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ABSTRACT
Strings are ubiquitous in computer systems and hence string
processing has attracted extensive research effort from com-
puter scientists in diverse areas. One of the most impor-
tant problems in string processing is to efficiently evaluate
the similarity between two strings based on a specified sim-
ilarity measure. String similarity search is a fundamental
problem in information retrieval, database cleaning, biolog-
ical sequence analysis, and more. While a large number of
dissimilarity measures on strings have been proposed, edit
distance is the most popular choice in a wide spectrum of ap-
plications. Existing indexing techniques for similarity search
queries based on edit distance, e.g., approximate selection
and join queries, rely mostly on n-gram signatures coupled
with inverted list structures. These techniques are tailored
for specific query types only, and their performance remains
unsatisfactory especially in scenarios with strict memory
constraints or frequent data updates. In this paper we pro-
pose the Bed-tree, a B+-tree based index structure for evalu-
ating all types of similarity queries on edit distance and nor-
malized edit distance. We identify the necessary properties
of a mapping from the string space to the integer space for
supporting searching and pruning for these queries. Three
transformations are proposed that capture different aspects
of information inherent in strings, enabling efficient pruning
during the search process on the tree. Compared to state-
of-the-art methods on string similarity search, the Bed-tree
is a complete solution that meets the requirements of all ap-
plications, providing high scalability and fast response time.
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1. INTRODUCTION
Strings are ubiquitous in computer systems and are used

in a wide spectrum of applications, e.g., for representing
addresses, text documents, and biological sequences. As a
fundamental data type, strings and their properties have
been extensively studied since the inception of computer sci-
ence, but only recently has there been interest in designing
efficient index structures for evaluating various queries on
strings.

One of the most important research topics for strings is
similarity search, i.e., the discovery of similar strings with
respect to a given distance measure. Generally speaking,
a string is a sequence of letters drawn from a given alpha-
bet. Given two strings from the given string domain, a dis-
tance measure between strings returns a non-negative real
value indicating the similarity between these strings. String
similarity covers a diverse set of applications that can be
formulated with different query predicates. For example,
to ensure the consistency of customer information it is im-
portant to locate addresses in a customer database within
a certain range of similarity thresholds. In information re-
trieval systems, such as search engines, popular queries are
usually displayed on the screen which are most similar to
the query entered by the user. In biological databases all
pairs of similar proteins or genes within a certain similarity
threshold are retrieved to identify biological clusters. In all
these applications it is crucial to provide an efficient mech-
anism for evaluating a diverse set of query types, namely,
range and top-k selection queries and all-pairs join queries,
based on a predetermined string similarity measure.

There is a long stream of research on defining string simi-
larity measures, depending on the application domain. These
measures can be divided into two major categories: operation-
based and token-based. Edit distance is the representative
distance measure in the first category, and is defined as the
minimum number of primitive operations (insertions, dele-
tions, and substitutions) needed to transform one string into
another. Several variations of edit distance have been pro-
posed in the past, e.g., generalizing edit operations to allow
block movements [10] or assigning different weights to each
operation [16]. In the second category of string similarity
measures, each string is represented as a set of tokens (e.g.,
tokens can be words or n-grams; n-grams are overlapping
substrings of the original string of fixed length n). The dis-
tance between two strings is thus calculated based on the
similarity between the two token sets. A variety of set simi-
larity functions have been proposed using a gamut of token



weighting schemes (e.g, equal weighting [2,11] and idf-based
weighting [5,12]).

Similarity search based on edit distance is a direct, value
based search without the inherent problems of language un-
derstanding or the need to use weighting schemes. Never-
theless, it is not well supported in existing database systems
due to the high dimensionality of the string domain. To
overcome the curse of dimensionality, existing studies resort
to the use of n-gram signatures coupled with inverted list
structures to handle edit distance [2, 5, 15, 18, 20, 21] (edit
distance can be lower bounded using a set intersection con-
straint on n-grams [11]). These techniques yield impressive
performance improvements on all types of selection and join
queries. However, these solutions suffer from the follow-
ing weaknesses. First, inverted list based indexes cannot
handle data updates efficiently. This problem is difficult
to resolve unless if each inverted list is stored as an indi-
vidual B+-tree [8]. This approach incurs high maintenance
cost and space overhead, since, in practice, it necessitates
the storage and maintenance of B+-trees for several hun-
dred thousand n-grams (in which case the storage overhead
for the index level of the trees becomes a dominant factor)
and also voids the most important benefit of using inverted
lists — taking advantage of sequential I/Os. Second, there
is no single index structure that can simultaneously sup-
port all types of string similarity queries. To answer these
queries, specialized indexes are typically constructed and
maintained independently for each query type, leading to
resource contention during updates and an unnecessary in-
crease in storage space. Third, the efficiency of inverted list
based approaches diminishes as the edit distance threshold
increases. Large edit thresholds are necessary for handling
top-k queries (where a maximum threshold cannot be deter-
mined in advance) and for very long string data (e.g., biologi-
cal sequences). Inverted list based methods tend to generate
a large number of candidate strings due to the fast expan-
sion on the set of similar n-grams as the distance threshold
increases.

This work presents a new index scheme, called the Bed-
tree, for answering selection and join queries efficiently using
a single tree structure. The Bed-tree can support incremen-
tal updates efficiently, as opposed to previous techniques.
It can handle arbitrary edit distance thresholds without the
need to specify a minimum threshold at construction time.
Moreover, it is the first indexing scheme to support nor-
malized edit distance for all query types. The underlying
structure guarantees good performance for large distance
thresholds, long strings, and large datasets. Extensive ex-
periments on real string datasets show that the Bed-tree
achieves almost the same querying performance as the state-
of-the-art solutions for selection and join queries with small
edit distance, and is superior for large distance threshold.
Finally, the Bed-tree can be easily implemented on top of
existing B+-trees, which are supported by virtually all mod-
ern database systems.

The Bed-tree applies specialized transformations from the
string domain to the integer space. We identify three proper-
ties that a transformation should have in order to support all
query types, namely, string order, comparability, and lower
bounding. We also introduce three different transformation
functions that capture various aspects of the abundant infor-
mation contained in strings, namely, string prefixes, n-gram
counts and n-gram locations.

The contributions of this work are:

1. We propose an all-purpose edit distance based index-
ing scheme using the standard B+-tree structure.

2. We show that a carefully designed transformation, from
the string domain to the integer domain, enables an-
swering range and top-k selection queries and all-pairs
join queries using a single index structure, both for
standard and normalized edit distance.

