegel. The
pyramid-technique: Towards breaking the curse of
dimensionality. In SIGMOD, pages 142–153, 1998.

[3] C. Böhm, S. Berchtold, and D. Keim. Searching in
high-dimensional spaces: Index structures for
improving the performance of multimedia databases.
ACM Computing Surveys, pages 33(3):322–373, 2001.

[4] K. Chakrabarti and S. Mehrotra. Local dimensionality
reduction: A new approach to indexing high
dimensional spaces. In VLDB, pages 89–100, 2000.

[5] H. Chang, S. Sull, and S. Lee. Efficient video indexing
scheme for content-based retrieval. In IEEE
Transactions on Circuits and Systems for Video
Technology, 1999.

[6] S. Cheung and A. Zakhor. Efficient video similarity
measurement with video signature. In IEEE
Transactions on Circuits and Systems for Video
Technology, 2003.

[7] P. Indyk, G. Iyengar, and N. Shivakumar. Finding
pirated video sequences on the internet. In Tech. Rep.,
Stanford Infolab, 1999.

[8] G. Iyengar and A. Lippman. Distributional clustering
for efficient content-based retrieval of images and
video. In ICIP, pages 81–84, 2000.

[9] J. Jacquelin. Problem of hyperspace. In
http://maths-express.ifrance.com/maths-
express/articles/voir/hyperchevre.htm,
2004.

[10] C. Jensen, D. Lin, and B.C.Ooi. Query and update
efficient b+-tree based indexing of moving objects. In
VLDB, 2004.

[11] H. Jin, B. Ooi, H. Shen, C. Yu, and A. Zhou. An
Adaptive and Efficient Dimensionality Reduction
Algorithm for High-Dimensional Indexing. In ICDE,
pages 87–98, 2003.

[12] S.-W. Kim, C. C. Aggarwal, and P. S. Y. i. Effective
nearest neighbor indexing with the euclidean metric.
In CIKM, pages 9–16, 2001.

[13] M. R. Naphade, R. Wang, and T. S. Huang.
Multimodal pattern matching for audio-visual query
and retrieval. In SPIE, pages 188–195, 2001.

[14] N. Vasconcelos. On the complexity of probabilistic
image retrieval. In ICCV, 2001.

[15] C. Yu, B. Ooi, K. Tan, and H. V. Jagadish. Indexing
the distance: An efficient method to KNN processing.
In VLDB, pages 166–174, 2001.