3. We present three different string transformations that
capture useful information from different aspects of
strings.

4. We evaluate the Bed-tree on real string datasets against
the state-of-the art solutions.

The rest of the paper is organized as follows. Section 2
discusses related work. Section 3 discusses the necessary
background and gives a formal problem definition. Section
4 presents the basic principles of the Bed-tree. Section 5
presents the three proposed string transformations. Section
6 presents a comprehensive evaluation of the proposed tech-
niques and Section 7 concludes the paper.

2. RELATED WORK
Edit distance is one of the earliest research topics on string

processing. Wagner and Fischer [19] introduced the first al-
gorithm for computing edit distance with time and space
complexity of O(|s1||s2|), where |s1| and |s2| are the lengths
of the two strings. Cormen et al. [9] presented a space-
efficient algorithm with space complexity O(max{|s1|, |s2|}).
To the best of our knowledge, the fastest edit distance al-
gorithm, proposed by Masek and Patterson [16], requires
O(|s|2/ log |s|) time using a split-and-merge strategy to par-
tition the problem. To capture better semantic meanings on
the edit operations for string transformations, some variants
on edit distance have been proposed. For example, Cormode
and Muthukrishnan [10] propose a new edit distance defini-
tion allowing sub-strings to be moved with smaller cost.

Besides operation-based distance measures on strings, an-
other important distance category consists of token-based
functions. These functions transform the string similar-
ity problem into a set-similarity problem, by representing
strings as sets of tokens. Inverted lists is the most popular in-
dex structure for token-based distance functions. Gravano et
al. [11] presented some simple filtering techniques to bridge
the gap between token-based distances and edit distance by
lower bounding the edit distance using set intersection on
n-grams. Sarawagi and Kirpal [18] introduced the heap-
based list merging algorithm for the set-similarity search
problem. The heap-based indexing scheme is greatly im-
proved in [4,12,15] by exploiting the lengths of the inverted
lists. Other work uses various n-gram based signatures (e.g.,
prefixes [6], mismatch filters [20], hash-based signatures [2])
to evaluate join queries, but these approaches can easily be
adapted for selection queries using inverted lists on the sig-
natures themselves. All-pair join and self-join queries are
also well studied in the literature of string similarity search.
Sarawagi and Kirpal [18] present an algorithm for discov-
ering similar pairs using an inverted list structure with the
same pruning methods used for selection queries. Bayardo
et al. [3] present a general self-join scheme which merges



Notation Explanation

Σ the alphabet
s a string from Σ∗

|s| length of string s
s[i] the ith letter of s

I(s, x, i) insert operation
R(s, i) delete operation

S(s, x, i) substitute operation
D string dataset
q query string q
θ edit distance threshold
k number of strings to return in top-k query
φ mapping function from string domain to in-

tegers
[si, sj ] all strings corresponding to integers in range

[φ(si), φ(sj)]

Table 1: Table of notations.

the index construction process and similar pair searching
process. This idea is further exploited in [20], which uti-
lizes some stronger pruning strategies to eliminate candidate
string pairs. Xiao et al. [21] extend the same ideas for top-k
self-join queries. All of the aforementioned approaches suffer
from: inefficient updates, specialized index structures need
to be build for each query type, performance degrades for
large edit distance thresholds, they do not support normal-
ized edit distance. Work for enabling efficient batch updates
on inverted lists appeared in [13], with the drawback of the
increased storage requirements for maintaining one B+-tree
per inverted list.

In information retrieval, query auto-completion is also an
important topic related to string similarity search. While
traditional auto-completion functionality only supports pre-
fix search, some new studies have enabled auto-completion
based on edit distance by using tries [7, 14].

Approximate edit distance search is another research di-
rection in the literature of computer algorithms. Ostrovsky
and Rabani [17] proved that edit distance can be probabilis-
tically well preserved by Hamming distance after projecting
the strings onto randomly selected subspaces. Andoni and
Onak [1] extended this idea by reducing both the space and
time complexities.

3. PRELIMINARIES
In this section we present some preliminary knowledge

regarding string processing as well as the basic problem def-
inition. In the rest of the paper we assume the existence of
a finite alphabet Σ. Given Σ, a string s is a sequence of l
letters drawn from Σ, i.e., s = s[1]s[2] . . . s[l] s.t. s[i] ∈ Σ
for 1 ≤ i ≤ l. We summarize the notations used in the rest
of the paper in Table 1.

Given a string s, there are three primitive operations on s:
insert, delete and substitute. An insert operation I(s, x, i)
adds one letter x ∈ Σ at position i, forming a new string
of length l + 1 s′ = s[1] . . . s[i − 1]xs[i] . . . s[l]. A delete
operation R(s, i) removes the letter at position i, i.e., s′ =
s[1] . . . s[i− 1]s[i + 1] . . . s[l]. Finally, a substitute operation
S(s, x, i) replaces the letter at position i with the new letter
x, i.e., s′ = s[1] . . . s[i− 1]xs[i + 1] . . . s[l].

String ID String Content

s1 Jim Gray
s2 Jim Grey
s3 Michael Stones
s4 Mike Stone
s5 Mike Stones

Table 2: An example string dataset.

∅ J i m G r e y

∅ 0 1
J 1 0 1
i 1 0 1
m 1 0 1

1 0 1
G 1 0 1
r 1 0 1
a 1 1 2
y 2 1

Table 3: Running example of Algorithm 1.

Definition 1 (Edit Distance). Given two strings si

and sj, the edit distance between si and sj is defined as the
minimum number of primitive operations needed to trans-
form si to sj, denoted by d(si, sj).

Definition 2 (Normalized Edit Distance).
Given two strings si and sj, the normalized edit distance
between si and sj is defined as

d′(si, sj) =
d(si, sj)

max{|si|, |sj |} .

Table 2 shows a sample dataset containing five distinct
strings. The edit distance between s1 and s2 is 1, since s1

is transformed to s2 with a substitute operation S(s1, 7, e).
Similarly, the edit distance between s4 and s5 is also 1, since
I(s4, 11, s) transforms s4 to s5. While computing the edit
distance between the two pairs above is straightforward,
in general the computation of edit distance is not trivial.
The fastest edit distance algorithm known so far runs in
O(|s|2/ log |s|) time for strings of length |s|, based on a stan-
dard dynamic programming method. However, if we are
only interested in testing if the edit distance is within some
threshold θ, there is a verification algorithm in O(θ|s|) time
and O(θ) space, which is much more efficient than the stan-
dard one when θ is a small constant. In Algorithm 1, we give
the details on the method (we present a version that uses
O(|s|) space, for simplicity). In Table 3, the basic idea of
the algorithm is illustrated with a running example on the
edit distance between s1 and s2 with threshold θ = 1. Gen-
erally speaking, the algorithm only tests the entries on the
dynamic programming table on the diagonal with offset no
larger than θ. This is motivated by the simple observation
that any matching of letters with position offset larger than
θ leads to distance at least θ+1. All techniques proposed in
the rest of the paper assume the employment of Algorithm
1 for performing the final edit distance verification between
two candidate strings.

Next, we give the formal definitions of string similarity
queries with respect to edit distance.



Algorithm 1 VerifyED (string s1, string s2, distance
threshold θ)

1: if ||s1| − |s2|| > θ return FALSE
2: Construct a table T of 2 rows and |s2|+ 1 columns
3: for j = 1 to min(|s2|+ 1, 1 + θ) do T [1][j] = j − 1
4: Set m = θ + 1
5: for i = 2 to |s1|+ 1 do
6: for j = min(1, i− θ) to min(|s2|+ 1, i + θ) do
7: d1 = (j < i + θ) ? T [1][j] + 1 : θ + 1
8: d2 = (j > 1) ? T [2][j − 1] + 1 : θ + 1
9: d3 = (j > 1) ? T [1][j−1]+(s1[i−1] = s2[j−1]) ? 0 :

1) : θ + 1
10: T [2][j] = min(d1, d2, d3)
11: m = min(m, T [2][j])
12: if m > θ return FALSE
13: for j = 0 to |s2|+ 1 do T[1][j] = T[2][j]
14: return TRUE

Definition 3 (Range Selection Query).
Given a query string q and a string set D = {s1, s2, . . . , s|D|},
find all strings in D with edit distance no larger than θ, i.e.,
D′ = {si ∈ D | d(si, q) ≤ θ}.

Given the sample string set D in Table 2, if a range query
q =“Jim Grey” and θ = 1 is issued, two strings s1 and s2

will be returned since their distances to q are 1 and 0, re-
spectively. Range selection queries are often used in data
cleaning tasks to find out potential noise due to spelling
mistakes and other data inconsistencies.

Definition 4 (Top-k Selection Query).
Given a query string q and a string set D = {s1, s2, . . . , s|D|},
find k strings in D with edit distance no larger than any
other string in D.

A top-k selection query q =“Michael Stone” with k = 2
returns strings s3 and s4, which are more similar to q than
any other string in D. While top-k string similarity queries
have not been extensively addressed in previous work, we
argue that they provide more meaningful results than range
queries in some applications, potentially involving strings
with large edit distance from the query string. If, for ex-
ample, we issue the top-k query “M. Stone”, expecting to
find all users with first names starting with ‘M’, there is no
result in D within distance smaller than 3. In such cases,
top-k queries are more natural for users than range queries
with large distance thresholds. Given query q =“M. Stone”
the top-3 similar results are s4, s5 and s3.

Definition 5 (All-pairs Join Query).
Given two string sets D1, D2 and a distance threshold θ,
find all string pairs {si, sj} s.t. si ∈ D1, sj ∈ D2 and
d(si, sj) ≤ θ.

Given two relational tables containing string attributes,
the join operator discovers joinable records with some toler-
ance on string matching. With threshold θ = 1, a self-join
query on the sample dataset in Table 2 will return two pairs
{s1, s2} and {s4, s5}, both of which are within edit distance
θ = 1.

Algorithm 2 FindNode (string q, B+-tree node N)

1: if N is the leaf node then
2: Return N
3: for each splitting string sj ∈ N do
4: if φ(q) ≤ φ(sj) then
5: Return FindNode(q, Nj)
6: Return FindNode(q, Nm+1)

4. GENERAL INDEX STRUCTURE
This section introduces the general all-purpose indexing

scheme for string processing on edit distance, and discusses
the applicability of the indexing scheme with respect to the
properties of the transformation function used.

To index the strings with the B+-tree, it is necessary to
construct a mapping from the string domain to integer space.
Formally:

Definition 6 (String Order). Given the string do-
main Σ∗, a string order is a mapping function φ : Σ∗ → N,
mapping each string to an integer value.

The definition above implies that the mapping function
φ uniquely decides the string order. Therefore, we abuse
notation to represent with φ both the actual string order
imposed as well as the mapping function itself. Note that
some strings might be mapped to the same integer by the
function φ. In many cases, the use of a concrete mapping
function φ is ineffective on both computation and storage.
To alleviate this problem, it is better if we do not construct
the mapping explicitly. This requirement can be fulfilled if
the string order φ satisfies the following desirable property
on comparability:

Property 1 (Comparability).
A string order φ is efficiently comparable if it takes linear
time to verify if φ(si) is larger than φ(sj) for any string pair
si and sj .

Here, the verification method is supposed to take linear
time with respect to the lengths of the strings si and sj .
It is easy to see that the insertion and deletion operations
on the B+-tree rely only on the comparability of the string
order. Therefore, any string order having Property 1 can
be used to index strings on the B+-tree. In Algorithm 2
we present the algorithm for locating the first leaf node of
the tree potentially containing a given target string. Each
intermediate node N in the B+-tree contains m splitting
strings {s1, . . . , sm} and m + 1 pointers to children nodes
{N1, . . . , Nm+1}. The algorithm identifies the first splitting
string with mapping value larger than that of the query
string and iteratively searches the subtree from the corre-
sponding pointer all they way to the leaf level of the tree.
The implementation of insertion, deletion and split opera-
tions follow similar strategies by using the new comparison
oracle between φ(si) and φ(sj).

From Algorithm 2, we can see that all strings stored in the
sub-tree rooted at Nj have mapping values in [φ(sj−1), φ(sj)]
by construction. To simplify notation, we say that s ∈
[si, sj ] if φ(si) ≤ φ(s) ≤ φ(sj).

The following property enables the B+-tree structure to
handle range queries based on edit distance:

Property 2 (Lower Bounding).
A string order φ is lower bounding if it efficiently returns the
minimal edit distance between string q and any sl ∈ [si, sj ].



Algorithm 3 RangeQuery (string q, B+-tree node N ,
threshold θ, minimal string smin, maximal string smax)

1: if N is the leaf node then
2: for each sj ∈ N do
3: if VerifyED(q, sj , θ) then
4: Include sj in query result
5: else
6: if LB(q, [smin, s1]) ≤ θ then
7: RangeQuery(q, N1, θ, smin, s1)
8: for j = 2 to m do
9: if LB(q, [sj−1, sj ]) ≤ θ then

10: RangeQuery(q, Nj , θ, sj−1, sj)
11: if LB(q, [sm, smax]) ≤ θ then
12: RangeQuery(q, Nm+1, sm, smax)

Algorithm 4 TopKQuery (string q, B+-tree node N ,
threshold θ, minimal string smin, maximal string smax, result
heap H)

1: if N is the leaf node then
2: for each sj ∈ N do
3: if VerifyED(q, sj , θ) then
4: Insert sj into H
5: if |H| > k then pop top entry
6: Update the global threshold θ
7: else
8: if LB(q, [smin, s1]) ≤ θ then
9: TopKQuery(q, N1, θ, smin, s1, H)

10: for j = 2 to m do
11: if LB(q, [sj−1, sj ]) ≤ θ then
12: TopKQuery(q, Nj , θ, sj−1, sj , H)
13: if LB(q, [sm, smax]) ≤ θ then
14: TopKQuery(q, Nm+1, sm, smax, H)

With Property 2 the B+-tree can handle range queries us-
ing Algorithm 3. In the algorithm we use LB(si, [sj−1, sj ])
to denote the lower bound on the edit distance between si

and any string sl ∈ [sj−1, sj ]. Algorithm 3 iteratively visits
the nodes with lower bound edit distance no larger than θ
and verifies the strings found at the leaf level of the tree
using Algorithm 1. Notice that the algorithm might have
to traverse multiple paths down the tree (as opposed to the
standard B+-tree traversal algorithm). The minimal and
maximal strings smin and smax indicate the boundaries of
any string in a given subtree with respect to the string order
φ. This information can be retrieved from the parent node,
as the algorithm implies. It is easy to verify that this algo-
rithm accurately returns all strings within distance θ from
query string q if the lower bounding property holds. The
efficiency of the algorithm depends on the tightness of the
lower bound. We discuss concrete string orders that satisfy
Property 2 in Section 5.

If a string order φ supports range queries, it also directly
supports top-k selection queries on the B+-tree structure.
We simply use a min-heap to keep the current top-k similar
strings and update the threshold θ with the distance value
of the top element in the heap. The detailed algorithm is
shown in Algorithm 4.

The standard all-pairs join algorithm on B+-trees for tra-
ditional one-dimensional data discovers all node pairs {N1, N2}
on the same level of the tree, with non-empty value overlap
on their ranges. Expansions are conducted by adding join

Algorithm 5 JoinQuery (B+-tree node N1, B+-tree Node
N2, threshold θ)

1: if N1 and N2 are leaf nodes then
2: for each si ∈ N1 and sj ∈ N2 do
3: if VerifyED(si, sj , θ) then
4: Insert (si, sj) into the result
5: else
6: for child node Ni of N1 and child node Nj of N2 do
7: Find out the string interval

ˆ
sl

i, s
u
i

˜
and

ˆ
sl

j , s
u
j

˜
for

Ni and Nj

8: if LB(
ˆ
sl

i, s
u
i

˜
,
ˆ
sl

j , s
u
j

˜
) ≤ θ then

9: JoinQuery(Ni, Nj , θ)

Range Top-k All-pairs Join

Edit Distance P1,P2 P1,P2 P1,P3
Normalized E.D. P1,P2,P4 P1,P2,P4 P1,P3,P4

Table 4: Necessary properties with respect to query
type and distance function.

candidates after testing every pair of children drawn from
N1 and N2 respectively. For string join queries with thresh-
old θ the standard algorithm is applicable if the following
property holds:

Property 3 (Pairwise Lower Bounding).
Given two string intervals [sl

1, s
u
1 ] and [sl

2, s
u
2 ], the string

order φ is pairwise lower bounding if it returns the lower
bound on the distance between any si ∈ [sl

1, s
u
1 ] and any

sj ∈ [sl
2, s

u
2 ].

We use LB([sl
1, s

u
1 ], [sl

2, s
u
2 ]) to denote the lower bound

edit distance between the two string intervals. This property
allows the direct adoption of the standard join algorithm, as
is shown in Algorithm 5. The algorithm recursively expands
the nodes in depth-first order, to give a clear idea on the
joining process. In our implementation, we use a heap to
store the node pairs and pop out the next candidate to join
if it satisfies the minimal distance lower bound.

Finally, our general index scheme is also capable of han-
dling normalized edit distance. This is achievable if the
maximal length of the string can be estimated by the string
order:

Property 4 (Length Bounding).
Given any string interval [si, sj ], the string order φ is length
bounding if it efficiently returns an upper bound on the length
of any string sl ∈ [si, sj ].

The length bounding property can be combined with any
of the query processing algorithms, by dividing the lower
bound edit distance with the maximal length of the string
intervals. Therefore, our index structure seamlessly sup-
ports both edit distance and normalized edit distance, if the
underlying string order is consistent with these properties.
We summarize the necessary properties the mapping func-
tion φ needs to have in order to be able to support the three
types of string similarity queries based on edit distance and
normalized edit distance in Table 4.

5. STRING ORDERS
In the last section we presented the general theory on

string indexing using B+-trees, and identified the necessary



properties that a mapping from strings to integers should
have in order to preserve correctness for different types of
queries. In this section we discuss three concrete string or-
ders that exploit different aspects of useful information in-
herent in strings, and that satisfy all of these properties.

5.1 Dictionary Order
Dictionary Order is the most straightforward choice for

the string order. Next, we show that dictionary order obeys
comparability, lower bounding, pairwise lower bounding, and
length bounding. Therefore, it can be used to index on edit
distance and normalized edit distance for range, top-k and
all-pair join queries.

Given an alphabet Σ, there is a pre-defined order on all
letters in Σ, i.e., {x1, x2, . . . , x|Σ|}. We simply assume that
the index of xi in Σ can be calculated by the permutation
function π(xi). Then, we map the string domain to an inte-
ger space where strings are first sorted by length and within
each length group, they are sorted in dictionary order. Intu-
itively, such a sorting counts the total number of strings with
length smaller than |s| plus the number of string with length
equal to |s| preceding s in dictionary order. We denote this
length sorted dictionary order with φd.

It is obvious that string order follows the property of com-
parability. Given two strings si and sj , it is sufficient to find
the most significant position p where the two string differ.
If π(si[p]) < π(sj [p]), we can assert that si precedes sj in
dictionary order φd, and vice versa. This comparison can be
done in linear time with respect to the length of the strings
— we do not need to actually instantiate order φd.

Dictionary order is also consistent with the property of
lower bounding. Given a string interval [φd(si), φd(sj)] (or
for simplicity [si, sj ]) in dictionary order, we know that all
strings in this interval must share the longest common prefix
of si and sj , i.e., LCP (si, sj). To be more precise, if s ∈
[si, sj ], we have:

∀p ∈ [1, |LCP (si, sj)|], s[p] = si[p] = sj [p]. (1)

Let p = |LCP (si, sj)|. In fact, we can actually use letter
s[p + 1] to refine the lower bound even further:

si[p + 1] ≤ s[p + 1] ≤ sj [p + 1], p = |LCP (si, sj)|. (2)

Recall the example dataset in Table 2. Consider the string
interval [s1, s2]. Any string within interval [s1, s2] must have
the prefix “Jim Gr” and the 7th character must be between
‘a’ and ‘e’. The suffix after the 7th character can be any valid
string on the alphabet of length 1. Notice here that this does
not imply that all of these strings with unknown arbitrary
suffixes are actually contained in interval [s1, s2]. We simply
return a super-set of the strings in the interval which is suf-
ficient for computing a correct (albeit) loose lower bound.
Notice that Equation (2) is valid only if |si| > |LCP (si, sj)|.
If |si| ≤ |LCP (si, sj)| (i.e., si is completely covered by sj),
then we can transform interval [si, sj ] to the equivalent in-
terval [s′i, sj ], where s′i = si+minΣ (i.e., we extend si by one
character, the minimal character in Σ), to satisfy Equation
(2).

Given Equations (1) and (2), we can now derive an effi-
cient lower bound computation between a query string q and
any string s ∈ [si, sj ], based on the edit distance verification
Algorithm 1. In Table 5, a running example is presented
of the computation of the lower bound on the edit distance
between query “Jam Gray” and interval [“Jim Gray”, “Jim

∅ J a m G r a y

∅ 0 1 2 3 4 5 6 7 8
J 1 0 1
i 2 1 1 2
m 3 2 1 2

4 2 1 2
G 5 2 1 2
r 6 2 1 2

{a,b,c,d,e} 7 2 1 2

Table 5: Edit distance lower bound estimation be-
tween a string and a string interval for dictionary
order.

∅ M i {c,. . . ,k}
∅ 0 1 2 3
J 1 2 2
i 2 2 1 2
m 3 2 2

4
G 5
r 6

{a,b,c,d,e} 7

Table 6: Edit distance lower bound estimation be-
tween two string intervals for dictionary order.

Grey”], with distance threshold 1. Notice that the 8th row
of the table uses a candidate letter set {a, b, c, d, e} to rep-
resent the string interval. A query letter will match the 8th
row if and only if that letter is contained in the respective
set of letters. Since the given interval provides information
only on the eight first characters of the strings within the
interval, the algorithm stops on the 8th row and estimates
the lower bound on the edit distance as the smallest value on
the final row (assuming a best case scenario where a string
exists within the interval matching the suffix of the query
exactly). In this case the algorithm returns 1 as the esti-
mated lower bound between the given query string and the
string interval. We skip the details of the algorithm which
can be easily implemented by modifying Algorithm 1.

Similarly, we can compute a lower bound edit distance be-
tween two string intervals [sl

1, s
u
1 ] and [sl

2, s
u
2 ], by combining

the prefixes of the boundary strings from these two intervals.
Consider two string intervals [s1, s2] and [s3, s4], all drawn
from the example in Table 2. We construct Table 6 to com-
pute the minimal distance with threshold θ = 1. Note that
there is a match between ‘i’ and {c, . . . , k} in row 3, since
the letter ‘i’ is included in the letter set. However, the algo-
rithm stops on the 4th row, since the minimal distance on
the row is already larger than the threshold θ = 1.

Notice that computing φd(s) requires infinite precision
arithmetic which is impractical. As already mentioned it
is not necessary to instantiate the mapping, since it can be
efficiently verified in linear time. In our implementation we
store the actual keys inside each B+-tree node instead of the
mapping, which of course increases the storage requirements
of this structure (as usually is the case for string B-trees).

Clearly, dictionary order also satisfies the length bounding
property, since the length of any string sl ∈ [si, sj ] has to



J# Ji im _m G_

Gr ra ay #y

1B 2B 3B
4B

Figure 1: Example of a 2-gram counting hash.

satisfy |si| ≤ |sl| ≤ |sj |. This allows us to correctly answer
queries using normalized edit distance.

5.2 Gram Counting Order
The dictionary order collects useful information only on

the prefixes of the strings. In many cases, unfortunately, the
discriminative information of the strings scatters in differ-
ent positions. This motivates the use of n-grams instead of
prefixes to summarize the string set. In this section, we de-
sign a string order based on counting the number of n-grams
within a string. We use a hash function to map n-grams to
a set of buckets of fixed cardinality. We show that the Gram
Counting Order has the properties of comparability, lower
bounding, pairwise lower bounding and length bounding.
Therefore, it can be used to index on edit distance and nor-
malized edit distance for range and top-k selection queries,
and join queries.

An n-gram is a contiguous sequence of n characters from
string s. Given string s there exist |s| + n − 1 overlapping
n-grams. Considering string s1 =“Jim Gray”, for n = 2,
the n-gram set Q(s1) contains nine 2-grams: “#J”, “Ji”,
“im”, “i ”, “ G”, “Gr”, “ra”, “ay” and “y#”. A n-gram set
can be intuitively represented as a vector in a high dimen-
sional space where each dimension corresponds to a distinct
n-gram. This solution, however, incurs high storage cost.
To compress the information on the vector space, we use a
hash function to map each n-gram to a set of L buckets,
and count the number of n-grams in each bucket. Thus, the
n-gram set is transformed into a vector of L non-negative
integers. In Figure 1, we hash the nine 2-grams of string
s1 to four buckets. After the mapping, the string is repre-
sented by a 4-dimensional vector v1 = 〈3, 2, 1, 3〉 in the gram
counting space.

Previous studies have proved the strong connection be-
tween edit distance and similarity of n-gram vectors. In
particular, the edit distance between two strings si and sj

is no smaller than

max(
|Q(si) \Q(sj)|

n
,
|Q(sj) \Q(si)|

n
). (3)

Here, Q(si) \Q(sj) is the set of n-grams in Q(si) and not
Q(sj), and vice versa. After mapping strings from gram
space to the bucket space, a new lower bound holds. If vi

and vj are the L-dimensional bucket vector representations
of si and sj respectively, the edit distance between si and
sj is no smaller than

max(
X

vi[l]>vj [l]

vi[l]− vj [l]

n
,
X

vj [l]>vi[l]

vj [l]− vi[l]

n
), (4)

1 1 1 1 1 10 0

1 1 1 1 1 10 0

Figure 2: Example of z-order on n-gram vectors.

1 1 1 1 ? ?0 ?

1 ? ?? 111 0

}3{ }3,2{}1,0{}3,2{

Figure 3: Example of bounding the values in buckets
on z-order.

for 1 ≤ l ≤ L. Stated simply, the edit distance should be at
least as large as the largest difference in the n-gram counts
between any pair of corresponding buckets in the bucket rep-
resentation (correcting for the fact that one edit operation
can change up to n n-grams). To achieve a tighter lower
bound we apply z-order on the n-gram counting vectors to
cluster strings with similar vectors as best as possible in the
one-dimensional B+-tree space.

Given a vector vi, z-order interleaves the bits from all vec-
tor components in a round robin fashion. Using the example
in Figure 1 with n-gram counting vector 〈3, 2, 1, 3〉, the bi-
nary values of the vector components are “11”, “10”, “01”,
“11”. Thus, the z-order value of the vector is “11011011”
(see Figure 2). Therefore, each string is indexed in the B+-
tree according to the z-order value of its n-gram counting
vector. Formally, the gram counting order φgc for n-gram
counting vector v is defined as:

φgc(si) = zorder(vi) (5)

The property of comparability is straightforwardly satis-
fied since it only requires to compare the binary representa-
tions of the z-order values on string si and sj to verify their
order in the B+-tree.

Next, we analyze the property of lower bounding. For
a string interval [si, sj ] in z-order representation, a lower
bound and upper bound on the number of n-grams in each
bucket for all strings in the interval can be derived. This
is easy to see with an example. Let si and sj have binary
z-order values “11011011” and “11011110” respectively, any
string between them must have the prefix “11011”, while the
remaining bits can be either 0 or 1. In Figure 3 it can be seen
that some accurate estimation on the bucket values can be
recovered if the common prefix is long enough. Specifically,
the first bucket B1 is clearly 3, since both bits are deter-
ministicaly decided. For the rest of the buckets, the set of
possible values can also be calculated with the confirmed
prefix bits.



Assume that for a given string interval [si, sj ] the lower
and upper bound values on bucket Bl are lb[l] and ub[l] (for
1 ≤ l ≤ L). After transforming the query q to vector vq in
gram counting order, we apply Equation (4) with lb[l] and
ub[l], to reach some new lower bound on the edit distance
from q to any string contained in the interval. The pairwise
lower bounding property can be achieved similarly by re-
trieving the bound pairs (lb1[l], ub1[l]) and (lb2[l], ub2[l]) for
[sl

1, s
u
1 ] and [sl

2, s
u
2 ] respectively.

The gram counting order has the length bounding prop-
erty as well. Given vector v for string s in gram count-
ing order, the length of s is

PL
l=1 v[l] − n + 1, by the def-

inition of n-grams. This implies that the length of the
strings in string interval [si, sj ] is bounded in the interval

[
PL

l=1 lb[l]−n+1,
PL

l=1 ub[l]−n+1]. This allows us to cor-
rectly answer queries based on normalized, as well as stan-
dard edit distance.

5.3 Gram Location Order
In gram counting order φgc, the positional information

of the n-grams is simply discarded. Motivated by the suc-
cess of positional n-grams on join queries [20], we introduce
another string order, called Gram Location Order, exploit-
ing the positions of the n-grams to improve edit distance
based pruning. The gram location order satisfies compa-
rability, lower bounding, and pairwise lower bounding, and
hence supports all types of queries but not normalized edit
distance.

To conduct the transformation, the n-grams are extracted
along with their actual positions in the string. For string
“Jim Gray”, the extracted positional 2-grams are: (“#J”,0),
(“Ji”,1), (“im”,2), (“i ”,3), (“ G”,4), (“Gr”,5), (“ra”,6), (“ay”,7)
and (“y#”,8). By hashing the n-grams to integers, each po-
sitional n-gram is represented by a vector of two entries, the
hash value of the n-gram and the position of the n-gram.1

Using the same hash function shown in Figure 1, the posi-
tional n-grams of string s1 are:

{(1, 0), (3, 1), (4, 2), (2, 3), (4, 4), (1, 5), (1, 6), (2, 7), (4, 8)}.
Similar to the problem faced in gram counting order, the

actual size of the positional n-gram set can be very large. To
avoid storing long sets in the intermediate B+-tree nodes, we
sort the set elements based on the increasing 2-dimensional
z-order value of each element (i.e., the z-order value of pair
(hs, ps), where hs = h(s)). Then, for each set we preserve
only the first L elements in the z-order, and finally sort the
elements in increasing order of positions. In the rest we use
Zi to denote the top-L positional n-grams for string si, i.e.,
Zi = {(hi1, pi1), . . . , (hiL, piL)}, in which hil is the n-gram
hash value, pil is the corresponding position of the n-gram
in the original string si, and pi1 ≤ . . . ≤ piL.

Simply stated, we preserve only a pseudo-random subset
of positional n-grams per string, and approximately compare
strings based on these subsets only (the pseudo-random or-
dering is imposed by the hash function h and the z-order
used for each vector component, which is used in order to
prune both based on the n-gram hashes and the positions si-
multaneously). For L = 4 the remaining positional n-grams
for string s1, after the z-value has been computed for each

1We use a hash value instead of the idf [20] to avoid the
updating issues related with computing idfs when strings
are added or deleted from the index.

set element are:

{(4, 2), (4, 4), (2, 7), (4, 8)}.
The mapping function of gram location order is formally

defined as the dictionary order on the positional n-gram set:

φgl(si) = φd(Zi). (6)

After transforming every string to the top-L positional n-
gram sets, the property of comparability is guaranteed due
to the property of dictionary order. In the following, we
analyze the property of lower bounding and pairwise lower
bounding.

Similar to dictionary order, given a string interval [si, sj ]
in gram location order, all strings in this interval share a
common prefix LCP (Zi, Zj) of positional n-grams. If a
query string q is also represented by a positional n-gram set
Zq, the lower bound on the edit distance from q to any string
s ∈ [si, sj ] can be estimated by counting the number of mis-
matched positional n-grams between Zq and LCP (Zi, Zj).
A mismatch with respect to distance threshold θ was origi-
nally proposed in [20] and is formally defined below:

Definition 7 (Positional Mismatch [20]). Given a
distance threshold θ and two positional n-gram sets Zq and
Zs, a positional n-gram (hql, pql) ∈ Zq incurs a mismatch if:
1. No (hst, pst) ∈ Zs exists s.t. hst = hql and |pst− pql| ≤ θ
for any t; 2. No mismatching (hqt, pqt) has been already
found s.t. pqt ≥ pql − θ for any t < l.

The first condition checks for potential matches between
the same n-grams in q and s within distance θ. The second
condition checks whether there exists a mismatching n-gram
preceding the current n-gram within distance θ from the
position of the current n-gram. If such a mismatch exists,
then it might be possible to correct both n-grams with one
edit operation simultaneously (since they overlap), and thus
we cannot count both n-grams as mismatches. Note that the
definition above assumes that each string is long enough to
contain enough positional n-grams. It is easy to modify the
definition in case that the number of n-grams is not large
enough, but we omit the details here due to lack of space.
We can state the following lemma:

Lemma 5.1. Given a query string q and a string interval
[si, sj ], the edit distance between q and any string s ∈ [si, sj ]
is lower bounded by the number of mismatches from Zq to
LCP (Zi, Zj).

An example of applying the mismatch conditions between
query q =“Jim Grey” with positional n-gram set

{(4, 2), (4, 4), (2, 7), (4, 8)}
and an interval [si, sj ] with LCP (Zi, Zj) = {(4, 3), (2, 5)} is
discussed next. Let the distance threshold be 1. Then (4, 2)
is a match since there exists positional n-gram (4, 3) that
matches on the n-gram hash value and is within distance
1. The same holds for (4, 4). Q-gram (2, 7) is a mismatch,
since there is no n-gram in LCP (Zi, Zj) close enough on
position. Although there is no matching n-gram for (4, 8) for
the same reason, this is not counted as a mismatch, since in
the best case one edit operation on (2, 7), which is only one
position away, might also fix (4, 8). In summary, only one
mismatched positional n-gram can be identified, leading to
the possibility of the existence of strings within [si, sj ] with
edit distance to q equal to the threshold.



Dataset # of Strings Max. Length Avg. Length

Author 2,948,929 56 22
Title 1,158,648 675 74
Actor 1,213,391 80 23
Movie 1,568,893 247 26
Protein 508,038 1,999 347

Table 7: Dataset statistics.

To get a tighter lower bound on the edit distance estima-
tion we can also reverse the process by counting the mis-
matched positional n-grams from LCP (Zi, Zj) to Zq. After
counting the mismatches on both directions, the larger one
will be returned as the lower bound value. The algorithm
takes linear time with respect to the string lengths, since all
positional n-grams are sorted on positions.

On the property of pairwise lower bounding, similar tech-
niques can be applied by constructing the longest common
prefix for both string intervals [sl

1, s
u
1 ] and [sl

2, s
u
2 ]. Again,

the number of mismatches from both positional n-gram sets
are counted, the larger of which is the estimated lower bound.

6. EXPERIMENTAL EVALUATION
In this section we evaluate the performance of the Bed-

tree with five real datasets with respect to range, top-k and
join similarity queries on edit distance and normalized edit
distance.

6.1 Setup
We use five real string datasets from different domains:

Author, Title, Actor, Movie and Protein. Both Author and
Title are extracted from DBLP,2 containing the names of
authors and paper titles respectively. The Actor and Movie
datasets are taken from IMDB,3 including strings on actor
names and movie names respectively. Finally, the Protein
dataset consists of protein sequences in flat text format from
UNIPROT.4 (We prune some extremely long strings from
the original protein sequences to avoid problems of overflow
on storage pages.) For each of the datasets above, we gen-
erate 100 query strings by random sampling. The detailed
statistics of all five datasets are summarized in Table 7. The
statistics show that the name strings in Author and Actor
are usually shorter than other datasets. On the contrary, Ti-
tle and Protein consist of relatively long strings. Movie has
the largest standard deviation on string lengths, compared
with other string datasets.

In the rest we use BD, BGC and BGL to denote our
Bed-tree index with dictionary order φd, gram counting or-
der φgc and gram location order φgl respectively. Gener-
ally speaking, each group of experimental studies is parti-
tioned into two parts, main memory and external memory
based experiments. Since all state-of-the-art string indexes
were designed for main memory or do not support incremen-
tal updates, we only compare against them assuming static
datasets and main memory indexes. In particular, for range
queries we employ Flamingo [15], and Mismatch [20] as
our competitors. For top-k queries, we modify the original
implementation of Flamingo to support top-k queries by

2http://www.informatik.uni-trier.de/~ley/db
3http://www.imdb.com
4http://www.uniprot.org

Parameter Range

Distance threshold θ 1,2,4,8,16
Top-k threshold k 1,2,4,8,16
Buffer size MB 8, 16, 32, 64, 128

Gram size n 2,3,4,5
Buckets/Prefix size 2,3,4,5,6

Page size (KB) 1,2,4,8,16

Table 8: Parameters tested in our experiments.

BD BGC BGL Flamingo Mismatch

Author 106 42 43 46 211
Title 20 24 24 67 151
Actor 38 21 21 20 93
Movie 46 27 28 21 104
Protein 211 17 23 71 233

Table 9: Index construction time (seconds) with dis-
tance threshold θ = 4 and no memory constraints.

issuing range queries with successively increasing thresholds
until more than k results are returned. For join queries,
Mismatch is used to evaluate the effectiveness and effi-
ciency of our proposal.

In the experiments for main memory, performance mea-
sures include index construction cost and total and average
query processing. In experiments for external memory we
also report I/O time for index construction and query pro-
cessing, as well as the number of candidates for final edit
distance verification. In Table 8 we list the testing param-
eters and their corresponding ranges, in which the default
value is marked in bold font.

We compile all the programs in Red Hat Linux using
G++ 4.5.1. The experiments are run on a Quad-Core AMD
Opteron(tm) Processor 8356 with 128 GB main memory.

6.2 Range Queries
We first test the index construction time when all of the

methods are allowed to use arbitrarily large main memory.
In Table 9 we list the construction time in seconds spent
by all five methods when the distance threshold is set at
θ = 4. Note that the index construction time of any Bed-
tree is not affected by the threshold θ. On the other hand
some methods, e.g., Mismatch, have to be given a minimum
querying threshold θ before-hand, and cannot correctly an-
swer queries with thresholds smaller than the construction
threshold. The results in the table imply that BGC and BGL
with gram counting order and gram location order scale bet-
ter than the other three solutions, especially when dealing
with longer strings such as Title and Protein. The efficiency
of BD is not to par since it has to maintain the complete
keys in intermediate nodes of the Bed-tree, while the other
two orders only store compressed string representations of
fixed length.

In Figure 4 we compare the average query processing time
on different datasets in main memory. On Author, Title and
Actor data, Flamingo and Mismatch outperform the Bed-
tree methods for small thresholds. Nevertheless, the per-
formance gap shrinks quickly for larger thresholds. Within
the three orders on the Bed-tree, BGC shows advantages
on query processing time over the other two solutions. It
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Figure 4: Average query processing time for range
queries without memory constraints.

achieves almost the same performance as Mismatch for large
thresholds. On the Protein data, the Bed-tree methods are
more efficient on query processing than the competitor ap-
proaches, due to the limited pruning power of n-gram in-
verted lists on long strings. BGC beats all other solutions
by at least an order of magnitude when θ = 1. BGL is
less efficient than BGC since it is very hard to find common
prefixes among a group of strings, which limits the pruning
power of BGL only on tree nodes close to the bottom level
of the tree. This result shows that mismatch-based filtering
is not an effective tool for string matching when using the
Bed-tree.
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Figure 5: Total construction I/O time vs. memory
buffer size.

Since all inverted list methods were designed for main
memory usage and static datasets (they cannot support in-
cremental updates), we only test the Bed-tree methods in
external memory and for incremental updates. (In addition,

the existing implementation of Flamingo supports only main
memory indexes.) Figure 5 shows the I/O time on index con-
struction when varying the memory buffer size from 8 MB to
128 MB. These results imply that the number of I/O opera-
tions reduces sharply for increasing buffer sizes. BD spends
the least time for I/O among all three methods compared in
this group. When the buffer size is as large as 128 MB, all
three methods can accommodate almost the complete index
structure in main memory. All these results show that the
Bed-tree schemes are very easy to update even when there
is limited memory available in the system.
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Figure 6: Average range query I/O time vs. mem-
ory buffer size

In Figure 6, we evaluate the range query processing I/O
for the Bed-tree schemes on four string datasets. The to-
tal I/O remains almost unaffected until the buffer size is
large enough to store the complete index structure. This
is due to the fact that most of the I/Os are incurred on
the leaf nodes of the Bed-tree which are frequently swapped
out when queries are continuously processed. An interesting
point to note in these experiments is the low I/O cost of BD
on datasets with short strings, e.g., Author and Actor data.
Despite the high CPU cost of BD shown in Figure 4, BD re-
mains a good option when only limited memory is available
and the data consists of short strings. The small I/O cost is
due to the fact that we store the actual keys in intermedi-
ate nodes, which results in tighter pruning. Of course, the
penalty is increased CPU cost to process a large number of
strings and increased storage requirements.

6.3 Top-k Queries
In many cases, top-k queries are more practical than range

queries. However, existing indexing schemes with inverted
lists do not naturally support such queries. To illustrate
the performance benefits of our proposals, we implemented
a simple strategy with Flamingo, by increasing the range
query threshold gradually until more than k string results
are found. Notice that we use the same Bed-tree structures
to support all different types of queries. Thus, we skip the
performance comparisons on index construction but focus
on query processing efficiency.
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Figure 7: Average query processing time for top-k
queries without memory constraints.

In Figure 7, we report the query processing time of the
algorithms when the system allows all methods to load the
complete index structure into main memory. From the re-
sults in the figures we can conclude that the Bed-tree based
index scales better then the competitive techniques for top-
k queries. The CPU time for query processing is sub-linear
to the number of results k. On the other hand, the variant
of Flamingo does not provide an efficient solution for top-
k queries, since its efficiency for range queries with large
thresholds is poor. On Actor data, for example, it takes
more than 100 seconds to return the top-16 similar strings,
which is far from satisfactory if employed in real systems.
On the contrary, our Bed-tree method always outputs the
result within 1 second, across the board.
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(c) On Actor data
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Figure 8: Average query I/O time for top-k queries
vs. memory buffer size.

Figure 8 evaluates the impact of buffer size on query pro-
cessing I/O for the Bed-tree structures. A sharp decrease on

I/O time can be observed in the figures, especially on Actor
data on 128 MB. Again, BD is more I/O efficient than the
other two on the Author and Actor datasets because of the
small lengths of strings. However, BD incurs very high I/O
cost for the Protein data, which contains long sequences.

6.4 Normalized Edit Distance
In this group of experiments we use the Bed-tree struc-

ture with gram counting order to query on normalized edit
distance. Normalized edit distance is considered more dif-
ficult to evaluate over traditional edit distance, because it
takes the string length into consideration. To the best of our
knowledge, there is no existing systematic solution for the
problem of similarity search with normalized edit distance.
Therefore, we only report the performance of BGC on both
range queries and top-k queries on some of the datasets.
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Figure 9: Average query processing time for range
queries vs. distance threshold θ for normalized edit
distance.

The results in Figure 9 show that BGC is effective and
efficient for handling range queries for normalized edit dis-
tance. On the Author, Title and Actor datasets, it reports
the results in 0.5 seconds on average. Even on the Protein
data, BGC is able to return the range query results in 4
seconds when 20% of the letters are subject to change.
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Figure 10: Average query processing for top-k
queries vs. k for normalized edit distance.

In Figure 10, we evaluate the performance of BGC on top-
k queries for normalized edit distance. Similar to the results



on standard edit distance, the CPU time of BGC is linear
with respect to k, since the Bed-tree index scheme allows
the algorithm to gradually prune branches not containing
string candidates. The method is very efficient, outputting
the query results within 1 second in almost all cases.

6.5 Join Queries
Join query is the most expensive operator on string datasets

since it returns all pairs of strings within a given distance
threshold θ. On the Author and Actor datasets, the joined
results contain an overwhelming amount of string pairs even
for small distance thresholds. Thus, we only test on the
Movie and Protein data, which output string pairs of rea-
sonable size.
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Figure 11: Average query processing time for join
queries vs. distance threshold θ.

The results for Movie and Protein data implies that the
query processing time of the Bed-tree based method is lin-
ear to the distance threshold θ. On string datasets with
small string lengths the Mismatch based method outper-
forms BGC by a large margin when the threshold is small.
However, on the Protein data with long strings, the Mis-
match method is much less efficient due to the poor pruning
effectiveness.

7. CONCLUSION
In this paper we propose a general and simple B+-tree

based indexing structure to support a broad class of string
similarity queries with respect to edit distance. We prove
that the capabilities of the index rely only on the proper-
ties of the transformation function used to implicitly map
strings into integers. We present three transformation func-
tions, namely, dictionary order, gram counting order and
gram location order. The experiments on real datasets show
that our indexing scheme achieves comparable performance
against state-of-the-art solutions on range, top-k, and join
queries. Additionally, our all purpose index can support
normalized edit distance and, most importantly, incremen-
tal updates. The index can be built once and used with
arbitrary distance thresholds and for all query types. All of
the above are a departure from previous work. Furthermore,
our index scheme can be easily implemented in existing com-
mercial database systems using existing B+-tree structures
and has small memory requirements.
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